

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: sales@tern.com http://www.tern.com

586-Engine™

C/C++ Programmable, 100/133 MHz 32-bit Controller
with Floating Point Unit, 19 ADCs, and 8 DACs

Technical Manual

COPYRIGHT

586-Engine, A-Engine86, A-Engine, A-Core86, A-Core, i386-Engine, V25-Engine,
MemCard-A, MotionC, MotionC2140, P100, VE232, NT-Kit, and ACTF are trademarks

of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.

Borland C/C++ is a trademark of Borland International.
MS-DOS, Windows, Windows95/98/2000 are trademarks of Microsoft Corporation.

IBM is a trademark of International Business Machines Corporation.

Version 2.0

May 6, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1993-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: sales@tern.com http://www.tern.com

Important Notice
TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

586-Engine Chapter 1: Introduction

1-1

Chapter 1: Introduction
1.1 Functional Description
Measuring 3.6 x 2.3 x 0.3 inches, the 586-Engine(5E) is a C/C++ programmable microprocessor module
based on a 100/133 MHz, 32-bit CPU (ElanSC520, AMD). Features such as its low cost, compact size,
surface-mount flash, high performance floating point coprocessor, and reliability make the 5E ideal for
industrial process control and applications requiring intensive mathmatical computation. It is designed for
embedded applications that require compactness and high reliability.

 The 586-Engine (5E) integrates an Am586 CPU and high performance ANSI/IEEE 754 compliant
hardware floating point unit (FPU). It provides arithmetic intructions to handle various numeric data types
and formats and transcendental functions for sine, cosine, tangent, logarithms, etc, useful for intensive
computational applications.

 Special Note: The core of the Am520 CPU operates at +2.5V and the I/O operation at +3.3V. Also, the
input for the I/O is +5V compatable. Stresses above these can cause permanent damage to the SC520
CPU. Operation above these values is not recommended, and can effect device reliability.

Am5x86
CPU

100/133MHz

FPU
16-Bit Timers(7)

Ext. Interrupts(15)
32 I/O lines

RTC/CMOS RAM
ROM/Flash Cont.
(2) 16550 UARTs

SSI
Watchdog Timer

Interupt Controller

2 ch.
12-bit
DAC

LT1446
U05

FLASH
512 KB 16-bit U1

11 ch. 12-bit
ADC P2543 U14

J1 & J2

4 ch. 12-bit
DAC DA7625

U11

8 ch. 12-bit
ADC

AD7852 U12

2 ch.
12-bit
DAC

LT1446
U5

SRAM
512 KB 16-bit

U9

REF
U13

J9
watchdog

enable

586-Engine SCC2691
UART U8

D4..D15

D4..D15

J4

691

J5

Figure 1.1 Functional block diagram of the 586-Engine

 The 586-Engine boots up from on-board 512KB ACTF Flash, and supports up to 512KB battery-backed
SRAM. No SDRAM, PCI, or DMA supported. The on-board Flash has a protected boot loader and can be

Chapter 1: Introduction 586-Engine

1-2

easily programmed in the field via serial link. Users can download a kernel into the Flash for remote
debugging. With the DV-P and ACTF Flash Kit support, user application codes can be easily field-
programmed into and run out of the Flash.

A real-time clock* (RTC72423) provides information on the year, month, date, hour, minute, and second,
in addition to a 100-year calender and 114 bytes of general purpose battery-backed RAM. This RAM is
used by the real-time clock, as well as the ACTF to store the jump address as the pointer to the users
application code.

Two industy-standard UARTs support high-speed, reliable serial communication at a rate of up to 1.152
M baud via RS-232 drivers. One synchronous serial interface (SSI) supports full-duplex bi-directional
communication. An optional UART SCC2691 may be added in order to have a third UART on-board. All
three serial ports support 8-bit and 9-bit communication.

There is one programmable interval timer (PIT) providing 3 16-bit PIT timers and 3 16-bit GP timers,
and a software timer. The timers support timing or counting external events. The software timer provides
a very efficient hardware timebase with microsecond resolution. In addition, there are two supervisor
chips that monitor for power failure, watchdog and system reset.

The 586-Engine provides 32 user-programmable, multifunctional I/O pins from the CPU. Most of the PIO
lines share pins with other functions. The 586E supports up to 15 external interrupts. No repair support is
available for the 388 pin BGA SC520.

A high-speed, up to 300K samples per second, 8-channel, 12-bit parallel ADC* (AD7852) can be
installed. This ADC includes sample-and-hold and precision internal reference, and has an input range of
0-5 V. The 586-Engine also supports a 4-channel, high-speed parallel DAC* (DA7625, 0-2.5V).

An optional 12-bit serial ADC (P2543) has 11 channels of analog inputs with sample-and-hold and a 5V
reference that facilitate ratiometric conversion, scaling, and isolation of analog circuitry from logic and
supply noise, supporting conversion up to a sample rate of approximately 10 KHz. Up to two optional 2-
channel, 12-bit serial DAC (LT1446) that provides 0-4.095V analog voltage outputs capable of sinking or
sourcing 5mA are also available. Overall the 5E can support up to 8 analog outputs and 19 analog inputs.

An optional P100 I/O expansion board can provide regulated 5V power and RS-232/RS-485 drivers for
the 5E.

Figure 1.2 The P100 I/O expansion board

The 586-Engine can be installed on TERN controllers such as the P300, PowerDrive, PC-Co,
LittleDrive, or MotionC (see Figure 1.3). TERN also offers custom hardware and software design, based
on the 586-Engine or other TERN controllers.

586-Engine Chapter 1: Introduction

1-3

Figure 1.3 A 586-Engine installed on the MotionC2140

1.2 Features
 Dimensions: 3.6 x 2.3 x 0.3 inches
 133MHz, 32-bit CPU (ElanSC520, AMD), Intel 80x86 compatible
 Easy to program in C/C++
 Power consumption: 440 mA at 5V
 Power input: +5V regulated DC, or
 + 9V to +12V unregulated DC with P100 expansion board installed*
 512 KB SRAM, 512 KB, 114 byte internal CMOS RAM
 8-channel 300 KHz parallel 12-bit ADC (AD7852) with 0-5V analog input*
 4-channel 200 KHz parallel 12-bit DAC (DA7625) with 0-2.5V analog output*
 2 channels serial 12-bit DAC (LT1446), 10 KHz *
 11 channels serial 12-bit ADC (P2543), 10 KHz *
 High performance floating point coprocessor
 Up to 1GB memory expansion via MemCard-A
 Up to 3 serial ports (2 from ElanSC520, plus one optional SCC2691 UART) support 8-bit or 9-bit
asynchronous communication *
 15 external interrupts with programmable priority

Chapter 1: Introduction 586-Engine

1-4

 32 multifunctional I/O lines from ElanSC520, 1 SSI, 7 16-bit timers
 114 bytes internal battery-backed RAM. Supervisor (691) for power failure, reset and
watchdog
 Real-time clock (RTC72423), lithium coin battery*
 P100 I/O expansion board for regulated 5V power, RS-232/485 drivers, and TTL I/O lines*

* optional

1.3 Physical Description
The physical layout of the 586-Engine is shown in Figure 1.4.

Figure 1.4 Physical layout of the 586-Engine

Power On or Reset

YES

ACTF menu sent out through ser0
STEP 1

Step 2 jumper

NO

set?

at 19200 baud

Validation of
battery back up?

YES

NO Set the CS:IP in
internal RAM to

8000:0000

STEP 2
Go to application

code CS:IP in
CPU's internal

RAM

Figure 1.5 Flow chart for ACTF operation

11 ch. Serial
ADC

4 ch. parallel
DAC

8 ch. parallel
ADC

2 ch. serial
DAC’s

512K SRAM

512K Flash

3rd UART

STEP 2
JUMPER

J2

Pin 38

Pin 40

586-Engine Chapter 1: Introduction

1-5

The “ACTF boot loader” resides in the 512KB on-board Flash chip (29F400). At power-on or RESET, the
“ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the ACTF menu will be sent
out from serial port0 at 19200 baud. If STEP 2 jumper is installed, the5E will check for a valid battery
back-up. If present the 5E will go to the jump address stored in the CPU’s 114 bytes of general purpose
RAM. Without a valid battery back up, the 5E will write the address 0x80000 to the inernal RAM, and
then go to that address.

1.4 586-Engine Programming Overview
Steps for 5E-based product development:

 Preparation for Debugging
 • Connect 5E to PC via RS-232 link, 19,200, 8, N, 1

• Power on 5E without STEP 2 jumper installed
• ACTF menu should be sent to PC terminal
• Use “D” command to download “L_29f400.HEX” in SRAM
• Use “G” command to run “L_29f400”
• Download “5860_115.HEX” to Flash starting at 0x80000
• Use “G” command to set jump address and run debugger
• Install the STEP2 jumper (J2.38-40)
• Power-on or reset 5E, Ready for Remote debugger

STEP 2: Standalone Field Test
Setup Jump Address(default 0x08000), points to your

program in SRAM
Power off, install STEP2 jumper, Power on

application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.)

• Write your application program in C
• Build project in Paradigm C++
• Edit, compile, link, locate, download, and remote-debug

STEP 1: Debugging

STEP 3: (DV-P+ACTF Kit only)
• Generate application HEX file with DV-P and ACTF Kit
• Download “L_29F400.HEX” into RAM and Run it
• Download application HEX file into FLASH
• Modify jump address to 0x80000
• Set STEP2 jumper

 Production

There is no ROM socket on the 5E. The user’s application program must reside in SRAM for debugging
in STEP1, reside in battery-backed SRAM for the standalone field test in STEP2, and finally be
programmed into Flash for a complete product. For production, the user must produce an ACTF-

Chapter 1: Introduction 586-Engine

1-6

downloadable HEX file for the application, based on the DV-P+ACTF Kit. The “STEP2” jumper (J2 pins
38-40) must be installed for every production-version board.

Step 1 settings
In order to correctly download a program in STEP1 with Paradigm C++ Debugger, the 5E must meet
these requirements:

1) 5860_115.HEX must be pre-loaded into Flash starting address 0x80000.
2) The CPU’s 114 bytes of RAM must have the correct jump address pointing at 5860_115.HEX, which is
the address 0x80000.
4) The STEP2 jumper must be installed on J2 pins 38-40.

For further information on programming the 586-Engine, refer to the Software chapter.

1.5 P100™ & VE232
The P100 ™ is an I/O expansion board for the 586-Engine that provides regulated +5V DC power and
RS-232/485 drivers. It converts TTL signals to and from RS-232 signals. You do not need the P100 if
you are using the 586-Engine installed on another TERN controller such as the LittleDrive, MotionC,
PowerDrive, or SensorWatch.

The P100, shown in, measures 4.4 x 2.5 inches. A wall transformer (9V, 300 mA) with a center negative
DC plug (Ø=2.0 mm) should be used to power the 586-Engine via the P100. The P100 connects to 586-
Engine via J1 and J2 (2x20 headers). SER0 (H2) and SER1 (H3) on the P100 are 2x5-pin headers for
serial ports SER0 and SER1. SER0 is the default programming port.

