

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

586-Engine-P™

C/C++ Programmable, 133 MHz 32-bit Controller
with Floating Point Unit, CompactFlash Interface

and 16-bit ADC / DACs

Technical Manual

COPYRIGHT

586-Engine, 586-Engine-P, NT-Kit, and ACTF are trademarks of TERN, Inc.
Am188ES and Am186ES, ElanSC520 are trademarks of Advanced Micro Devices, Inc.

Paradigm C/C++ is a trademark of Paradigm Systems.
Windows95/98/2000/NT/ME/XP are trademarks of Microsoft Corporation.

Version 2.0

May 19, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1993-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice
TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure. TERN reserves the right to make changes and improvements to
its products without providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

586-Engine-P Chapter 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description

The 586-Engine-P™ (5P) is a complete C/C++ programmable standalone controller based on a 32-bit
133MHz AMD Elan SC520. The 5P improves upon the standard 586-Engine core by integrating additional
peripheral components. Most significantly, the 5P has added voltage regulator and RS232 line drivers,
making it a true stand-alone product. The 5P also adds high-speed 16-bit analog I/Os, making it appropriate
for a whole new generation of high-performance data acquisition (DAQ) and precision control applications.

INPUTS/OUTPUTS
The SC520 supports 32 programmable multifunctional I/O lines (PIO) that can be used as general discrete
I/O. Two industrial-standard 16550-compatible UARTs (RS232) support baud rates up to 1.152 M baud.
One synchronous serial interface (SSI) supports full-duplex, high speed bi-directional communication.

A unique 16-bit parallel ADC (AD7655, 0-5V) supports ultra high-speed (1 MHz conversion rate) analog
signal acquisition. The AD7655 contains two low noise, high bandwidth track-and-hold amplifiers that
allow simultaneous sampling on two channels. Each track-and hold amplifier has a multiplexer in front to
provide a total of 4 channels analog inputs. The parallel ADC achieves very high throughput by requiring
only two CPU I/O operations (one start, one read) to complete a 16-bit ADC reading. With a precision
external 2.5V reference, the ADC accepts 0-5V analog inputs at 16-bit resolution of 0-65535 counts.

An octal rail-to-rail digital to analog converter (TLC2600) can be installed to provide eight channels of
analog voltage (0-5V) outputs. At power on, all analog outputs are zero with the on-board reset. The DAC
chip is accessed through a 3-wire SPI-compatible serial interface, which is connected to the 5Ps high-speed
synchronous serial port (clockable up to 50 MHz). Eight built-in analog output buffers can drive rail-to-rail
analog voltages up to 15 mA.

OTHER FEATURES
The 5P boots from on-board 256K 16-bit ACTF Flash, and supports up to 256K 16-bit battery-backed
SRAM. The 5P supports low cost, removable, up to 2 GB mass storage CompactFlash cards with onboard
CompactFlash interface.

The SC520 integrates an Am586 CPU and a high performance ANSI/IEEE 754 compliant hardware
floating-point unit (FPU). The FPU provides arithmetic instructions to handle numeric data and
transcendental functions for sine, tangent, logarithms, etc, useful for intensive computational applications. It
is estimated to be 10-50 times faster than an 8/16-bit controller without a FPU.

Up to 15 external interrupts are supported. There are a total of seven timers including one programmable
interval timer (PIT) that provides three 16-bit PIT timers and three 16-bit GP timers, plus a software timer.
These timers can support timing or counting external events. The software timer provides a very efficient
hardware time base with microsecond resolution. A real-time clock (RTC) provides time-of-day, 100-year
calendar and 114 bytes of battery backed RAM.

Signal lines on headers are 3.3V output and 5V input tolerant. Absolutely no voltage greater than 5V should
be applied to any pins. With the 388 pin BGA package for the SC520, repair support is not available. The
5P can be powered by a single unregulated DC power from 8V to 30V range with the on-board high-
efficiency 5V switching regulator (LM2575). The 5P can also be powered by a regulated 5V without using
on-board 5V regulator.

The 5P works with TERN expansion boards including the P100, P300, LittleDrive, and MotionC

Chapter 1: Introduction 586-Engine-P

1-2

 Special Note: The core of the Am520 CPU operates at +2.5V and the I/O operation at +3.3V. Also, the
input for the I/O is +5V compatable. Stresses above these can cause permanent damage to the SC520 CPU.
Operation above these values is not recommended, and can effect device reliability.

1.2 Features
• Dimensions: 3.6 x 2.6 x 0.3 inches
• 133MHz, 32-bit CPU (ElanSC520, AMD), Intel 80x86 compatible
• Easy to program in C/C++
• Power consumption: 110 mA at 24V
• Power input: + 8V to +30V unregulated DC with switching regulator
• 256KW SRAM, 256KW, 114 byte internal CMOS RAM
• 4 channel 16-bit, 1MHz conversion rate, ADC, AD7655, 0-5V input
• 8 channel 16-bit DAC, TLC2600, 0-5V
• High performance floating point coprocessor
• Up to 2GB Compact Flash memory expansion
• 2 serial ports
• 15 external interrupts with programmable priority
• 32 multifunctional I/O lines from ElanSC520, 1 SSI, 7 16-bit timers
• Supervisor (691) for power failure, reset and watchdog
• Lithium coin battery

586-Engine-P Chapter 1: Introduction

1-3

1.3 Physical Description

The physical layout of the 586-Engine-P is shown in Figure 1.1.

Figure 1.1 Physical layout of the 586-Engine

J4: timers,
ADCs, and DACs

power input:
GND +12V

RS-232
driver

H3: SER1

H2: SER0
Debug Serial Port

256KW Flash, SRAM
located under CF socket

TLC2600
16-bit DAC

AD7655
16-bit ADC

J2 header:
I/Os

Chapter 1: Introduction 586-Engine-P

1-4

Power On or Reset

YES

ACTF menu sent out through ser0
STEP 1

Step 2 jumper

NO

set?

at 19200 baud

Validation of
battery back up?

YES

NO Set the CS:IP in
internal RAM to

8000:0000

STEP 2
Go to application

code CS:IP in
CPU's internal

RAM

Figure 1.2 Flow chart for ACTF operation

The “ACTF boot loader” resides in the 256KW on-board Flash chip (29F400). At power-on or RESET, the
“ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the ACTF menu will be sent out
from serial port0 at 19200 baud. If STEP 2 jumper is installed, the5P will check for a valid battery back-up.
If present the 5P will go to the jump address stored in the CPU’s 114 bytes of general purpose RAM.
Without a valid battery back up, the 5P will write the address 0x80000 to the inernal RAM, and then go to
that address.

There is no ROM socket on the 5P. The user’s application program must reside in SRAM for debugging in
STEP1, reside in battery-backed SRAM for the standalone field test in STEP2, and finally be programmed
into Flash for a complete product. For production, the user must produce an ACTF-downloadable HEX file
for the application, based on the DV-P. The “STEP2” jumper (J2 pins 38-40) must be installed for every
production-version board.

Step 1 settings

In order to correctly download a program in STEP1 with Paradigm C++ Debugger, the 5P must meet these
requirements:

1) 5860_115.HEX must be pre-loaded into Flash starting address 0x80000.

2) The CPU’s 114 bytes of RAM must have the correct jump address pointing at 5860_115.HEX, which is
the address 0x80000.

4) The STEP2 jumper must be installed on J2 pins 38-40.

For further information on programming the 586-Engine-P, refer to the Software chapter.

