A-Engine™
and

A-Engine-P™

C/C++ Programmable, 16-bit Microprocessor Module
Based on the AM188ES

N

SERIHGL

i
o
8
=
3
=
-
=
T
8
L-*]
b
E
E

Ernll-]

Fiery

1724 Picass;o Avenue, Suite A, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com httpwiw.tern.com

COPYRIGHT

A-Engine, A-Engine-P, VE232, BirdBox, PowerDrive, SensorWatch, LittleDrive,
MemCard, MotionC, A-Core, NT-Kit, and ACTF are trademarks of TERN, Inc.
AmI188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Borland C/C++ is a trademark of Borland International.
Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of
Microsoft Corporation.
IBM is a trademark of International Business Machines Corporation.

Version 3.00

April 6, 1999

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

T_ IR
© 1997-199¢ TERIN

1724 Picasso Avenue, Suite A, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defecTE& products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN the Buyer
agree thafTERN will not be liable for incidental or consequential damages arising from
the use ofTERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.

TERN reserves the right to make changes and improvements to its products
without providing notice.

A-Engine Table of Contents

Table of Contents

Chapter page Chapter page
1. INErOdUCTHION «.covveiiiiiiiee e 1-1 3.5.4 Dual 12-bit DAC.........cccceeenne... 3-11
1.1 Functional Descriptionccccoeeeeeeee. 1-1 3.6 Headers and Connectors................ 3-12
1.2 FEaturesccoovveiiiiiiiiiiii e 1-3 3.6.1 Expansion Headers J1 and J2 3-12
1.3 Physical Descriptionccccceevvvveinnnnes 1-3 3.6.2 ADC and PPI Connectors........ 3:14
1.4 A-Engine Programming Overview.......... 1-4 3.6.3 JUMPENScovviiiiiiieiiiieeeeeeen, 3:14
1.41Step L. i 1-5 3.6.4 20x4-line LCD Interface........... 3-15
142 SEP 2. 1-6
143 Step 3. 1-6 4. SOtWANE .oeiiiiiiiiei e 4-1
1.5 VE232 (for non-AE-P users)............... 1-6 AL AELIB .o, 4-2
1.6 Minimum Requirementscccceeees 1-7 4.2 Functions in AE.OBJocevvviiiinine 4-2
1.6.1 Minimum Hardware Requirements.1-7 4.2.1 A-Engine Initialization 4-2
1.6.2 Minimum Software Requirements ..1-7 4.2.2 External Interrupt Initialization4-4
4.2.3 1/0O Initializationcceeeeeee. 4-5
2. Installation ... 2-1 4.2.4Timer UnitSovvvvveiiiiiiiiieeeeeeen, 4-6
2.1 Software Installationcccvvvveennnn. 2-1 4.2.5 Analog-to-Digital Conversion 4-6
2.2 Hardware Installationccccevvennnnnn. 2-1 4.2.6 Digital-to-Analog Conversion 4-7
2.2.1 Connecting the VE232 to the 4.2.7 Other Library Functions 4-7
A-Engine.......ooooiiiiiee 2-1 4.3 Functions in SER0.OBJ/SER1.0BJ 4-9
2.2.2 Connecting the A-Engine to the PC2-2 4.4 Functions in SCC.OBJ 4-14
2.2.3 Powering-on the A-Engine............. 2-3 4.5 Functions in AEEE.OBJ 4:-17
3. HaArdwareeeceeiiiiii 3-1
3.1 Am188ES - Introduction.................... 3-1 Appendices:
3.2 Am188ES — Features...........c..c.oeeeeee. 3-1
3.2 1 ClOCK v 3-1 A. A-Engine/A-Engine-P Layout A-1
3.2.2 External Interrupts and Schmitt B. VE232 Pin LayouL...........ccovviiieeeiiiennns B-1
Trigger Input Buffer 3-1 C. UART SCC2691.......cevvvvviiieiiiiieees C-1
3.2.3 Asynchronous Serial Ports.............. 3-2 D. RTC72421] 72423........ccccovvveiinnnnn, D-1
3.2.4 Timer Control Unitoouue 3-2 E. Serial EEPROM Mapoeeeeevivininnne E-1
3.2.5 PWM outputs and PWD 3-3 F. Madifications for I/O Boards.................. F-1
3.2.6 Power-save Modecccceeeeeeeeennn. 3-3 G. Software Glossarycccccvvveiiiiineneeenn. G-1
3.3 AM188BES PIO liNes.........vvvvviiieeeeeenn. 3-3 H. A-Engine Keypad Interface H-1
3.4 1/0 Mapped DevViCescocceevviieeeennnnnnn. 3-6 I. /0 Lines Available for Users................... -1
3.4.11/0O SPACE ... 3-6
3.4.2 Programmable Peripheral Interface Schematics:
(B2CBBA)....uuiiiiiieeeiiieee 3-7
3.4.3 Real-time Clock RTC72423........ 3-8 VE232 interface board
3.4.4 UART SCC2691.......covvvvuiiaaannnn. 3-8 A-Engine/A-Engine-P
3.5 Other DeviCes.........coeeeeeiiiiiiiiiiiiieeee e, 3-9
3.5.1 On-board Supervisor with Watchdog
TIMEN i 3-9
3.5.2EEPROM.....ccooiiiiiiiiiiiiiiii 3-10
3.5.3 12-hit ADC (TLC2543)............. 3-10

A-Engine Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

The A-Engine/A-Engine-P (AE/AE-P) is a low-cost, high performance, C/C++ programmable, 16-bit
microprocessor core module. It is designed for embedded applications that require compactness, low
power consumption, and high reliability. TReEngine is an ideal upgrade for the V25-Engine or C-
Engine while increasing reliability, functionality, and performance. They have the same mechanical
dimensions, compatible pin outs, compatible software drivers, and C/C++ Evaluation Kit (EV) or
Development Kit (DV). A low cost Upgrade Kit is also available for V25 users.

TheA-Engine can be integrated into an OEM product as a processor core component. It also can be used
to build a smart sensor, or as a node in a distributed microprocessor system.

ROM/FLASH SRAM
512K 512K
Am188ES
CPU
Compatible SCC2961
SDA P1 DMA.(Z). U6
EEPROVTT | B
512 BYTES) . p S()
g 32 1/0 lines
SDL P12
DO..D7
ADC u1o
11Ch. 12-bit P11 | PPIY | | RTC™
Port: J2

Figure 1.1 Functional block diag ram of the A-E ngine

Measuring 3.6 x 2.3 x 0.3 inches, thd=ngine offers a complete C/C++ programmable computer system
with a 16-bit high performance CPU (Am188ES, AMD) and operates at 40 MHz system clock with zero-
wait-state. Optional features include up to 512K EPROM/Flash and up to 512K battery-backed SRAM. A
512-byte serial EEPROM is included on-board. An optional real-time clock provides information on the
year, month, date, hour, minute, second, and 1/64 second, and an interrupt signal.

Two DMA-driven serial ports from the Am188ES support high-speed, reliable serial communication at a
rate of up to 115,200 baud. An optional UART SCC2691 may be added in order to have a third UART on-
board. All three serial ports support 8-bit and 9-bit communication.

Chapter 1: Introduction A-Engine

There are three 16-bit programmable timers/counters and a watchdog timer. Two timers can be used to
count or time external events, at a rate of up to 10 MHz, or to generate non-repetitive or variable-duty-
cycle waveforms as PWM outputs. Pulse Width Demodulation (PWD), a distinctive feature, can be used to
measure the width of a signal in both its high and low phases. It can be used in many applications, such as
bar-code reading.

There are 32 user-programmable I/O pins on the Am188ES, plus 24 bi-directional user-definable I/O lines
from an 82C55 chip on board. There are eight external interrupt inputs. Schmitt-trigger inverters are
provided for six interrupt inputs, to increase noise immunity and transform slowly-changing input signals
into fast-changing and jitter-free signals. A supervisor chip with power failure detection, a watchdog
timer, an LED, and expansion ports are on-board.

The optional 12-bit ADC has 11 channels of analog inputs with sample-and-hold and a high-impedance
reference input (2.5-5V) that facilitate ratiometric conversion, scaling, and isolation of analog circuitry
from logic and supply noise, supporting conversion up to a sample rate of approximately 10 KHz. The
82C55 can interface to another processor module, or to an LCD and keypad(s).

The optionalVE232 (only available on the AE, not the AE-P) can provide regulated 5V power and
RS232/RS485 drivers for the AE.

The A-Engine-P (AE-P) is a new version of th&-Engine with on-board regulated 5-volt power and
RS232 or 485 drivers, eliminating the need for the VE232. Measuring 3.6 x 2.8 x 0.3 inches, the
A-Engine-Pis ideal for applications in which space is very limited, where the VE232's extra height could
not be accommodated.

The A-Engine can be installed on TERN controllers, such asBmdBox, PowerDrive SensorWatch
LittleDrive, or MotionC (see Figure 1.2). TERN also offers custom hardware and software design, based
on theA-Engine or other TERN controllers.

Figure 1.2 An A-Engine installed on the MotionC

1-2

A-Engine Chapter 1: Introduction

1.2 Features

Standard Features
* Dimensions: AE: 3.6 x 2.3 x 0.3 inches
AE-P: 3.6 x 2.8 x 0.3 inches
« Easyto program in C/C++
» Power consumption: 190/130 mA at 5V for 40/20 MHz
» Power saving mode: 30/25 mA at 5V for 40/20 MHz
* Power input: +5V regulated DC for AE
+9V to +12 V unregulated DC for AE-P
» Temperature range: -40°C to +85°C
* 16-bit CPU (Am188ES), Intel 80x86 compatible
* High performance, zero-wait-state operation at 40 MHz
* Upto 512KB Flash/ROM
* 2 high-speed PWM outputs and Pulse Width Demodulation
e 321/0 lines from AM188, 512-byte serial EEPROM
» 8 external interrupt inputs, 3 16-bit timer/counters
« 3 serial ports support 8-bit or 9-bit asynchronous communication
» Supervisor chip (691) for power failure, reset and watchdog
* 24 additional bi-directional 1/0O lines from 82C55
* Interface for LCD, keypads, and slave CPU operation

Optional Featureg* surface-mounted components)

» 32KB, 128KB, or 512KB SRAM*
* 11 channels of 12-bit ADC, sample rate up to 10 KHz*
» 2 channels of 12-bit DAC, 0-4.095V output*
« SCC2691 UART (on-board) supports 8-bit or 9-bit networking
UART comes with RS-232 or RS-485 drivers (on AE-P only)
* Real-time clock RTC72423*, lithium coin battery*
* VE232 add-on board for regulated 5V power & RS-232/485 drivers (not available for AE-P)

1.3 Physical Description

The physical layouts of the A-Engine and A-Engine-P are shown in Figure 1.3 and Figure 1.4.

J5 J4 J30
mC),jg|a|eoeeeeeeeoe|ﬁ|%|lﬁ|%|lﬁ|%| Oﬁ‘:
1T °e
SRAM EPROM ||o o
74 AMD m U3 P
HC AM188ES

provpren e e

& CPU H oo
() e e
v2 ee

HIGE] e e

U

g A ee
R: e e

u7 PTH
Tes) PPI o
J7 RTC o0
ee
ADC vt P
Us e e
U0 \J oo
691 ee

32

tlecccfsleccccccccssccaccccsl u M)

Ho J6

Figure 1.3 Physical layout of the A-Engine

Chapter 1: Introduction A-Engine

9895 QBGB 5595 O
228 PR (] Ee

TERN J5° Jio J3o @ @

° e Jslaleeeeeeeeaee|eoeeeeeoe E‘:

e e LT e e

e’e e o

oo SRAY EPROM ||e o

e e 74 AMD m U oo
HC AMI188ES

ee eo
ee & CPU HE eo
XY M) oo
ee vz iyt oo
ee P eo
ee iR:
e e u7

P PP1

ee RTC

e’e

esf ADC v oo
e’e us oo
e’ e Ui0 \J . - e o
ele 691 e e

Bleccfoecccccccccccccccccc] v [#0

Figure 1.4 Physical layout of the A-Engine-P

1.4 A-Engine Programming Overview

Development of application software for the A-Engine consists of three easy steps, as shown in the block
diagram below.

STEP 1 Serial link PC and A-Egine, program in C/C++
Debug C/C++program on the AE with Remote Defpger

STEP 2 Test A-Emgine in the field, awsafrom PC
Application program resides in the batiebacked SRAM

STEP 3Make gplication ROM or Download to Flash
Replace DEBUG ROMproject is complete

You can program the A-Engine from your PC via serial link with an RS232 interface. Your C/C++
program can be remotely debugged over the serial link at a rate of 115,000 baud. The C/C++ Evaluation
Kit (EV) or Development Kit (DV) from TERN provides a Borland C/C++ compiler, TASM, LOC31,
Turbo Remote Debugger, 1/O driver libraries, sample programs, and batch files. These kits also include a
DEBUG ROM (TDREM_AE)to communicate with Turbo Debugger, a PC-V25 cable to the connect the
controller to the PC, and a 9-volt wall transform8ee your Evaluation/Development Kit Technical
Manual for more information on these kits.

After you debug your program, you can test run the A-Engine in the field, away from the PC, by changing
a single jumper, with the application program residing in the battery-backed SRAM. When the field test is
complete, application ®Ms can be produced to replace the DEBUG ROM. The .HEX or .BIN file can be
easily generated with the makefile provided. You may also use the DV Kit or ACTF Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.

A-Engine Chapter 1: Introduction

1.4.1Step 1

STEP 1 Debugging
* Write your C/C++ application program in C/C++.
« Connect your controller to your PC via the PC-V25 serial link cable.

e Use the batch filan.bat to compile, link, and locate, or usgdat to compile, link locate,
download, and debug your C/C++ application program.