For further information on the P100, please refer to your TERN, Inc. CD-ROM for manauls and
schematics.

Ser0
Default debub

port

48 TLL I/Os

9-35V
DC Power

586-Engine Chapter 1: Introduction

1-7

In addition to the P100 I/O expansion controller, the optional VE232 interface board can also supply
regulated +5V and RS-232/RS-485 drivers. Although the VE232 comes standard with a linear power
regualtor, because of the power comsumption of the 586-Engine (440mV @ 5V) a switching regulator is
mandatory on the VE232 interface card. The VE232 installs on the 586-Engine via a 2x10 pin header on
the J2 header of the 586-Engine. The VE232 measures 1.57”x2.30”. A picture is shown.

1.6 Minimum Requirements for 586-Engine System Development

1.6.1 Minimum Hardware Requirements
 PC or PC-compatible computer with serial COMx port that supports 115,200 baud
 586-Engine controller
 P100 I/O expansion board*
 PC-V25 serial cable (RS-232; DB9 connector for PC COM port and IDE 2x5 connector for controller)
 center negative wall transformer (+9V, 500 mA)

* NOTE: the P100 is not needed if you are using the 5E installed on another controller

1.6.2 Minimum Software Requirements
 TERN EV-P installation CD-ROM and a PC running: Windows 3.1/95/98/2000

With the EV-P, you can program and debug the 586-Engine in Step One and Step Two, but you cannot
run Step Three. In order to generate an application Flash file and complete a project, you will need both
the Development Kit (DV-P Kit) and the ACTF Flash Kit.

586-Engine Chapter 2: Installation

2-1

Chapter 2: Installation
2.1 Software Installation
Refer to the Technical manual “EV-P&DV-P Kit” on TERN CD under tern_docs\manual.

By manufacture default, 586-Engines are ready for Paradigm C++ debug with STEP2 jumper installed,
CMOS RAM setup for 0x80000, and 5860_115 debug kernel resides in Flash starting 0x80000. Power on,
the on-board LED should blink twice indicating running debug kernel. You DO NOT have to download
debug kernel into flash again. You can SKIP the operation discussed in 2.2 below.

2.2 Prepare 586-Engine for Paradigm C++ TERN Edition
1) Start Paradigm C++. Select from Top menu: Tool, RTLOAD,

A HEX file Loader window will be shown.

586-Engine Chapter 2: Installation

2-2

2) F5=Select Baud, to setup 19200.

3) F8=Select .HEX file from c:\tern\586\rom\L_29F400.HEX

3) Power on the 586-Engine with the STEP2 jumper off, the ACTF menu will show up.

586-Engine Chapter 2: Installation

2-3

4) Caps Lock on your PC keyboard, Type “D” command, then enter.

5) F6 = Upload .HEX file, from PC to 586 SRAM.

586-Engine Chapter 2: Installation

2-4

6) Type “G04000” to run the “L_29F400” in SRAM. The first time you type “G04000” you will get an
error. Doing the “G04000” again, you will see as below

The 29F400 Flash sector 0x80000 to 0xFBFFF will be erased. It will then be ready to program Flash with
new DEBUG kernel file (c:\tern\586\rom\5860_115.hex), or user application .HEX.

7) F8= Select .HEX file, from c:\tern\586\rom\5860_115.hex.

586-Engine Chapter 2: Installation

2-5

8) F6=Upload .HEX file to program the 5860_115 debug kernel into Flash starting address 0x80000.

After programming the Flash, 586-Engine will automatically reset.

“G80000” to setup the EE Jump Address, and start the DEBUG kernel. The on-board LED should blink
twice and then stay on, indicating 586-Engine is ready for remote DEBUGING.

Power off the controller. Install the STEP2 Jumper, then power on, the LED blink twice.

Use F9 = Exit.

The 586-Engine is ready for using Paradigm C++ TERN Edition to download, debug, and run.

There are two sample projects in the c:\tern\586 directory (default working directory):

586-Engine Chapter 2: Installation

2-6

led.ide and test.ide.
Go to “File” and open the sample project file, then build and download.

There are many sample programs under c:\tern\586\samples.

After you debug your application code, you can setup the 586-Engine to run in Standalone Mode.

Standalone Mode(STEP2):

By default, the Paradigm C++ TERN Edition will download your application code starting at 0x08000 in
the battery backed SRAM.

Power off 586-Engine. Remove STEP2 jumper. On PC side, click TOOL, RTLOAD.

Power on 586-Engine again without STEP2 jumper, then the ACTF menu should show up.

At the ACTF menu prompt, type “G08000” to setup the Jump Address and run your application.

Power off, Install the STEP2 Jumper. Then at power on, controller will jump to 0x08000 in SRAM and
run your application.

2.3 Hardware Installation

Hardware installation for the 586-Engine consists primarily of connecting the microcontroller to your PC.
For the 586-Engine, the VE232 must be used to supply regulated power and RS232 drivers, or use the
586-Engine installed on P100 controller, please refer to the technical manual for that controller for
installation information.

2.3.1 Connecting the VE232 to the 586-Engine

Figure 2.1 Before installing the VE232 on the 586-Engine

Overview
 Install VE232 (Requires switching regulator):

H1 connector of VE232 installs on J2 of the 586-Engine
 Connect PC-V25 cable:

For debugging (STEP 1), place IDE connector on SER0 with red
edge of cable at pin 1

 Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack

586-Engine Chapter 2: Installation

2-7

Figure 2.2 After installing the VE232 on the 586-Engine

Install the VE232 interface with the H1 (10x2) socket connector on the upper half of the J2 (dual row
header) of the 586-Engine.

2.4 Connecting the 586-Engine to the PC
The 586-Engine+VE232 can be linked to the PC via a serial cable (PC-V25).

Install the 5x2 IDC connector on the SER0 header of the VE232. IMPORTANT: Note that the red side
of the cable must point to pin 1 of the VE232 H1 header. The DB9 connector should be connected to one
of your PC's COM Ports (COM1 or COM2; by default, the Paradigm software will use COM1)

AMD
AM188ES

CPU

SRAM EPROM

U
A
R
TPP1

RTC

U4ADC

EE

691

74
HC
14

485
U1

7662
J6

1489
U5

1488
U6

VE232

SER0SER1

PC

Pin 1 of headers
for SER0 &SER1

RED side of serial
cable corresponding

SER0/SER1
to pin 1 of headers for

H1 on
VE232

J29-pin
connector

IDC
connector

A-Engine

To SER0
for debugging

or COM2
To COM1

power jack
Figure 2.3 Connecting the 586-Engine and VE232 to the PC

586-Engine Chapter 2: Installation

2-8

2.4.2 Powering-on the 586-Engine
Connect a wall transformer +9V DC output to the VE232 DC power jack, or, for the P100, to the DC
power jack.

2.4.3 586-Engine installed on a P100

586-Engine™ Chapter 3: Hardware

 3-1

Chapter 3: Hardware

3.1 SC520 - Introduction

The 586-Engine is based on AMD Elan SC520 Microcontroller. It includes an industry-standard Am5x86
CPU with floating point unit (FPU). It provides a General-Purpose (GP) bus with programmable timing
for 8 and 16-bit devices. A ROM/Flash controller supports on-board high performance code execution. An
enhanced programmable interrupt controller (PIC) prioritizes 22 interrupt levels with up to 15 external
sources. Two Async UARTs can operate up to 1.15 M bit/s. A Sync serial interface (SSI) offers full-duplex
or half-duplex operation to support on-board ADC/DACs and user expansion. A real time clock, a
software timer, 3 GP timers, and 3 programmable interval timers are all included. 32 programmable I/O
pins are on-board.

Please refer to the SC520 User’s Manual, SC520 Data Sheet, and SC520 Register Set Manual included on
TERN’s CD (TERN’s EV-P/DV-P kit), under AMD_docs sub-directory.

3.2 SC520 – Features

3.2.1 Clock

One 32.768 KHz and one 33.333 MHz crystal are installed to provide all the clocks required for CPU,
Real time clock, UART, timers, and clock output.

The CLKTEST (CLKT) signal is routed to J1 pin 4. Software can select to output one of 6 internal clocks,
including 32.768K, 1.8443 MHz, 18.432 MHz, 1.1882 MHz, 1.47456 MHz, and 36.864 MHz.

On-board ADC (U12) can use 1.8432 MHz as ADC clock.

3.2.2 Programmable interrupt controller and external Interrupts

The Programmable Interrupt Controller (PIC) prioritizes 22 interrupt levels (P1-P22) with up to 15
external sources (GPIRQ0-10 and INTA-D).

A programmable router must be programmed to map internal or external interrupt sources to the master
or two of slave interrupt controllers to provide different priorities, from P1 to P22.

All 15 external interrupt requests are programmed as edge sensitive, after 586_init();

An example map for P1 to P22 is listed below and tested in sample program 586_intx.c.
// There are 22 interrupt priority levels plus NMI
// There are 15 external interrupt requests (GPIRQ0-10, /INTA-D)
// Example internal interrupt map by TERN:
// P1=Master PIC IR0, interrupt vector=0x40, PIT timer0
// P2=Master PIC IR1, interrupt vector=0x41, GPIRQ0=PIO23=J2.33
// P3=slave1 PIC IR0, interrupt vector=0x48, RTC
// P4=slave1 PIC IR1, interrupt vector=0x49, GPIRQ1=PIO22=J2.23
// P5=slave1 PIC IR2, interrupt vector=0x4a, GPIRQ2=PIO21=J2.21
// P6=slave1 PIC IR3, interrupt vector=0x4b, GPIRQ3=PIO20=J2.19
// P7=slave1 PIC IR4, interrupt vector=0x4c, GPIRQ4=PIO19=J2.20
// P8=slave1 PIC IR5, interrupt vector=0x4d, FPU
// P9=slave1 PIC IR6, interrupt vector=0x4e, /INTD=SCC=J3.14
// P10=slave1 PIC IR7, interrupt vector=0x4f, GP timer1/INTC=J3.13
// P11=Master PIC IR3, interrupt vector=0x43, SER2/0

Chapter 3: Hardware 586-Engine™

3-2

// P12=Master PIC IR4, interrupt vector=0x44, SER1
// P13=Slave2 PIC IR0, interrupt vector=0x50, GP timer0
// P14=Slave2 PIC IR1, interrupt vector=0x51, GPIRQ5=PIO18=J2.17
// P15=Slave2 PIC IR2, interrupt vector=0x52, GPIRQ6=PIO17=J2.18
// P16=Slave2 PIC IR3, interrupt vector=0x53, GPIRQ7=PIO16=J2.15
// P17=Slave2 PIC IR4, interrupt vector=0x54, PIT timer1
// P18=Slave2 PIC IR5, interrupt vector=0x55, GPIRQ8=PIO15=J2.16
// P19=Slave2 PIC IR6, interrupt vector=0x56, GPIRQ9=PIO14=J2.6
// P20=Slave2 PIC IR7, interrupt vector=0x57, GPIRQ10=PIO13=J2.8
// P21=Master PIC IR6, interrupt vector=0x46, PIT Timer2/INTB=J3.12
// P22=Master PIC IR7, interrupt vector=0x47, GP timer2/INTA=J3.11

See the sample program in c:\tern\586\samples\5e\586_intx.c for more details.

