CAN-Engine™

C Programmable Embedded CAN Controller, with 10084&T Ethernet, RS232,
CompactFlash, and 16-bit parallel high speed ADC

l

S

9]
1

il

CompactFlash®

i

@
el
@
®|
=]
®
D@ |
@
@.
(-]
=]

Technlcal Manual

TTERN

INC.
1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181

Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

CAN-Engine, E-Engine, A-Engine86, A-Engine, A-Cased-Core, i386-Engine,
MemCard-A, MotionC, VE232, and ACTF are trademark$ERN, Inc.
Am188ES and Am186ES are trademarks of Advanceddvbavices, Inc.
Borland C/C++ is a trademark of Borland Internagion
Microsoft, MS-DOS, Windows, Windows95, and Windows#re trademarks of
Microsoft Corporation.

IBM is a trademark of International Business Maelsit©orporation.

Version 2.0
October 21, 2010

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1993-201C TERIQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitEimages arising from
the use ofTERN products. It is the Buyer's responsibility to jadtlife and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@ndsults of limited sample tests; they
are provided for design reference use only.

CAN-Engine Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

Measuring 3.6 x 2.3 inches, tl@&AN-Engine™ (CANE) is a high performance, low cost, C/C++ programieab
controller. It is intended for networking appliaatiincluding industrial process control, high-speeath acquisition,
and especially ideal for OEM applications.

The CANE can use any one of these 3 16-bit CPU chips: 4@ MM186ES(5V), or 40 MHz RDC R8820(5V) or
80MHz RDC R1120(3.3V).

An Fast Ethernet Module can be installed to proviileM Base-T network connectivity. This Ethernetdule has

a hardware LSI TCP/IP stack. It implements TCPURP, ICMP and ARP in hardware, supporting internet
protocol DLC and MAC. It has 16KB internal transraitd receiving buffer which is mapped into hostcessor’'s
direct memory. The host can access the buffer igh bpeed DMA transfers. The hardware Ethernet heodu
releases internet connectivity and protocol prdogssom the host processor, which represents & imgrovement
over software-based TCP/IP stacks. No processdesyare used to track packet transmission/retraassom,
timeouts, etc. The resulting system can easilydleatransmissions in the 100K bytes per secondgeran real
world applications. It supports 4 independent lstaannections simultaneously at a 4Mbps protocokessing
speed. An RJ45 8-pin connector is on-board for eoting to 10/100 Base-T Ethernet network. Softwinmries
and demo project are available for Ethernet coiwigct

A Controller Area Network (CAN) controller (SJA10020 MHz clock) and CAN bus tranceiver is availahbte
supports network baud rates up to 1M-bit per secB8oftware drivers allow access to all CAN congpllegisters,
as well as a buffering software layer.

The CANE features fast execution times through 16-bit ACHIESh (256 KW) and battery-backed SRAM (256
KW). It also includes 3 timers, PWMs, 20+ PIOs, $2e serial EEPROM, two UARTS, 3 timer/countexsd a
watchdog timer. The three 16-bit timers can be usatbunt or time external events, up to 10 MHztcogenerate
non-repetitive or variable-duty-cycle waveforms R¢/M outputs. The PIO pins are multifunctional anskmu
programmable.

A serial real timer clock (DS1337, Dallas) is a l@ewer clock/calendar with two time-of-day alarntsdaa
programmable square-wave output.

Two RS232 channels of full-duplex asynchronousivece and transmitters are on-board. The UART sripo@te
9-bit mode for multi-processor communications.

A 16-bit parallel ADC (AD7655, 0-5V) supports ulthéggh-speed (1 MHz conversion rate) analog sigoguisition.
The AD7655 contains two low noise, high bandwid#dck-and-hold amplifiers that allosimultaneous sampling on
two channels. Each track-and hold amplifier hasultiptexer in front to provide a total of 4 chans@nalog inputs.
The parallel ADC achieves high throughput by reiagironly two CPU I/O operations (one start, onedjei®
complete a 16-bit ADC reading. With a precisioneemal 2.5V reference, the ADC accepts 0-5V anahpgitis at
16-bit resolution of 0-65,535.

The CANE supports low cost, removable, up to 2 GB mass geo€ompactFlash cards with onboard CompactFlash
interface. User can store and transfer large amsoaindlata with a PC, via a CF card with TERN'’s Fifl@system
software support.

The CANE can be powered by USB, or regulated 5V, or uneggdl 9V DC power with on-board 5V regulator
installed.

The CANE provides a true 16-bit data bus for SRAM, FlasBCA Ethernet, and a J1 20x2 expansion header. The
CANE is an ideal upgrade for the A-Engine, V25-EngiB@6-Engine, or R-Engine providing increased relighi
networking functionality, and performance. They &dlve similar mechanical dimensions, pin outs s drivers,

and both are programmed using Paradigm C++ TERMNdadtvaluation Kit (EV-P) or Development Kit (DV}P

1-1

Chapter 1: Introduction

CAN-Engine

The CANE can be integrated into an OEM product as a procesze component. It also can be used to build a

smart sensor, or can act as a node in a distribnteprocessor system.