586-Engine-P Chapter 1: Introduction

1-5

1.4 586-Engine-P Programming Overview

Steps for 5P-based product development:

Preparation for debugging:
• Connect 5P to PC via serial link at 19,200, N, 8, 1 with Hyper Terminal
• Power-on without STEP 2 Jumper installed (J2.38 = J2.40)
• ACTF Menu will be sent from 5P to Hyper Terminal
• Type ‘D’, then <enter> to download. Send \tern\586\rom\l_29f400.hex
• Type ‘G04000’, then <enter> to execute HEX file just sent; will prepare flash
• Send \tern\586\rom\5860_115.hex
• Type ‘G80000’, then <enter> to execute debug kernel
• Set STEP 2 Jumper (J2.38 = J2.40)
• Power-on/reset, ready to connect to Paradigm C/C++ for debugging

STEP 1: Debugging
• Launch Paradigm C/C++. Open \tern\586\samples\5p\5p_cf.ide.
• Run sample code
• Create application using sample code.
• Use Paradigm C/C++ to edit, compile, link, locate, and remote debug

STEP 2: Standalone field test
• Downloaded code from STEP 1 is located by default at 0x0800:0x0000 in the

battery-backed SRAM
• Set Jump Address to point to downloaded code. Remove STEP 2 Jumper and

cycle power. Setup Hyper Terminal and see ACTF menu sent from 5P.
• Type ‘G08000’, then <enter> to jump to and execute application in SRAM
• Set STEP 2 jumper. 5P will execute application at 0x08000 at power-up.
• Test application. Return to STEP 1 as needed

STEP 3: Production (DV-P Kit required)
• Use Paradigm C/C++ to generate ACTF downloadable application HEX file.
• In Paradigm C/C++, open Target Expert for application. Set “Target Connection” to

“No Target/ROM”. Build target. Paradigm C/C++ will generate HEX file.
• Remove STEP 2 Jumper and see ACTF menu at hyper terminal. Download

“l_29f400.hex”. Same process as above. Type ‘G04000” to prepare flash
• Send you application HEX file. Type ‘G80000’ to execute code and set jump address

to point to you application in flash.
• Set STEP2 Jumper

Chapter 1: Introduction 586-Engine-P

1-6

1.5 Minimum Requirements for 586-Engine-P System Development

Minimum Hardware Requirements

• PC or PC-compatible computer with serial COMx port that supports 115,200 baud
• 586-Engine-P controller
• Debug Serial Cable (RS-232; DB9 connector for PC COM port and IDE 2x5 connector for controller)
• Center negative wall transformer (+9V, 500 mA)

Minimum Software Requirements

• TERN EV-P installation CD-ROM and a PC running: Windows 95/98/2000/NT/ME/XP

With the EV-P, you can program and debug the 586-Engine-P in Step One and Step Two, but you cannot
run Step Three. In order to generate an application Flash file and complete a project, you will need the
Development Kit (DV-P Kit).

586-Engine-P Chapter 2: Installation

2-1

Chapter 2: Installation
2.1 Software Installation
Refer to the Technical manual “EV-P&DV-P Kit” on TERN CD under tern_docs\manual.

By manufacture default upon shipment, the 586-Engine-P will be ready to communicate with Paradigm
C++ for debugging, with STEP2 jumper installed, CMOS RAM setup for 0x80000, and 5860_115 debug
kernel residing in Flash starting 0x80000. Power on, the on-board LED should blink twice indicating
running debug kernel. You DO NOT have to download debug kernel into flash again. You can SKIP the
operation discussed in 2.2 below.

2.2 Prepare 586-Engine-P for Paradigm C++ TERN Edition
This section uses RTLOAD to communicate with the ACTF utility while chapter refers to a hyper
terminal. Either works fine.

1) Start Paradigm C++. Select from Top menu: Tool, RTLOAD,

A HEX file Loader window will be shown.

586-Engine-P Chapter 2: Installation

2-2

2) F5=Select Baud, to setup 19200.

3) F8=Select .HEX file from c:\tern\586\rom\L_29F400.HEX

3) Power on the 586-Engine-P with the STEP2 jumper off, the ACTF menu will show up.

586-Engine-P Chapter 2: Installation

2-3

4) Caps Lock on your PC keyboard, Type “D” command, then enter.

5) F6 = Upload .HEX file, from PC to 586 SRAM.

586-Engine-P Chapter 2: Installation

2-4

6) Type “G04000” to run the “L_29F400” in SRAM. The first time you type “G04000” you will get an
error. Doing the “G04000” again, you will see as below

The 29F400 Flash sector 0x80000 to 0xFBFFF will be erased. It will then be ready to program Flash with
new DEBUG kernel file (c:\tern\586\rom\5860_115.hex), or user application .HEX.

7) F8= Select .HEX file, from c:\tern\586\rom\5860_115.hex.

586-Engine-P Chapter 2: Installation

2-5

8) F6=Upload .HEX file to program the 5860_115 debug kernel into Flash starting address 0x80000.

After programming the Flash, 586-Engine-P will automatically reset.

“G80000” to setup the CMOS RAM Jump Address, and start the DEBUG kernel. The on-board LED
should blink twice and then stay on; indicating 586-Engine-P is ready for remote debugging.

Power off the controller. Install the STEP2 Jumper, then power on, the LED blink twice.

Use F9 = Exit.

The 586-Engine-P is ready for using Paradigm C++ TERN Edition to download, debug, and run.

There are several sample projects in the c:\tern\586 directory (default working directory):

586-Engine-P Chapter 2: Installation

2-6

tern\586\led.ide: The most basic sample project, just flashes LED

tern\586\test.ide: Gives samples for serial ports, interrupts, timers. etc

tern\586\samples\5p\586p.ide: Shows how to interface CompactFlash

tern\586\samples\5p\5p_cf.ide: Examples for hardware specific to 5p: ADC, DAC for
example.

To open projects, go to “File” and open the sample project file, then build and download.

There are many sample programs under c:\tern\586\samples.

After you debug your application code, you can setup the 586-Engine-P to run in Standalone Mode.

Standalone Mode(STEP2):

By default, the Paradigm C++ TERN Edition will download your application code starting at 0x08000 in
the battery backed SRAM.

Power off 586-Engine-P. Remove STEP2 jumper. On PC side, click TOOL, RTLOAD.

Power on 586-Engine again without STEP2 jumper, then the ACTF menu should show up.

At the ACTF menu prompt, type “G08000” to setup the Jump Address and run your application.

Power off, install the STEP2 Jumper. Then at power on, controller will jump to 0x08000 in SRAM and
run your application.

2.3 Hardware Installation

See diagram below for installation example.

Overview
 Connect debug serial cable:

For debugging (STEP 1), place IDE connector on SER0 (H2) with
red edge of cable at pin 1

 Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
adapter which installs in 2-pin screw terminal

586-Engine-P Chapter 2: Installation

2-7

Debug serial cable installed on SER0 (H2)
with red edge of cable aligned with pin 1.

Other end to PC’s COMx port.

Location of
watchdog jumper

586-Engine-P™ Chapter 3: Hardware

 3-1

Chapter 3: Hardware

3.1 SC520 - Introduction

The 586-Engine-P is based on AMD Elan SC520 Microcontroller. It includes an industry-standard
Am5x86 CPU with floating point unit (FPU). It provides a General-Purpose (GP) bus with programmable
timing for 8 and 16-bit devices. A ROM/Flash controller supports on-board high performance code
execution. An enhanced programmable interrupt controller (PIC) prioritizes 22 interrupt levels with up to
15 external sources. Two asynchronous UARTs can operate up to 1.15 M bit/s. A Synchronous Serial
Interface (SSI) offers full-duplex or half-duplex operation to support on-board ADC/DACs and user
expansion. A real time clock, a software timer, 3 GP timers, and 3 programmable interval timers are all
included. Thirty-two programmable I/O pins are on-board.

Please refer to the SC520 User’s Manual, SC520 Data Sheet, and SC520 Register Set Manual included on
TERN’s CD: amd_docs\sc520.