The 586-Engine uses vector interrupt functions to respond to external interrupts. Refer to the SC520
User’s manual for more information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The SC520 has two 16450/16550-compatible asynchronous serial channels: SER0/2 and SER1. Both
asynchronous serial ports support the following:

 Full-duplex operation,
 5-, 6-, 7-, and 8-bit data transfers
 Odd, even, and no parity
 1, 1.5, or 2 stop bits
 Error detection
 Hardware flow control
 Transmit and receive interrupts for each port
 Maximum baud rate, up to 1.152 MHz

The software drivers for each serial port implement a ring-buffered interrupt transmitting and receiving
arrangement. See the samples files s1_echo.c and s0_echo.c.

An optional SCC2691 UART can be installed on-board, in U8.

3.2.4 GP Timers

Three 16-bit General-Purpose Timers are on-board. Two external inputs, TIN0=J4.4 and TIN1=J6, can be
used for the GP Timer0 and Timer1 to capture and count external pulses up to 33.333 MHz/4.

Timer 0 and Timer1 can output pulses on TOUT0=J4.3 and TOUT1=J4.5.

GP Timers support interrupt on terminal count, continue mode, and square wave generation.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale timer0 and timer1.

See the sample programs timer02.c and tmr_out.c in the tern\586\samples\5e directory.

3.2.5 PIT Timers

Three 16-bit Programmable Interval Timers (PIT) are on-board. Each PIT channel has one interrupt
output. Only PIT2 has an external output pin and can provide square wave output. All PITs supports
interrupt on terminal count, hardware-retriggerable one-shot and timer functions. See samples at
c:\tern\586\samples\5e directory for 586_pit0.c and pit2_out.c.

586-Engine™ Chapter 3: Hardware

 3-3

3.2.6 Software timers

The “software timer” is actually a hardware timer, which is intended to provide a millisecond timebase
with microsecond resolution. Ideal applications for this function include providing a system wide
timebase, and precise measurement of the time between events. The software timer has a 16-bit
microsecond counter that increments with a period of one millisecond. This yields a maximum duration of
65.5 seconds. A microsecond latch register that provides the number of microseconds since the last time
that the millisecond register was read.

The software timer provides a very efficient hardware timerbase for use by software. It is designed to
replace the traditional method of system timebase generation.

Traditional system timebase generation is accomplished by programming a timer to generate a periodic
interrupt. The interrupt service routine then increments a counter. This value is often kept in a global
variable, which can then be accessed by other code that needs to track time. The problem with this
traditional timebase is caused by interrupt latency and possible missed interrupt.

The software timer included can be used to resolve these problems.

See more details on AMD SC520 Users’ Manual, chapter 18.

3.2.7 SSI

A synchronous serial interface (SSI) provides full-duplex and half-duplex, bi-directional communication
at a software programmable SSI clock speed, from 64K Hz to 8MHz.

586-Engine uses the SSI to interface to the serial ADC(TLC2543) and the serial DAC(LTC1446) with
independent chip enable control. User can use the SSI to interface many types of external serial peripheral
devices.

See the sample c:\tern\586\samples\5e\ssio.c.

3.2.8 RTC

A battery backed up real-time clock (RTC) is included. The RTC consists of time-of-day clock with alarm
and a 100-year calendar. It has also a programmable periodic interrupt and 114 bytes of static user RAM.

See samples 586_rtc.c and rtc_pint.c for more details.

3.2.9 Watchdog timer

The Watchdog timer included in SC520 is not disabled. The 586-Engine uses a 691 supervisor chip to
monitor the 5V power and provides an external watchdog. User can activate the 691 watchdog with a
jumper setting on H1.

3.2.10 PCI, DMA, SDRAM, Write/Read buffer

No SDRAM support on the 586-Engine. No support on PCI, DMA, and Write/Read buffer.

3.2.11 SC520 PIOs

The SC520 supports 32 user-programmable I/O lines (PIO). Each of these pins can be used as a user-
programmable input or output signal, if the interface function is not needed.

Chapter 3: Hardware 586-Engine™

3-4

The 586-Engine PIO pins are 3.3V output and all inputs are 5V tolerant. Absolutely no voltage greater
than 5V should be applied to any pins. Over 5V voltage input can cause permanent damage.
After power-on/reset, PIO pins default to various configurations. The initialization routine, sc_init();,
provided by TERN libraries reconfigures some of these pins as needed as:
P27=/GPCS0=J2.37 for 16-bit I/O operation of on-board ADC/DAC
P31=J2.38 as input for STEP2 jumper reading
P0 as output for on-board LED control
P1=/GPBHE=J1.11 as /BHE for 16-bit data bus high byte enable signal

Other 28 PIO pins on the J2 header are free to use. PIO 2-26 and PIO 28,29,30 A PIO line can be
configured to operate as an output or an input with a weak internal pull-up or pull-down resistor. A PIO
pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table below.
These configurations, as well as the processor-internal peripheral usage configurations, are listed below in
Table 3.1.

PIO Function Power-On/Reset status 586-Engine Pin No. 586-Engine Initial

P0 GPALE Input with pull-up LED L1 pin 2 Output for LED control
P1 /GPBHE Input with pull-up J1 pin 11 High byte enable /BHE
P2 GPRDY Input with pull-up J2 pin 4 Input with pull-up
P3 GPAEN Input with pull-up J2 pin 1 Input with pull-up
P4 GPTC Input with pull-up J2 pin 3 Input with pull-up
P5 GPDRQ3 Input with pull-down J2 pin 5 Input with pull-down
P6 GPDRQ2 Input with pull-down J2 pin 7 Input with pull-down
P7 GPDRQ1 Input with pull-down J2 pin 10 Input with pull-down
P8 GPDRQ0 Input with pull-down J2 pin 9 Input with pull-down
P9 /GPDACK3 Input with pull-up J2 pin 12 Input with pull-up
P10 /GPDACK2 Input with pull-up J2 pin 11 Input with pull-up
P11 /GPDACK1 Input with pull-up J2 pin 14 Input with pull-up
P12 /GPDACK0 Input with pull-up J2 pin 13 Input with pull-up
P13 GPIRQ10 Input with pull-up J2 pin 8 Input with pull-up
P14 GPIRQ9 Input with pull-up J2 pin 6 Input with pull-up
P15 GPIRQ8 Input with pull-up J2 pin 16 Input with pull-up
P16 GPIRQ7 Input with pull-up J2 pin 15 Input with pull-up
P17 GPIRQ6 Input with pull-up J2 pin 18 Input with pull-up
P18 GPIRQ5 Input with pull-up J2 pin 17 Input with pull-up
P19 GPIRQ4 Input with pull-up J2 pin 20 Input with pull-up
P20 GPIRQ3 Input with pull-up J2 pin 19 Input with pull-up
P21 GPIRQ2 Input with pull-up J2 pin 21 Input with pull-up
P22 GPIRQ1 Input with pull-up J2 pin 23 Input with pull-up
P23 GPIRQ0 Input with pull-up J2 pin 33 Input with pull-up
P24 /GPBUFOE Input with pull-up J2 pin 24 Input with pull-up
P25 /GPIOCS16 Input with pull-up J2 pin 25 Input with pull-up
P26 /GPMCS16 Input with pull-up J2 pin 29 Input with pull-up*
P27 /GPCS0 Input with pull-up J2 pin 37 16-bit I/O operation
P28 /CTS2 Input with pull-up J2 pin 36 Input with pull-up
P29 /DSR2 Input with pull-up J2 pin 35 Input with pull-up
P30 /DCD2 Input with pull-up J2 pin 30 Input with pull-up
P31 /RIN2 Input with pull-up J2 pin 38 STEP2 Jumper

Table 3.1 I/O pin default configuration after power-on or reset

586-Engine™ Chapter 3: Hardware

 3-5

C function in the library 586.lib can be used to initialize and to operate PIO pins.
void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0 (for interface function), 1 (for input), or 2 (for output).

Example: pio_init(31, 2); will set P31 as output
 pio_init(1, 0); will set P1 as /GPBHE

void pio_wr(char bit, char dat);

pio_wr(31,1); set P31 pin high and the LED is off, if P31 is in output mode
pio_wr(31,0); set P31 pin low and the LED is on, if P31 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); returns 16-bit status of P16-P31, if corresponding pin is in input mode,

Some of the I/O lines are used by the 586-Engine system for on-board components (Table 3.2). We
suggest that you not use these lines unless you are sure that you are not interfering with the operation of
such components (i.e., if the component is not installed).

Signal Pin Function
P0 Output LED control
P1 /GPBHE High byte D15-D8 data enable of the 16-bit data bus
P27 /GPCS0 General purpose chip select for 16-bit I/O operation
P31 Input STEP2 jumper

Table 3.2 I/O lines used for on-board components

3.3 I/O Mapped Devices

3.3.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address.
The external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default GP bus timing is setup in sc_init(); as:

pokeb(MMCR, _GPCSRT_, 0x01); // set the GP CS recovery time

 pokeb(MMCR, _GPCSPW_, 0x1f); // set the GP CS width

 pokeb(MMCR, _GPCSOFF_, 0x01); // set the GP CS offset

 pokeb(MMCR, _GPRDW_, 0x1f); // set the GP RD pulse width

 pokeb(MMCR, _GPRDOFF_, 0x0); // set the GP RD offset

 pokeb(MMCR, _GPWRW_, 0x1f); // set the GP WR pulse width

 pokeb(MMCR, _GPWROFF_, 0x0); // set the GP WR offset

User may modify the GP bus timing after sc_init();. Details regarding this can be found in the SC520
User’s Manual and SC520 Register Set Manual. Slower components, such as most LCD interfaces, might
find the maximum programmable wait state of 15 cycles still insufficient.

The table below shows on-board peripheral I/O mapping.

Chapter 3: Hardware 586-Engine™

3-6

I/O space Select Location Usage
0x1000-0x10ff /PPI J1 pin 19 USER 8-bit I/O expansion*
0x1000 T1 U05 LT1446 DAC select
0x1010 DA U5 LT1446 DAC select
0x1050 HIT H1 Hit 691 Watchdog
0x1070 /SCC U8 SCC2691 UART
0x18E0 T2 U11, P27=J2.37 12-bit DAC7625
0x18F0 T3 U12, P27=J2.37 12-bit ADC7852

*/PPI may be used for other TERN peripheral boards.

To illustrate how to interface the 586-Engine with external I/O boards, a simple decoding circuit for
interfacing to an 82C55 parallel I/O chip is shown in Figure 3.1.