PC

PC-V25 Cable

DC +9V 300 mA
Wall transformer
Center Negative

VE232 + A-Engine

DC power jack
on the VE232

Figure 1.5 Step 1 connections for the A-Engine

Chapter 1: Introduction A-Engine

1.4.2Step 2

STEP 2 Standalone Field Test.

* Set the Step 2 jumper on H2 pins 1-2 on the VE232 (Figure 1.7),

or, if you are not using the VE232,

* Set the jumper on J2 pins 38-40 on the A-Engine/A-Engine-P (Figure 1.6).

* At power-on or reset, if J2 pin 38 (P4) is low, the CPU will run the code that resides in the bpttery-
backed SRAM.

» Ifajumper is on J2 pins 38-40 at power-on or reset, the A-Engine will operate in Step Two mpde. If
the jumper is off J2 pins 38-40 at power-on or reset, the A-Engine will operate in Step One|mode.
The status of J2 pin 38 (signal P4) of the Am188ES is only checked at power-on or at reset.

TERN 50 — 4o — Jo 1]
_BO JBfe([eeceeceeceoe elo ele]e elefe e]e] OE‘?
Step 2 Jumper: § o oo |5 ¢
J2: pins 38=4 sol (3] | amibees . R M
ool | [CcPU N oo
el ™ w O o les
or, H2 on VE232 sof| = TR P
pins1=2 .o — : .e
oo RTC oo
o[apC vt oe
e e us e e
2 :Je - \‘/ 691 oo

e‘a§§§§|§|§§33223233322333333 e

*
a

Ho 6

Figure 1.6 Location of Step 2 jumper on the A-Engine (see Figure 1.7 for VE 232)

1.4.3Step 3

STEP 3 Generate the application .BIN or .HEX file, make producti@MR or download your progranl
to FLASH via ACTF.

« If you are happy with your Step 2 test, you can go back to your PC to generate your applicatioh ROM
to replace the DEBUG ROMIDREM_AB. You need to changpEBUG=1 to DEBUG=0 in the
makefile.

You need to have the DV Kit to complete Step 3.

Please refer to the Tutorial of the Technical Manual of the EV/DV Kit for further details on programming
the A-Engine.

1.5VE232 (for non AE-P users)

The VE232 is an interface board for the A-Engine that provides regulated +5V DC power and RS-
232/485 drivers. It converts TTL signals to and from RS-232 signals. You do not need the VE232 if you

1-6

A-Engine Chapter 1: Introduction

have the A-Engine-P or if you are using the A-Engine installed on another TERN controller such as the
LittleDrive, MotionC, PowerDrive, or SensorWatch.

The VE232, shown in Figure 1.7, measures 2.3 x 1.57 inches. A wall transformer (9V, 300 mA) with a
center negative DC plug (9=2.0 mm) should be used to power the A-Engine via the VE232. The VE232
connects to A-Engine via H1 (2x10 header). SERO (J2) and SER1 (J3) on the VE232 are 2x5-pin headers
for serial ports SERO and SER1. SERO is the default programming port.

While the VE232 is installed, J2 pins 38-40 of the A-Engine are connected to H2 of the V232. You may
use H2 for the Step 2 jumper.

H2
SER1 SERO
Step 2 Jump@\ J3 J2 1.57, 2.30

inch)
EQ\ O S (inc
S
S
1489 1488 s
485
US| |U6 |)7 %
661 @ —H3 pin 3
DC © 9 u4l . .
power jack 00O S+—H3 pin 2
“ 5 O
| e
+7
0.0 VE232

Figure 1.7 The VE 232, an interface card for the A-E ngine

For further information on the VE232, please refer to Appendix C and to the VE232 schematic at the end
of this manual.

1.6 Minimum Requirements for A-Engine System Development

1.6.1Minimum Hardware Requirements

» PC or PC-compatible computer with serial COMx port that supports 115,200 baud
* A-Engine or A-Engine-P controller with DEBUG ROMDREM_AE
* VEZ232 interface board (hon-AE-P users)*
* PC-V25 serial cable (RS-232; DB9 connector for PC COM port and IDC 2x5 connector for
controller)
* center negative wall transformer (+9V 500 mA)
* NOTE: the VE232 is not needed if you are using the AE installed on another controller

1.6.2Minimum Software Requirements

« TERN EV/DV Kit installation diskettes
 PC software environment: DOS, Windows 3.1, Windows95, or Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Development Kit (DV) are available from TERN. The EV

Kit is a limited-functionality version of the DV Kit. With the EV Kit, you can program and debug the
A-Engine in Step Three and Step Two, but you cannot run Step Three. In order to generate an application
ROM/Flash file, make production version ROMs, and complete a project, iijaueed the Development

Kit (DV).

1-7

A-Engine Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV/DV disk ctains important information about the installation
and evaluation of TERN controllers.

2.2 Hardware Installation

Overview

* Install VE232 (if applicable):
H1 connector of VE232 installs on J2 of the A-Engine

» Connect PC-V25 cable:
For debugging (STEP 1), place IDC connector on SERO with reg
edge of cable at pin 1

» Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack

Hardware installation for the A-Engine consists primarily of connecting the microcontroller to your PC.
For the A-Engine, the VE232 must be used to supply regulated power and RS-232 drivers to the A-
Engine. (For the A-Engine-P, the VE232 is not needed.) If you are using the A-Engine installed on
another controller, please refer to the technical manual for that controller for installation information.

2.2.1Connecting the VE232 to the A-Engine

FLO sorsssssssessspibpennse Q[

SRAM EPROM ||o o
74 AMD 1} 3
HC AMI8SES

e e

e CPU Ha oo
us H ee
u2 i ee

ee

ee

PTE eoe

PP1 oo

RTC HTH ee
,,,,,,, i oo

u4

H1

| us e e

Q.OQQQQQQ.QQQQQQQQQQQQQ"Q il ::

Eﬂoeoaeeeeeeeeaeeeooe us #O
" * A-Engine

Figure 2.1 Before installing the VE 232 on the A-E ngine

2-1

Chapter 2: Installation A-Engine

J50 Jio J3o
| S anoonooa0 O
LI

SIRAY EPROM
u u3

1489|1488

us || ue

Y

485 PA

X} Ul R

00 O [i C

ol o S5 .
o, | R R

Figure 2.2 After installing the VE 232 on the A-E ngine

|%|s:

H1

d

Install the VE232 interface with the H1 (10x2) socket connector on the upper half of the J2 (dual row
header) of the A-Engine. Figure 2.1 and Figure 2.2 show the VE232 and the A-Engine before and after
installation.

2.2.2Connecting the A-Engine to the PC

The following diagram (Figure 2.3) illustrates the connection between the A-Engine, VE232, and the PC.
The A-Engine is linked to the PC via a serial cable (PC-V25).

The TDREM_AEDEBUG ROM communicates through SERO by default. Install the 5x2 IDC connector
on the SERO header of the VE23MMPORTANT: Note that theed side of the cable must point to pin 1

of the VE232 H1 header.The DB9 connector should be connected to one of your PC's COM Ports
(COM1 or COM2).

REbIZI) side of sensl_l To SERO
cable corresponding for debugging Pin 1 of headers

to pin 1 of headers for for SERO &SER1
SERO/SER]/
_ S SERO
ce es fee i e[e ele

PC — k H1 on _

VE232J::

oo o - \ s

— 9-pin J2 E
conﬁector

power jac VE232 A-Engine
Figure 2.3 Connecting the A-Engine and VE 232 to the PC

2-2

A-Engine Chapter 2: Installation

Figure 2.4 illustrates the connection between the A-Engine-P and the PC. The PC-V25 cable connects to
the A-Engine-P at the SERO header (H1), with the red edge of the cable pointing to pin 1.

RED stripe of serial cable Power Jack Adapter

corresponds to pin 1 of GND
SER1/SERO0/SCC headers

To COM1

or COM2 V25)

Pin 1
To SERO \ x Power
for debuggin@ SERO

° 0 [ef[eecocccee e o]
e
oo
oo
e od
ric
4
e
e
oo
oo
e
H1
.. PPL

oo aoc \ w
w

Figure 2.4 Connections for the A-Engine-P

2.2.3Powering-on the A-Engine

Connect a wall transformer +9V DC output to the VE232 DC power jack, or, for the AE-P, to the DC
power jack at H4. (On the AE-P, the center negative power jack adapter is connected to a 2-pin power
supply header (H4).)

The on-board LED should blink twice and remain on after the A-Engine is powered-on or reset, as shown
in Figure 2.5.

< FIAFI To O

: : @ e| |ee (D —Lr——j[®

bd I PO I SR EPROM ||o o

oo g u 3 oo J——

o ol |148q |uaeq e flse
e O el N | ya
— 85 TS O
o0 u iR eof| I — —
00O ETTE O y
e e PP1 o6 K
sl OO O [7s¢] C T} - -/ | N
OO @ i ee

0o us ee JEE R

: : d 691 : :

o | I R P s e

Figure 2.5 The LED blinks twice after the A-Engine is pow ered-on or reset

2-3

A-Engine Chapter 3: Hardware

Chapter 3: Hardware

3.1 Am188ES - Introduction

The Am188ES is based on industry-standard x86 architecture. The AmM188ES controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the Am188ES has
new peripherals. The on-chip system interface logic can minimize total system cost. The Am188ES has
two asynchronous serial ports, 32 PIOs, a watchdog timer, additional interrupt pins, a pulse width
demodulation option, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced
chip-select functionality.

3.2 Am188ES — Features

3.2.1 Clock

Due to its integrated clock generation circuitry, the Am188ES microcontroller allows the use of a times-
one crystal frequency. The design achieves 40 MHz CPU operation, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J1 pin 23, default 40 MHz. The CLKOUTB signal is not
connected in the A-Engine.

CLKOUTA remains active during reset and bus hold conditions. The A-Engine initia function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=J1 pin 23.

3.2.2 External Interrupts and Schmitt Trigger I nput Buffer

There are eight external interrupts: INTO-INT6 and NMI.

/INTO, J2 pin 8, is used by SCC2691 UART, if it isinstalled.

/INT1, 2 pin 6

/INT2, 32 pin 19

/INT3, 2 pin 21

/INT4, 32 pin 33

INT5=P12=DRQO0, J2 pin 5, used by A-Engine as output for LED/EE/HWD
INT6=P13=DRQ1, J2 pin 11

/INMI, J2 pin 7

Six external interrupt inputs, /INT0-4 and /NMI, are buffered by Schmitt-trigger inverters (U9, 74HC14),
in order to increase noise immunity and transform slowly changing input signals to fast changing and
jitter-free signals. As aresult of this buffering, these pins are capable of only acting as input.

These buffered external interrupt inputs require afalling edge (HIGH-to-L OW) to generate an interrupt.

Chapter 3: Hardware A-Engine

/INT4=J2.33 INT4=U2.52
U9A

/INT2=J2.19 INT2=U2.54
u9B

/INT0=J2.8 INTO=U2.56
— usC

/INT1=12.6 INT1=U2.55
T ——u9D

/INT3=32.21 INT3=U2.53
U9E

INMI=02.7 NMI=U2.47
—U9F

Figure 3.1 External interrupt inputs

The A-Engine uses vector interrupt functions to respond to external interrupts. Refer to the Am188ES

User’s manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The Am188ES CPU has two asynchronous serial channels: SERO and SER1. Both asynchronous serial
ports support the following:
Full-duplex operation
7-bit, 8-bit, and 9-bit data transfers
Odd, even, and no parity

One stop bit

Error detection

Hardware flow control

DMA transfers to and from serial ports

Transmit and receive interrupts for each port
Multidrop 9-bit protocol support

Maximum baud rate of 1/16 of the CPU clock speed
Independent baud rate generators

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered

interrupt transmitting arrangement. See the samplesfilessl echo.c and sO_echo.c.

An optional external SCC2691 UART (U8) is located underneath the ROM (U3). For more information

about the external UART SCC2691, please refer to section 3.4.4 and Appendix C.

A-Engine Chapter 3: Hardware

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: TimerO, Timerl1, and Timer2.

Timer0 and Timerl are connected to four external pins:

TimerO output = P10 = J2 pin 12

TimerO input = P11 = J2 pin 14

Timerl output =P1=J2 pin29=J1 pin 4

Timerl input = PO =J2 pin 20
These two timers can be used to count or time external events, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale timer O and timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See the
sample programs timer0.c and ae_cntO.c in the\ sanpl es\ ae directory.

3.2.5 PWM outputs and PWD

The TimerO and Timerl outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycleis 25 nsx 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both
TimerO and Timerl have secondary maximum count registers for variable duty cycle output. Using both
the primary and secondary maximum count registers lets the timer alternate between two maximum
values.

MAX. COUNT A

v
—1 L

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the
/INT2=J2 pin 19.

3.2.6 Power-save Mode

The A-Engine is an ideal core module for low power consumption applications. The power-save mode of
the Am188ES reduces power consumption and heat dissipation, thereby extending battery life in portable
systems. In power-save mode, operation of the CPU and internal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatically returnsto its normal operating frequency.

The RTC72423 on the A-Engine has a VOFF signal routed to J1 pin 9. VOFF is controlled by the battery-
backed RTC72423. The VOFF signal can be programmed by software to be in tri-state or to be active low.
The RTC72423 can be programmed in interrupt mode to drive the VOFF pin at 1/64 second, 1 second 1
minute, or 1 hour intervals. The user can use the VOFF line to control an external switching power supply
that turns the power supply on/off. More details are available in the sample file poweroff.c in the
186\ sanpl es\ ae sub-directory.

3-3

Chapter 3: Hardware A-Engine

3.3 AmI188ES PIO lines

The Am188ES has 32 pins available as user-programmable 1/0 lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal shared function is not needed. A PIO line can be
configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-
drain output. A pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table
below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage, as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in 0.