3.2 SC520 – Features

3.2.1 Clock

One 32.768 KHz and one 33.333 MHz crystal are installed to provide all the clocks required for CPU,
Real time clock, UART, timers, and clock output.

The CLKTEST (CLKT) signal is routed to J1 pin 4. Software can select to output one of 6 internal clocks,
including 32.768K, 1.8443 MHz, 18.432 MHz, 1.1882 MHz, 1.47456 MHz, and 36.864 MHz.

On-board ADC (U12) can use 1.8432 MHz as ADC clock.

3.2.2 Programmable interrupt controller and external Interrupts

The Programmable Interrupt Controller (PIC) prioritizes 22 interrupt levels (P1-P22) with up to 15
external sources (GPIRQ0-10 and INTA-D).

A programmable router must be programmed to map internal or external interrupt sources to the master
or two of slave interrupt controllers to provide different priorities, from P1 to P22.

All 15 external interrupt requests are programmed as edge sensitive, after 586_init();

An example map for P1 to P22 is listed below and demonstrated in the sample program 586_intx.c and is
included in the pre-built sample project \tern\586\test.ide.
// There are 22 interrupt priority levels plus NMI
// There are 15 external interrupt requests (GPIRQ0-10, /INTA-D)
// Example internal interrupt map by TERN:
// P1=Master PIC IR0, interrupt vector=0x40, PIT timer0
// P2=Master PIC IR1, interrupt vector=0x41, GPIRQ0=PIO23=J2.33
// P3=slave1 PIC IR0, interrupt vector=0x48, RTC
// P4=slave1 PIC IR1, interrupt vector=0x49, GPIRQ1=PIO22=J2.23
// P5=slave1 PIC IR2, interrupt vector=0x4a, GPIRQ2=PIO21=J2.21
// P6=slave1 PIC IR3, interrupt vector=0x4b, GPIRQ3=PIO20=J2.19
// P7=slave1 PIC IR4, interrupt vector=0x4c, GPIRQ4=PIO19=J2.20
// P8=slave1 PIC IR5, interrupt vector=0x4d, FPU
// P9=slave1 PIC IR6, interrupt vector=0x4e, /INTD=SCC=J3.14
// P10=slave1 PIC IR7, interrupt vector=0x4f, GP timer1/INTC=J3.13

Chapter 3: Hardware 586-Engine-P™

3-2

// P11=Master PIC IR3, interrupt vector=0x43, SER2/0
// P12=Master PIC IR4, interrupt vector=0x44, SER1
// P13=Slave2 PIC IR0, interrupt vector=0x50, GP timer0
// P14=Slave2 PIC IR1, interrupt vector=0x51, GPIRQ5=PIO18=J2.17
// P15=Slave2 PIC IR2, interrupt vector=0x52, GPIRQ6=PIO17=J2.18
// P16=Slave2 PIC IR3, interrupt vector=0x53, GPIRQ7=PIO16=J2.15
// P17=Slave2 PIC IR4, interrupt vector=0x54, PIT timer1
// P18=Slave2 PIC IR5, interrupt vector=0x55, GPIRQ8=PIO15=J2.16
// P19=Slave2 PIC IR6, interrupt vector=0x56, GPIRQ9=PIO14=J2.6
// P20=Slave2 PIC IR7, interrupt vector=0x57, GPIRQ10=PIO13=J2.8
// P21=Master PIC IR6, interrupt vector=0x46, PIT Timer2/INTB=J3.12
// P22=Master PIC IR7, interrupt vector=0x47, GP timer2/INTA=J3.11

See the sample program in c:\tern\586\samples\5e\586_intx.c for more details.

The 586-Engine-P uses vector interrupt functions to respond to external interrupts. Refer to the SC520
User’s manual for more information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The SC520 has two 16450/16550-compatible asynchronous serial channels: SER0/2 and SER1. Both
asynchronous serial ports support the following:

 Full-duplex operation,
 5-, 6-, 7-, and 8-bit data transfers
 Odd, even, and no parity
 1, 1.5, or 2 stop bits
 Error detection
 Hardware flow control
 Transmit and receive interrupts for each port
 Maximum baud rate, up to 1.152 MHz

The software drivers for each serial port implement a ring-buffered interrupt transmitting and receiving
arrangement. See the samples files s1_echo.c and s0_echo.c; s1_echo.c is included in the pre-built
sample project \tern\586\test.ide.

3.2.4 GP Timers

Three 16-bit General-Purpose Timers are on-board. Two external inputs, TIN0=J4.4 and TIN1=J4.6, can
be used for the GP Timer0 and Timer1 to capture and count external pulses up to 33.333/4 MHz.

Timer 0 and Timer1 can output pulses on TOUT0=J4.3 and TOUT1=J4.5.

GP Timers support interrupt on terminal count, continuous mode, and square wave generation.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale timer0 and timer1.

See the sample programs timer02.c and tmr_out.c in the tern\586\samples\5e directory. GP timer
code is intergrated into several of the samples in the sample project \tern\586\test.ide.

3.2.5 PIT Timers

Three 16-bit Programmable Interval Timers (PIT) are on-board. Each PIT channel has one interrupt
output. Only PIT2 has an external output pin and can provide square wave output. All PITs supports
interrupt on terminal count, hardware-retriggerable one-shot and timer functions. See samples at
c:\tern\586\samples\5e directory for 586_pit0.c and pit2_out.c.

586-Engine-P™ Chapter 3: Hardware

 3-3

3.2.6 Software timers

The “software timer” is actually a hardware timer, which is intended to provide a millisecond timebase
with microsecond resolution. Ideal applications for this function include providing a system wide
timebase, or a precise measurement of the time between events. The software timer has a 16-bit
microsecond counter that increments with a period of one millisecond. This yields a maximum duration of
65.5 seconds. A microsecond latch register that provides the number of microseconds since the last time
that the millisecond register was read.

The software timer provides a very efficient hardware timerbase for use by software. It is designed to
replace the traditional method of system timebase generation.

Traditional system timebase generation is accomplished by programming a timer to generate a periodic
interrupt. The interrupt service routine then increments a counter. This value is often kept in a global
variable, which can then be accessed by other code that needs to track time. The problem with this
traditional timebase is caused by interrupt latency and possible missed interrupt.

The software timer included can be used to resolve these problems.

See more details on AMD SC520 Users’ Manual, chapter 18.

3.2.7 SSI

A synchronous serial interface (SSI) provides full-duplex and half-duplex, bi-directional communication
at a software programmable SSI clock speed, from 64K Hz to 8MHz.

586-Engine-P uses the SSI to interface to the TLC2600 DAC. The user can use the SSI to interface many
types of external serial peripheral devices.

See the sample c:\tern\586\samples\5e\ssio.c.

3.2.8 RTC

A battery backed up real-time clock (RTC) is included. The RTC consists of time-of-day clock with alarm
and a 100-year calendar. It has also a programmable periodic interrupt and 114 bytes of static user
RAM.When the 5P is powered off, the RTC (and 114 bytes of static RAM) is backed-up by the 3V battery
installed on the 586-Engine-P.

See samples 586_rtc.c and rtc_pint.c for more details.

3.2.9 Watchdog timer

The Watchdog timer included in SC520 is not disabled. The 586-Engine-P uses a 691 supervisor chip to
monitor the 5V power and provides an external watchdog. User can activate the 691 watchdog with a
jumper setting on H1. The watchdog timer provided a means to monitor proper software execution. If
software becomes stuck in an infinite loop, for example, the watchdog timer can allow the 5P to recover to
proper execution. If the watchdog timer is enabled (via setting jumper at H1), it must be reset via software
every 1.6 seconds, or sooner. If the watchdog timer is not reset after 1.6 seconds, the 691 supervisor will
assert /RST, and reset the 5P. To reset the watchdog timer, use the routine, hitwd(). With the watchdog
jumper enabled, this routine should be arragned such that it is called every 1.6 seconds are sooner.