/WR

/RD

/1080

A0
A1

D0-D7

/CS

/WR

/RD

82C55

RST P00-P07

P10-P17

P20-P27

1

/PPI

A7

6 VCC

4

3
2

5

A5
A6

/10E0
/10C0
/10A0
/1080

14
13
12
11
10
9
7

15

74HC138

C

A
B

G2A
G2B
G1

Y2
Y3
Y4
Y5
Y6
Y7

Y1
Y0

Figure 3.1 Interface the 586-Engine to external I/O devices

The function sc_init(), by default, initializes the /PPI line for the address range of 0x1000 to 0x1fff,
configured for 8-bit operation. You read from external 8-bit I/O with inportb(0x1080) or write to external
I/O with outportb(0x1080,dat). The call to inportb(0x1080) will activate /PPI, as well as putting the
address 0x1080 over the address bus. The decoder will select the /1080 based on address lines A5-7, and
the data bus will be used to read the appropriate data from the off-board component.

Notice that the I/O address range for the /PPI pin overlaps the address range of other components,
meanings that an access to the DAC (for example) at address 0x1010 will also make /PPI active. In your
off-board logic, you should take care to decode the address lines as shown in figure 3.1 above. User may
also use the J2.37=P27=/CS0 for 16-bit I/O chip select. Be aware of the 0x18E0 and 0x18F0 are used for
on-board parallel ADC and DAC select, if they are installed. There are also a few general purpose chip-
select lines available on the J4 header: /PITG2 and /PITO2. For information on accessing these lines, refer
to the AMD SC520 technical manual.

3.3.2 P2543, 12-bit serial interface ADC

The P2543 is a 12-bit, switched-capacitor, successive-approximation, 11 channels, serial interface,
analog-to-digital converter. Three SSI lines from SC520 are used to handle the serial ADC, with
CLK=SSI_CLK; DIN=SSI_OUT, DOUT=SSI_IN and /CS=/AD.

586-Engine™ Chapter 3: Hardware

 3-7

The ADC digital data output communicates with a host through a serial tri-state output (DOUT=P11). If
/AD=/CS is low, the P2543 will have output on DOUT=SSI_IN. If /AD=/CS is high, the P2543 is
disabled and SSI_IN is free. /AD is high on-board by default. The P2543 has an on-chip 11-channel
multiplexer that can select any one of 11 analog inputs. The sample-and-hold function is automatic. At
the end of conversion, the end-of-conversion (EOC) output is not connected, although it goes high to
indicate that conversion is complete.

P2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error
conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50 and capable of slewing the analog input voltage into a 60 pf capacitor.

The reference REF+ is connected to VCC(+5V) at J4 pin 23=24. The REF- is connected to GND at J4 pin
25=26. The SSI serial access allows an ADC conversion rate of up to approximately 20 KHz.

The analog inputs AD0 to AD10 are available at J4. To read the U3 ADC, you can use the C function:

int ad_2543(unsigned char ch);

See the sample program 586_ad.c in the c:\tern\586\samples\5e sub directory.

3.3.3 Dual 12-bit DAC (LTC1446)

The LTC1446 is a dual 12-bit digital-to-analog converter (DAC) in an SO-8 package. It is complete with
a rail-to-rail voltage output amplifier, an internal reference and a 3-wire serial interface. The LTC1446
outputs a full-scale of 4.096V, making 1 LSB equal to 1 mV. The buffered outputs can source or sink
5 mA. The outputs swing to within a few millivolts of supply rail when unloaded. They have an equivalent
output resistance of 40 when driving a load to the rails. The buffer amplifiers can drive 1000 pf without
going into oscillation.

Two DACs can be installed in U5 and U05 on the 586-Engine and the outputs are routed to J4 and H3.

The DACs interface to SC520’s SSI. Please refer to the LT1446 technical data sheets from Linear
Technology (1-408-432-1900) for further information. Use C function

da1_1446(int dat1, int dat2); for U5 and da2_1446(int dat1, int dat2); for U05.

See also the sample program 586_da.c in the c:\tern\586\samples\5e directory.

3.3.4 AD7852, Parallel 12-bit ADC

The AD7852 is a 100 ksps, sampling parallel 12-bit A/D converter that draws only 55 mW from a single
5V supply. This device includes 8 channels with sample-and-hold, precision 2.5V internal reference,
switched capacitor successive-approximation A/D, and needs an external clock.

The input range of the AD7852 is 0-5V. Maximum DC specs include 2.0 LSB INL and 12-bit no
missing codes over temperature. The ADC has a 12-bit data parallel output port that directly interfaces to
the full 12-bit data bus D15-D4 for maximum data transfer rate.

The AD7852 requires 16 ADC clocks conversion time to complete one conversion. The 586-Engine
provides an external clock for the ADC via CLKT (J1.4). By default the CLKT is programmed to provide
a 1.8432 MHz ADC clock. The busy signal has a low period indicating that conversion is in progress,
however, no connections made to this pin. In order to achieve maximum sample rate, the 586-Engine
must use polling method, not interrupt operation, to acquire parallel ADC data with inport(); instruction.
A sample program 586_ad.c can be found in the c:\tern\586\samples\5e directory.

Chapter 3: Hardware 586-Engine™

3-8

3.3.5 DA7625, Parallel 12-bit DAC

The DA7625 is a parallel 12-bit D/A converter. This device supports 4 voltage output channels with an
output range of 0-2.5V. It accepts 12-bit parallel input data, has double-buffered DAC input logic, and has
a settling time of 10 s. It requires an external 2.5V reference which is provided on the 586-Engine.
The 586-Engine uses data bus D15 to D4 to directly interface to the DAC’s full 12-bit data bus for
maximum data transfer rate. The DA7625 has a settling time of 5 µs. A sample program 586_da.c is in
the c:\tern\586\samples\5e directory.

3.3.6 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped into the 8-bit I/O address space at 0x1070. The SCC2691
has a full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an
interrupt control mechanism, programmable data format, selectable baud rate for the receiver and
transmitter, a multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a
multi-purpose input/output including RTS and CTS mechanism. MPO is routed to J1 pin 3, and MPI is
not connected.

RxD (J1 pin 5), TxD (J1 pin 7), MPO (J1 pin 3), and MPI are TTL level signals. You can provide external
RS-232 or RS-485 drivers for the 586-Engine. You can also use either the VE232 (with Switching
regulator), or on the P100 expansion board with RS232 or RS485 drivers.

3.4 Power supplies and Supervisor with Watchdog Timer
Two supervisor chips monitor 5V and 3.3V and provide power failure detection, a watchdog and system
reset. The 2.5V power supply is used for the SC520 core and 3.3V supports SC520 I/O operation. Signal
lines on headers are 3.3V output, and 5V maximum input. Absolutely no voltage greater than 5V should
be applied to any pins. The 388 pin BGA package of SC520 makes repair support not available. All
components are soldered on board for highest reliability.
The 586-Engine™ can be powered with a single regulated 5V with the on-board 3.3V and 2.5V
regulators. Limited by the compact dimension of the 586-Engine, the 2.5V and 3.3V on-board regulators
may cause excessive heat in a closed enclosure. External off-board regulated 5V, 3.3V, and 2.5V power
supplies can power the 586-Engine, in order to remove heat from the board.

A 691 (U7) supervisor chip is used to monitor the 5V power and a MIC8114 (U4) is designed to monitor
the 3.3V. The supervisor provides a watchdog timer, battery backup, power-on-reset delay, power-supply
monitoring, and power-failure warning. These will significantly improve system reliability.

Watchdog Timer
Setting a jumper on H1 activates the 691 watchdog timer. The watchdog timer provides a means of
verifying proper software execution. In the user's application program, calls to the function hitwd() (a
routine that toggles the H1 pin1= HIT) should be arranged such that the HIT pin is accessed at least once
every 1.6 seconds. If the H1 jumper is installed and the HIT pin is not accessed within this time-out
period, the watchdog timer pulls the WDO pin low, and asserts /RST. This automatic assertion of /RST
may recover the application program if something is wrong. When controllers are shipped from the
factory the H1 jumper is off, which disables the watchdog timer.

The SC520’s internal watchdog timer is disabled by default with sc_init().

586-Engine™ Chapter 3: Hardware

 3-9

U8

SCC

U3
AD2543

U11
DA7625

U1
SC520

U10
Flash

U2
PAL

U12
AD7852

U9
SRAM

U15
2.5V

U7
691

U5
DAC
1446

J1

J2

TERN

U14
3.3V

U05
DAC
1446

J4 J5

 J3

H1
Watchdog Enable

H1

Figure 3.2 Location of watchdog timer enable jumper

Battery Backup Protection
The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last about 3-5 years without external power being supplied.
When the external power is on, the battery-switch-over circuit will select the VCC to connect to the
VRAM.

3.5 Headers and Connectors

3.5.1 Expansion Headers J1 and J2
There are two 20x2 0.1 spacing headers for A-Engine86 expansion. Most signals are directly routed to the
Am186ES processor. These signals are 5V only, and any out-of-range voltages will most likely damage
the board.