PIO | Function Power-On/Reset status | A-Engine Pin No. A-Engine Initial

PO Timerlin Input with pull-up J2 pin 20 Input with pull-up
P1 Timerl out Input with pull-down J2 pin 29, J1 pin 4 CLK 1

P2 /PCSB/A2 Input with pull-up J2 pin 24 RTC select

P3 /PCS5/A1 Input with pull-up J2 pin 15 SCC2691 select

P4 DT/R Normal J2 pin 38 Input with pull-up Step 2
P5 /DEN/DS Normal J2 pin 30 Input with pull-up
P6 SRDY Normal J2 pin 35 Input with pull-down
P7 Al17 Normal J8pin3 Al17

P8 A18 Normal J8 pin 2 A18

P9 A19 Normal J8pinl A19

P10 | TimerO out Input with pull-down J2 pin 12 Input with pull-down
P11 | TimerOin Input with pull-up J2 pin 14 Input with pull-up
P12 | DRQO/INTS | Input with pull-up J2pin5 Output for LED/EE/HWD
P13 | DRQYVINT6 | Input with pull-up J2 pin11 Input with pull-up
P14 | /IMCSO Input with pull-up J2 pin 37 Input with pull-up
P15 | /MCS1 Input with pull-up J2 pin 23 Input with pull-up
P16 | /PCSO Input with pull-up J1 pin 19 /PCS0

P17 | /PCS1 Input with pull-up J2 pin 13 PPl, 82C55 select
P18 | CTSYPCS2 | Input with pull-up J2 pin 22 Input with pull-up
P19 | RTSYPCS3 | Input with pull-up J2 pin 31 Input with pull-up
P20 | RTSO Input with pull-up J2 pin 27 Input with pull-up
P21 | CTSO Input with pull-up J2 pin 36 Input with pull-up
P22 | TxDO Input with pull-up J2 pin 34 TxDO

P23 | RxDO Input with pull-up J2 pin 32 RxDO

P24 | IMCS2 Input with pull-up J2 pin 17 Input with pull-up
P25 | /IMCS3 Input with pull-up J2 pin 18 Input with pull-up
P26 | Uzl Input with pull-up J2pin4 Input with pull-up*
P27 | TxD1 Input with pull-up J2 pin 28 TxD1

P28 | RxD1 Input with pull-up J2 pin 26 RxD1

P29 | /ICLKDIV2 Input with pull-up J2pin3 Input with pull-up*
P30 | INT4 Input with pull-up J2 pin 33 Input with pull-up
P31 | INT2 Input with pull-up J2 pin 19 Input with pull-up

* Note: P26 and P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

34

A-Engine Chapter 3: Hardware

Three external interrupt lines are not shared with PIO pins:
INTO=J2pin 2
INT1=J2pin6
INT3=J2pin 21

The 32 PIO lines, PO-P31, are configurable via two 16-bit registers, POMODE and PIODIRECTION.
The settings are as follows:

MODE | PIOMODEreg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

A-Engineinitialization on PIO pinsin ae_init() islisted below:

outport(Oxff78,0xe73c); /I PDIR1, TXDO, RXDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(Oxff76,0x0000); /I PIOM1

outport(Oxff72,0xec7b); /I PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); /I PIOMO, P12=LED

The C function in the library ae_lib can be used to initialize PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 isin output mode
pio_wr(12,0); set P12 pin low, if P12 isin output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresponding pin isin input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pinisin input mode,

Some of the 1/O lines are used by the A-Engine system for on-board components (0). We suggest that you
not use these lines unless you are sure that you are not interfering with the operation of such components
(i.e., if the component is not installed).

You should also note that the external interrupt PIO pins INT2, 4, 5, and 6 are not available for use as
output because of the inverters attached. The input values of these PIO interrupt lines will aso be
inverted for the same reason. As a result, calling pio_rd to read the value of P31 (INT2) will return 1
when pin 19 on header J2 is pulled low, with the result reversed if the pin is pulled high.

A-Engine

Chapter 3: Hardware
Signal | Pin Function
P2 /PCS6 U4 RTC72423 chip select at base I/O address 0x0600
P3 /PCS5 U8 SCC2691 UART chip select at base 1/0 address 0x0500
P4 /DT Step Two jumper
P11 TimerOinput | Shared with U19 TLC2543 ADC and U7 24C04 EE data input
The ADC and EE data output can be tri-state, while disabled
P12 DRQU/INTS Output for LED or U7 serial EE clock or Hit watchdog
P17 /PCS1 U5 PPI 82C55 chip select at base 1/0 address 0x0100
P22 TxDO Default SERO debug
P23 RxDO Default SERO debug
/INTO | J2pin8 U8 SCC2691 UART interrupt.

Table 3.2 1/0O lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0O Space

External 1/0O devices can use I/O mapping for access. Y ou can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified 1/O address.

The external 1/0 space is 64K, ranging from 0x0000 to Oxffff.

The default 1/0 access time is 15 wait states. You may use the function void io_wait(char wait) to define
the I/O wait states from 0 to 15. The system clock is 25 ns (or 50 ns), giving a clock speed of 40 MHz (or
20 MHz). Details regarding this can be found in the Software chapter, and in the Am188ES User’'s
Manual. Slower components, such as most LCD interfaces, might find the maximum programmable wait
state of 15 cycles till insufficient. Due to the high bus speed of the system, some components need to be

attached to 1/0 pins directly.

For details regarding the chip select unit, please see Chapter 5 of the Am188ES User’s Manual.

The table below shows more information about 1/O mapping.

I/0 space Select | Location Usage
0x0000-0x00ff | /PCSO | J1 pin 19=P16 USER*
0x0100-0x01ff [/PCS1 | J2 pin 13=P17 PPl, 82C55
0x0200-0x02ff | /PCS2 | J2pin22=CTS1 | USER
0x0300-0x03ff | /PCS3 | J2pin31=RTS1 | USER
0x0400-0x04ff | /PCHA Reserved
0x0500-0x05ff | /PCS5 | J2 pin 15=P3 UART, SCC2691
0x0600-0x06ff | /PCS6 | J2 pin 24=P2 RTC 72423

*PCS0 may be used for other TERN peripheral boards.

To illustrate how to interface the A-Engine with external 1/0 boards, a simple decoding circuit for

interfacing to an 82C55 parallel 1/0 chip is shown in Figure 3.2.

A-Engine Chapter 3: Hardware

74HC138 82C55
RST !
A5 i Yol 15 NC 0 POo-PO7
A6 2 | . v1| 14 /SEL20 AT
A7 31 ¢ y2| 13 /SEL40
Y3 12 /SEL60 | /sE20] /S P10-P17

v4| 11 /SEL80
/SELA0 DAVR] /WR

/PCSD 4~ G2A Y5| 10
59 G2B Y6l 9 [SELCO /pp IRD

DO-D7

Figure 3.2 Interface the A-Engine to external I/O devices

The function ae_i ni t () by default initializes the /PCS0 line at base I/O address starting at 0x00. You
can read from the 82C55 with inportb(0x020) or write to the 82C55 with outportb(0x020,dat). The call
to inportb(0x020) will activate /PCS0, as well as putting the address 0x00 over the address bus. The
decoder will select the 82C55 based on address lines A5-7, and the data bus will be used to read the
appropriate data from the off-board component.

3.4.2 Programmable Peripheral I nterface (82C55A)

U5 PPl (82C55) is a low-power CMOS programmable parallel interface unit for use in microcomputer
systems. It provides 24 1/0O pins that may be individually programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be programmed in sets of 4 and 8 pins to be inputs or outputs.
In MODE 1, each of the two groups of 12 pins can be programmed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshaking and interrupt control signals. MODE 2 is a strobed bi-
directional bus configuration.

Chapter 3: Hardware A-Engine

C T T T T T T 1T 1
I—J GROUP 1
Port 2 0 Output
(Lower)

1 Input

Port 1 0 Output

1 Input

M ode 0 M ode O

1 M ode 1

GROUP 2

Port 2 0 Output

(Upper)

1 Input

Port 0 0 Output

1 Input

M ode 00 M ode O

01 M ode 1

1X M ode 2

Command 0 Bit
Select manipulation
1 M ode

Select

Figure 3.3 Mode Select Command Word

The A-Engine maps U5, the 82C55/uPD 71055, at base 1/0 address 0x0100.
The ports/registers are offsets of this 1/0 base address.
The Command Register = 0x0103; Port 0 = 0x0100; Port 1 = 0x0101; and Port 2 = 0x0102.

The following code example will set all ports to output mode:

out port b(0x0103, 0x80); /* Mode 0 all output selection. */
out port b(0x0100, 0x55); /* Sets port 0 to alternating high/low /0O .
out port b(0x0101, Ox55);/* Sets port 1 to alternating high/low /O pins. */
out port b(0x0102, 0x55); /* Sets port 2 to alternating high/low /0O

To set al portsto input mode:

out port b(0x0103, 0x9f) ; /* Mode O all input selection. */

Y ou can read the ports with:
i nport b(0x0100); /* Port 0 */
i nport b(0x0101); /* Port 1 */
i nport b(0x0102); /* Port 2 */

This returns an 8-bit value for each port, with each bit corresponding to the appropriate line on the port.

You will find that numerous on-board components are controlled using PPl lines only. You will need to
use PPl access methods to control these, as well.

See section 3.6.2 for PPl connection headers.

3-8

A-Engine Chapter 3: Hardware

3.4.3 Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSON, U4) is mapped in the I/O address space 0x0600. It
must be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or
rtc_rd() (see Appendix D and the Software chapter for details).

It is aso possible to configure the real-time clock to raise an output line attached to an external interrupt,
at 1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in atime-driven application, or
the VOFF signal can be used to turn on/off the controller using an external switching power supply. An
example of a program showing a similar application can be found in tern\v25\samples\ve\power off.c.

3.4.4 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped into the 1/0 address space at 0x0500. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an interrupt
control mechanism, programmable data format, selectable baud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a muilti-
purpose input/output including RTS and CTS mechanism. MPO and MPI are routed to J1 pin 3 and J1
pin 21.

For more information, refer to Appendix C. The SCC2691 on the A-Engine may be used as a network
9-bit UART (for the TERN NT-Kit).

RxD (J1 pin 5), TxD (J1 pin 7), MPO (J1 pin 3), and MPI (J1 pin 21) are TTL level signals. Y ou must
provide RS-232 or RS-485 drivers off of the A-Engine board if you choose to use either RS-232 or RS-
485. This can be achieved by using either the VE232, or a number of other TERN peripheral controllers
that are driven by the A-Engine and offer RS232/RS485 drivers. The A-Engine-P includes these drivers
on-board.

The VE232 provides an RS-485 driver. Y ou may connect the RxD and TxD signals on J1 of the A-Engine
to H3 pins 3 and 2 on the VE232, and the 485+ and 485- signals at the screw terminal of the VE232 to
join amulti-drop R$485 twisted-pair network.

The RS-485 driver on the VE232 was designed to use J2 pin 24 to control the half-duplex RS-485 driver
direction for the V25-Engine. However, the A-Engine J2 pin 24 (signa P2) isthe RTC chip select signal.
P2 should not be used as RS-485 driver direction control. Y ou can use MPO of the SCC2691 (J1 pin 3) as
RS-485 driver direction control and connect the AE J1 pin 3 to the VE232's H1 pin, which mapsto AE J2
pin 24. Y ou then should cut off pin 24 of the J2 on the A-Engine connection to the VE232. Please refer to
Appendix B for the layout of the VE232 and to Chapter 1 for further information.

J1 of
VE232

RS48§ R3185+

Ez-nﬁiﬂﬁ;ﬁ& ()

i N B

SRAM

rall

us
ODDDHDBQBDQB
; ccccccscccocs]| U |@

Figure 3.4 Settings and connections for networking with SCC2691 using the VE232

f
17677077077
S8
III
-2 >C
©0000000600606060000%Y
©00000000000000000

e
)
sy

.
a

3-9

Chapter 3: Hardware A-Engine

3.5 Other Devices

A number of other devices are also available on the A-Engine. Some of these are optional, and might not
be installed on the particular controller you are using. For a discussion regarding the software interface
for these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the A-Engine has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J9 of the A-Engine. The watchdog timer provides
a means of verifying proper software execution. In the user's application program, calls to the function
hitwd() (aroutine that toggles the P12=HWD pin of the MAX691) should be arranged such that the HWD
pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is not accessed
within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the application program if something is wrong. After the
A-Engineis reset, the WDO remains low until atransition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

The Am188ES has an internal watchdog timer. Thisis disabled by default with ae_init().

-,O.mlg—e“ﬁ'ﬁ"% O%F
e e L —e
. SRR EPROM ||e o
:: 74 AMD u I ::
el |4e AM(:1F§U8ES o o2
| O Sl
ee v2 :JE e
. Q oe
e ;R e e
e e V7 iTi pd
ee|| preel PP1 C T e .
eell RTC " °e
o YT w | Y 22|/~ Watchdog Encble
ee s e
ee|l uo \J L2
2 eaﬂQQQQQQQQQQQQQQQ'Q'QQQ..' 691 Je hd
ele po eolelocecoccec0cacco00enae us X
HO X LED

Figure 3.5 Location of watchdog timer enable jumper

Power -failure War ning

The supervisor supports power-failure warning and backup battery protection. When power failure is
sensed by the PFI pin of the MAX691 (lower than 1.3 V), the PFO is low. You may design an NMI
service routine to take protect actions before the +5V drops and processor dies. Y ou can also measure the
PFI voltage with one of the 12-bit ADC inputs. The following circuit (Figure 3.6) shows how you might
use the power-failure detection logic within your application.