3.2.10 PCI, DMA, SDRAM, Write/Read buffer

No SDRAM support on the 586-Engine-P. No support on PCI, DMA, and Write/Read buffer.

Chapter 3: Hardware 586-Engine-P™

3-4

3.2.11 SC520 PIOs

The SC520 supports 32 user-programmable I/O lines (PIO). Each of these pins can be used as a user-
programmable input or output signal, if the interface function is not needed.

The 586-Engine-P PIO pins are 3.3V output and all inputs are 5V tolerant. Absolutely no voltage greater
than 5V should be applied to any pins. Over 5V voltage input can cause permanent damage.
After power-on/reset, PIO pins default to various configurations. The initialization routine, sc_init();,
provided by TERN libraries reconfigures some of these pins as needed as:
P27=/GPCS0=J2.37 for 16-bit I/O operation of on-board ADC/DAC
P31=J2.38 as input for STEP2 jumper reading
P0 as output for on-board LED control
P1=/GPBHE=J1.11 as /BHE for 16-bit data bus high byte enable signal

Other 28 PIO pins on the J2 header are free to use. PIO 2-26 and PIO 28,29,30 A PIO line can be
configured to operate as an output or an input with a weak internal pull-up or pull-down resistor. A PIO
pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table below.
These configurations, as well as the processor-internal peripheral usage configurations, are listed below in
Table 3.1.

PIO Function Power-On/Reset status 586-Engine-P Pin
No.

586-Engine-P Initial

P0 GPALE Input with pull-up LED L1 pin 2 Output for LED control
P1 /GPBHE Input with pull-up J1 pin 11 High byte enable /BHE
P2 GPRDY Input with pull-up J2 pin 4 Input with pull-up
P3 GPAEN Input with pull-up J2 pin 1 Input with pull-up
P4 GPTC Input with pull-up J2 pin 3 Input with pull-up
P5 GPDRQ3 Input with pull-down J2 pin 5 Input with pull-down
P6 GPDRQ2 Input with pull-down J2 pin 7 Input with pull-down
P7 GPDRQ1 Input with pull-down J2 pin 10 Input with pull-down
P8 GPDRQ0 Input with pull-down J2 pin 9 Input with pull-down
P9 /GPDACK3 Input with pull-up J2 pin 12 Input with pull-up
P10 /GPDACK2 Input with pull-up J2 pin 11 Input with pull-up
P11 /GPDACK1 Input with pull-up J2 pin 14 Input with pull-up
P12 /GPDACK0 Input with pull-up J2 pin 13 Input with pull-up
P13 GPIRQ10 Input with pull-up J2 pin 8 Input with pull-up
P14 GPIRQ9 Input with pull-up J2 pin 6 Input with pull-up
P15 GPIRQ8 Input with pull-up J2 pin 16 Input with pull-up
P16 GPIRQ7 Input with pull-up J2 pin 15 Input with pull-up
P17 GPIRQ6 Input with pull-up J2 pin 18 Input with pull-up
P18 GPIRQ5 Input with pull-up J2 pin 17 Input with pull-up
P19 GPIRQ4 Input with pull-up J2 pin 20 Input with pull-up
P20 GPIRQ3 Input with pull-up J2 pin 19 Input with pull-up
P21 GPIRQ2 Input with pull-up J2 pin 21 Input with pull-up
P22 GPIRQ1 Input with pull-up J2 pin 23 Input with pull-up
P23 GPIRQ0 Input with pull-up J2 pin 33 Input with pull-up
P24 /GPBUFOE Input with pull-up J2 pin 24 Input with pull-up
P25 /GPIOCS16 Input with pull-up J2 pin 25 Input with pull-up
P26 /GPMCS16 Input with pull-up J2 pin 29 Input with pull-up*
P27 /GPCS0 Input with pull-up J2 pin 37 16-bit I/O operation
P28 /CTS2 Input with pull-up J2 pin 36 Input with pull-up
P29 /DSR2 Input with pull-up J2 pin 35 Input with pull-up

586-Engine-P™ Chapter 3: Hardware

 3-5

PIO Function Power-On/Reset status 586-Engine-P Pin
No.

586-Engine-P Initial

P30 /DCD2 Input with pull-up J2 pin 30 Input with pull-up
P31 /RIN2 Input with pull-up J2 pin 38 STEP2 Jumper

Table 3.1 I/O pin default configuration after power-on or reset

C function in the library 586.lib can be used to initialize and to operate PIO pins.
void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0 (for interface function), 1 (for input), or 2 (for output).

Example: pio_init(0, 2); will set P0 as output
 pio_init(1, 0); will set P1 as /GPBHE

void pio_wr(char bit, char dat);

pio_wr(0,1); set P0 pin high and the LED is off, if P0 is in output mode
pio_wr(0,0); set P0 pin low and the LED is on, if P0 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); returns 16-bit status of P16-P31, if corresponding pin is in input mode,

Some of the I/O lines are used by the 586-Engine-P system for on-board components (Table 3.2). We
suggest that you not use these lines unless you are sure that you are not interfering with the operation of
such components (i.e., if the component is not installed).

Signal Pin Function
P0 Output LED control
P1 /GPBHE High byte D15-D8 data enable of the 16-bit data bus
P27 /GPCS0 General purpose chip select for 16-bit I/O operation
P31 Input STEP2 jumper

Table 3.2 I/O lines used for on-board components

3.3 I/O Mapped Devices

3.3.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address.
The external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default GP bus timing is setup in sc_init(); as:

pokeb(MMCR, _GPCSRT_, 0x01); // set the GP CS recovery time

 pokeb(MMCR, _GPCSPW_, 0x1f); // set the GP CS width

 pokeb(MMCR, _GPCSOFF_, 0x01); // set the GP CS offset

 pokeb(MMCR, _GPRDW_, 0x1f); // set the GP RD pulse width

 pokeb(MMCR, _GPRDOFF_, 0x0); // set the GP RD offset

Chapter 3: Hardware 586-Engine-P™

3-6

 pokeb(MMCR, _GPWRW_, 0x1f); // set the GP WR pulse width

 pokeb(MMCR, _GPWROFF_, 0x0); // set the GP WR offset

User may modify the GP bus timing after sc_init();. Details regarding this can be found in the SC520
User’s Manual and SC520 Register Set Manual. Slower components, such as most LCD interfaces, might
find the maximum programmable wait state of 15 cycles still insufficient.

The 5P uses J4.1=/PITG2=/GPCS3 to select on-board peripherals via the U2 decoder. The base address is
0x2000. The table below shows the I/O mapping for each peripheral.

I/O space Select Location Usage
0x2000-0x2004 /AD U2.15 & U6.32 AD7655 chip select
0x2020 /CV U6.35 Begin conversion on ADC
0x2040 HIT H1.1 Reset watchdog timer
0x20E0 /CF U5.32 CompactFlash chip select

3.3.2 Eight channel 16-bit DAC (TLC2600)

The TLC2600 is an eight channel 16-bit digital-to-analog converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amplifier capable of driving up to 15mA. It uses a 3-wire SPI
compatable serial interface and has an output range of 0-REF volts, making 1 LSB equal to REF/65535 V.
The reference voltage input is routed to J4 pin 11 and by default is shorted to VCC via jumper at
J4.11=J4.9. The REF voltage must be greater than GND and less than VCC. The DAC outputs are routed
to the J4 pin header, pins 12-19.

The DAC is installed on the 586-Engine-P at location U8 and uses P3 as the chip select. The synchronous
serial interface is used to send data to the device. Refer to the sample code, \tern\586\samples\5p\5p_da.c
for an example on driving the DAC. The sample is also included in the pre-built sample project
\tern\586\samples\5p\5p_cf.ide.