Chapter 3: Hardware 586-Engine™

3-10

U8
SCC

U3
AD2543

U11
DA7625

U1
SC520

U10
Flash

U2
PAL

U12
AD7852

U9
SRAM

U15
2.5V

U7
691

U5
DAC
1446

J1

J2

TERN

U14
3.3V

U05
DAC
1446

J4 J5

 J3

J2 pin 1

J1 pin 1

H1

Figure 3.3 Pin 1 locations for J2 and J1

J2 Signal

Name Pin # Pin # Name

GND 40 39 VCC

P31 38 37 P27

P28 36 35 P29

TxD0 34 33 P23

RxD0 32 31 /RTS1

P30 30 29 P26

TxD1 28 27 /RTS0

RxD1 26 25 P25

P24 24 23 P22

/CTS1 22 21 P21

P19 20 19 P20

P17 18 17 P18

P15 16 15 P16

P11 14 13 P12

P9 12 11 P10

P7 10 9 P8

P13 8 7 P6

P14 6 5 P5

P2 4 3 P4

GND 2 1 P3

J1 signal

Name Pin # Pin # Name

VCC 1 2 GND
MPO 3 4 CLKT

RxD 5 6 GND

TxD 7 8 D0
VOFF 9 10 D1

/BHE 11 12 D2
D15 13 14 D3

/RST 15 16 D4

RST 17 18 D5
/CS1 19 20 D6

D14 21 22 D7

D13 23 24 GND
 25 26 A7

D12 27 28 A6

/WR 29 30 A5
/RD 31 32 A4

D11 33 34 A3

D10 35 36 A2
D9 37 38 A1

D8 39 40 A0

586-Engine™ Chapter 3: Hardware

 3-11

J4 signal

Name Pin # Pin # Name

/PITG2 1 2 /PITO2

TOUT0 3 4 TIN0

TOUT1 5 6 TIN1

SSO 7 8 SSC

AN10 9 10 SSI

VA 11 12 VB

AN0 13 14 AN1

AN2 15 16 AN3

AN4 17 18 AN5

AN6 19 20 AN7

AN8 21 22 AN9

REF+ 23 24 VCC

REF- 25 26 GND

J3 signal

Name Pin # Pin # Name

VCC 1 2 GND
V33 3 4 V25

GND 5 6 /DTR2

RIN1 7 8 /DSR1
/DTR1 9 10 /DCD1

/INTA 11 12 /INTB
/INTC 13 14 /INTD

Chapter 3: Hardware 586-Engine™

3-12

J4 Connector for ADC, DAC

U8
SCC

U3
AD2543

U11
DA7625

U1
SC520

U10
Flash

U2
PAL

U12
AD7852

U9
SRAM

U15
2.5V

U7
691

U5
DAC
1446

J1

J2

TERN

U14
3.3V

U05
DAC
1446

J4 J5

 J3

H1

J4 J5

2
 /

PI
TO

2
 4

TI
N

0
 6

 T
IN

1
 8

 S
SC

 10

 S
SI

 12

 V
B

 14
 A

N
1

 16
 A

N
3

 18
 A

N
5

 20
 A

N
7

 22
 A

N
9

 24
 V

C
C

 26

/P
IT

G
2

 1

 TO
U

T0
 3

 TO

U
T1

 5

 SS
O

 7

 A
N

10
 9

 V

A
 1

1
 A

N
0

 1
3

 A
N

2
 1

5
 A

N
4

 1
7

 A
N

6
 1

9
 A

N
8

 2
1

 RE
F+

 2
3

 RE
F-

 2
5

A
D

0
 1

 A

D
2

 3

 A
D

4
 5

 A

D
6

 7

 D
A

3
 9

 D

A
2

 1
1

 /P
PI

 1
3

2
 A

D
1

 4
 A

D
3

 6
 A

D
5

 8
 A

D
7

 10
 D

A
4

 12
 D

A
1

 14
 T

1

Figure 3.4 J4 connector

Name Size Function Possible Configuration
J1 20x2 Data bus, control bus MMA, MotionC
J2 20x2 PIO, UART Pins 38=40: Step2 jumper
J4 13x2 ADC, DAC, SC520 Timers
J5 7x4 ADC, DAC

586-Engine™ Chapter 3: Hardware

 3-13

3.5.2 Interface to P100 and MotionC

The 586-Engine can be installed on P100, or MotionC expansion boards

586-Engine Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix F.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

Chapter 4: Software 586-Engine

4-2

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this
technical manual.

4.1 Programming Overview
The ACTF loader in the 586 256KW Flash will perform the system initialization and prepare for new
application code download or immediately run the pre-loaded code. A remote debugger kernel can be
loaded into the Flash located starting 0x80000. Debugging at baud rate of 115,200 (5860_115.HEX) and
38,400 (5860_384.HEX) are available. A loader file L_29F400.HEX and both debugger kernel files are
included in the CD under the c:\tern\586\rom directory.
The 586-Engine header file “586.h” is in the c:\tern\586\include directory.
Sample programs can be found in c:\tern\586\samples\5e directory.

A functional diagram of the ACTF (embedded in the 586) is shown below:

586-Engine Chapter 4: Software

4-3

 Power on or Reset

STEP2 Jumper on ?
J2 pin 38=P31=GND

Yes

Read CMOS for the jump address CS:IP

RUN the program starting at the CS:IP

No SEND out MENU over SER2 at 19200, N, 8, 1 to
HyperTerminal

See ACTF-kit and Functions for detail

Text command or download new codes

Process Commands

Steps for 586-Engine development

 Preparation for Debugging (May be Done in factory)
 • Connect 586 to PC via RS-232 link, 19,200, 8, N, 1

• Power on 586 without STEP 2 jumper installed
• ACTF menu should be sent to PC terminal
• Use “D” command to download “L_29F00.HEX” into SRAM
• Use “G04000” to run “L_29F400”
• Download “5860_115.HEX” to Flash starting at 0x80000
• Use “G80000” command to setup CMOS and run debugger
• Install the STEP2 jumper (J2.38-40)
• Power-on or reset 586, Ready for Remote debugger

STEP 2: Standalone Field Test
Download application code starting 0x08000 into SRAM
Remove jumper, “G08000”, points to your code in RAM
Install STEP2 jumper
application program running in battery-backed SRAM

(Battery lasts 3-5 years under normal conditions.)

• Start Paradigm C++ TERN Edition

• Edit, compile, link, locate, download, and remote-debug

STEP 1: Debugging

STEP 3: (DV-P Kit only)
• Generate application HEX file with DV-P and ACTF Kit
• Download “L_29F400.HEX” into RAM and Run it
• Download application HEX file into FLASH
• Modify CMOS jump address to 0x80000
• Set STEP2 jumper

 Production

Chapter 4: Software 586-Engine

4-4

There is no ROM socket on the 586-Engine. The user’s application program must reside in SRAM for
debugging in STEP1, reside in battery-backed SRAM for the standalone field test in STEP2, and finally
be programmed into Flash for a complete product.

The on-board Flash 29F400BT has 256K words of 16-bits each. It is divided into 11 sectors, comprised of
one 16KB, two 8KB, one 32KB, and seven 64KB sectors. The top one 16KB sector is pre-loaded with
ACTF boot strip, the rest of the sectors are free for application use.

The top 16KB ACTF boot strip is protected.

The utility HEX file, “L_29F400.HEX”, is designed to download into the SRAM starting at 0x04000 with
ACTF-PC-HyperTerminal. Use the “D” command to download, and use the “G” command to run.

 “L_29F400.HEX” will erase all Flash sectors for downloading debug kernel or application HEX file.

0x80000

0x0000

512KB SRAM
SRAM 0x1FFFF

128KB SRAM

ACTF

Debug
kernel

 or
Application

Code

0xFFFFF

0xFC000

For production, the user must produce an ACTF-downloadable HEX file for the application, based on the
DV-P+ACTF Kit. The application HEX file can be loaded into the on-board Flash starting address at
0x80000.

The CMOS RAM jump address must be modified with a “G80000” command while in the ACTF-PC-
HyperTerminal Environment.

The “STEP2” jumper (J2 pins 38-40) must be installed for every production-version board.

Step 1 settings

In order to correctly download a program in STEP1 with PC Paradigm C++ TERN Edition, the 586-
Engine must meet these requirements:

1) 5860_115.HEX must be pre-loaded into Flash starting address 0x80000.

2) The SRAM installed must be large enough to hold your program.
For a 128K SRAM, the physical address is 0x00000-0x01ffff

586-Engine Chapter 4: Software

4-5

For a 512K SRAM, the physical address is 0x00000-0x07ffff
3) The on-board battery backed CMOS RAM must have a correct jump address pointing to the
5860_115.HEX with starting address of 0x80000.

4) The STEP2 jumper must be installed on J2 pins 38-40.

4.2 586.LIB
586.LIB is a C library for basic 586-Engine operations. It includes the following modules: 586.OBJ,
SER0.OBJ, SER1.OBJ, and SCC.OBJ. You need to link 586.LIB in your applications and include the
corresponding header files. The following is a list of the header files:

Include-file name Description
586.H timer/counter, ADC, DAC, RTC, Watchdog
SER0.H Internal serial port 0/2
SER1.H Internal serial port 1
SCC.H External UART SCC2691

4.3 Functions in 586.OBJ

4.3.1 586-Engine Initialization

sc_init

This function should be called at the beginning of every program running on 586-Engine. It provides
default initialization and configuration of the various I/O pins, interrupt vectors, sets up I/O, and provides
other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of sc_init are described below. For details regarding register use, you will want to refer to
the AMD SC520 Microcontroller User’s manual.

 Initialize the programmable interrupt controller. Setup the master interrupt controller at vector
0x40. The slave1 interrupt vector at 0x48, and slave 2 interrupt vector at 0x50.

 Initialize /ROMCS1 chip select to support the 8-bit I/O starting 0x1000, and the /GPCS0 to
support 16-bit I/O starting address at 0x1800.

 Disable SDRAM

 Initialize default GP-bus chip select timing as
pokeb(MMCR, _GPCSRT_, 0x01); // set the GP CS recovery time

 pokeb(MMCR, _GPCSPW_, 0x1f); // set the GP CS width
 pokeb(MMCR, _GPCSOFF_, 0x01); // set the GP CS offset
 pokeb(MMCR, _GPRDW_, 0x1f); // set the GP RD pulse width
 pokeb(MMCR, _GPRDOFF_, 0x0); // set the GP RD offset
 pokeb(MMCR, _GPWRW_, 0x1f); // set the GP WR pulse width
 pokeb(MMCR, _GPWROFF_, 0x0); // set the GP WR offset

 Initialize and configure PIO ports for default operation. All pins are set up as default input,
except for P31, P27, P2, and P0.

Chapter 4: Software 586-Engine

4-6

The GP chip selects are set to 0x1f wait states, by default. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number
down as needed.
A CLKT signal is routed to J1 pin 4 for the on-board ADC and external user clock. The CLKT can be
selected as
void clkt_sel
Arguments: unsigned char clk
Return value: none.
 CLKT=J1.4 output 1.8432 MHz as ADC clock for U12
 The CLKT pin is programmed as an output (CLKTEST).
 When programmed as output, CLKT output one of the 6 internal clocks:
 void clkt_sel(unsigned char clk);
 where:
 clk=000, RTC (32.768 KHz)
 clk=001, UART (1.8443 MHz)
 clk=010, UART (18.432 MHz)
 clk=011, PIT (1.1882 MHz)
 clk=100, PLL1 (1.47456 MHz)
 clk=101, PLL2 (36.864 MHz)
 clk=110-111, CLKT=0
void clkt_sel(unsigned char clk);