3-10

A-Engine Chapter 3: Hardware

9-14V (8.35V min) VCC = +5V
47K % - % R3=10K
PFl of MAX691
(1.3 V min)
2K

Figure 3.6 Using the supervisor chip for power failure detection

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last about 3-5 years without external power being supplied.
When the external power is on, the battery-switch-over circuit will select the VCC to connect to the
VRAM.

3.5.2 EEPROM

A seriadl EEPROM of 128 bytes (24C01), 512 bytes (24C04), or 2K bytes (24C16) can be installed in U7.
The A-Engine uses the P12=SCL (serial clock) and P11=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store important data such as a node address, calibration
coefficients, and configuration codes. It typically has 1,000,000 erase/write cycles. The data retention is
more than 40 years. EEPROM can be read and written by simply calling the functions ee rd() and
ee wr().

The EEPROM and the 12-bit ADC (U10) share the same data input signal line, P11. The 12-bit ADC uses
120 (PPl U5) line as chip select. If the 120 line is low, the ADC will be enabled and holds the P11 data
line, prohibiting EEPROM operation. The ae init(); function sets 120 high. The ae_ad12(); function
brings 120 low only when it needs to. The user should be aware that they must always keep 120 high in
order to disable the ADC and free P11 line for the EEPROM. Any outportb(0x103, ??)l to access the PP
mode register will set 120 low. The user should use outportb(0x102, 0x01 | inportb(0x102)); to bring 120
high.

A range of lower addresses in the EEPROM is reserved for TERN use. Details regarding which addresses
are reserved, and for what purpose, can be found in Appendix E of this manual.

3.5.3 12-bit ADC (TLC2543)

The TLC2543 is a 12-hit, switched-capacitor, successive-approximation, 11 channels, serial interface,
analog-to-digital converter. Three PPl 1/0O lines are used to handle the ADC, with /CS=120; CLK=122;
and DIN=121.

The ADC digital data output communicates with a host through a serial tri-state output (DOUT=P11). If
120=/CS is low, the TLC2543 will have output on P11. If 120=/CS is high, the TLC2543 is disabled and
P11 is free. 120 and P11 are pulled high by 10K resistors on board. The TLC2543 has an on-chip 14-
channel multiplexer that can select any one of 11 inputs or any one of three internal self-test voltages. The
sample-and-hold function is automatic. At the end of conversion, the end-of-conversion (EOC) output is
not connected, although it goes high to indicate that conversion is complete.

TLC2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error

3-11

Chapter 3: Hardware A-Engine

conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50W and capable of slewing the analog input voltage into a 60 pf capacitor.

A reference voltage less than VCC (+5V) can be provided for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +5V can be used for this purpose, and can be connected to
the REF+ pin.

The CLK signal to the ADC is toggled through an 1/O pin, and serial access allows a conversion rate of up
to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines are used, as listed below:

/ICS Chip select = PPI 120, high to low transition enables DOUT, DIN and CLK.
Low to high transition disables DOUT, DIN and CLK.

DIN PPI 121, serial datainput

DOUT P11 of Am188ES, 3-state serial data output.

EOC Not Connected, End of Conversion, high indicates conversion complete and
datais ready

CLK 1/0O clock = PPI 122

REF+ Upper reference voltage (normally VCC)

REF- Lower reference voltage (normally GND)

VCC Power supply, +5 V input

GND Ground

The analog inputs ADO to AD9 are available at HO. AD10, REF+, GND, and VVCC are available at J6.

3.5.4 Dual 12-bit DAC

The LTC1446/LTC1446L is a dua 12-bit digital-to-analog converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amplifier, an internal reference and a 3-wire serial interface.
The LTC1446 outputs a full-scale of 4.096V, making 1 LSB equa to 1 mV. The LTC1446L outputs a
full-scale of 2.5V, making 1 LSB equal to 0.61 mV.

The buffered outputs can source or sink 5 mA. The outputs swing to within a few millivolts of supply rail
when unloaded. They have an equivalent output resistance of 40 W when driving a load to the rails. The
buffer amplifiers can drive 1000 pf without going into oscillation.

The DAC isinstaled in U11 on the A-Engine, and the outputs are routed to J6 pin 6 for DAC channel A,
and J6 pin 8 for DAC channel B.

The DAC uses P12 as CLK, P26 as DI, and P29 as LD/CS. Please refer to the LT1446 technical data
sheets from Linear Technology (1-408-432-1900) for further information. See also the sample program
ae da.cinthe\ sanpl es\ ae directory.

3.6 Headers and Connectors

3.6.1 Expansion Headers J1 and J2

There are two 20x2 0.1 spacing headers for A-Engine expansion. Most signals are directly routed to the
Am188ES processor. These signals are 5V only, and any out-of-range voltages will most likely damage
the board.

3-12

A-Engine Chapter 3: Hardware

-
|
Eq

NOJnoeeeoaaequoelg_eMI%llﬁln%l O ‘]lplnl

e e
e e
o0
oo
LX)
oo
oo
oo
o0
e s

SRAM
AMD o

74

HC AM188ES
14 CPU

u9

]

C 2
RIe 5] PP1 oo
7 RTC oo
ADC* ué oe
w N s oe

J2

J2 pinl | _A

691 Xy
RO o000 c000000ca00EPOOOS
elececoclelooranenncoacoenneneel UB C

HO J6

€3

Figure 3.7 Pin 1 locations for J1 and J2

J1 Signal J2 Signal
VCC 1 2 GND GND 40 39 VCC
MPO 3 4 P1 P4 38 37 P14
RxD 5 6 GND /CTSO 36 35 P6
TxD 7 8 DO T™XDO 34 33 /INT4
VOFF 9 10 D1 RxDO 32 31 /RTS1
PFI 11 12 D2 P5 30 29 P1
GND 13 14 D3 TxD1 28 27 /RTSO
/RST 15 16 D4 RxD1 26 25 GND
RST 17 18 D5 P2 24 23 P15
P16 19 20 D6 /ICTS1 22 21 /INT3
MPI 21 22 D7 PO 20 19 /INT2
CLK 23 24 GND P25 18 17 P24
HLDA 25 26 A7 /WR 16 15 P3
HOLD 27 28 A6 P11 14 13 P17
/WR 29 30 A5 P10 12 11 P13
/RD 31 32 A4 VCC 10 9
VRAM 33 34 A3 /INTO 8 7 /INMI
VBAT 35 36 A2 /INTL 6 5 P12
GND 37 38 Al P26 4 3 P29

Table 3.3 Signals for J1 and J2, 20x2 expansion ports

Signal definitions for J1:

VCC +5V power supply

GND ground

CLK Am188ES pin 16, system clock, 40 MHz (25 ns)
as default

RxD datareceive of UART SCC2691, U8

TxD data transmit of UART SCC2691, U8

MPO Multi-Purpose Output of SCC2691, U8

MPI Multi-Purpose Input of SCC2691, U8

VOFF real-time clock output of RTC72423 U4, open

collector
DO-D7 AmMI8BES 8-hit external datalines

3-13

Chapter 3: Hardware

A-Engine

AO-A7
PFI
/RST
RST
P16
HLDA
HOLD
/WR
/RD
VBAT
VRAM

AmMI18BES address lines

power failure input signal of MAX691
reset signa, active low

reset signal, active high

/PCS0, Am188ES pin 66

AmI188ES pin 44

AmM188ES pin 45

AmI188ES pin 5

AmI188ES pin 6

+3V lithium battery positive pin
power for backing up SRAM and RTC

Signal definitions for J2:

VCC
GND
Pxx
/WR
TxDO
RxDO
TxD1
RxD1
/CTSO
/CTS1
/RTSO
/IRTS1
/INTO-4

+5V power supply, < 200 mA

ground

AmI188ES PIO pins

AmI188ES pin 5

AmMI188ES pin 2, transmit data of serial channel 0
AmI188ES pin 1, receive data of serial channel 0
AmI188ES pin 98, transmit data of serial channel 1
AmMI188ES pin 99, receive data of serial channel 1
AmI188ES pin 100, Clear-to-Send signal for SERO
AmI188ES pin 63, Clear-to-Send signal for SER1
AmI188ES pin 3, Request-to-Send signal for SERO
AmI188ES pin 62, Request-to-Send signal for SER1
Schmitt-trigger inputs

3.6.2 ADC and PPI Connectors

J50 J4o PAC)
,,Ouoeeonaeeeoa O

°

ee SRAM

ool [= AMD -
e el |HC AMISSES

ee “ CPU
ee
e vz
°e
o0

[
o6 P
e e u7 PT)
ee PPL oo
EX) 07 RTC HIH X}
L) e e
e ef ADC e ee
ee 13 oo
e u10] e

»|[e[e 691 o0

e e o 96660066660059666609%
B eelelecceeneoce0oB00000 00 Q

200000000 0|
©cooccoo000o0

AD10 Ho 18
ADO AD2 AD4 AD6 AD8 REF+ VAVBG G G G G G G G G G

GG -G 15 117

O O O 0O O O O O O O O O O O
OO O 0 0 0O 0O 0O 0O 0O 0O O O O

OO0 0O
o o o o o

AD1 AD3 AD5 AD7 AD9 VCC 107 106 105 104 103 102 101 100 127 126 125 124 123

Figure 3.8 ADC and PPI connectors

3-14

110

111 112 113 114 116

A-Engine Chapter 3: Hardware

The pin layouts for HO and the J6 20x2 pin header (located next to HO) on the A-Engine are as follows:

HO J6
Pin1=AD1 Pin2=ADO0 Pin1=VCC Pin2=REF+
Pin3=AD3 Pin4=AD2 Pin3=107 Pin4=AD10
Pin5=AD5 Pin6=AD4 Pin5=106 Pin6=VA
Pin7=AD7 Pin8=AD6 Pin7=105 Pin8=VB
Pin9=AD9 Pin10=ADS8 Pin9=104 Pin 10 =GND
Pin11=103 Pin12 =GND
Pin13=102 Pin 14 = GND
Pin15=101 Pin 16 = GND
Pin17=100 Pin 18 = GND
Pin19 =127 Pin 20 =GND
Pin21=126 Pin22 =GND
Pin23=125 Pin 24 = GND
Pin25=124 Pin 26 = GND
Pin27=123 Pin 28 = GND
Pin29=110 Pin30=GND
Pin31=111 Pin32=GND
Pin33=112 Pin 34 =GND
Pin35=113 Pin 36 = GND
Pin37=114 Pin38=115
Pin39=116 Pin40=117

3.6.31/0 Lines available for user applications

%O 8

Joo
o6 0000 0 6606 eleeld

Ao o
Eelom sl

AM188ES

AMD

CPU
u2

SRAM

PP1

Ul

N

J2 pinl

J2

A

€3

us

0

RTC
U4
J

@ 666 9 0 0000000 POGOEOGEOS 691
eeocoelececaeeneconacnennoeononel Ub

SRR

J1 pinl

HO

J6

Figure 3.9 Pin 1 locations for J1 and J2

3-15

Chapter 3: Hardware

A-Engine

USED BY:

Used by TERN expansion
boards (MemCard,
MotionC, etc.)

J1 Signal
VCC 1 2 GND
MPO 3 4 P1
RxD 5 6 GND
TxD 7 8 DO
VOFF 9 10 D1
PFI 11 12 D2
GND 13 14 D3
/RST 15 16 D4
RST 17 18 D5
P16 19 20 D6
MPI 21 22 D7
CLK 23 24 GND
HLDA 25 26 A7
HOLD 27 28 A6
/WR 29 30 A5
/RD 31 32 A4
VRAM 33 34 A3
VBAT 35 36 A2
GND 37 38 Al
VCC 39 40 A0

Table 3.4 Signals for J1, 20x2 expansion port

USED BY:

Used by PowerDrive,
LittleDrive for system
clock

J1 signals shown shaded may not be available if the specified TERN expansion board is used/installed. All

other lines are free for use in applications.

3-16

A-Engine Chapter 3: Hardware
J2 Signal
USED BY: USED BY:
v | GND 40 39 VCC v
** Step2 jumper P4 38 37 P14 v
v | ICTSO 36 35 P6 v
** SERODEBUG TxDO 34 33 /INT4 v
** SERODEBUG RxDO 32 31 /IRTS1 v
v | P5 30 29 P1 v
r SER1 | TxD1 28 27 /RTSO v
r SER1 | RxD1 26 25 GND v
r RTCchipsdect | P2 24 23 P15 v
v |ICTSL 22 21 /INT3 v
v | PO 20 19 /INT2 v
v | P25 18 17 P24 v
v | IWR 16 15 P3 SCCchipsdect r
** EEPROMadADC Pl 14 |13 P17 PPl ** |
v | P10 12 11 P13 v
v | vCC 10 9 v
r SCCinterrupt | /INTO 8 7 INMI v
v |/INT1L 6 5 P12 LED and EEPROM **
r DACDI | P26 4 3 P29 DACchipselect r
v | GND 2 1 GND v

Table 3.5 Signals for J2, 20x2 expansion port

Some J2 signals are not available for the user, as represented by the symbols in the table above:

v

** -

r =

Free for use

For example:

J2 pin8=INTO and
can be used for applications if the SCC UART (U8) is not installed on
the A-Engine

2 pind=P26 and
can be used for applications if the DAC (U11) is not installed on the

1)

2)

A-Engine

= Do not use (already used by the component listed)

Can only be used if the corresponding device or function is not installed.

J2 pin15=P3

J2 pin3=P29

On the J6 header, all U5 PPI signals are free for the user (100-07, 110-17, 123-27).

Three PPI signals (120, 121, and 122; used to control the ADC) are not routed to J6. However, if the ADC
is not installed, the user may modify the A-Engine board to route these three signals to the HO header.

HO isused for ADC inputs and is available for the user.