Refer to the DAC data sheet for additional specifications; \tern_docs\parts\ltc2600.pdf.

3.3.3 Four channel, 16-bit ADC
The unique 16-bit parallel ADC (AD7655, 0-5V) supports ultra high-speed (1 MHz conversion rate)
analog signal acquisition. The AD7655 contains two low noise, high bandwidth track-and-hold
amplifiers that allow simultaneous sampling on two channels. Each track-and hold amplifier has a
multiplexer in front to provide a total of 4 channels analog inputs. The parallel ADC achieves very high
throughput by requiring only two CPU I/O operations (one start, one read) to complete a 16-bit ADC
reading. With a precision external 2.5V reference, the ADC accepts 0-5V analog inputs at 16-bit
resolution of 0-65,535.

See sample program \tern\586\samples\5p\5p_ad.c for details on reading the ADC. The sample program is
also included in the pre-built sample project; \tern\586\samples\5p\5p_cf.ide.

Refer to the data sheet for additional specifications; \tern_docs\parts\ad7655.pdf.

586-Engine-P™ Chapter 3: Hardware

 3-7

3.4 Power supplies and Supervisor with Watchdog Timer
Two supervisor chips monitor 5V and 3.3V and provide power failure detection, a watchdog and system
reset. The 2.5V power supply is used for the SC520 core and 3.3V supports SC520 I/O operation. Signal
lines on headers are 3.3V output, and 5V maximum input. Absolutely no voltage greater than 5V should
be applied to any pins. The 388 pin BGA package of SC520 makes repair support not available. All
components are soldered on board for highest reliability.
The 586-Engine-P™ can be powered with a single regulated 5V with the on-board 3.3V and 2.5V
regulators. Limited by the compact dimension of the 586-Engine-P, the 2.5V and 3.3V on-board
regulators may cause excessive heat in a closed enclosure. External off-board regulated 5V, 3.3V, and
2.5V power supplies can power the 586-Engine-P, in order to remove heat from the board. The 586-
Engine-P also includes an on-board switching regulator to provide 5V from an unregulated 8-30V input.

A 691 (U7) supervisor chip is used to monitor the 5V power and a MIC8114 (U4) is designed to monitor
the 3.3V. The supervisor provides a watchdog timer, battery backup, power-on-reset delay, power-supply
monitoring, and power-failure warning. These will significantly improve system reliability.

Watchdog Timer
Setting a jumper on H1 activates the 691 watchdog timer. The watchdog timer provides a means of
verifying proper software execution. In the user's application program, calls to the function hitwd() (a
routine that toggles the H1 pin1= HIT) should be arranged such that the HIT pin is accessed at least once
every 1.6 seconds. If the H1 jumper is installed and the HIT pin is not accessed within this time-out
period, the watchdog timer pulls the WDO pin low, and asserts /RST. This automatic assertion of /RST
may recover the application program if something is wrong. When controllers are shipped from the
factory the H1 jumper is off, which disables the watchdog timer. See diagram on page 2-7 of this manual
for location on watchdod enable jumper.

The SC520’s internal watchdog timer is disabled by default with sc_init().

Battery Backup Protection
The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last about 3-5 years without external power being supplied.
When the external power is on, the battery-switch-over circuit will select the VCC to connect to the
VRAM.

3.5 Headers and Connectors

The 586-Engine-P schematic overrdes any discrepancies with the tables below.

3.5.1 Expansion Headers J1 and J2
There are two 20x2 0.1 spacing headers for 586-Engine-P expansion. Most signals are directly routed to
the SC520 processor. These signals are 3.3V and 5V tolerant, and any out-of-range voltages will damage
the board.

3.5.2 Header J4

The J4 header on the 586-Engine-P provides the user with access to DAC outputs, ADC inputs, GP timer
I/O, plus others.

Chapter 3: Hardware 586-Engine-P™

3-8

J1 signal

Name Pin # Pin # Name

VCC 1 2 GND
MPO 3 4 CLKT

RxD 5 6 GND

TxD 7 8 D0
VOFF 9 10 D1

/BHE 11 12 D2
D15 13 14 D3

/RST 15 16 D4

RST 17 18 D5
/ROM1 19 20 D6

D14 21 22 D7

D13 23 24 GND
 25 26 A7

D12 27 28 A6

/IOWR 29 30 A5
/IORD 31 32 A4

D11 33 34 A3

D10 35 36 A2
D9 37 38 A1

D8 39 40 A0

J2 Signal

Name Pin # Pin # Name

GND 40 39 VCC

P31 38 37 P27

P28 36 35 P29

TxD0 34 33 P23

RxD0 32 31 /RTS1

P30 30 29 P26

TxD1 28 27 /RTS0

RxD1 26 25 P25

P24 24 23 P22

/CTS1 22 21 P21

P19 20 19 P20

P17 18 17 P18

P15 16 15 P16

P11 14 13 P12

P9 12 11 P10

P7 10 9 P8

P13 8 7 P6

P14 6 5 P5

P2 4 3 P4

GND 2 1 P3

J4 signal

Name Pin # Pin # Name

/PITG2 1 2 /PITO2

TOUT0 3 4 TIN0

TOUT1 5 6 TIN1

SSO 7 8 SSC

VCC 9 10 SSI

REF1 11 12 V1

V2 13 14 V3

V4 15 16 V5

V6 17 18 V7

V8 19 20 GND

AB2 21 22 AB1

AA2 23 24 AA1

REF 25 26 GND

586-Engine-P Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix F.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

Chapter 4: Software 586-Engine-P

4-2

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this
technical manual.

4.1 586.LIB
586.LIB is a C library for basic 586-Engine-P operations. It includes the following modules: 586.OBJ,
SER0.OBJ, SER1.OBJ, and SCC.OBJ. You need to link 586.LIB in your applications and include the
corresponding header files. The following is a list of the header files:

Include-file name Description
586.H timer/counter, ADC, DAC, RTC, Watchdog
SER0.H Internal serial port 0/2
SER1.H Internal serial port 1
SCC.H External UART SCC2691

The 586.LIB was originally developed for the 586-Engine (the predecessor to the 586-Einge-P). Function
 prototypes for the 586-Engine’s ADC and DAC were incorporated into 586.lib. The 586-Engine-P does
not uses these same routines for its analog I/O. You must refer to the sample code in the 586\samples\5p
directory for examples on accessing the analog I/O on the 586-Engine-P. In addition, the 586-Engine-P
does not support an SCC2961 UART. Thus the functions defined in ‘scc.h’ are not valid.

586-Engine-P Chapter 4: Software

4-3

4.2 Functions in 586.OBJ

4.2.1 586-Engine-P Initialization

sc_init

This function should be called at the beginning of every program running on 586-Engine-P. It provides
default initialization and configuration of the various I/O pins, interrupt vectors, sets up I/O, and provides
other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of sc_init are described below. For details regarding register use, you will want to refer to
the AMD SC520 Microcontroller User’s manual.

 Initialize the programmable interrupt controller. Setup the master interrupt controller at vector
0x40. The slave1 interrupt vector at 0x48, and slave 2 interrupt vector at 0x50.

 Initialize /ROMCS1 chip select to support the 8-bit I/O starting 0x1000, and the /GPCS0 to
support 16-bit I/O starting address at 0x1800.

 Disable SDRAM

 Initialize default GP-bus chip select timing as
pokeb(MMCR, _GPCSRT_, 0x01); // set the GP CS recovery time

 pokeb(MMCR, _GPCSPW_, 0x1f); // set the GP CS width
 pokeb(MMCR, _GPCSOFF_, 0x01); // set the GP CS offset
 pokeb(MMCR, _GPRDW_, 0x1f); // set the GP RD pulse width
 pokeb(MMCR, _GPRDOFF_, 0x0); // set the GP RD offset
 pokeb(MMCR, _GPWRW_, 0x1f); // set the GP WR pulse width
 pokeb(MMCR, _GPWROFF_, 0x0); // set the GP WR offset

 Initialize and configure PIO ports for default operation. All pins are set up as default input,
except for P31, P27, P2, and P0.