4.3.2 External Interrupt Initialization
The programmable interrupt controller consistes of a system of three individual interrupt controllers
(Master, Slave1, and Slave2), each has eight interrupt channels. A total of 22 interrupt priority levels are
supported. A programmable interrupt router handles routing of various external and internal interrupt
sources to the 22 interuupt channels. TERN recommends an interrupt map as follows;
There are 22 interrupt priority levels plus NMI
There are 15 external interrupt requests (GPIRQ0-10, /INTA-D). You must
provide a low to high edge to generate an interrupt
Example internal interrupt map by TERN:
 P1=Master PIC IR0, interrupt vector=0x40, PIT timer0
 P2=Master PIC IR1, interrupt vector=0x41, GPIRQ0=PIO23=J2.33
 P3=slave1 PIC IR0, interrupt vector=0x48, RTC
 P4=slave1 PIC IR1, interrupt vector=0x49, GPIRQ1=PIO22=J2.23
 P5=slave1 PIC IR2, interrupt vector=0x4a, GPIRQ2=PIO21=J2.21
 P6=slave1 PIC IR3, interrupt vector=0x4b, GPIRQ3=PIO20=J2.19
 P7=slave1 PIC IR4, interrupt vector=0x4c, GPIRQ4=PIO19=J2.20
 P8=slave1 PIC IR5, interrupt vector=0x4d, FPU
 P9=slave1 PIC IR6, interrupt vector=0x4e, /INTD=SCC=J3.14
 P10=slave1 PIC IR7, interrupt vector=0x4f, GP timer1/INTC=J3.13
 P11=Master PIC IR3, interrupt vector=0x43, SER2/0
 P12=Master PIC IR4, interrupt vector=0x44, SER1
 P13=Slave2 PIC IR0, interrupt vector=0x50, GP timer0
 P14=Slave2 PIC IR1, interrupt vector=0x51, GPIRQ5=PIO18=J2.17
 P15=Slave2 PIC IR2, interrupt vector=0x52, GPIRQ6=PIO17=J2.18
 P16=Slave2 PIC IR3, interrupt vector=0x53, GPIRQ7=PIO16=J2.15
 P17=Slave2 PIC IR4, interrupt vector=0x54, PIT timer1
 P18=Slave2 PIC IR5, interrupt vector=0x55, GPIRQ8=PIO15=J2.16
 P19=Slave2 PIC IR6, interrupt vector=0x56, GPIRQ9=PIO14=J2.6
 P20=Slave2 PIC IR7, interrupt vector=0x57, GPIRQ10=PIO13=J2.8

586-Engine Chapter 4: Software

4-7

 P21=Master PIC IR6, interrupt vector=0x46, PIT Timer2/INTB=J3.12
 P22=Master PIC IR7, interrupt vector=0x47, /INTA=J3.11

A spurious interrupt is defined as a "Not Valid" interrupt.
A Spurious Interrupt on any IR line generates the same vector number
as an IR7 request. The spurious interrupt, however, does not set the
in-service bit for IR7. Therefore, an IR7 isr must check the isr register to determine the interrupt source
was a
valid IR7 (the in-service bit is set),
or a spurious interrupt (the in-service bit is cleared)

Functions
 void nmi_init(void); // nmi interrupt handler initialization
 void int0_init(char i, void interrupt far (* int0_isr)())
 void int1_init(char i, void interrupt far (* int1_isr)())
 void int2_init(char i, void interrupt far (* int2_isr)())
 void int3_init(char i, void interrupt far (* int3_isr)())
 void int4_init(char i, void interrupt far (* int4_isr)())
 void int5_init(char i, void interrupt far (* int5_isr)())
 void int6_init(char i, void interrupt far (* int6_isr)())
 void int7_init(char i, void interrupt far (* int7_isr)())
 void int8_init(char i, void interrupt far (* int8_isr)())
 void int9_init(char i, void interrupt far (* int9_isr)())
 void intD_init(char i, void interrupt far (* intD_isr)())

For a detailed discussion involving the interrupt, the user should refer to Chapter 15 of the AMD SC520
Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the external interrupts. The user can call any of the
interrupt init functions listed for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service
routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors
correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOI command to clear the current highest priority IR.

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer, which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 s.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

Chapter 4: Software 586-Engine

4-8

I/O Initialization
Two ports of 16 I/O pins each are available on the 586-Engine. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
three available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within sc_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion on the I/O
ports, please refer to Chapter 23 of the AMD SC520 User’s Manual.

Please see the sample program 586_pio.c in tern\586\samples\5e. You will also find that these functions
are used throughout TERN sample files, as most applications do find it necessary to re-configure the PIO
lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly with an poke instruction Performance in this case will be
around 1-2 us to toggle any pin. For example: poke(MMCR, _PIOSET15_0_, m);

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of 3 modes of operation.
 0, Interface operation
 1, input with pullup/down
 2, output

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.3.3 GPTimer Units

The three GP timers present on the 586-Engine can be used for a variety of applications

These timers are controlled and configured through a mode register that is specified using the software
interfaces. The mode register is described in detail in chapter 17 of the AMD SC520 User’s Manual.

Two of the timers, Timer0 and Timer1 has external pulses output and counter inputs.

586-Engine Chapter 4: Software

4-9

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this
down even further. The sample files timer02.c and timer12.c, located in tern\586\samples\5e,
demonstrate this.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none
Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.
void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.
Timer2 behaves like the other timers, except it only has one max counter available.

4.3.4 Analog-to-Digital Conversion

Parallel ADC AD7852
The high-speed AD7852 ADC unit (U12) is mapped in 0x18f0
 inport(0x18f0); // P27=CS0 16-bit ADC read T3

To start a ADC conversion on channel ?, A I/O write, outport(0x18f0+?,0); will start a new ADC
conversion on the ADC channel ?. The ADC busy signal is not routed. It goes low for 16 ADC clocks
indicating busy. A 16-bit I/O read, inport(0x18f0); will return the previous ADC conversion result, with
only upper 12-bit data D15-D4 valid. A sample program 586_ad.c demonstrating the use of the AD7852
is included in tern\586\samples\5e.

Serial ADC P2543

The P2543 ADC unit (U3) provides 11 channels of analog inputs based on the reference voltage supplied
to REF+. For details regarding the hardware configuration, see the Hardware chapter.

In order to operate the ADC, SSI port must be used. For a sample file demonstrating the use of the ADC,
please see 586_ad.c in tern\586\samples\5e.

int ad_2543
Arguments: char c
Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel AD0, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, the first analog-to-digital conversion done in an application will be similar to the following:
ad_2543(0); // Read from channel 0
ad_data = ad_2543(0)>>4; //Start the next conversion, retrieve value.

Chapter 4: Software 586-Engine

4-10

4.3.5 Digital-to-Analog Conversion

Parallel DAC7625
U11, DAC7625, 4 channles DA1-4, 12-bit (D15-D4), parallel interface, 0-2.5V output, 5 us settle time
 outport(0x18E0,dac); writes dac=0-0xfff? to DA1, 0-2.5V
 outport(0x18E2,dac); writes dac=0-0xfff? to DA2, 0-2.5V
 outport(0x18E4,dac); writes dac=0-0xfff? to DA3, 0-2.5V
 outport(0x18E6,dac); writes dac=0-0xfff? to DA4, 0-2.5V
 A /RST signal will reset DAC all channels to zero V.
A sample program demonstrating the DAC can be found in 586_da.c in the directory
tern\586\samples\5e.

Serial DAC LT1446

Two LTC 1446 chips are available on the 586-Engine and driven by SSI in position U5 and U05. Each
chip offers two channels, A and B, for digital-to-analog conversion. A sample program demonstrating the
DAC can be found in 586_da.c in the directory tern\586\samples\5e.

void da1_1446 and da2_1446
Arguments: int dat1, int dat2
Return value: none

Argument dat1 is the current value to drive to channel A of the chip, while argument dat2 is the value to
drive channel B of the chip.
U5 and U05, LTC1446, 2 channles, 12-bit, serial interface, maximum 10KHz
 da1_1446(dac1, dac2);
 where dat1 for U5 VA, dat2 for VB; dat1/2 = 0-4095
 Output 0-4.095V at VA=J4.11, VB=J4.12
 da2_1446(dac1, dac2);
 where dat1 for U05 V1, dat2 for V2; dat1/2 = 0-4095
 Output 0-4.095V at V1=H3.1, V2=H3.2
These argument values should range from 0-4095, with units of millivolts. This makes it possible to drive
a maximum of 4.906 volts to each channel.

4.3.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (H1) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

586-Engine Chapter 4: Software

4-11

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

A real-time clock is included in the SC520, and can be used to keep track of real time. Backed up by a
lithium-coin battery, the real time clock can be accessed and programmed using two interface functions.

There are two common data structure used to access and use both interfaces.

// SC520 RTC data structure
typedef struct{
 unsigned char sec;
 unsigned char alarm_sec;
 unsigned char min;
 unsigned char alarm_min;
 unsigned char hour;
 unsigned char alarm_hour;
 unsigned char day_week;
 unsigned char day_month;
 unsigned char month;
 unsigned char year;
} RTCTIME;
// Real time data structure
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns 0 on success and returns 1 in case of error,
such as the clock failing to respond.
int rtc_rds
Arguments: char* realTime
Return value: int error_code
This function places a string of the current value of the real time clock in the char* realTime.

Chapter 4: Software 586-Engine

4-12

The text string has a format of “year1000 year100 year10 year1 month10 month1 day10 day1 hour10
hour1 min10 min1 second10 second1”. For example” 19991220081020” represents year 1999, December
20th, Eight o’clock, 10 minutes, and 20 seconds.
This function returns 0 on success and returns 1 in case of error, such as the clock failing to respond.

Void rtc_init
Arguments: char* t, RTCTIME *rtcp
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.
The RTCTIME data structure will be initialized based on the string t.
The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the
byte array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers, (Software Timer of SC520) provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:
While(t) { t--; }
Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed. NOT accurate at all.

void sc_rst
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

586-Engine Chapter 4: Software

4-13

4.4 Functions in SER0.OBJ/SER1.OBJ
The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\586\include.
The internal asynchronous serial ports are functionally identical. SER0/2 is used by the DEBUG ROM
provided as part of the TERN EV/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0, but you can run it in STEP2.
Two asynchronous serial ports are integrated in the SC520: SER0/2 and SER1. Both ports have baud
rates based on the system clock, and can operate at a maximum of 1.152 Mbaud.

By default, SER0 is used by the DEBUG ROM for application download/debugging in STEP 1. We will
use SER1 as the example in the following discussion; any of the interface functions that are specific to
SER1 can be easily changed into function calls for SER0. For details, you should see both chapter 21 of
the SC520 Microprocessor User’s Manual and the schematic of the 586-Engine provided at the end of this
manual. TERN interface functions make it possible to use one of a number of predetermined baud rates.
These baud rates are achieved by specifying a divisor. The following table shows the function arguments
that express each baud rate, to be used in TERN functions. These are based on a 33.333 MHz external
crystal. Note: Only up to 115,200 BAUD has been tested in house. (10/25/00)

Function Argument Baud Rate

1 300

2 600

3 2400

4 4800

5 7200

6 9600

7 14,400

8 19,200

9 38,400

10 57,600

11 115,200

12 114,000

13 192,000

14 288,000

15 576,000

16 1,152,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex interrupt-driven serial
port and is ready to transmit/receive serial data at one of the specified 16 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1

Chapter 4: Software 586-Engine

4-14

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
if necessary, as described in chapter 21 of the SC520 manual for asynchronous serial ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4-
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putser1() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\586\samples\5e.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

586-Engine Chapter 4: Software

4-15

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.
typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

Chapter 4: Software 586-Engine

4-16

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value
This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value
This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

serhitn() should be called before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the
byte array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once

586-Engine Chapter 4: Software

4-17

again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the SC520 User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, you can re-initialize the serial port with s1_init(); to reset
default system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

The asynchronous serial I/O ports available on the SC520 have many other features that might be useful
for your application. If you are truly interested in having more control, please read Chapter 21 of the
manual for a detailed discussion of other features available to you.