3-17

Chapter 3: Hardware A-Engine

3.6.4 Jumpers
The following table lists the jumpers and connectors on the A-Engine.
Name | Size | Function Possible Configuration
NI 20x2 | main expansion port
2 20x2 | main expansion port Pins 38=40 Step2 jumper
33 3x1 SRAM selection: pin 2-3: SRAM 256K B-512KB
pin 1-2: SRAM 32KB-128KB
N 3x1 ROM/Flash size selection: pin 1-2: ROM or Flash size 32KB-128KB
pin 2-3: ROM or Flash size 256K B-512KB
J5 3x1 ROM 512KB selection: pin 1-2: ROM size 512KB
pin 2-3: Flash 128KB-512K B, or ROM <512 KB
J6 20x2 | PPl 82C55, 1/0 pins
J7 3x1 pin 1-2: EEPROM write prohibited in low pages
pin 2-3: No EEPROM write protection
J8 12x1 | High addresslines, A8-A19
N e 2x1 Watchdog timer Enabled if Jumper ison
Disabled if jumper is off
HO 5x2 10 channels of analog inputs,
ADO-AD9.
H1* 5x2 SERO Default port for debugging. (AE-P only)
H2* 5x2 SER1 (AE-P only)
H3* 5x2 SCC (AE-P only)

* only on A-Engine-P

3.6.520x4 line LCD Interface

The A-Engine CANNOT directly interface to LCD modules with address/data bus. You may use 82C55
I/O pins to drive LCD modules. See the sample program ae_lcd.c inthe TERN EV/DV diskette.

Pin connections are made as follows:

Use PPl on A-Engine to drive 20x4 line LCD.

J6107-100 = D7-DO
127=LCD, 126=R/W, 125=A0, 124=VLC, 123=VCC, 110=GND

LCD configuration:

Pin 3 = VLC disconnected to 124
VLC via 10K to pin2=VCC and via 200 ohm to pin1=GND

3-18

A-Engine Chapter 3: Hardware

T o

=l Lo SIS B

HO \Bj LED

Connect LCD at J6 pins 3 through 29

Figure 3.10 Installation of a 20x4 LCD on the A-Engine

3-19

A-Engine Chapter 4: Software

Chapter 4: Software

Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix G.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger czset, the dalmger will time-out. As a result, your

PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. 1/O address space ranges fa@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. 1/0O and memory mappings are done in software to define
how translations are implemented by the hardware. Impliciésses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitljeas any address in I/O or memory space, and you

will probably need to do so in order tacass processor registers and on-board peripheral components
(which often reside in 1/0 space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space locasegmertie
argument is left shifted by four and added todfiset argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apakeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are|placed on
the address and data-bus, and any memory-space mappings in place for this particular range of njemory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

4-1

Chapter 4: Software A-Engine

These functions retrieve the data for a specified address in memory space. Once aggimehe
address is shifted left by four bits and added toffset to find the 20-bit address. This address is the
output over the address bus, and the hardware component mapped to that address should return
8-bit or 16-hit value over the data bus. If there is no component mapped to that address, this fung
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place tbata into the appropriataddressin 1/O space. It is used most often
when working with processor registers that are mapped into I/0O space and must be accessed usin
one of these functions. This is also the function used in most cases when dealing with user-config
peripheral components.

When dealing with processor registers, be sure to use the correct functiooutpdse if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is V
and is reserved for uses related to the code and data. Using I/O mappings, the address is output
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of thig
technical manual.

n
pither an
ion will

g either
ured

hluable
bver the

4.1AE.LIB

AE.LIB is a C library for basic A-Engine operations. It includes the following modules: AE.OBJ,
SERO0.OBJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and

include the corresponding header files. The following is a list of the header files:

Include-file name | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SERO.H Internal serial port O

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEE.H on-board EEPROM

4-2

A-Engine Chapter 4: Software

4.2 Functions in AE.OBJ

4.2.1A-Engine Initialization

ae_init
This fu

nction should be called at the beginning of every program running on A-Engine core controllers.

It provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up
expanded DOS 1/0, and provides other processor-specific updates needed at the beginning of every
program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects afe_init are described below. For details regarding register use, you will want to refer
to the AMD Am188ES Microcontroller User’'s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured
such that:

Address space for the ROM is from 0x80006@t(to map MemCard 1/0 window)
512K ROM Block size operation.

Three wait state operation (allowing it to support up to 120@i8l§. With 70 ns ROMs,

this can actually be set to zero wait state if you require increased performance (at a risk of
stability in noisy environments). For details, see the UMCS (Upper Memory Chip Select
Register) reference in the processor User’'s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

Initialize LCS Lower Chip Selegtfor use with the SRAM. It is configured so that:
Address space starts 0x00000, with a maximum of 512K RAM.
Three wait state operation. Reducing this value can improve performance.
Disables PSRAM, and disables need for external ready.

outport(Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so thCS0 andPCS0-PCS6(except for PCS4) are configured so:

MCSO0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

Sets uPCS5-6lines as chip-select lines, with three wait state operation.

outport(Oxffa8, OxaObf); // s8, 3 wait states
outport(Oxffa6, 0x81ff); // CSOMSKH

Initialize PACS so thaPCS0-PCS3are configured so that:
Sets u@PCSO0-3lines as chip-select lines, with fifteen wait state operation.

The chip select lines starts at I1/0 address 0x0000, with eaclkssive chip select line
addressed 0x100 higher in 1/O space.

outport(Oxffad, 0x007f); // CSOMSKL, 512K, enable CS0 for RAM

Configure the two PIO ports for default operation. All pins are set up as default input, except for
P12 (used for driving the LED), and peripheral function pins for SERO and SER1, as well as chip
selects for the PPI.

outport(0xff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1l, RxD1,
// P16=PCS0, P17=PCS1=PPI

outport(0xff76,0x0000); / PIOM1

outport(0xff72,0xec7b); / PDIRO, P12,A19,A18,A17,P2=PCS6=RTC

outport(0xff70,0x1000); / PIOMO, P12=LED

4-3

Chapter 4: Software A-Engine

« Configure the PPl 82C55 to all inputs, except for lines 120-23 which are used as output for the
ADC. You can reset these to inputs if not being used for that function.

outportb(0x0103,0x9a); /I all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); [120=ADCS high

The chip select lines are set to 15 wait states, by default. This makes it possible to interface with many
slower external peripheral components. If you require faster 1/0 access, you can modify this number
down as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is
decreased too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the arguwraint

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, 1/0 enable for 100+125 ns
wait=5, wait states = 7, 1/0O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2External Interrupt Initialization

There are up to eight external interrupt sources on the A-Engine, consisting of seven maskable interrupt
pins (NT6-INTO) and one non-maskable interruptMI). There are also an additional eight internal
interrupt sources not connected to the external pins, consisting of three timebdyiAvchannels, both
asynchronous serial ports, and Ml from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD Am188ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the 8 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service
routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors
correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done usind\ibrespecific EOl command At initialization time, interrupt
priority was placed inFully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOl command to clear the current highest priority IR.

To send the nonspecific EOl command, you need to writE@leregister word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locatiofs and
other physical hardware details, see the Hardware chapter). The first argumdésgtes whether this

4-4

A-Engine Chapter 4: Software

particular interrupt should be enabled or disabled. The second argument is a function pointer, whjch will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed is about
20 ps.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default SR
will return on interrupt.

void intO_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 1/0O Initialization

Two ports of 16 1/O pins each are available on the A-Engine. Hardware details regarding these PIO lines
can be found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above waihimit(). During initialization,

several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the 1/0
ports, please refer to Chapter 11 of the AMD Am188ES User’s Manual.

Please see the sample prograe pio.cin tern\186\samples\ae . You will also find that these
functions are used throughout TERN sample files, as most applications do feddsary to re-configure

the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly withauport instruction Performance in this case will

be around 1-2 us to toggle any pin.

The data register @xff74 for PIO port 0, an@®xff7a for PIO port 1.

void pio_init

Arguments: char bit, char mode

Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

* 0, High-impedance Input operation

4-5

Chapter 4: Software A-Engine

« 1, Open-drain output operation
e 2, output
» 3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P1O status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selecteq port.
void pio_wr:

Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2 .4Timer Units

The three timers present on the A-Engine can be used for a variety of applications. All three timers run
at ¥4 of the processor clock rate, which determines the maximum resolution that can be obtained. Be
aware that if you enter power save mode, the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register that is specified using the software
interfaces. The mode register is described in detail in chapter 8AMDEAM188ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit s ®CONregister. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high.

The timers can be used to time execution of your user-defined code by reading the timer values before and
after execution of any piece of code. For a sample file denaingfrthis application, see the sample file
timer.cin the directoryern\186\samples\ae

Two of the timers;Timer0O andTimerl can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the outpufTainer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by dsmgr2 can you slow this
down even further. The sample filegner02.c and timerl2.c located in tern\186\samples\ae
demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
AM188ES User’'s Manual.

void tO_init

void t1_init

Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum countéVeAXCOUNTA/B) available. These can all he

specified usinga andtb. The argumentm is the value that you wish placed into fh@CON/T1CON
mode registers for configuring the two timers.

The interrupt service routirteisr specified here is called whenever the full count is reached, with pther
behavior possible depending on the value specified for the control register.

4-6

A-Engine Chapter 4: Software

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

4.2 .5Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog inputs based on the reference voltage supjtiEd.to
For details regarding the hardware configuration, see the Hardware chapter.

In order to operate the ADC, lines 120, 121,122 from the PPl must be configured as output. P11 must also
be configured to be input. This line is also shared with the RTC and EEPROM, and left high at power-
on/reset. You should be sure not to re-program these pins for your own use. Be careful when using the
EEPROM concurrently with the ADC. If the ADC is enabled, the line P11 will be reserved for its use and
any attempt to@ess the EEPROM will time-out after some time.

For a sample file demonstrating the use of the ADC, pleaseesed12.dn tern\186\samples\ae

int ae_ad12
Arguments: char ¢
Return values: int ad_value

The argument selects the channel from which to do the next Analog to Digital conversion. A valug¢ of O
corresponds to chann&DO, 1 corresponds to chanr&D1, and so on.

The return valuad_valueis the latched-in conversion value from the previous call to this function. [rhis
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similaf to the
following:

ae_adl12(0); // Read from channel 0
chn_0_data = ae_ad12(0); // Start the next conversion, retrieve value.

4.2.6Digital-to-Analog Conversion

An LTC 1446 chips is available on the A-Engine in positiirl. The chip offers two channels, A and B,
for digital-to-analog conversion. Details regarding hardware, such as pin-outs and performance
specifications, can be found in the Hardware chapter.

A sample program demonstrating the DAC can be found a@ da.c in the directory
tern\186\samples\ae

void ae_da
Arguments: int datl, int dat2
Return value: none

Argumentdatl is the current value to drive to channel A of the chip, while argudatis the value to
drive channel B of the chip.

These argument values should range from 0-4095, with units of millivolts. This makes it possible fo drive
a maximum of 4.906 volts to each channel.

4-7

Chapter 4: Software A-Engine

4.2.70ther library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by thdAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timé®) jumper is set, the functiohitwd() must be called every

1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to the valdead.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can beaessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a rollover in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

There is a common data structure usecttess and use both interfaces.
typedef struct{

unsigned char sec1,;
unsigned char sec10;
unsigned char minl;
unsigned char min10;
unsigned char hourl;
unsigned char hourl0;
unsigned char day1;
unsigned char day10;
unsigned char mon1,;
unsigned char mon10;
unsigned char year1,;
unsigned char year10;
unsigned char wk;

} TIM;

int rtc_rd
Arguments: TIM *r

One second digit.
Ten second digit.
One minute digit.
Ten minute digit.
One hour digit.
Ten hour digit.
One day digit.
Ten day digit.
One month digit.
Ten month digit.
One year digit.
Ten year digit.
Day of the week.

Return value: int error_code

4-8

A-Engine Chapter 4: Software

This function places the current value of the real time clock within the argursentture. The

structure should be allocated by the user. This function returns @a@sswand returns 1 in case of errpr,

such as the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argwhentd be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond tad¢ekday, yearl0, yearl, month10, monthl, day10, dayl, hour}o,

hourl, minute10, minutel, second10, secon@Z,

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, fhe

byte array would be initialized to:

unsigned char t[14] ={5,9,8,0,6,0,5,1, 3,5,5,3,0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use

hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor spged as

well as interrupt latency. The code is functionally identical to:
While(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int

Return value: none

This function is similar to delayO, but the passed in argument is in units of milliseconds instead of
iterations. Again, this function is highly dependent upon the processor speed.

Joop

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-arrapoht size pointed to bwptr.

void ae_reset
Arguments: none

4-9

Chapter 4: Software A-Engine

Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the|board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prototyped in the headserfildnandserl.hin the directory
tern\186\include

The internal asynchronous serial ports are functionally identical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits for communication with the PC. As a result, you will
not be able to debug code directly written for serial port O.

Two asynchronous serial ports are integrated in the Am188ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for application download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the following discussion; any of the interface functions that are
specific to SER1 can be easily changed into function calls for SERO. While selecting a serial port for use,
please realize that some pins might be shared with other peripheral functions. This means that in certain
limited cases, it might not be possible to use a certain serial port with other on-board controller functions.
For details, you should see both chapter 10 of the Am188ES Microprocessor User’'s Manual and the
schematic of the A-Engine provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock; a 20 MHz system clock would have the baud rates
halved.

Function Argument| Baud Rate
110

150

300

600
1200
2400
4800
9600
19,200 (default)
38,400
57,600
115,200
250,000

© 00 N oo o b~ W N PP

e I
w N P O

4-10

A-Engine Chapter 4: Software

14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1_init() , SERL1 is configured as a full-duplex serial port and is ready to
transmit/eceive saal data at one of the specified 15 baud rates.