CAN-Engine CAN
SRAM us
128KB or 512 KB
-

tchdog

512 KB 16-bitu1 - enable

Am186ES
e SDL P12 R882c0$ 1120

u7 -bi

512 BYTES |« . 40/80MH z o j\g%ég 5::
SDA P11 <:>
DM A(2)
- 16-Bit Timers(3)
RS232 drivers Ext. Interrupts(8) DO..D1LE
SERO+SER1 32 JOlines L 100M BaseT
PWM/PWD < : >
16-bit Ext. data bus EJLT?JTZet
Low drop 5V
regulators for USB CompactFlash
U0+U01 J1& J2 U1l
Or
Linear 5V regulators
LM7805

Figure 1.1 Functional block diagram of the CAN-Engine

The CANE supports on-board 512 KB 16-bit Flash and up t® BB 16-bit battery-backed SRAM. The on-board
ACTF Flash has a protected boot loader and canal#yeprogrammed in the field via serial link. Useran
download a kernel into the Flash for remote delggWith the DV-P Kit support, user application esccan be
easily field-programmed into and run out of theskla

A 512-byte serial EEPROM is included on-board. TeMdA-driven serial ports from the Am186ES suppoigHi
speed, reliable serial communication at a rate pftar 115,200 baud. All serial ports support 8-bit &-bit
communication.

There are three 16-bit programmable timers/couratedsa watchdog timer. Two timers can be used tmtcor time
external events, at a rate of up to 10 MHz, ordnagate non-repetitive or variable-duty-cycle wavelk as PWM
outputs. Pulse Width Demodulation (PWD), a distircffeature, can be used to measure the width sifraal in
both its high and low phases. It can be used inymagplications, such as bar-code reading.

The EE has 32 user-programmable, multifunctional 1/0 pinsnfrethe CPU. Schmitt-trigger inverters are provided
for six external interrupt inputs, to increase poimmunity and transform slowly-changing input sitninto fast-
changing and jitter-free signals. A supervisor chith power failure detection, a watchdog timer, l&D, and
expansion ports are on-board.

CAN-Engine

Chapter 1: Introduction

Features:

» 3.6 x2.3x1", 200 mA at 5V for 80 MHz

* 40 or 80 MHz, 16-bit CPU, program in C/C++

» 256 KW 16-bit Flash, 256 KW 16-bit SRAM, 512 byteE

» Controller Area Network (CAN2.0B)

» 20+ TTL I/Os, Real-time clock, 2 serial ports, PM\counters
* 4 ch 16-bit parallel high speed ADC (AD7655)

» Hardware TCP/IP stack for 100M Base-T Ethernet

e CompactFlash card with FAT file system support

1.2 Physical Description

The physical layout of the CAN-Engine is shown igufe 1.2.

Figure 1.2 Physical layout of the CAN-Engine

isk.

@}
Oz

e

(@ F
e 0
q ;
Q

1§

9 9

R T e i i 4] v ry TR AT T it e—

1-3

Chapter 1: Introduction CAN-Engine

(Power On or Reset)

Step 2 jumper
set?

STEP 2

Go to Application Code CS:IP
CS:IP in EEPROM:
0x10=CS high byte
STEP 1 O es e
ACTF menu sent out through sar0 =P high byt

0x13=IP | b
at 19200/9600 baud(EE40/80)| \. X157 lowbyte y

Figure 1.3 Flow chart for ACTF operation
The “ACTF boot loader” resides in the top protectedtor of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the BEJG kernel (EE40_115.hex) is pre-loaded
in the Flash starting at OXFA00O, and the RED STER2mper is installed, ready for
Paradigm C++ debugger. User does not need to doatla DEBUG kernel to start with.

At power-on or RESET, the “ACTF” will check the SPR jumper. If STEP 2 jumper is not installed, 8&TF
menu will be sent out from serial port0 at 19200d#or a CANE 40MHz, or 9600 baud for a CANE 80MHz.

If the STEP 2 jumper is install ed, the “jump adddocated in the on-board serial EE will be reatiand then
jump to that address. A DEBUG kernel “EE40_115.Hex'the CANE 40MHz or “EE80_115.hex” for the CANE
80MHz can be downloaded, residing in “OxFA000'tkeé 512KB on-board flash chip.

The “EE84_115.hex can also be downloaded into a EEBBIMHz for easier running all demo projects, vréce
designed for running 40MHz.

1-4

CAN-Engine

Chapter 1: Introduction

1.3 CAN-Engine Programming Overview

Steps for product development:

There is no ROM socket on the board. The user'diegpn program must reside in SRAM for debugging
STEP1, reside in battery-backed SRAM for the sthmatafield test in STEP2, and finally be programnied the
on-board Flash for a complete product. For productine user must produce an ACTF-downloadable HileXor

the application, based on the DV-P Kit. The “STERZhper (J2 pins 38-40) must be installed for ey@nduction-

version board.