4.5 Functions in SCC.OBJ
The functions found in this object file are prototyped in scc.h in the tern\586\include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses a 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this third port are different than for SER0 and SER1.

The SCC2691 component has its own 8 MHz crystal providing the clock signal. By default, this is set to 8
MHz to be consistent with earlier TERN controller designs. The highest standard baud rate is 19,200, as
shown in the table below. If your application requires a higher standard baud rate (115,200, for example),
it is possible to replace this crystal with a custom 3.6864 MHz crystal. A sample file demonstrating how
the software would be changed for this application is ae_scc1.c, found in the tern\586\samples\5e\
directory.

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600 (default)

9 19,200

Chapter 4: Software 586-Engine

4-18

Function Argument Baud Rate

10 31,250

11 62,500

12 125,000

13 250,000

An interrupt-service-routine is used to place characters into the input buffer. If the processor does not
respond to the interrupt—because it is masked, for example—the interrupt service routine might never be
able to complete this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see Appendix C of this manual. In most TERN applications, MR1 is set to 0x57,
and MR2 is set to 0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd
parity, up to 2 stop bits, 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SER0 and SER1. A COM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c
Return value: none

This initializes the SCC2691 serial port to baud rate b, as defined in the table above. The values in m1
and m2 specify the values to be stored in to MR1 and MR2. As discussed above, these values are
normally 0x57 and 0x07, as shown in TERN sample programs.

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INT0 on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:

 int0_init(1, scc_isr);

By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once
this is done, you can transmit and receive data as needed. If you do need to do limited flow control, the
MPO pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex
communications, please see 586_scc.c in the directory tern\586\samples\5E.

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to
the SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral
board, you will need to disable receive while transmitting. While transmitting, you will also need to
place the RS485 driver in transmission mode as well. This is done by using scc_rts(1). This uses pin

586-Engine Chapter 4: Software

4-19

MPO (multi-purpose output) found on the J1 header. While you are receiving data, the RS485 driver will
need to be placed in receive mode using scc_rts(0).

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of
these functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functions is to disable transmit and receive. If you are using RS485, you will need to use this feature
when transitioning from transmission to reception, or from reception to transmission.

Transmission and reception of data using the SCC is in most ways identical to SER0 and SER1. The
functions used to transmit and receive data are similar. For details regarding these functions, please refer
to the previous section.

putser_scc

See: putsern

putsers_scc

See: putsersn

getser_scc
See: getsern

getsers_scc

See: getsersn

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which
is not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts

See: sn_rts

Other SCC functions are similar to those for SER0 and SER1.

Chapter 4: Software 586-Engine

4-20

scc_close

See: sn_close

serhit_scc

See: sn_hit

clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to check the state of the SCC for information regarding errors
that might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val
The returned value val will be in the form of 0ABC0000 in binary. Bit A is 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

586-Engine Appendix A: 586-Engine Layout

 A-1

Appendix A: 586-Engine Layout
The 586-Engine measures 3.6 by 2.3 inches. All dimensions are in inches.

U11
DA7625

U8
SCC

U3
AD2543

U1
SC520

U10
Flash

U2
PAL

U12
AD7852

U9
SRAM

U15
2.5V

U7
691 U5

DAC
1446

J1

J2

U14
3.3V

U05
DAC
1446

J4 J5

 J3

(0,0)
(0.21, 0.05)

(0.06, 0.15)

(-0.12, -0.11)
(2.51, -0.05)

(0.33, 0)
(3.45, -0.11)

 (3.26, 2.05)

(0.36, 2.15)

(0.22, 2.09)

Appendix B: VE232 Layout 586-Engine

B-1

Appendix B: VE232 Layout

All dimensions are in inches.

586-Engine Appendix C: UART SCC2691

 C-1

Appendix C: UART SCC2691
1. Pin Description
 D0-D7 Data bus, active high, bi-directional, and having 3-State
 /CEN Chip enable, active-low input
 /WRN Write strobe, active-low input
 /RDN Read strobe, active-low input
 A0-A2 Address input, active-high address input to select the UART registers
 RESET Reset, active-high input
 INTRN Interrupt request, active-low output
 X1/CLK Crystal 1, crystal or external clock input
 X2 Crystal 2, the other side of crystal
 RxD Receive serial data input
 TxD Transmit serial data output
 MPO Multi-purpose output
 MPI Multi-purpose input
 Vcc Power supply, +5 V input
 GND Ground

2. Register Addressing

A2 A1 A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR

Note:
 ACR = Auxiliary control register
 BRG = Baud rate generator
 CR = Command register
 CSR = Clock select register
 CTL = Counter/timer lower
 CTLR = Counter/timer lower register
 CTU = Counter/timer upper
 CTUR = Counter/timer upper register
 MR = Mode register
 SR = Status register
 RHR = Rx holding register
 THR = Tx holding register

3. Register Bit Formats

MR1 (Mode Register 1):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RxRTS

 0 = no
 1 = yes

 RxINT

0=RxRDY
1=FFULL

 Error

 0 = char
1 = block

 ___Parity Mode___

 00 = with parity
 01 = Force parity
 10 = No parity
 11 = Special mode

Parity Type

 0 = Even
 1 = Odd

In Special
 mode:
 0 = Data
 1 = Addr

 Bits per Character

 00 = 5
 01 = 6
 10 = 7
 11 = 8

Appendix C: UART SCC2691 A-Engine86

C-2

MR2 (Mode Register 2):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Channel Mode

 TxRTS CTS Enable
Tx

 Stop Bit Length
(add 0.5 to cases 0-7 if channel is 5 bits/character)

 00 = Normal
 01 = Auto echo
 10 = Local loop
 11 = Remote loop

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = 0.563 4 = 0.813 8 = 1.563 C = 1.813
 1 = 0.625 5 = 0.875 9 = 1.625 D = 1.875
 2 = 0.688 6 = 0.938 A = 1.688 E = 1.938
 3 = 0.750 7 = 1.000 B = 1.750 F = 2.000

CSR (Clock Select Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Receiver Clock Select Transmitter Clock Select

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

 when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

CR (Command Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Miscellaneous Commands Disable

 Tx
 Enable
 Tx

 Disable
 Rx

 Enable
 Rx

0 = no command 8 = start C/T
1 = reset MR pointer 9 = stop counter
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C = reset MPI
5 = reset break change change INT
 INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

SR (Channel Status Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Received
 Break

 Framing
 Error

 Parity
 Error

 Overrun
 Error

 TxEMT TxRDY FFULL RxRDY

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

Note:
* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits [7:5]
from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are reset when
the corresponding data character is read from the FIFO.

586-Engine Appendix C: UART SCC2691

 C-3

ACR (Auxiliary Control Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BRG Set
 Select

 Counter/Timer Mode and Source

 Power-
 Down
 Mode

 MPO Pin Function Select

0 = Baud
rate set 1,
see CSR
bit format

1 = Baud
rate set 2,
see CSR
bit format

 0 = counter, MPI pin
 1 = counter, MPI pin divided by
 16
 2 = counter, TxC-1x clock of the
 transmitter
 3 = counter, crystal or external
 clock (x1/CLK)
 4 = timer, MPI pin
 5 = timer, MPI pin divided by
 16
 6 = timer, crystal or external
 clock (x1/CLK)
 7 = timer, crystal or external
 clock (x1/CLK) divided by 16

 0 = on,
 power
 down
 active
 1 = off
 normal

 0 = RTSN
 1 = C/TO
 2 = TxC (1x)
 3 = TxC (16x)
 4 = RxC (1x)
 5 = RxC (16x)
 6 = TxRDY
 7 = RxRDY/FFULL

ISR (Interrupt Status Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI Pin
 Change

 MPI Pin
 Current
 State

 Not Used Counter
 Ready

 Delta
 Break

 RxRDY/
 FFULL

 TxEMT TxRDY

 0 = no
 1 = yes

 0 = low
 1 = high

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

IMR (Interrupt Mask Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI
 Change
Interrupt

 MPI
 Level
 Interrupt

Not Used

 Counter
 Ready
 Interrupt

 Delta
 Break
 Interrupt

 RxRDY/
 FFULL
 Interrupt

 TxEMT
 Interrupt

 TxRDY
 Interrupt

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

CTUR (Counter/Timer Upper Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [15] C/T [14] C/T [13] C/T [12] C/T [11] C/T [10] C/T [9] C/T [8]

CTLR (Counter/Timer Lower Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [7] C/T [6] C/T [5] C/T [4] C/T [3] C/T [2] C/T [1] C/T[0]

586-Engine SC520 CMOS RAM

 1

SC520- Internal CMOS RAM usage.
Part of the SC520 internal CMOS RAM locations are used by system software. Application programs must not
use these locations.

// With STEP2 Jumper on J2 pin 38-40,
// 586E will run the program starting address at CS:IP
// There are 114 battery-backed(nonvolatile) CMOS RAM index 0x0E-0x7f
// Default "Jump Address”=0x08000 for user application code in SRAM
// Default “Jump Address”=0x80000 for application in Flash.
//
// CMOS RAM mapping:
// 0x70 CS high= (0x08 for code in SRAM) or
// (0x80 for code in Flash)
// 0x71 CS low=0
// 0x72 IP high=0
// 0x73 IP low=0
//

Use HyperTerminal, serial link at 19,200 baud, with no jumper installed.
You may use ACTF "G08000" to set CMOS RAM and run code starting 0x08000 in SRAM.

586-Engine Battery Replacement

1

586-Engine Battery Replacement
The battery backup is used on all TERN Engine controllers to backup data stored in the SRAM and RTC.
The battery helps during application development to allow the user to run the controller in standalone
mode, with the application stored in the battery backed SRAM. In addition, when an application uses the
RTC, the battery back-up is crucial.

However, the 586-Engine is unique in that the Elan SC520 CPU must “see” a valid battery backup before
it will fetch the jump address for execution at power-up/reset. Thus, if a valid battery voltage is not seen
by the Elan SC520 at power-up/reset, the user cannot run STEP 2: Standalone mode for application
testing.

Before shipping, a modification was made to each 586-Engine to ensure that the CPU can “see” the valid
battery voltage. If the user has since replaced the lithium coin battery, and the modification has not been
made, the user will have trouble running standalone mode. Data will be backed up in the SRAM, but the
controller will not run standalone. The following pictures help show the necessary modification that must
be made by the user if the lithium coin battery needs to be replaced.

The positive terminal of the battery must be connected to the on-board signal named “VRTC”. This
“VRTC” can be found at “R7”. All that is required is a solder bridge that connects “VBAT” to “VRTC”.
The above picture shows the location of “R7” and the solder bridge installed. This modification connects
battery voltage to the CPU to allow it to fetch the jump address for execution at power-up. Another picture
below shows a closer view.

Location of ‘R7’, just below the bottom-
right hand corner of the CPU

Solder bridge that connects right side of
‘R7’ with the positive battery terminal.

586-Engine Battery Replacement

2

Solder bridge that connects right side of
‘R7’ with the positive battery terminal.