An input buffer, serl_in_buf (whose size is specified by the user), will automatically store the
receiving seml data stream into the memory BMAL opemation. In terms of eceiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhitl() and take out the data from the buffer wgdtserl() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

v oL J
[[T 1]

i |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer sizeigiz), and baud ratebéud) are specified by the user wis_init()

with a default mode of 8-bit, 1 stop bit, no parity. Af&dr _init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directdgessing the Serial Port 0/1 Control Register
(SPOCT/SP1CT) if necessary, as described in chapter 10 of the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer withserl() before the ring buffer is full, new data

will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if yoe@eiwing éta at 9600 baud, a 4-

KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud eegéving r

data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhitl() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of O indicates no data is available in the buffer.

You can usgetserl() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after evaygtserl() call. It is not rcessary to suspend external
devices from sending in serial data with /RTS. Only a hardware resdt olose() can stop this
receiving opeation.

For transmission, you can ugeitserl() to send out a byte, or ugmitsersi() to transmit a
character string. You can put data into the transmit ring budferput_buf , at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putserl() and transmit functions, you are free to do other tasks with no additional software overhead

4-11

Chapter 4: Software A-Engine

on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample prograrserl_0.c demonstrates how a protocol translator works. It woedgive an input
HEX file from SER1 and translate every ‘' character to ‘?’. The translated HEX file is then transmitted
out of SERO. This sample program can be fourtérim186\samples\ae

Software Interface
Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. TH&OM structure should normally be manipulated only by
TERN libraries. 1t is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference sDeither
serOcan be replaced withl or serl, for example. Each serial port should use its @@M structure, as
defined inae.h

typedef struct {
unsigned char ready; /* TRUE when ready */
unsigned char baud,;
unsigned char mode;
unsigned char iflag; /* interrupt status */

unsigned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crent; /* Input <CR> count */

unsigned char in_mt; * Input buffer FLAG */
unsigned char in_full; /* input buffer full */

unsigned char *out_buf; /* Output buffer */
int out_tail; /* Output buffer TAIL ptr */
int out_head,; /* Output buffer HEAD ptr */
int out_size; /* Output buffer size */
unsigned char out_full; [* Output buffer FLAG */

unsigned char out_mt; /* Output buffer MT */
unsigned char tmso; // transmit macro service operation
unsigned char rts;
unsigned char dtr;
unsigned char en485;
unsigned char err;
unsigned char node;
unsigned char cr; /* scc CR register */
unsigned char slave;
unsigned int in_segm; /* input buffer segment */
unsigned int in_offs; /* input buffer offset */
unsigned int out_segm; /* output buffer segment */
unsigned int out_offs; /* output buffer offset */
unsigned char byte_delay; /* V25 macro service byte delay */

} COM

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

4-12

A-Engine Chapter 4: Software

This function initializes either SERO or SER1 with the specified paramdigsshe baud rate value
shown in Table 4.1. Argumenitsuf andisiz specify the input-data buffer, atuf andosiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one bytaitch into the transmit buffer for the appropriate serial port. The refurn
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value|returns
one in case of success, and zero in any other case.

DMA transfer autmatically places incoming data into the inbound buféathitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound buffer for this serial port.

getsen
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again,
this function assumes thsérhitn has been called, and that there is a character present in the buffer

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mostien bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASGXOd) is retrieved.

This function makes repeated callgy&iser, and will block untillen bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

4-13

Chapter 4: Software A-Engine

Be careful when you are using this function. The returned character string is actually a byte array,
terminated by a null character. This means that there might actually be multiple null characters irj the
byte array, and the returnedlue is the only definite indicator of the number of bytes read. Normally] we
suggest that thgetsersandputsersfunctions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriatq.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receivingtaefttirough the serial port is that TERN
drivers only use the basic serial-port communication lines for transmittingeaeing éta. Hardware

flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There

are, however, functions available that allow you to check and set the value of these 1/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the Am188ES User’s Manual.

char sn_cts(void)
Retrieves value o€'TS pin.

void sn_rts(char b)
Sets the value ®®TS tob.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sen
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the Am188ES Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the manual for a detailed discussion of other features available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are prototypeddn.hin thetern\186\include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses a 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this third port are different than for SERO and SER1.

The SCC2691 component has its own 8 MHz crystal providing the clock signal. By default, this is set to 8
MHz to be consistent with earlier TERN controller designs. The highest standard baud rate is 19,200, as
shown in the table below. If your application requires a higher standard baud rate (115,200, for example),

4-14

A-Engine Chapter 4: Software

it is possible to replace this crystal with a custom 3.6864 MHz crystal. A sample file demonstrating how
the software would be changed for this applicatioraés sccl.c found in thetern\186\samples\ae\
directory.

Function Argument| Baud Rate
110

150

300

600

1200
2400
4800
9600 (default)
19,200
31,250
62,500
125,000
250,000

© 00 N oo o b~ W N PP

=
N PO

[Ey
w

Unlike the other serial portYMA transfer is not used tdlif the input buffer for SCC. Instead, an
interrupt-service-routine is used to place characters into the input buffer. If the processor does not respond
to the interrupt—because it is masked, for example—the interrupt service routine might never be able to
complete this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 andMR2, please see Appendix C of this manual. In most TERN applications, MR1 is0s&i7to

and MR2 is set tOx07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd
parity, up to 2 stop bits, 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SERO and SERCOM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baud batas defined in the table above. The valugnin
andm?2 specify the values to be stored inM&1 andMR2. As discussed above, these values are
normallyOx57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, afmif andosiz define the output buffer.

4-15

Chapter 4: Software A-Engine

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupiNTO on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routinggc_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmitemed/e @ta with the data buffers. So, after
initialization, you will need to make a call to do this:

intO_init(1, scc_isr);
By default, the SCC is disabled for bdtiansmitandreceive Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modgansmit and receivefunctions should both be enabled. Once
this is done, you can transmit areteive @ta as needed. If you do need to do limited flow control, the
MPO pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex
communications, please s&e _scc.dn the directorytern\186\samples\ae

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. TH&R8river will echo back bytes sent to

the SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral
board, you will need to disabkeceivewhile transmitting. While transmitting, you will also need to
place the RS485 driver in transmission mode as well. This is done bysesings(1) This uses pin

MPO (muti-purpose output) found on the J1 header. While youeneiving cta, the RS485 driver will

need to be placed in receive mode using rts(0) For a sample file showing RS485 communication,
please seae_rs485.dn the directorytern\186\samples\ae

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rtséjlgdtas a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or reception on @€2691 UART. After initialization, both of
these functions are disabled by default. If you are using RS485, only one of these two functions stould be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send acdive function of the@C2691. One major use of these
functions is to disablgansmitandreceive If you are using RS485, you will need to use this feature
when transitioning from transmission &ception, or from reception to transmission.

Transmission and reception aitd using the SCC is in most ways identical to SERO and SER1. The
functions used to transmit aneceive @ta are similar. For details regarding these functions, please refer
to the previous section.

putser_scc
See: putser n

4-16

A-Engine Chapter 4: Software

putsers_scc
See: putsers n

getser_scc
See: getser n

getsers_scc
See: getsers n

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which
is not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SERO and SERI1.

scc_close
See: sn_close

serhit_scc
See: sn_hit

clean_ser_scc
See: clean_s n

Occasionally, it might also beepessary to check the state of the SCC for information regarding errors
that might have occurred. By callisgc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none

Return value: unsigned char val
The returned valueal will be in the form of 0OABC000O in binary. Bit A is 1 to indicate a framing erjor.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

4 .5Functions in AEEE.OBJ

The 512-byte serial EEPROM4C09 provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresse®x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory spa@e?0to 0x1ff, is available for your application use.

4-17

Chapter 4: Software A-Engine

The EEPROM shares line P11 with the ADC. If the ADC is enabled, it can interfere with the EEPROM.
The ADC is enabled if 120 is low. In the init function, it is brought high so that you cegss the
EEPROM. Be aware that if you modify the PPI control register by calling outportb(0x0103, xx); then all
of the output lines on the PPI are brought low, including 120, which enables the ADC and disables the
EEPROM. If you need to use the EEPROM, be sure to bring 120 high again to disable the ADC (refer to
section 3.4.2).

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passediat to the specifieéhddr. The return value is 0 in success.
ee rd
Arguments: int addr

Return value: int data

This function returns one byte of data from the specified address.

4-18

A-Engine Appendix A: A-Engine/A-Engine-P L ayout

Appendix A: A-Engine/A-Engine-P Layout

The A-Engine measures 3.6 x 2.3 x 0.3 inches. Itslayout is shown below. All dimensions are
in inches.

(0.217, 2.092) (0.517, 2.083) (3.067, 2.092)
(3.46, 2.21)
J5 J4
(-0042, 2050) J8 [oJ]o 0 0 0 0o 0 0 0 0 0oJo ofofo ofo]o o]e]J3 j—° °
: LT O oo (3.258, 2.050)
Step2 ee SRAM ROM/Flash || o1
oo :(1: AMD u3 oo
oo 14 AmI188ES oo
oo u9 CPU B oo
oo oo
oo ul oo
oo EE oo
oo u7 U2 oo
oo [-X.}
oo DIE PRI oo
o RTC] oo|l (3.358,0.150)
oo ADC oo
oo oo
(0.058,0.150—H %2 | yo N_| e o |
ol‘s 00000000 ODO0ODO0OOOD0ODOODO0ODODOOOOO oot 2 (3‘124l 0'250)
@\Eooool?looooooooooooooooooo ué OC)\ Watchdog
(-0.12, -0.108) m %

(3.042, -0.017)
(3.325, 0.00)

(0.158, -0.017)
(0.00, 0.00)

The A-Engine-P measures 3.6 x 2.8 x 0.3 inches. Its layout is shown below. For the lower
portion of the board (labeled “ A-Engine’), refer to the layout shown above.

(0.33, 2.60) (1.38, 2.60) (2.38, 2.60)

K k ﬁ(2.67, 2.61)

\ \ N
& | b o8 T (337, 2.49)
SERO SER1 scc H4
+9V
(0.14, 2.37) 4 GND
A-Engine

(0.00, 0.00) | €O

A-1

Appendix B: VE232 Pin Layout A-Engine
Appendix B: VE232 Pin Layout
All dimensions are in inches.
-0.22, 2.30 1.38, 2.30
1 ICT 1 J20
T 1w TERN
|:| H
Us Lol
—u— —— U1 % <
— (@)
3| = o
Z <
1 % A
(@
-0.22, 1.175 U [he S
€3, C4— C5 = 9
O
OO e
C G
3 1 R4 u2
Jé]
i
0.00, 0.00 1.38, 0.0

B-1

A-Engine

Appendix C: UART SCC2691

Appendix C: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
/CEN Chip enable, active-low input
/WRN Write strobe, active-low input
/RDN Read strobe, active-low input
A0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input
INTRN Interrupt request, active-low output
X1/CLK Crystal 1, crystal or external clock input
X2 Crystal 2, the other side of crystal
RxD Receive serial data input
TxD Transmit serial data output
MPO Multi-purpose output
MPI Multi-purpose input
Vcc Power supply, +5 V input
GND Ground
2. Register Addressing
A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 [Bit6 | Bit 5 | Bit4 | Bit3 | Bit2 | Bitl | Bit 0
RxRTS RXINT Error ___Parity Mode____ Parity Type Bits per Character
0=no 0=RxRDY 0 =char 00 = with parity 0 =Even 00=5
1=yes 1=FFULL 1 = block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Special mode In Special 11=8
mode:
0 = Data
1 = Addr

C-1

Appendix C: UART SCC2691 A-Engine
MR2 (Mode Register 2):
[Bit7 | Bit6 [BIit5 | Bit 4 [Bit3 [Bit2 | Bitl1 | Bito |
Channel Mode TXRTS CTS Enalble Stop Bit Length
TX (add 0.5 to cases 0-7 if channel is 5 hits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0.625 5=0.875 9=1.625 D=1.875
10 = Local loop 2=0.688 6=0.938 A=1.688 E=1.938
11 = Remote loop 3=0.750 7=1.000 B=1.750 F=2.000
CSR (Clock Select Register):
[Bit7 | Bit6 [BIit5 | Bit 4 [BIt3 [Bit2 | Bitl1 | Bito |
Receiver Clock Select Triwesr@lock Select
when ACR[7]=0: when ACR[7] = 0:
0= 50 1= 110 2=1345 3= 200 0= 50 1= 110 2=1345 3= 200
4= 300 5= 600 6=1200 7 = 1050 4 = 300 5= 600 6=1200 7 = 1050
8=2400 9=4800 A=7200 B = 9600 8=2400 9=4800 A=7200 B = 9600
C=38.4k D=Timer E=MPI-16x F=MPI-1x C=38.4k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4= 300 5= 600 6=1200 7 = 2000 4= 300 5= 600 6=1200 7 = 2000
8=2400 9=4800 A=7200 B = 1800 8=2400 9=4800 A=7200 B = 1800
C=19.2k D=Timer E=MPI-16x F = MPI-1x C=19.2k D =Timer E=MPI-16x F = MPI-1x
CR (Command Register):
[Bit7 [Bit6 HEE | Bit 4 [Bit3 [Bit2 | Bitl1 | Bit0 |
Miscellaneous Commands Disable Enable Disable Enable
TX TX RX RX
0 = no command 8 =start C/T 0=no 0=no 0=no 0=no
1 = reset MR pointer 9 = stop counter 1=yes 1=yes 1=yes 1=yes
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C =reset MPI
5 = reset break change change INT
INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 [Bit6 HEE | Bit 4 [Bit3 [Bit2 | Bitl1 | Bit0 |
Received Framing Parity Overrun TXEMT TxRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status registersproitsi [7:5]
from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In charteterangodeset when

the corresponding data character is read from the FIFO.