The GP chip selects are set to 0x1f wait states, by default. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number
down as needed.
A CLKT signal is routed to J1 pin 4 for the on-board ADC and external user clock. The CLKT can be
selected as
void clkt_sel
Arguments: unsigned char clk
Return value: none.
 CLKT=J1.4 output 1.8432 MHz as ADC clock for U12
 The CLKT pin is programmed as an output (CLKTEST).
 When programmed as output, CLKT output one of the 6 internal clocks:
 void clkt_sel(unsigned char clk);
 where:
 clk=000, RTC (32.768 KHz)
 clk=001, UART (1.8443 MHz)
 clk=010, UART (18.432 MHz)
 clk=011, PIT (1.1882 MHz)
 clk=100, PLL1 (1.47456 MHz)
 clk=101, PLL2 (36.864 MHz)
 clk=110-111, CLKT=0

Chapter 4: Software 586-Engine-P

4-4

void clkt_sel(unsigned char clk);

4.2.2 External Interrupt Initialization
The programmable interrupt controller consistes of a system of three individual interrupt controllers
(Master, Slave1, and Slave2), each has eight interrupt channels. A total of 22 interrupt priority levels are
supported. A programmable interrupt router handles routing of various external and internal interrupt
sources to the 22 interuupt channels. TERN recommends an interrupt map as follows;
There are 22 interrupt priority levels plus NMI
There are 15 external interrupt requests (GPIRQ0-10, /INTA-D). You must
provide a low to high edge to generate an interrupt
Example internal interrupt map by TERN:
 P1=Master PIC IR0, interrupt vector=0x40, PIT timer0
 P2=Master PIC IR1, interrupt vector=0x41, GPIRQ0=PIO23=J2.33
 P3=slave1 PIC IR0, interrupt vector=0x48, RTC
 P4=slave1 PIC IR1, interrupt vector=0x49, GPIRQ1=PIO22=J2.23
 P5=slave1 PIC IR2, interrupt vector=0x4a, GPIRQ2=PIO21=J2.21
 P6=slave1 PIC IR3, interrupt vector=0x4b, GPIRQ3=PIO20=J2.19
 P7=slave1 PIC IR4, interrupt vector=0x4c, GPIRQ4=PIO19=J2.20
 P8=slave1 PIC IR5, interrupt vector=0x4d, FPU
 P9=slave1 PIC IR6, interrupt vector=0x4e, /INTD=SCC=J3.14
 P10=slave1 PIC IR7, interrupt vector=0x4f, GP timer1/INTC=J3.13
 P11=Master PIC IR3, interrupt vector=0x43, SER2/0
 P12=Master PIC IR4, interrupt vector=0x44, SER1
 P13=Slave2 PIC IR0, interrupt vector=0x50, GP timer0
 P14=Slave2 PIC IR1, interrupt vector=0x51, GPIRQ5=PIO18=J2.17
 P15=Slave2 PIC IR2, interrupt vector=0x52, GPIRQ6=PIO17=J2.18
 P16=Slave2 PIC IR3, interrupt vector=0x53, GPIRQ7=PIO16=J2.15
 P17=Slave2 PIC IR4, interrupt vector=0x54, PIT timer1
 P18=Slave2 PIC IR5, interrupt vector=0x55, GPIRQ8=PIO15=J2.16
 P19=Slave2 PIC IR6, interrupt vector=0x56, GPIRQ9=PIO14=J2.6
 P20=Slave2 PIC IR7, interrupt vector=0x57, GPIRQ10=PIO13=J2.8
 P21=Master PIC IR6, interrupt vector=0x46, PIT Timer2/INTB=J3.12
 P22=Master PIC IR7, interrupt vector=0x47, /INTA=J3.11

A spurious interrupt is defined as a "Not Valid" interrupt.
A Spurious Interrupt on any IR line generates the same vector number
as an IR7 request. The spurious interrupt, however, does not set the
in-service bit for IR7. Therefore, an IR7 isr must check the isr register to determine the interrupt source
was a
valid IR7 (the in-service bit is set),
or a spurious interrupt (the in-service bit is cleared)

Functions
 void nmi_init(void); // nmi interrupt handler initialization
 void int0_init(char i, void interrupt far (* int0_isr)())
 void int1_init(char i, void interrupt far (* int1_isr)())
 void int2_init(char i, void interrupt far (* int2_isr)())
 void int3_init(char i, void interrupt far (* int3_isr)())
 void int4_init(char i, void interrupt far (* int4_isr)())
 void int5_init(char i, void interrupt far (* int5_isr)())
 void int6_init(char i, void interrupt far (* int6_isr)())

586-Engine-P Chapter 4: Software

4-5

 void int7_init(char i, void interrupt far (* int7_isr)())
 void int8_init(char i, void interrupt far (* int8_isr)())
 void int9_init(char i, void interrupt far (* int9_isr)())
 void intD_init(char i, void interrupt far (* intD_isr)())

For a detailed discussion involving the interrupt, the user should refer to Chapter 15 of the AMD SC520
Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the external interrupts. The user can call any of the
interrupt init functions listed for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service
routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors
correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOI command to clear the current highest priority IR.

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer, which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 s.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

I/O Initialization
Two ports of 16 I/O pins each are available on the 586-Engine-P. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
three available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within sc_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion on the I/O
ports, please refer to Chapter 23 of the AMD SC520 User’s Manual.

Please see the sample program 586_pio.c in tern\586\samples\5e. You will also find that these functions
are used throughout TERN sample files, as most applications do find it necessary to re-configure the PIO
lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly with an poke instruction Performance in this case will be
around 1-2 us to toggle any pin. For example: poke(MMCR, _PIOSET15_0_, m);

Chapter 4: Software 586-Engine-P

4-6

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of 3 modes of operation.
 0, Interface operation
 1, input with pullup/down
 2, output

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.3 GPTimer Units

The three GP timers present on the 586-Engine-P can be used for a variety of applications

These timers are controlled and configured through a mode register that is specified using the software
interfaces. The mode register is described in detail in chapter 17 of the AMD SC520 User’s Manual.

Two of the timers, Timer0 and Timer1 has external pulses output and counter inputs.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this
down even further. The sample files timer02.c and timer12.c, located in tern\586\samples\5e,
demonstrate this.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none
Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.
void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.
Timer2 behaves like the other timers, except it only has one max counter available.

586-Engine-P Chapter 4: Software

4-7

4.2.4 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (H1) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

A real-time clock is included in the SC520, and can be used to keep track of real time. Backed up by a
lithium-coin battery, the real time clock can be accessed and programmed using two interface functions.

There are two common data structure used to access and use both interfaces.

// SC520 RTC data structure
typedef struct{
 unsigned char sec;
 unsigned char alarm_sec;
 unsigned char min;
 unsigned char alarm_min;
 unsigned char hour;
 unsigned char alarm_hour;
 unsigned char day_week;
 unsigned char day_month;
 unsigned char month;
 unsigned char year;
} RTCTIME;
// Real time data structure
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.

Chapter 4: Software 586-Engine-P

4-8

 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns 0 on success and returns 1 in case of error,
such as the clock failing to respond.
int rtc_rds
Arguments: char* realTime
Return value: int error_code
This function places a string of the current value of the real time clock in the char* realTime.
The text string has a format of “year1000 year100 year10 year1 month10 month1 day10 day1 hour10
hour1 min10 min1 second10 second1”. For example” 19991220081020” represents year 1999, December
20th, Eight o’clock, 10 minutes, and 20 seconds.
This function returns 0 on success and returns 1 in case of error, such as the clock failing to respond.