Location of ‘R7’, just below the bottom-
right hand corner of the CPU

D
a
t
e
:

O
c
t
o
b
e
r

2
3
,

2
0
0
0
S
h
e
e
t

1

o
f

1

S
i
z
e
D
o
c
u
m
e
n
t

N
u
m
b
e
r

R
E
V

B
5
E
-
M
A
N
.
S
C
H

T
i
t
l
e

S
C
5
2
0

B
A
S
E
D

5
8
6
-
E
N
G
I
N
E

S
T
E

/
R
O
M
1
V
C
C

A
4

T
I
N
0

/
P
I
T
O
2

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

J
4

H
D
R
D
2
6

H
D
R
D
2
6

T
O
U
T
0

/
P
I
T
G
2

W
D
I

1 2 3 4 5 6 7 8 9 1
0
1
1
1
2
1
3
1
4

J
3

H
D
R
S
1
4

1

2

H
1

H
D
R
D
2

H
D
R
D
2

H
I
T

G
N
D

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

J
1 H
D
R
D
4
0

G
N
D

C
L
K
T

V
C
C

V
3
3

G
N
D

V
C
C

V
C
CV
C
C

P
2
9

P
2
7

M
P
O

R
X
D

G
N
D

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

J
2

H
D
R
D
4
0

P
2
8

P
3
1

R
X
D
0

T
X
D
1

R
X
D
1

T
X
D
0

/
C
T
S
1

P
3
0

P
2
4

P
1
7

P
1
5

P
1
1

P
9

P
1
9

/
R
S
T

V
O
F
F

D
1
5

D
1
4

D
1
3

D
1
2

/
B
H
E

/
P
P
I

/
I
O
W
R

/
R
T
S
0

/
R
T
S
1

P
2
3

P
2
6

P
2
5

P
2
2

P
2
1

P
2
0

P
1
6

P
1
2

P
1
0

P
1
8

R
S
TT
X
D

D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0

G
N
D

A
5
A
6
A
7

/
D
S
R
1

/
D
T
R
1

/
D
C
D
1

/
I
N
T
C

/
I
N
T
D

/
I
N
T
B

/
I
N
T
A

/
D
T
R
2

R
I
N
1

V
2
5

G
N
D

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

J
5

H
D
R
D
1
4

H
D
R
D
1
4

A
D
0

A
D
2

A
D
4

A
D
6

D
A
2

D
A
3

G
N
D

T
O
U
T
1

A
D
1

A
D
3

A
D
5

A
D
7

A
N
0

A
N
2

A
N
4

A
N
6

A
N
8

R
E
F
+

A
N
1
0

R
E
F
-

V
A

D
A
1

D
A
4

T
1

S
S
O

T
I
N
1

D
0

/
I
O
W
R

/
I
O
R
D

A
7

A
6

A
N
1

A
N
3

A
N
5

A
N
7

A
N
9V
B

V
C
C

S
S
I

S
S
C

/
P
P
I

A
5

/
D
A

/
A
D

T
1

T
2

C K1

I 12

I 23

I
3

4

I
4

5

I
5

6

I
6

7

I
7

8

I 8 9G 1 0

5 V2 0 O 71 9 O
6

1
8

O
5

1
7

O
4

1
6

O
3

1
5

O
2

1
4

O 1 1 3

O 0 1 2

O E 1 1

U
2

1
6
V
8
P

H
I
T

R
E
F
1

G
N
D

T
3

/
S
C
C

V
C
C

R
E
F
+

C
1
6

0
.
1
U
F

P
2
7

/
G
P
C
S
0

D
4

/
I
O
R
D

/
I
O
W
R

C
L
K
T

T
3

V
C
C

V
2

/
R
D

1

R
X
D

2

T
X
D

3

M
P
O

4

M
P
I

5

A
2

6

A
1

7

A
0

8

X
1

9

X
2

1
0

R
S
T

1
1

G
N
D

1
2

V
C
C

2
4

/
W
R

2
3

D
0

2
2

D
1

2
1

D
2

2
0

D
3

1
9

D
4

1
8

D
5

1
7

D
6

1
6

D
7

1
5

/
E
N

1
4

/
I
N
T

1
3

U
8

S
C
C
2
6
9
1

S
C
C
2
6
9
1
S

/
I
O
R
D

V
C
C

R
9

1
0
K

1

2

H
3

H
D
R
D
2

H
D
R
D
2

V
1

A
0
A
1
A
2
A
3
A
4

/
I
N
T
D

D
1
1

D
1
0

D
9
D
8

/
I
O
R
D

P
8
P
6
P
5

P
3
P
4

G
N
D

P
1
4

P
1
3

P
7

P
2

R
F
+

1

V
B

2

V
A

3

V
S
S

4

G
N
D

5

R
S
T

6

L
D

7

D
0

8

D
1

9

D
2

1
0

D
3

1
1

D
4

1
2

D
5

1
3

D
6

1
4

R
F
-

2
8

V
C

2
7

V
D

2
6

V
D
D

2
5

N
C

2
4

C
S

2
3

A
0

2
2

A
1

2
1

R
/
W

2
0

D
1
1

1
9

D
1
0

1
8

D
9

1
7

D
8

1
6

D
7

1
5

U
1
1

D
A
C
7
6
2
5

G
N
D

G
N
D

G
N
D

D
A
1

D
A
2

D
8

D
7

D
6

D
5

D
4

/
R
S
T

R
E
F

A
N
0

A
N
1

A
N
2

A
N
3

A
N
4

A
N
5

A
N
6

A
N
7

A
N
8

G
N
D

V
C
C

G
N
D

D
A
3

D
A
4

D
1
5

D
1
4

D
1
3

A
1
A
2

T
2

V
C
C S
S
O

S
S
I

S
S
C

/
A
D

R
E
F
+

A
N
9

A
N
1
0

R
E
F
-

A
D
0

1

A
D
1

2

A
D
2

3

A
D
3

4

A
D
4

5

A
D
5

6

A
D
6

7

A
D
7

8

A
D
8

9

G
N
D

1
0

V
C
C

2
0

E
O
C

1
9

C
L
K

1
8

D
I
N

1
7

D
O
U
T

1
6

C
S

1
5

R
E
F
+

1
4

R
E
F
-

1
3

A
D
1
0

1
2

A
D
9

1
1

U
3

P
2
5
4
3

G
N
D

M
P
O

R
X
D

T
X
D

X
5
X
6
R
S
T

A
0
A
1
A
2

/
I
N
T
D

D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
/
I
O
W
R

/
S
C
C

A
D
0

A
D
1

A
D
2

A
D
3

A
D
4

A
D
5

A
D
6

D
7

D
6

D
5

D
1
0

D
9

D
8

D
1
2

D
1
1

A
0

1

A
1

2

A
2

3

A
3

4

A
4

5

A
5

6

A
6

7

A
7

8

A G 9R F + 1 0D G N G 1 1A 2 1 2A 1 1 3A 0 1 4D 1 1 1 5D 1 0 1 6

D
9

1
7

D
8

1
8

D
7

1
9

D
6

2
0

D
5

2
1

D
4

2
2

D
3

2
3

D
2

2
4

D 12 5

D 02 6

W R2 7

B S Y2 8

C L K2 9

R D3 0

C S3 1

5 V3 2
U
1
2

A
D
7
8
5
2

V
C
C

C
1
3

0
.
1
U
F

C
1
2

0
.
1
U
F

G
N
D G
N
D

A
0

A
1

A
2

D
1
5D
1
4

D
1
3

R
E
F
1

A
D
7

G
N
D

V
C
C

C
K

1

D
I

2

L
D

3

D
O

4

V
B

8

5
V

7

G

6

V
A

5

U
0
5

L
T
C
1
4
4
6

V
1

V
2

G
N
D

V
C
C V
A

V
B

C
K

1

D
I

2

L
D

3

D
O

4

V
B

8

5
V

7

G

6

V
A

5

U
5

L
T
C
1
4
4
6

S
S
O

S
S
C T
1

/
D
A

S
S
O

S
S
C

D
1
2

D
1
1

V
C
C

R
E
F

C
1
0

C
A
P
N
P

R
3

2
K

D
1
0

D
9

U
1
3

L
M
2
8
5 C
3

1
0
P
F

C
41
0
P
F

X
2

C
5

1
0
P
F

X
3

X
4

X
T
A
L
2

3
2
.
7
6
8
K

X
1

X
T
A
L
1

3
3
.
3
3
M

C
61
0
P
F

G
N
D

G
N
D

1

R
S
T

2

M
R

3

V
3

4

U
4

M
I
C
8
1
1
4

/
P
G

L
F
R
1
4
.
7
K

C
7

0
.
0
0
1
U
F

C
8

0
.
0
1
U
F

A
V
C
C

P
L
L

R
2

4
7

/
R
S
T

V
3
3V
2
5

V
C
C

R
8

1
0
K

C
1
4

1
0
U
F
3
5
V

C
1
5

1
0
U
F
3
5
V

V
2
5

A
V
C
C

V
3
3 C
1
9

C
A
P
N
P

V
2
5 C
2
2

C
A
P
N
PV
3
3 C
2
3

C
A
P
N
P

L
F

C
9

C
A
P
N
P

L
1

L
E
D

P
0

V
C
C

V
C

C
1

C
A
P
N
P

R
4

6
8
0

C
2

C
A
P
N
P

V
2
5

V
3
3

G
N
G

1

V
O

2

V
I

3

V
O

4

U
1
4

B
B
1
1
1
7

B
B
1
1
1
7

G
N
G

1

V
O

2

V
I

3

V
O

4

U
1
5

B
B
1
1
1
7

B
B
1
1
1
7

/
R
S
T

W
D
I

R
S
T

/
R
A
M

W
D
O

/
P
F
O

R
5

1
0
K

/
R
O
M
2

G
N
D

V
2
5

V
C
C

G
N
D

V
3
3

V
3
3

V
R
A
M

V
B
A
T

V
C
C

G
N
D

V
B

1

V
O

2

V
C
C

3

G
N
D

4

B
O
N

5

/
L
L

6

O
S
I

7

O
S
S

8

R
S
T

1
6

/
R
S
T

1
5

W
D
O

1
4

C
E
I

1
3

C
E
O

1
2

W
D
I

1
1

P
F
O

1
0

P
F
I

9

U
7

M
A
X
6
9
1

M
A
X
6
9
1
S

V
C
C

V
C
C

X
6

X
T
A
L
3

3
3
.
3
3
M

C
2
0

1
0
P
F

C
1
1

C
A
P
N
P

V
C
C

C
1
7

C
A
P
N
P

V
R
T
C

B
S
E
N

V
R
A
M

R
6

1
0
K

R
7

1
K

C
2
5

C
A
P
N
P

C
2
6

C
A
P
N
P

V
B
A
T

X
5

C
1
8

1
0
P
F

C
2
7

C
A
P
N
P

-

1

+

2

+

3

B
1

B
T
H
1

P
F
I

V
C
C