C-2

A-Engine

Appendix C: UART SCC2691

ACR (Auxiliary Control Register):

[Bit7 Bit 6 [Bit5 | Bit4 | Bit3 [Bit2 | Bit1 | Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode
0 =Baud 0 = counter, MPI pin 0=on, 0=RTSN
rate set 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2 =TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3 =TxC (16x)
transmitter 1 = off 4 = RxC (1x)
1= Baud 3 = counter, crystal or external normal 5 = RxC (16x)
rate set 2, clock (x1/CLK) 6 = TXRDY
see CSR 4 = timer, MPI pin 7 = RXRDY/FFULL
bit format 5 = timer, MPI pin divided by
16
6 = timer, crystal or external
clock (x1/CLK)
7 = timer, crystal or external
clock (x1/CLK) divided by 16
ISR (Interrupt Status Register):

[Bit7 Bit 6 [Bits [Bit 4 [Bit3 [Bit2 [Bit 1 [Bit0 |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0 = low 0=no 0=no 0=no 0=no 0=no
1=yes 1 = high 1=yes 1=yes 1=yes 1 =yes 1=yes
IMR (Interrupt Mask Register):
[Bit7 [Bit6 [Bit5 [Bit 4 [Bit3 [Bit2 [Bit 1 [Bit0 |
MPI MPI Counter Delta RXRDY/ TXEMT TxRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n
CTUR (Counter/Timer Upper Register):
[Bit7 Bit 6 Bit 5 [Bit 4 [Bit3 [Bit2 [Bit 1 [Bit0 |
[cmpsy T cmpa | cmpa) | cmpey | cmpa [cmpol | crqop | cris] |
CTLR (Counter/Timer Lower Register):
[Bit7 [Bit6 [Bit5 [Bit 4 [Bit3 [Bit2 [Bit 1 [Bit0 |
[cmm [cmpel [cmpsl | cm@4 | cmEl | cmel | cmp] | cmpol]

C-3

Appendix D: RTC72421 / 72423 A-Engine

Appendix D: RTC72421 | 72423

Function Table

Address Data
Az | A, | Ay | Ag | Register |) D, D, Do Count Remarks
Value
0 |0 |O |0 |3 Sg Sy S, S, 0~-9 1-second digit register
0 0 0 1 So S10 S0 S0 0~5 10-second digit register
0 0 1 0 M, Mig | Mi, mi, | mi; 0~9 1-minute digit register
0 0 1 1 Ml Miyq Misg | Migg | 0~5 10-minute digit register
0 1 0 0 H hg h, h, hy 0~9 1-hour digit register
0 1 0 1 Ho PM/AM | hy,y | hyg 0~2 PM/AM, 10-hour digit
or register
0~1
0 1 1 0 D dg d, d, d; 0~9 1-day digit register
0 1 1 1 Dio dyg dig 0~3 10-day digit register
1 0 0 0 MO mog | Mo, mo, | mo; 0~9 1-month digit register
1 0 0 1 MQ, mo,, | 0~1 10-month digit register
1 0 1 0 Yy Yg Y Yo Y1 0~9 1-year digit register
1 0 1 1 Yio Yso | Yao Yoo Y10 0~9 10-year digit register
1 1 0 0 W w, W, wy 0~6 Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj | Flag
1 1 1 0 Reg E i ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test| 24/12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;
2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low ("0");

4)
Data bit | PM/AM | INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

D-1

A-Engine Appendix E: Serial EEPROM Map

Appendix E: Serial EEPROM Map

Part of the on-board serial EEPROM locations are used by system software. Application programs must not
use these locations.

0x00 Node Address, for networking
0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC
0x02
0x03
0x04 SERO_eceive, used by ser0.c
0x05 SERO_transmit, used by ser0.c
0x06 SER1_eceive, used by serl.c
0x07 SER1_transmit, used by serl.c
0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™
0x18 MM page register O
0x19 MM page register 1
Oxla MM page register 2
0x1b MM page register 3

E-1

Appendix F: Modifications for I/O Boards

A-Engine

Appendix F: Modifications for I/O Boards

F.1 Hardware Modifications for using the A-Engine with the LittleDrive

Modifications on the A-Engine:

1) cut trace on component side VCC to J2.10

2) add wire between J2.10 to J2.15=P3. NO SCC U8 installed!

3) add wire bring J1.23=CLK to J1.4=P1

4) destroy CO's one vias that is under the label "C" to disconnect CLK to P1.

Modifications on the LittleDrive:

1) Install 3.68 MHz crystal.
2) Cut off PAL U1 pin 19, disconnect CLK1 to the crystal.

F.2 Hardware Modifications for using the A-Engine with the MotionC

Modifications on the A-Engine: reXe)

0o
0o
2) add wire to connect J2.12=P10 to J2.3=P29 00
0o
0o
0o
0o
0o
0o
0o
0o
0o
0o

P10 =12

1) cut trace on component side: P29 to J2 pin .

A-Engine

J2
header

Wire connect
pin 12 to pin 3

ﬁTo P29 (Am188ES)
3 =VP} Cut trace to PZQ

<« [Pin1]

A-Engine Appendix G: Software Glossary

Appendix G: Software Glossary

The following is a glossary of library functions for the A-Engine.

void ae_init(void) ae.h

Initializes the AM188ES processor. The following is the source codefanit()
outport(0xffa0,0xc0Obf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states

outport(0xffa8,0xa0bf); // 256K block, 64K MCSO0, PCS I/O
outport(0xffa6,0x81ff); // MMCS, base 0x80000

outport(0xffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIR1, TxD0O, RxDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCS high

clka_en(0);

enable();

Reference: led.c

void ae_reset(void) ae.h

Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var. m — Delay in approximate ms

Reference: led.c

void led(int 1) ae.h

Toggles P12 used for led.

Var: i- Led on or off

Reference: led.c

G-1

Appendix G: Software Glossary A-Engine

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var. m — Delay using simple for loop up to t.

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i— 1 enables power save only. Does not disable.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: i — 1 enables clock output, 0 disables (saves current when
disabled).

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI M#tK691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 -31
Mode — above mode select

Reference: ae_pio.c

G-2

A-Engine Appendix G: Software Glossary

void pio_wr(char bit, char dat)

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 -31
dat—1/0

Reference: ae_pio.c

ae.h

unsigned int pio_rd(char port)

Reads a 16 bit PIO port.

Var: port—0: PIOO - 15
1:PIO16-31

Reference: ae_pio.c

ae.h

void outport(int portid, int value)

Writes 16-bitvalueto I/O addresgortid.

Var: portid — I/O address
value — 16 bit value

Reference: ae_ppi.c

dos.h

void outportb(int portid, int value)

Writes 8-bitvalueto I/O addresgortid.

Var: portid — I/O address
value — 8 bit value

Reference: ae_ppi.c

dos.h

int inport(int portid)

Reads from an 1/0O addregertid. Returns 16-bit value.

Var: portid — I/O address

Reference: ae_ppi.c

dos.h

G-3

Appendix G: Software Glossary

int inportb(int portid) dos.h

Reads from an 1/0O addregertid. Returns 8-bit value.

Var: portid — I/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae_ee.c

int ae_ad12(unsigned char c) ae.h

Reads from the 11-channel 12-bit ADC. Returns 12 bit AD data of the previous channel.

In order to operate ADC, 120,121,122 must be output and P11 must be input.
P11 is shared by RTC, EE. It must left high at power-on/reset.

Unipolar:
Vref- = 0x000
Vref+ = Oxfff

Use 1 wait state for Memory and 1/0O without RDY, < 300 us execution time
Use 0 wait state for Memory and 1/0 with VEP010, < 270 us execution time

Var: ¢ — ADC channel.

c={0...a},inputch=0-10

c=bh, input ch = (vref+ - vref-) /2
Cc=Cc, input ch = vref-

c=d, input ch = vref+

c=e, software power down

Reference: ae_adl12.c

A-Engine

A-Engine Appendix G: Software Glossary

void io_wait(char wait) ae.h

Setup 1/0O wait states for I/O instructions.

Var: wait — wait duration {0...7}

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtc_init(unsigned char * time) ae.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:

time[0] = weekday

time[1] = year10

time[2] = yearl

time[3] = mon10

time[4] = monl

time[5] = day10

time[6] = dayl

time[7] = hour10

time[8] = hourl

time[9] = min10

time[10] = minl

time[11] = secl10

time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0},
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtc_rd(TIM *r) ae.h

Reads from the real time clock.

Var: *r — Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, min10, hourl, hourl0;
unsigned char dayl, day10, monl, monl0, yearl, year10;
unsigned char wk;
}TIM;

Reference: rtc.c

G-5

Appendix G: Software Glossary A-Engine

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the AMD CPU Manual

ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock)
Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.
Reference: timer.c, timerl.c, timer02.c, timer2.c, timer0.c timerl2.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void intO_init(unsigned char i, void interrupt far (*int0_isr)());
void intl_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts O through 6 and NMI (Non-Maskable Interrupt).
Var: i— 1: enable, O: disable.

int #_isr — pointer to interrupt service.
Reference: intx.c

void sO_init(unsigned char kbynsigned char* ibuf, int isiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void s1_init(unsigned char b, unsigned char* ibuf, int isiz, serl.h

unsigned char* obuf, int osiz, COM *c) (void);
Serial port 0, 1 initialization.

Var. b - baud rate. Table below for 40MHz and 20MHz Clocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)

1 110 55

2 150 110

3 300 150

4 600 300

5 1200 600

6 2400 1200

G-6

A-Engine Appendix G: Software Glossary

7 4800 2400
8 9600 4800
9 19200 9600
10 | 38400 19200
11 | 57600 38400
12 | 115200 57600
13 | 23400 115200
14 | 460800 23400
15 | 921600 460800

Reference: sO_echo.c, s1_echo.c, s1_0.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h
unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var. ml=SCC691 MR1

m2 = SCC691 MR2
b-baudrate. T able below for 8MHz Clock.
ibuf — pointer to input buffer array

isiz — input buffer size

obuf — pointer to output buffer array
osiz — ouput buffer size
¢ — pointer to serial port structure.
structure.

See AEH for COM

m1 bit Definition

7 (RXRTS) receiver request-to-send control, 0=no, 1=yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIFO FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Block
4-3 (Parity Mode), 00=with, 01=Force, 10=No, 11=Special
2 (Parity Type), O=Even, 1=0dd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8
m2 bit Definition
7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=Remote
loop

5 (TXRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bhit), 0111=1, 1111=2

b baud (8MHz)

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19200

10 | 31250

11 | 62500

12 | 125000

13 | 250000

Reference: sO_echo.c, s1_echo.c, s1_0.c

G-7

Appendix G: Software Glossary A-Engine

int putserO(unsigned char ch, COM *c); ser0.h
int putserl(unsigned char ch, COM *c); serl.h
int putser_scc(unsigned char ch, COM *c); scc.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch — character to output
¢ — pointer to serial port structure

Reference: sO_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); serl.h
int putsers_scc(unsigned char ch, COM *c); scc.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str — pointer to output character string
¢ — pointer to serial port structure

Reference: serl_sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *c); scc.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else
0.

Var: ¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getserl(COM *c); serl.h
unsigned char getser_scc(COM *c); scc.h

Retrieve 1 character from the input buffer. Assumesaddit routine was evaluated.

Var: ¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers_scc(COM *c, int len, unsigned char *str); scc.h

Retrieves a fixed length character string from the input buffer. If the buffer contains less
characters than the length requesstdwill contain only the remaining characters from the
buffer. Appends a \0’ character to the endtof Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string length
str — pointer to output character string

G-8

A-Engine Appendix G: Software Glossary

Reference: serl.h, ser0.h for source code.

G-9

A-Engine Appendix H: A-Engine Keypad Interface

Appendix H: A-Engine Keypad Interface

The following diagram shows connections for interfacing a 3x4 keypad to an A-Engine or A-Engine-P. Please
refer to the sample filee_kpad.c in thesamples\ae directory for more information.

Install on
J2 [s2 2] [rs2s -m
—» | ©]
— I o

74 AMD ut
He AM188ES O

: =
- | : H
| ;. ® CPU EE
N i | S = T
;I ll ';I 'LI ? Lr g::;1;:%::?§::::::5::::::: - *U
Red edge
of cable
Keypad J2: J2
signals: | pin signal OO
R2 | O | 19=/INT2 ©0
(ON®)
R3| O 18=P25 00
C3 O 17=P24 00
R4 O | 11=P13 g g
Ci O 12 = P10 00
Rl O | 4=P26 o)
— (ON®)
c2 O 3=P29 O 0|19 = /INT2

P25 =180 O|17 = P24
oXe
oo
P10 = 120 Of11 = P13
oo
oo
oXe

P26 = 40 O|3 = P29

0 @l«—[Pin1 |

H-1

Appendix I: /0 Lines Available for Users A-Engine

Appendix I: I/O Lines Avallable for Users

This appendix provides information about availability of I/O lines for user applications (headers J1, J2, J6, and
HO). More detailed information may be found in chapter 3.

%Odﬂoooooooooooaﬁ%ﬁmﬁ O Jl plnl
ee .)
. S EPROM ||o o
:: e AMD ul u3 ee
ee HC AM188ES pd
eof| [CPU e
e e T} o
- . vl

EE iR!

:: PP1 A .o
:: RTC e
:: ADC* u4 ::
ee s o
2 Qeoe:moo:o\o:_aiooooaoooooooo (el ::
J2 p|n1 /%‘eeeeeleeaeeeeeeeeeeeeeeeee ue U

Ho 6

Pin 1 locations for J1 and J2

J1, 20x2 header:

J1 Signal
USED BY: USED BY:
VCC 1 2 GND
MPO 3 4 P1 Used byPowerDrive
LittleDrive for system
clock

RxD 5 6 GND
TxD 7 8 DO
VOFF 9 10 D1
PFI 11 12 D2
GND 13 14 D3
IRST 15 16 D4
RST 17 18 D5

Used by TERN expansion P16 19 20 D6

boards MemCard

MotionC, etc.)
MPI 21 22 D7
CLK 23 24 GND
HLDA 25 26 A7
HOLD 27 28 A6
/WR 29 30 A5
/IRD 31 32 A4
VRAM 33 34 A3
VBAT 35 36 A2
GND 37 38 Al
VCC 39 40 A0

Signals for J1, 20x2 expans ion port

J1 signals shown shaded may not be available if the specified TERN expansion board is used/installed. All
other lines are free for use in applications.