Step 1 settings

Preparation for Debugging(DONE in Factory

» Connect board to PC via RS-232 link, 19,200, 81 N

» Power onwithout STEP 2 jumper installed

* ACTF menu should be sentto PC terminal

* Use “D” command to download “L_TDREM.HEX’ in SRAM
* “G04000" torun “L_TDREM”

* Download “c\term\18€\rom\ae80EE40_115.HEX" to Flas

* “GFA000" to setup EEPROM and run remote debugger

* Install the STEP2 jumper (J2.38-40)

» Power-on or reset, Ready for Remote debugger

STEP 1 Debugging

« Start Paradigm C++, run “led.ide” or “test.ide”
« Download code to target SRAM.
« Edit, compile, link, locate, download, and remdiebug

il

STEP 2 Standalone Field Test

» "G08000" setup EEPROM Jump Address, points to
application code resides in battery backed Sl

* Install STEP2 jumper, then power on

*» Application program running in battery-backed SRAM

(Battery lasts -5 years under normal conditior

U

STEP 3 Production DV-P Kit

« Generate application HEX file with DV-P and ACK#t
¢« ACTF “D"to download “L_29F400.HEX” into SRAM
« Download application HEX file into FLASH

* Modify EEPROM jump addressto 0x80000

e Set STEP2 jumper

In order to talk to CANE with Paradign C++, the CBN&hust meet these requirements:

1) EE40_115.HEX or EE80_115.HEX must be pre-loadealFlash starting address 0xfa000.

2) The SRAM installed must be large enough to lyolgr program.

Chapter 1: Introduction CAN-Engine

For a 128K SRAM, the physical address is 0x0000DEk
For a 512K SRAM, the physical address is 0x0000D#¢k

3) The on-board CANE must have a Jump Address @i0Q0.
4) The STEP2 jumper must be installed on J2 pird®B8

For further information on programming the CAN-Bmgi refer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

The CANE works with most TERN expansion boards including B%50, P100, P300, MotionC, MMC, and EyeO.

l!l“lll!lllllllllllll‘i

AR

Bl i M M TR Vi B

~ BL

Do«

Figure 1.4 CAN-Engine is installed on the top of the MotionC-P.

CAN-Engine Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the “software_kit.pdf” technical nmal on the TERN installation CD, under
tern_docs\manual\software_kit.pdf, for informatmminstalling software.

2.2 Hardwar e Installation

Overview

» Connect PC-IDE serial cable:
For debugging (STEP 1), place IDE connector on SERQ
with red edge of cable at pin 1. This DEBUG cabla iL0O-pin
IDE to DB9 cable, made by TERN (See Appendix D).

» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
using power jack adapter supplied with EV-P/DV-R Ki

Hardware installation consists primarily of connegtthe microcontroller to your PC.

2.2.1Connecting to the PC

The following diagram (Fig 2.1) provides the locatiof the debug serial port and the power jack. The
controller is linked to the PC via a serial caddB9-IDE) which is supplied with TERN’s EV-P / DV-P
Kits.

The controller communicates through SERO by deféndtall the 5x2 IDE connector on the SERO 5x2 pin
header. IMPORTANT: Note that the red side of the cable must point to pin 1 of the SERO header. The
DB9 connector should be connected to one of yous BOM Ports (COM1 or COM2).

2.2.2Powering-on the CAN-Engine™

By factory default setting:

1) The RED STEP2 Jumper is installed. (Defaulirsgin factory)

2) The DEBUG kernel is pre-loaded into the on-bdtash starting at address of OXFA000. (Defaultirsgt
in factory)

3) The EEPROM is set to jump address of OXFAOO@f#DIt setting in factory)

Connect +9-12V DC to the DC power terminal. The [piver jack adapter is center negative.
The on-board LED shouldlink twice and remain on, indicating the debug kernel is running and reiady

communicate with Paradigm C++ TERN Edition for prergming and debugging.
(See next page for connection diagram).

2-1

Chapter 2: Installation CAN-Engine

2.2.3Connecting the CAN-Engine™

The proper connections required to debug the b@ardugh Paradigm software).

H1 (Ser 0) is a 5x1 pin header. Use the back rothe IDE cable’s female header to connect to I5keg(
Appendix D)

H1 (Ser 0 IDE-DB9 Debug Cable

Step 2 Jump

[

P Y

(el il i

9-12 Volt
Power

{ plug

- (Center
Negative)

e e e g

Termination
Resistor. CAN Port

Figure 2.1: Debug Cable (Ser0), Power PI u_g, and Step 2 Jumper shown

NOTE: Remember to watch for thel6uble blink” off the LED. This indicates thBebug Kernel has
been loaded with theimp address pointing to it. This is mandatory to commence dimading code
through the Paradigm environment.

2-2

CAN-Engine Chapter 3: Hardware

Chapter 3. Hardware

3.1 Am186ES/R8820/R1120 - Introduction

The Am186ES is based on industry-standard x86 taxtioire. The Am186ES controllers uses 16-bit
external data bus, are higher-performance, moegyiated versions of the 80C188 microprocessorshwhic
uses 8-bit external data bus. In addition, the ABEIB has new peripherals. The on-chip system imerfa
logic can minimize total system cost. The Am186E® wo asynchronous serial ports, 32 PIOs, a
watchdog timer, additional interrupt pins, a pwsielth demodulation option, DMA to and from serial
ports, a 16-bit reset configuration register, ankdagced chip-select functionality.

R8820 is a drop-in replacement 5V, 40MHz chip f@ AM186ES. Connecting J0.1=J0.2.

R1100 is a 80MHz, 3.3V chip can be installed onEHengine with J0.2=J0.3.