Void rtc_init
Arguments: char* t, RTCTIME *rtcp
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.
The RTCTIME data structure will be initialized based on the string t.
The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the
byte array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers, (Software Timer of SC520) provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:
While(t) { t--; }
Passing in a t value of 600 causes a delay of approximately 1 ms.

586-Engine-P Chapter 4: Software

4-9

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed. NOT accurate at all.

void sc_rst
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ
The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\586\include.
The internal asynchronous serial ports are functionally identical. SER0 is used by the debug kernel,
which is loaded into the surface-mount flash and provided as part of the TERN EV/DV-P software kits for
communication with the PC. As a result, you will not be able to debug code directly written for serial port
0, but you can run it in STEP2.
Two asynchronous serial ports are integrated in the SC520: SER0 and SER1. Both ports have baud rates
based on the system clock, and can operate at a maximum of 1.152 Mbaud.

By default, SER0 is used by the DEBUG ROM for application download/debugging in STEP 1. We will
use SER1 as the example in the following discussion; any of the interface functions that are specific to
SER1 can be easily changed into function calls for SER0. For details, you should see both chapter 21 of
the SC520 Microprocessor User’s Manual and the schematic of the 586-Engine-P provided at the end of
this manual. TERN interface functions make it possible to use one of a number of predetermined baud
rates. These baud rates are achieved by specifying a divisor. The following table shows the function
arguments that express each baud rate, to be used in TERN functions. These are based on a 33.333 MHz
external crystal. Note: Only up to 115,200 BAUD has been tested in house. (10/25/00)

Function Argument Baud Rate

1 300

2 600

3 2400

4 4800

5 7200

6 9600

7 14,400

8 19,200

9 38,400

10 57,600

Chapter 4: Software 586-Engine-P

4-10

Function Argument Baud Rate

11 115,200

12 114,000

13 192,000

14 288,000

15 576,000

16 1,152,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex interrupt-driven serial
port and is ready to transmit/receive serial data at one of the specified 16 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
if necessary, as described in chapter 21 of the SC520 manual for asynchronous serial ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4-
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

586-Engine-P Chapter 4: Software

4-11

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putser1() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\586\samples\5e.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.
typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */

Chapter 4: Software 586-Engine-P

4-12

 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value
This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value
This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

serhitn() should be called before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

586-Engine-P Chapter 4: Software

4-13

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the
byte array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the SC520 User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, you can re-initialize the serial port with s1_init(); to reset
default system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

The asynchronous serial I/O ports available on the SC520 have many other features that might be useful
for your application. If you are truly interested in having more control, please read Chapter 21 of the
manual for a detailed discussion of other features available to you.

Chapter 4: Software 586-Engine-P

4-14

4.4 Functions / Routines not in 586.lib

4.4.1 4 channel 16-bit ADC, AD7655

The ADC is accessed using a few different control lines. The control lines are summarized below:

Control Line Description / Function

/CV Begin conversion. I/O address 0x2020

/AD Read conversion. 0x2000 for AB1, AB2 and 0x2004 for AA1 and AA2

P2 MUX select. P2 high selects AA2, AB2. P2 low selects AA1, AB1

A2 A2 = /AD&0x0004.

The following process must be followed to read the ADC:

 pio_wr (2 , hi_lo) ;

 inport (CV) ;

 wait for 2.5 µs

 inport (ADA) ;

 inport (ADB) ;

Where

hi_lo ADA ADB Read channel

0 A2 = 1 AA1

0 A2 = 0 AB1

1 A2 = 1 AA2

1 A2 = 0 AB2

Refer to the sample program \tern\586\samples\5p\5p_ad.c and data sheet \tern_docs\parts\ad7655.pdf for
additional details. Also refer to the pre-built sample project \tern\586\samples\5p\5p_cf.ide.

4.4.2 8 channel 16-bit DAC

To access the DAC use the routine called ‘da_2600’ found in the \tern\586\samples\5p\5p_da.c sample
program. You must copy the routine from the source file into you application, as it is not part of a library.
The function ‘da_2600’ takes two arguments. The first is the channel to write to, with the valid range 0-7.
The second is the output value, ranging from 0 – 65535. See the sample program for additional details.

586-Engine-P Chapter 4: Software

4-15

4.4.3 Compact Flash Interface / File System Access

The 586-Engine-P offers a 50-pin compact flash interface. TERN libraries support FAT file systems
access to/from the compact flash interface. This allows uses to log data with the 586-Engine-P and then
conveniently access the file(s) with a PC.

Refer to \tern\586\include\fileio.h and \tern\586\include\filegeo.h for file system functions and
descriptions. Also see \tern\586\samples\5p\586p.ide for a sample program accessing the compact flash
interface. For the program in 586p.ide, you will need to install a FAT formatted CF (FAT32 is NOT
allowable) card into the 586-Engine-P and link SER1 (H3) with a PC hyper terminal at 19,200, N, 8, 1.

More details about the filesystem library are contained in the file \tern\586\samples\flashcore\readme.txt

586-Engine-P Appendix A: 586-Engine-P Layout

 A-1

Appendix A: 586-Engine-P Layout
The 586-Engine-P measures 3.567 by 2.65 inches. All dimensions are in inches. For mounting
holes, arrows point to the center of the mounting hole. For pin headers, arrows point to pin 1
of the header, and to the center the pin.

0, 0 0.325, 0.058

3.567, 2.65 2.125, 2.45 0.292, 2.458

0.117, 2.458

0, 2.65 1.358, 2.458

3.442, 0.108

0.117, 0.108

0.175, 0.258

3.375, 2.158

3.442, 2.458

3.567, 0

586-Engine SC520 CMOS RAM

 1

SC520- Internal CMOS RAM usage.
Part of the SC520 internal CMOS RAM locations are used by system software. Application programs must not
use these locations.

// With STEP2 Jumper on J2 pin 38-40,
// 586E will run the program starting address at CS:IP
// There are 114 battery-backed(nonvolatile) CMOS RAM index 0x0E-0x7f
// Default "Jump Address”=0x08000 for user application code in SRAM
// Default “Jump Address”=0x80000 for application in Flash.
//
// CMOS RAM mapping:
// 0x70 CS high= (0x08 for code in SRAM) or
// (0x80 for code in Flash)
// 0x71 CS low=0
// 0x72 IP high=0
// 0x73 IP low=0
//

Use HyperTerminal, serial link at 19,200 baud, with no jumper installed.
You may use ACTF "G08000" to set CMOS RAM and run code starting 0x08000 in SRAM.

Date: March 4, 2004 Sheet 1 of 1

Size Document Number REV

B 5P-MAN.SCH

Title

SC520 586-ENGINE-P

TERN/STE

D1
D0

GND 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

HDRD40

GND
CLKT

VOFF

VCCVCC

 1 2
 3 4
 5 6
 7 8
 9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J2HDRD40