-1

A-Engine Appendix I: /0 Lines Available for Users

J2, 20x2 header:

J2 signals from the Am188ES PIOs are multifunctional. Users can program these PIO pins for use as input,
output, or normal operations. For example, J2 pin 27, /RTSO (normal operation), can re-programmed as P20,
either input or output.

Some J2 signals are used by the system and are not available for application use. Others may or may not be
available, depending on what components are installed on the A-Engine.

J2 Signal
USED BY: USED BY:

v | GND 40 39 VCC v
| M Step2jumper P4 38 |37 P14 | Y
v | ICTSO 36 35 P6 v
(001 SERO DEBUG TxDO 34 33 /INT4 v
(01 SERO DEBUG RxDO 32 31 IRTS1 |V
v | P5 30 29 P1 v
A SER1| TxD1 28 27 /IRTSO |V
A SER1| RxD1 26 25 GND v
A RTC chip selec| P2 24 23 P15 v
v | ICTS1 22 21 /INT3 |V
v | PO 20 19 /INT2 v
v | P25 18 17 P24 v

v | IWR 16 15 P3 SCC chip select A

[0 EEPROMand ADC P11 14 \13 P17 PPl ** \
v | P10 12 11 P13 | v

v | vCC 10 9 v
A SCCinterrupl /INTO 8 7 INMI v
v | /INT1 6 ‘ 5 P12 LED and EEPROM ** ‘
VAN DAC DI | P26 4 3 P29 DAC chip select A
v | GND 2 1 GND v

Signals for J2, 20x2 expans ion port

KEY:

v = Free for use

** = Do not use (already used by the component listed)

/A = Canonly be used if the corresponding device or function is not installed.
Examples:

1) J2 pin 8 = INTO and J2 pin 15 = P3

can be used for applications if the SCC UART (U8) is not installed on the A-Engine
2) J2pin4=P26 and J2 pin 3 = P29

can be used for applications if the DAC (U11) is not installed on the A-Engine

Appendix I: /0 Lines Available for Users A-Engine

J6 and HO:

On the J6 header, all U5 PPI signals are free for the user (100-07, 110-17, 123-27).

Three PPI signals (120, 121, and 122; used to control the ADC) are not routed to J6. However, if the ADC is
not installed, the user may modify the A-Engine board to route these three signals to the HO header.

HO is used for ADC inputs and is available for the user.

T 10 T 199uUs[000c ‘€z AJreniged @1EQ
HOS “TVNNWA -3V g
AT Jaquny 1uaunoog|ez IS
au 1bug v
81111
31s Nd3L
dNAYD dNAYD dNAVO dNdvD
f_l+_ »|ZI+. »|ZI+. »l__l+_ a3l 089
0 o) 2 pro)
2id o A
A T4 00N
20A= I4d STEOXWA
TEIXYN
JOA 5 4d SO g—
2aHCH o3ad—L—odd 10 H—
Zid 2 © O T an ot ‘A M/rg
0= Nog |o—
WA T 2 S
S =0 ao
SO1/ € L7 aNO
oan 20A
W 1€ OJ0OA
1S4/ OA
Ty s vRle A AN
Isd 9 T 1VaA
n
169200S |RW
oINT7 et | NI/ OO =
ed NI/ IS ISE adot
yIa 0T 01D
oa X 2 %
s ov IS >
o A wa— 2WIX
& 5 ov
za [
< a O o=
oa axi H—agdt
aW/ axd
o o
Sve | 9N M/ T auy
20N an

8
X _H_ X

sezves
TH1g £2v2s SerszoL
£752D11L TSOTNY
+ — 4/ © hv
.r<m_>ﬁm H|V @/ _ET | ow_\m | eav ao | MOT
+ 71l za ev otav sav
z 0 olav et © 6 0
a ov v =y Qv
T8 Ta_oT | 6 ao € 8 N e 6
N N +1=38 oav
1] 8 eI / N € 8
N v) sav
8 L 021 S 95 __sav Zl P
et o N H— o] oa vav 2 ¢ 5
L 15 ov NiQ eav -
159 /02 S T2l L v eav. o S
N 3V MO v
dNdVD Te v Z2 181 € N v
X N 203 1av
D | X Ne 61307 v [_tav €
ec| X, SUIE 5oz T oav Isd/ 2
VA g7 WVaA e T 20N otNn T
m 20N ™
MOT
SOPYTLT
1 [Z=1 YPTOLT YTOHY L o5d VYV oA
S v v
vz I v N N
0z | anD 2 o [E_sea WN 2T £T NN/
TZ] 77d OA 7] 2 9cd
< Jlolslvie leftlolelsle == an v0|m Nmn_ 46N Ova=aH
S lad TR[E[TfE[ETT
Tin YTOHYL
5528 ldd VAl > O—5
91521000 SR S
zzT g (¢dddddda d” "o R ag 7 Svove €INT 0T TEINT/ e S See €
gcl 611 g7g T0d [2—00 vas SSA E o £ ¢
0T | 0z 10 Tid S v 36N Z€ TE T
T1d z0d & s v e S
TI1 T¢ 20 Zld © € YTORYL 0 62 0
Z1d €0d dn v O © 2
—£2 N N SHr—£— oA ov 482 & o-4Lg tcl
ol e o [T T $oz Sz verl
ET1 be Yr ¥ n fINT 8 6 TIN T/ e 2 Qe ser
¥1d 50d p e & o€ scl
YT 1 G¢ £ G) &4 Tz ozl
STd 90d pcc o o-lc ocl
ST oc 290 aen $oz 61 /¢
9Td g | Lod 4 0¢ 5 & 2
9Ll L2l /Tdas95v0ezT 08 M/ E—24D g i1 00
ITT 8¢ QLIS EAELTL OS Oy @7 YTOHYL 9 SL10
Z TT €0
sn o SQILEERIaRIL 810 OINTT ooAmo._.z: B 0L & 36 40
ZTSHaH an S & _<0
R 159 26N VA g &5 90
7 3 YTOHY L oTav ¢ S 701
T e O, 0T oA
or
=S < 6 oyxe’
ZINT & T ZINT T 3
8 S oS3
L S
;] s Sy
S o> o0& gy
H o0av ¢ T iav
4 oH
¢ FINT 2 TVINT/
ZDNIN [TD 77TV d L TV=00A_ T\ N| e /2 ¢
Iy | [[WWEA ITg] | [ON ang] | ([8TY - ven
ESHAH €r ESUAH pr ESUAH sr OYQMHaH zc OVQMQH
o7 6 _TOA OO T 7 oo
TV 8¢ JIYS) 62d € 92d
oL bed £ 5 o ¥
oY ot Se 1van 2ld S 9 TIN | /
eV e £V WS 8 OIN I/
W _ge O S Te ad/ 6o S0t oon
s s T
o O O &
N _or o S5¢ Bd S g oW /
a 3 e 3o ved 2 g Ged
a ez 3 ST d ZINI/ 6 0Z__ 0d
0 Ser © 7t 8 Sz 1507
5 oLl s “oid €¢ v¢_zd
9 SSrT _aw s 2 o2 T
S & 3) 0SIH/ 1z 5 Ssciaxl
2d ¢ ST g Td 6¢ 08_&d
T Se Jon W1 ZE oo
,_axL vIN1/ €€ e 0aXL
D 9 S o od &€ e 05107
95 oSO
d v O S € OdN bid Je & o BE bd

T JO T 199US[866T ‘6 AJtenuer T2 1eqg
HOS “ VNNV -d -3V g
AT JequnN juaunsod|ez IS
d-av
—_— sezveL
THiS g2vzl SerSZoL
31S Ny3L +
ivan 1€ : ST T an/ O a5 E¥Ge0TL |R_V TSOTNY
.) o A Or_aav 77 v, IO o7 o
dNAVO dNAVD dNdVD dNdVO Ta 1A m a ov QL £V 0Iav_¢ owo< 8av ¢ 5
ot | 6 = Qv
»l__|+. »l__|+_ »l__|+_ .»l__|+_ a3 089 FI% N s N< +mo w = v B 7 v &
ce] € 8 Wil v 59) cav —v € 8
0 se) 0cl §
e |9, N — noa vav [o—aav NI/ L
2ld N oA TR o] IS0 OV 2 19 ot 48" v s TINT/ 5
T TIOON dNdYD dNdvO fe N 3w 3% AR S5V S o2 o S
0 2e) X ON — cecl_81 € 2 v
T X Nre 81503 1av iE
[o EC 2 __ed _ §0c 10N v 1y €
TAVEA g7 VIR 520N als H——5R z T oav =T
= 20N 0N T
20N ™
STEAXWA
20A=14d MOT T69XWA
E RS SOrYTL] 0T
= 14d 13S 090 F5— | prAl —N——=
araH & sdfodd N1 2O 58— Sz | v prioLl YIOHYL od ON
Zid 2 © O T _ian 1] M ANl H— 5! v vA s N [v
oc IHaom RoLva — ano a9 € 6ed WN 2T
1/ el Y) e Jlolslve eltlolelele| ™ o1 AN S 7<) ey
M T | ey NN S ldd TfT[tlT(T[t]T EE] AT 460
1ron [E_0A OVaMAH
Sy er]i3 SRR 5528 Idd T YTOHY L
S van (EUVEA 10r592,01dS 1oy S Qe
Z7T 5] 224 §5555NEVVNS ax s SHeeC oot
N So T et £2d 9/ 90a 2 ad 7 SYovre SINT 0T TEINTT 0 O
£l 811 o1d T0d 0Q vas SSA S SEr ¢
9Ll 0c 714 204 10 TId S | %0 3w 360 £ o o-EE ¢
=T 21d £0d 20 <id 9 | = € YTOHY L o o1
169200S % |ww N N e €0 ae |9 w«) mm 3o mm 0T
1 IN |/ Q\D ET1 ve | o vod [A8 T e S5 ve
o7 el N T = Pt og] ¥1d sod (Z¥ ¥ n 7INT 8 6 TINT/ e ez s
Ed v1 "3 ST IS5 =dot Td ST oc] o 90d X2 e Sz oer
/a0 g 0T __&X 010 8 9Td g Lod |90 aen 5 CEtTeT
oq 5% 4d0T 9T 1 Jz L 0 0¢ 6T /¢
o1 X[e X e T 55 £1d 42957082 T 05 W / Ter 8 St 00
L 8 7 % X AdaaaNndddas oy W/ PTOHVL S O
8T X9 A/ ZWIX S i
8 61| oo _n_NN 5 v sn elo[tkElrlshllsle w S oLl <
0] 8 o [Tan CEEEEEEEE[EE 0INT © SOINT/ T e S O
1d 12| ;3 O ZTSHaH > o5 ¥o
axl & 0N _ 1S an /G
Sl an / axd axL e T 06N VA S O
sec{oon ol a2 i vy AT g R LT
OA o) ad 2d : +434 ¢ oc ¥ J0A
e ZINT % T ZINT T2 %
> o6 6av
L 7 v
MOT 9 96N v S &5 v
_ 2 YTOHYL NV S S sav
i W $8+011 v av ¢ © T av
ano A ——eor € oH
5
e smre 1y a0 g4 o [7 7TV 4L TY=00A _ T] /4 z vINT ¢ TPINTY
SO/ Sm7 s/ 2 |8 E N 5] TE| | |NVEA LTY] o ([ON 8N ol 8TV i ven
o 550N O¥ T E 8r
0T OOA vin
oom> o S/ €SMaH €C ESHAH vr €SMAH sr
zez1L v ec O
vz o O—x __
ONMNV_AM_,_ S ot 3 Oo[m, a6 St o—<—a
TS e vZEZXWN 3 < Lod £ 5 o7
ASESN0T [30 ot lek oeL g% AGE ol 1 g o TS S ™ ST
oD L OLL 71 A e NOT [G\B AgednoT [A Gaxd 6|9 B 0axd /] ASE4NOT [~ W ee O STe i/ /L & o8O0INI/
j— I RS N SO L v e 10T (f O [LoIXIT z AT YA V) ST O ot oM
e & +20 C__ ax1 1 K - O <& = < <
© o sRrtlon o C_ 8 a6 0a2TOR B Ly oo o#gn [l EL 3 Spl 1id
SR e | AND A 2 +€0 QA7 €] g8 T8 Y] L0 o2 ed ST 5 K 9T ¥/
5T 0N+ [LTI o PED® AsENOT[T5 19 e¢ S e i SO oSl S
20N £ ST 0N +TO =2 I < 0C 5 S 6 9 ENT 123 See 15107
20N pATY 5 o oL s S £ o o e _Zd
AGEANOT w LT8SNT S & 3) Ba oo ogSE
ano 810 30 a0 o S8cTaxi
z 0TQIaH 0TQRIaH 0TQMAH T O O—¢ u_un_> Hw._.wj 6 5 o0& =d
ASESNOT £| o o o O £ o o—cg ddxd
not . AT AT orS &6 0B o S & av o2 6 aw ap 9 3 g o VINILEE & o FEOXL
o O L 8 L O O CO—32%
Tm 0N | AT 2aRiaH SHre 5 o9 gl o3 Soaxy v 2 T sy Fo 0 IR Pid L8 5 o B8 M
ON B0 O 78 ag OXIL v C—TaxIT 0 CExiT T 0N 6¢ oy AN
S08INT o INCT+ z T T o1 - o= Tc 00N
SN e o ™