By default, the E-Engine uses 5V 40 MHz R8820 anwdpower 55-70 ns SRAM with battery backup.
Optional 3.3V 80 MHz R1120 can be installed.
At 80 MHz, the low power 55 ns SRAM with batteryckap works fine but will not be able to support
DMA operation.
A fast 10/15/25 ns SRAM (Not low power) can be ugedupport zero wait state and DMA operation at 80
MHz, but the backup battery will be drain in fewyda
There are three pads on the PCB for battery. Ods igeground, and the other two pads allowing a 3V
backup lithium battery is installed in two diffetepositions:
1) The battery’s positive lead is installed in gas which is away from the RTC, supporting the RN .
No battery backup for the SRAM.
2) The battery’s positive lead is installed in gas which is closer to the RTC, supporting both RIhd
SRAM.
In the future, when the fast (10 ns) and low stgrutibwer SRAM is available, then 80 MHz E-Engine can
have both RTC and SRAM with battery backup plusDMA, zero wait state operation.
User can use sample program c:\tern\186\sampledte@.c to read the ID register (0xfff4), in order
identify RDC CPU type.

R1100=0xC5D9, R1120=0x85D9, R8820/30=0x04D9(xxD9)

3.2Am186ES — Features

3.2.1 Clock and crystal

Due to its integrated clock generation circuithe Am186ES microcontroller allows the use of a siroae
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4adé 40 MHz for EE4O0.

CLKOUTA remains active during reset and bus holdditions. The initial function ae_init(); disables
CLKOUTA and CLKOUTB with clka_en(0); and clkb_en{0

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pi
The R8820 uses a 40 MHz crystal.
By default the 3.3V R1120 uses a 20 MHz crystak TPU speed is software programmable with the PLL.

At power-on, the on-board ACTF Flash programs thd 2 running at 20 MHz system clock, so a 9600
baud (instead 19,200 baud) is used for ACTF Manu.

Three debug kernels are available:

3-1

Chapter 3: Hardware CAN-Engine

c:\tern\186\rom\ae86\EE40_115.hex,
c:\tern\186\rom\ae86\EE80_115.hex,
c:\tern\186\rom\ae86\EE84_115.hex.
The EE40_115.hex will run the R8820 at 40 MHz, #relEE80_115.hex will run the R1120 at 80 MHz.
The EE84_115.hex will run the R1120 at 40 MHz
By default, the EE40_115.hex is pre-programmedHer40 MHz CAN-Engine.
User can use software to setup the CPU speed:
outport(0xfff8,0x0103); // PLLCON, 20MHz cryst&103=40 MHz, 0107=80MHz

3.2.2 External Interrupts and Schmitt Trigger | nput Buffer

There are eight external interrupts: INTO-INT6 aidI.

/INTO, J2 pin 8, free to use.

/INT1, J2 pin 6, free to use.

INT2, J2 pin 19, RTC DS1337 alarm

/INT3, J2 pin 21, CAN

/INT4, J2 pin 33, used by 100M BaseT Ethernet
INT5=P12=DRQO, J2 pin 5, used for LED/EE/HWD
INT6=P13=DRQ1, J2 pin 11, Free to use.

/NMI, J2 pin 7

Some of external interrupt inputs, /INTO, 1, 3,ntldNMI, are buffered by Schmitt-trigger inverteks9,
74HC14), in order to increase noise immunity aagigform slowly changing input signals to fast cliagg
and jitter-free signals. As a result of this bufigr these pins are capable of only acting as input

These buffered external interrupt inputs requifelling edge (HIGH-to-LOW) to generate an interrupt

The CAN-Engine uses vector interrupt functionsespond to external interrupts. Refer to the Am186ES
User’'s manual for information about interrupt vesto

3.2.3 Asynchronous Serial Ports

The Am186ES CPU has two asynchronous serial cheinB8IRO and SER1. Both asynchronous serial
ports support the following:

* Full-duplex operation

* 7-bit, 8-bit, and 9-bit data transfers

e 0dd, even, and no parity

e One stop bit

» Error detection

* Hardware flow control

» DMA transfers to and from serial ports

« Transmit and receive interrupts for each port
e Multidrop 9-bit protocol support

e Maximum baud rate of 1/16 of the CPU clock speed
* Independent baud rate generators

The software drivers for each serial port implemanting-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sasrfpésssl _echo.c and sO_echo.c.

3-2

CAN-Engine Chapter 3: Hardware

Important Note: For 80MHz CAN Engine, DMA functioase not available when by default low power 55
ns SRAM is installed. If install a 25 ns SRAM, 8Bl CANE can have all DMA functions, but it will
drain the backup battery fast. Two battery positiaes allowing the battery be installed:

1) Support both RTC and low power SRAM, or
2) Support only RTC.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaibphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to external pins:

Timer0 output = P10 = J2 pin 12

TimerO input = P11 = U7 EE pin 5

Timerl output = P1 = J2 pin 29

Timerl input = PO = J2 pin 20
TimerO input P11 is used and shared by on-board LEHR, and HitWD, not recommended for other
external use.

The timer can be used to count or time externahsy®r can generate non-repetitive or variablg-gytle
waveforms.

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timen@timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operati$1Hz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to sigok cycles to respond to clock or gate eventse the
sample programsmer02.c andae _cntl.cin thet er n\ 186\ sanpl es\ ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eteergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the t@bernate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurafhe signal’s high and low phases on the /INT2=J2
pin 19.