VCC

/RTS1

P29
P23

P27 MPO
RXD
TXD

GND

RXD0
TXD0
P28
P311

2
3
4
5
6
7
8
9
10
11
12
13
14

J3

HDRS14

GND

GND
AB1

AB2REF

GND
AA1

AA2

A16A0 1

A1 2

A2 3

A3 4

A4 5

/CS 6

D0 7

D1 8

D2 9

D3 10

VCC 11

GND 12

D4 13

D5 14

D6 15

D7 16

/WR 17

A5 18

A6 19

A7 20

A8 21

A16 22

A15 44

A14 43

A13 42

/OE 41

/UB 40

/LB 39

D15 38

D14 37

D13 36

D12 35

GND 34

VCC 33

D11 32

D10 31

D9 30

D8 29

NC 28

A12 27

A11 26

A10 25

A9 24

A17 23

U9

RAM44
RAM44

A15
A17
VCC

A16
A15 A15 1

A14 2

A13 3

A12 4

A11 5

A10 6

A9 7

A8 8

NC 9

NC 10

/WR 11

/RST 12

NC 13

NC 14

RY 15

NC 16

A17 17

A7 18

A6 19

A5 20

A4 21

A3 22

A2 23

A1 24

A16 48

/BY 47

GND 46

D15 45

D7 44

D14 43

D6 42

D13 41

D5 40

D12 39

D4 38

VCC 37

D11 36

D3 35

D10 34

D2 33

D9 32

D1 31

D8 30

D0 29

/OE 28

GND 27

/CE 26

A0 25

U10 29F800

/RST

A12

A10
A11

A13

A9

A14

/FWR

D3
GND

D4
D5
D6
D7

A9

A11
A13

A10

/RAM

VCC

GND

D11

D14

D13

D12

D7

D6

D5

D4

D3

D15

VRAM

A14

D11

D12
D13
D14
D15

A12

GND

A0
/BHE
/ROMRD

VRAM

GND

GND

P2
GND
A2
GND
GND

AG 1

AV 2

A0 3

BYTE 4

A/B 5

DG 6

IMPUL 7

S/P 8

D0 9

D1 10

D2 11

D3 12

A
G

4
8

A
G

4
7

I
N
A
1

4
6

I
N
A
N

4
5

I
N
A
2

4
4

R
E
F
A

4
3

R
E
F
B

4
2

I
N
B
2

4
1

I
N
B
N

4
0

I
N
B
1

3
9

R
E
F
G

3
8

R
E
F

3
7

DV 36

CNV 35

PD 34

RST 33

CS 32

RD 31

EOC 30

BSY 29

D15 28

D14 27

D13 26

D12 25
D
4

1
3

D
5

1
4

D
6

1
5

D
7

1
6

O
G
N
D

1
7

O
V

1
8

D
V

1
9

D
G
N
D

2
0

D
8

2
1

D
9

2
2

D
1
0

2
3

D
1
1

2
4

U6

AD7655
AD7655

AV

/IORD

RST
/AD

/CV

VCC

GND

REF
TXD1
RXD1

/CTS1

P30

P24

P17
P15

P13

P11
P9
P7

P19

/DSR1
/DTR1
/DCD1

/INTC
/INTD

/INTB
/INTA

/DTR2
RIN1 /RST

D15

D14
D13

D12

D11

/BHE

/IOWR
/IORD

/RTS0
P26

P25
P22
P21
P20

P16
P12
P10
P8
P6

P18

RST
/ROM1

D7
D6
D5
D4
D3
D2

GND

A3
A4
A5
A6
A7

A0
A1
A2

TIN0
TIN1

/PITO2

D10
D9
D8

P5

P3
P4

TOUT0
TOUT1

/PITG2 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26

J4

HDRD26

GND

P14
P2

GND

D4
D3

D5

D11
D12
D13

GND 1

D3 2

D4 3

D5 4

D6 5

D7
 6

/CE1 7

A10 8

/OE 9

A9 10

A8
 11

A7 12

VCC 13

A6 14

A5 15

A4
 16

A3 17

A2 18

A1 19

A0 20

D0
 21

D1 22

D2 23

WP 24

CD2 25

CD1 26

D11 27

D12 28

D13 29

D14 30

D15
31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE
36

RDY 37

VCC 38

/CS 39

VS2 40

RST
41

/WT 42

/IP 43

/REG 44

BV2 45

BV1
46

D8 47

D9 48

D10 49

GND 50

U5

CFB

D14
D13
D12

D11
D10

D9

D15
P4

D6
D5

D4

D3
D2
D1
D0
GND

A1 A2
A3 A4
A5 A6
A7 A8

A18

D10

D8
D9

D0
D1
D2

A17

/FWR

A1

GND

D10

D9

D8

D2

D1

D0
/ROMRD

/BOOT

A7
A6
A5
A4
A3
A2

A18
A8

A19

C1+

C1-
C2+
C2-

V+

V-

C1+
 1

V+ 2

C1- 3

C2+ 4

C2- 5

V-
 6

T2O 7

R2I 8

VCC
16

GND 15

T1O 14

R1I 13

R1O 12

T1I
11

T2I 10

R2O 9

U11

MAX232D
MAX232D

VCC

GND

TXD1
RXD1
/RXD1
/TXD1 C1-

C1+

C2+

C21
0.1UF

C24
0.1UF

GND

/TXD0
/RXD0

 1 2
 3 4
 5 6
 7 8
 9 10

H2

 1 2
 3 4
 5 6
 7 8
 9 10

H3

GND
V1
V2

D7
GND

VCC

GND 1

V1 2

V2
 3

V3 4

V4 5

REF 6

/CS 7

SCK
 8

VCC 16

V8 15

V7
14

V6 13

V5 12

/CR 11

SDO 10

SDI
 9

U8

LTC2600
LTC2600

VCC

V8
V7

D8
GND

D6

VCC

VCC

/CF

VCC

D7

VCC

/CF

D14
D15

A10
A9
A8

A7
A6
A5

A11

RST

/IORD

/IOWR

REF1
VCC
SSO

REF
AA2
AB2

V2
V4

V8
V6

SSI
SSC

AA1
AB1
GND

V1
V3

V7
V5

GND

GND

GND

GND

GND

 1 2

 3 4

 5 6

 7 8
J5

HDRD8

AA1

AB1

AA2

AB2

A3

A1
D0

D2

GND

A2

D1

GND

VCC

A4

D9
D8

D10

V6
V5

SSO

/RST

V3
V4

REF1

SSC
P3

VCC
/INTD

R9

10K

GND

/TXD1
/RXD1

TXD0
RXD0 C2-

GND
C25
0.1UF

C27
0.1UF

V+

V-
AV

/TXD0
/RXD0

VCC
R0

680 C0
0.1UFGND

C3
10PF X3X4

XTAL2

32.768K

HIT 1 2
H1

HDRD2

C4
10PF X2 X1

XTAL1

33.33M
C5

10PF
C6
10PF
VBAT

U13

LM285

WDI R3

2K

BSEN
R7

1K C26
CAPNP

- 1 + 2

+ 3

B1

BTH1

V33 V25

VBAT
A7
A6
A5

/RST
/PITG2

/CF

A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U2

74HC138

HIT

/AD
/CV +12VI

+12VI 1
2

T1

T2

GND

+12VI
GND 1

2

H0

HDRD2

LX1
GND
VCC

+12V

1 2345

U3

LM2575

+12V
D1

1N5817

D2

1N5817

C20
I1

330uH

GND

C18

L1

LED

P0

LF

C9
CAPNP

VCC

C12
0.1UF

VCC
VC

C1

CAPNP

C15
10UF35V

AVCC V33

C19
CAPNP

V25

C22
CAPNP

V33

C23
CAPNP

R4

680

C2

CAPNP

C14
10UF35V

V25
VCC

VCC

VCC C16
0.1UF

C11 C17 C13

0.1UF

REF1

PFI

/RST

WDI

RST

/RAM

WDO

/PFO R5

10K

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI 9

U7

MAX691
MAX691S

/ROM2

VRAM
VBAT

VCC
GND

V25GNG 1

VO 2

VI 3 VO 4

U15

BB1117

VCC

GND
V25

VCC

GND
V33 V33

V33

GNG 1

VO 2

VI 3 VO 4

U14

BB1117

C29
CAPNP

C28
CAPNP

/RST
V33

C8
0.01UF

AVCC V25

PLL

VCC
R8

10K

R2 47

REF

C10
CAPNP

GND GND 1

RST 2 MR 3V3 4
U4

MIC8114

/PG

LF
R1 4.7K

C7
0.001UF