3.2.6 Power-save Mode

The power-save mode of the Am186ES reduces powesucaption and heat dissipation, thereby extending
battery life in portable systems. In power-save ejodperation of the CPU and internal peripherals
continues at a slower clock frequency. When anriiapg occurs, it automatically returns to its nokma
operating frequency.

3-3

Chapter 3: Hardware

CAN-Engine

3.3Am186ES PIO lines

The Am186ES has 32 pins available as user-progréentéD lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO line ban
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojleain

output. A pin’s behavior, either pull-up or pullsdo, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins eadad for specific on-board usage, as well.
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

These

3.1.
PIO | Function Power-On/Reset status | CAN-Engine Pin No. | CAN-Engine nitial
PO Timerl in Input with pull-up J2 pin 20 Input twipull-up
P1 Timerl out Input with pull-down J2 pin 29 Inguith pull-down
P2 /PCS6/A2 Input with pull-up J2 pin 24 Input withll-up
P3 /PCS5/A1 Input with pull-up J2 pin 15 Input withll-up
P4 DT/R Normal J2 pin 38 Input with pull-up Step
P5 /IDEN/DS Normal J2 pin 30 Input with pull-up
P6 SRDY Normal J2 pin 35 Input with pull-down
P7 Al7 Normal U3 pin 22 Al7
P8 Al18 Normal U3 pin 23 Al8
P9 Al19 Normal J2 pin 10 Al9
P10 | TimerO out Input with pull-down J2 pin 12 Inpuith pull-down
P11 | TimerOin Input with pull-up U7 EE pin 5 Inpwith pull-up
P12 | DRQO/INT5 | Input with pull-up J2 pin5 Output IcED/EE/HWD
P13 | DRQL/INT6 | Input with pull-up J2 pin 11 Inputtivipull-up
P14 | /MCSO Input with pull-up J2 pin 37 Input withlup(ET)
P15 | /MCS1 Input with pull-up J2 pin 23 Input withlup
P16 | /PCSO Input with pull-up J1 pin 19 /PCSO
P17 | /PCS1 Input with pull-up J2 pin 13 CAN, ADC, 6&#dlect
P18 | CTS1/PCS2 Input with pull-up J2 pin 22 Inputhwvgull-up
P19 | RTS1/PCS3 Input with pull-up J2 pin 31 Inputhwvgull-up
P20 | RTSO Input with pull-up J2 pin 27 Input withllpwp
P21 | CTSO Input with pull-up J2 pin 36 Input withllpwp
P22 | TxDO Input with pull-up J2 pin 34 TxDO
P23 | RxDO Input with pull-up J2 pin 32 RxDO
P24 | /MCS2 Input with pull-up J2 pin 17 Input withlup
P25 | /MCS3 Input with pull-up J2 pin 18 Input withlup
P26 | Uzl Input with pull-up J2 pin 4 Input with pulp*
P27 | TxD1 Input with pull-up J2 pin 28 TxD1
P28 | RxD1 Input with pull-up J2 pin 26 RxD1
P29 | /CLKDIV2 Input with pull-up J2 pin 3 Input witbull-up*
P30 | INT4 Input with pull-up J2 pin 33 Input withlpup
P31 | INT2 Input with pull-up J2 pin 19 Input withlpup

™~

* Note: P26 and P29 must NOT be forced low duriog/@r-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

3-4

CAN-Engine Chapter 3: Hardware

Three external interrupt lines are not shared RIth pins:
INTO = J2 pin 8
INT1 =J2 pin 6
INT3 = J2 pin 21

The 32 PIO lines, PO-P31, are configurable via 1®ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

CAN-Engine initialization on PIO pins iae_init() is listed below:

outport(0xff78,0xe73c); / PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); / PIOM1
outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCEG€
outport(0xff70,0x1000); /l PIOMO, P12=LED

The C function in the librargie_lib can be used to initialize PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the tableabo

Example: pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgiog pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,

Some of the 1/O lines are used by the CAN-Engingtesy for on-board components (Table 3.2). We
suggest that you not use these lines unless yosuaeethat you are not interfering with the operatdf
such components (i.e., if the component is notaltest).

You should also note that the external interrug PRins INT2, 4, 5, and 6 are not available for ase
output because of the inverters attached. That vglues of these PIO interrupt lines will alsoiteerted

for the same reason. As a result, calling rd to read the value of P3INT2) will return 1 when pin 19
on header J2 is pulled low, with the result revati§¢he pin is pulled high.

Signal | Pin Function
P14 /MCSO0 100M BaseT Ethernet
P4 /DT STEP2 jumper

P11 TimerO input | Shared with RTC, EE data input

P12 DRQO/INT5 Output for LED or U7 serial EE cloakHit watchdog
P17 /PCS1 CAN, ADC
P22 TxDO Default SERO debug

3-5

Chapter 3: Hardware CAN-Engine

Signal | Pin Function
P23 RxDO Default SERO debug
/INT4 | J2 pin 33 Ethernet interrupt, if U8 is intta

Table 3.2 1/0O lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0O Space

External I/O devices can use I/O mapping for accésa can access such I/O devices witportb(port) or
outportb(port,dat). These functions will transfer one bgtevord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000xtfD

The default I/O access time is 15 wait states. May use the function void_wait(char wait) to define the
I/O wait states from 0 to 15. The system clock8sn® (or 50 ns), giving a clock speed of 40 MHzZ0
MHz). Details regarding this can be found in thdt8are chapter, and in the Am186ES User’'s Manual.
Slower components, such as most LCD interfaceshinfiigd the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus sgdeof the system, some components need to be edtdach
I/O pins directly.

For details regarding the chip select unit, pleseseChapter 5 of the Am186ES User’s Manual.

The table below shows more information about |/(piiag.

I/O space Select | Location Usage
0x0000-0x00ff | /PCSO| J1 pin 19=P16 USER*
0x0100-0x0103| /PCS1| J2 pin 13=P17 U4 pin 4-5
0x0200-0x02ff | /PCS2| J2 pin 22=CTS] USER
0x0300-0x03ff | /PCS3| J2 pin 31=RTS] USER

0x0400-0x04ff | /PCS4 Reserved
0x0500-0x05ff | /PCS5| J2 pin 15=P3 USER
0x0600-0x06ff | /PCS6| J2 pin 24=P2 USER

*PCS0 may be used for other TERN peripheral boards.

To illustrate how to interface the CAN-Engine wightternal 1/0O boards, a simple decoding circuit for
interfacing to an 82C55 parallel I/O chip is shawrfigure 3.1.

74HC138 82C55
RST)
A5 1 | A vo| 15 NC = P00-P0O7
A6 210 Y1| 14 /SEL20 ™
A7 310 v2| 13 /SEL40
Y3| 12 /SEL60 | ssE| 20| /cS P10-P17
Y4 11 /SEL80
/PCSO 4 G2A vs| 10 /SELA0 DMR 1 /WR
59 G2B Y69 ISELCO grp IRD
veC 6| c1 vy7lz /SELFO]]
E— L DO-D7 P20-P27

Figure 3.1 Interface to external I/O devices

3-6

CAN-Engine Chapter 3: Hardware

The functionae_i ni t () by default initializes the /PCSO0 line at base IMdlr@ss starting at 0x00. You
can read from the 82C55 withportb(0x020) or write to the 82C55 witbutportb(0x020,dat). The call to
inportb(0x020) will activate /PCS0, as well as putting the adgi@s00 over the address bus. The decoder
will select the 82C55 based on address lines Adnd,the data bus will be used to read the apprepdata
from the off-board component.

3.5 0ther Devices

A number of other devices are also available. Sofithese are optional, and might not be installedhe
particular controller you are using. For a disaussegarding the software interface for these comets,
please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withnstalled, the CAN-Engine has several functions:
watchdog timer, battery backup, power-on-reset ydefower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a jumperJ5 of the CAN-Engine. The watchdog timer
provides a means of verifying proper software eteou In the user's application program, callgte
function hitwd() (a routine that toggles the P12=HWD pin of the M#®1) should be arranged such that
the HWD pin is accessed at least once every 1énssc If the J5 jumper is on and the HWD pin i no
accessed within this time-out period, the watchtiogr pulls the WDO pin low, which asserts /RESET.
This automatic assertion of /RESET may recoveraghgication program if something is wrong. Aftee th
CAN-Engine is reset, the WDO remains low untilansition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J5gamis off, which disables the watchdog timer.

The Am186ES has an internal watchdog timer. Thiisabled by default withe_init().

3-7

Chapter 3: Hardware CAN-Engine

5= O
T €0

CompactFlash®

Figure 3.2 Location of watchdog timer enable jumper

Power-failure Warning

The supervisor supports power-failure warning aadkbp battery protection. When power failure is
sensed by the PFI=J1.11, pin 9 of the MAX691 (lothan 1.3 V), the PFO is low. The PFI pin 9 of 691
directly shorted to VCC by default. In order to W& externally, cut the trace and bring the P&hal out.
You may design an NMI service routine to take prbtections before the +5V drops and processor dies.
The following circuit shows how you might use trengr-failure detection logic within your applicatio

—————————————————

9-14 Vv(8.35 V. min)

|

|

|

l

47K |
|

|

|

|

2K

PFI, pin 9 of MAX691
(1.3 V min)

Using the supervisor chip for power failure deteti

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM athe real-time clock are backed up. In normal

3-8

CAN-Engine Chapter 3: Hardware

use, the lithium battery should last about 3-5 yeaithout external power being supplied. When the
external power is on, the battery-switch-over diraiil select the VCC to connect to the VRAM.

3.5.2 EEPROM

A serial EEPROM of 512 bytes (24C04), or optioniél#tes (24C16) can be installed in U7. The CAN-
Engine uses the P12=SCL (serial clock) and P11=%2Aal data) to interface with the EEPROM. The
EEPROM can be used to store important data such asde address, calibration coefficients, and
configuration codes. It typically has 1,000,008serwrite cycles. The data retention is more #tapears.
EEPROM can be read and written by simply callingfimctionsee_rd() andee_wr().

A range of lower addresses in the EEPROM is resefwe TERN use. Details regarding which addresses
are reserved, and for what purpose, can be fouAgpendix E of this manual.

3.5.3 AD7655, 16-hit parallel high speed ADC

The unique 16-bit parallel ADC (AD7655, 0-5V) supisaultra high-speed (1 MHz conversion rate) analog
signal acquisition. The AD7655 contains two lowiseo high bandwidth track-and-hold amplifiers that
allow simultaneous sampling on two channels. Each track-and hold diephas a multiplexer in front to
provide a total of 4 channels analog inputs. Taeallel ADC achieves very high throughput by reingjr
only two CPU 1/O operations (one start, one readydmplete a 16-bit ADC reading. With a precision
external 2.5V reference, the ADC accepts 0-5V apalputs at 16-bit resolution of 0-65,535.

See sample program \tern\186\samples\ee\ee_addetaits on reading the ADC. The sample program is
also included in the pre-built sample project;At&86\samples\ee\ee.ide.

Refer to the data sheet for additional specificegjdtern_docs\parts\ad7655.pdf.
3.5.4 CAN

The CAN-Engine supports an on-board Controller Axestwork (CAN) controller(SJA1000, Philips). It
supports network baud rates up to 1M-bit per sec8oftware drivers allow access to all CAN congoll
registers, as well as a buffering software layer.

The CAN bus is a balanced (differential) 2-wireeifiéice running over either a Shielded Twisted Pair
(STP), Un-shielded Twisted Pair (UTP), or Ribbohlea

| 1000 Meters { Max}

T Buslemsth — T

UTP e STE b
..... ﬁu
Differeahal
Dhiver ! Becerer

1205

GHD = 2 Tenminaticn
Resistor R
a ZHD

CAN Bus Electrical Interface Circuit

3-9

Chapter 3: Hardware CAN-Engine

A number of different data rates are defined, Withbps (Bits per second) being the top end, and a®kb
the minimum rate. Cable length depends on therdé¢aused. Normally all the devices in a systemsfier
uniform and fixed bit-rates. The maximum line léngt 1Km, 40 meters at 1Mbps. Termination resistors
are used at each end of the cable. The worst-asEntission time of an 8-byte frame with an 11-bit
identifier is 134 bit times (that's 134 microsecemad the maximum baud rate of 1Mbits/sec).

SOF [Arbitratice - ontrol CRZ AT
xl x12 bl e

The CAN Bus interface uses an asynchronous trae&mischeme controlled by start and stop bitseat th
beginning and end of each character. This interiaased, employing serial binary interchange.
Information is passed from transmitters to receaiera data frame. The data frame is composed of an
Arbitration field, Control field, Data field, CRGeld, ACK field. The frame begins with a 'Startfedime’
[SOF], and ends with an 'End of frame' [EOF] spdte data field may be from O to 8 bits.

ECF
xl

[] = hites

The CAN bus pinout on J3 is shown below. It is mpact 0.1” spacing 3x2 pin header. User can use a
IDE10-DBS9 flat cable from TERN to connect CAN si¢ggto an external standard DB9 CAN connector in
the field.

'-v'gC' J3
1 2 Gh H3
0 O O ~EITH CANKH
SHD : g =

T2 &+ cali g 2
WA] O O 10 VE

120
HOED1 D CAN TEEMINATICON RESISTOR

3.5.5 100 MHz BaseT Ethernet

An WizNet™ Fast Ethernet Module can be installeghtovide 100M Base-T network connectivity. This
Ethernet module has a hardware LS| TCP/IP stackmpiements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAiChas 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memdhg host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releagemit connectivity and protocol processing froma th
host processor. It supports 4 independent stackiemtions simultaneously at a 4Mbps protocol
processing speed. An RJ45 8-pin connector is ondofoa connecting to 10/100 Base-T Ethernet network
A software library is available for Ethernet contity.

3.5.6 Dual 12-bit DAC (LTC1446)

The LTC1446/LTC1446L is a dual 12-bit digital-toedmg converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amgifj an internal reference and a 3-wire serial fater. The
LTC1446 outputs a full-scale of 4.096V, making 1BL.&qual to 1 mV. The LTC1446L outputs a full-scale
of 2.5V, making 1 LSB equal to 0.61 mV. The buéi@ioutputs can source or sink 5 mA.

The DAC (U0) outputs are routed to J3 pin 9 forreted A, and pin 10 for channel B.

3-10

CAN-Engine Chapter 3: Hardware

3.5.7 Power Supplies

The CAN-Engine can be powered by regulated 5V oegulated 9V with on-board regulator:
1) Regulated external 5V DC power via J2.39=VCC 32d0=GND, or J1.1=VCC and J1.2=GND.

2) Unregulated 9V to 12V DC power via two pin scrennimals(T2) while a 5V linear regulator(LM7805,
UO00) is installed. All the input voltage has to piito 5V, it is generating a lot of heat.

With a 3.3V regulator(U14) to power the Etherned &1120 CPU, it requires regulated 5V DC power for
the rest circuit.

=¥TALS

LR

@
oL

e

(@
e O
q ;
Q

|9

DC 9-12v

3-11

Chapter 3: Hardware CAN-Engine

3.6 Headers and Connectors

3.6.1 Expansion Headers J1 and J2

There are two 20x2 0.1 spacing headers for expanklost signals are directly routed to the Am186ES
processor. These signals are 5V only, and any fergtrge voltages will most likely damage the board.

WCC J1

GHD 20 o~ gy 25 vcc? Voo 1~ 2 CND

04 38 17 D14 ERD G S
JOTS0 36 Dn g EEI TS S &8 O—>o D
THLO0 24 %3 JINT4 7 s SN
SR D:: g 31 JETS] YVOFF & g oO—2 Ll

PS5 20 25 Pl PFI 11 O O 12 Dz
THDl =2 =7 JRETS0 ;DIE 1 14 D3
FADL 26 @ =S¢ Rer 1o = O T:
— — = e
=] 24 23 p1t EST 17 = & 18 DS
foTz] 22 o 21 /INT= ple 19 O G 20 De

BO 20 OO 15 INT2 Dl4 21 00 22 DT
P25 13 - 17 EB24 Dl 23 - 24 GND

1 OO 15 E3 25 O s
l: 13 D1z 27 2; ;;
215 o3 D227 5 922 2c

E']Q 12 O O El2 LHE 28 O O 30 ﬂ'ﬁ

%19 10 o O g JED 31 o O 32 ?4
8 8= 18 S
E2& 4 3 PBZ9 D 37)] AE
T 72 O— 5 a5 o S50
= o— L8 S5 & =Y A0
HORDA40 J2
3.6.2 H3 Connector for ADC
H3
ARl 1 o O z ABZ2
aal 2 1 pao
GSHND 5 oo & EEF
HDELD&E
3.6.3 CAN and DAC voltage outputs Header
oo J3
0 1 o o—=2 Gl H=
S ; O O : £ : o s
T] CBRL & 2
W ';I OE g 10 VE =
- 120
HOED1 0D CAN TEEMIMNATION RESISTOR

3-12

CAN-Engine Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix C.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not feled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissis an I/O address space and a memory address
space. /O address space ranges foaf000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwareplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I1/O or memory space, amnd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments. unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3dgenent
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsajp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

4-1

Chapter 4: Software CAN-Engine

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédtess in memory space. Once againsggment address
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component méppeat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retandom
garbage values every time you try to peek into dlclalress.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place ttata into the appropriataddressin 1/O space. It is used most often whien
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perid
components.

When dealing with processor registers, be sureédle correct function. Useatport if you are dealing
with a 16-bit register.

inport/inportb
Arguments. unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and dating U® mappings, the address is output over thkress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigase refer to the Hardware chapter of thisrtieeh
manual.

41AE.LIB

AE.LIB is a C library for basic CAN-Engine operai® It includes the following modules: AE.OBJ,
SER0.0OBJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You medihk AE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port O

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEE.H on-board EEPROM

4-2

CAN-Engine Chapter 4: Software

4.2 Functionsin AE.OBJ

4.2.1CAN-Engine Initialization

ae init
This function should be called at the beginningwedéry program running on CAN-Engine core contrsller
It provides default initialization and configuraticof the various 1/0O pins, interrupt vectors, sats

expanded DOS 1/0, and provides other processorifgpempdates needed at the beginning of every
program.

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects ohe init are described below. For details regarding regisse, you will want to refer to the
AMD Am186ES Microcontroller User's manual.

Initialize the upper chip select to support thead#fROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xfftff (hap MemCard I/O window)

512K ROM Block size operation.

Three wait state operation (allowing it to suppgrtto 120 ns ROMs). With 70 ns ROMSs, this can
actually be set to zero wait state if you requigréased performance (at a risk of stability in
noisy environments). For details, see the UMCSp@gpMemory Chip Select Register)
reference in the processor User’'s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000 -Oxfffff

Initialize LCS Cower Chip Selegtfor use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum oKFRAM.
Three wait state operation. Reducing this valueicgrove performance.

Disables PSRAM, and disables need for externalyread
outport(0Oxffa2, 0x7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so thid CS0 andPCS0-PCS6 (except for PCS4) are configured so:

MCS0 is mapped also to a 256K window at 0x80000. éduith MemCard, this
chip select line is used for the 1/0O window.

Sets upPCS5-6 lines as chip-select lines, with three wait staieration.
outport(Oxffa8, OxaObf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CSOMSKH

Initialize PACS so thaPCS0-PCS3 are configured so that:

Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.
The chip select lines starts at I/O address 0x08fi,each successive chip select line addressed

0x100 higher in 1/0 space.
outport(Oxffad, 0x007f); // CSOMSKL, 512K, enable C SO for RAM

Configure the two PIO ports for default operatidkll pins are set up as default input, except fb2 P
(used for driving the LED), and peripheral funatjpins for SERO and SER1, as well as chip
selects for the PPI.

outport(0xff78,0xe73c); /I PDIR1, TxDO0O, RxDO, TxD1, RxD1,
/[l P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P 2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

Configure the PPI 82C55 to all inputs, except fioes 120-23 which are used as output for the ADC.
You can reset these to inputs if not being usedhat function.

outportb(0x0103,0x9a); /l all pins are input, 120-2 3 output
outportb(0x0100,0);

4-3

Chapter 4: Software CAN-Engine

outportb(0x0101,0);
outportb(0x0102,0x01); // 120=ADCS high

The chip select lines are by default set to 15 sfaites. This makes it possible to interface witmy
slower external peripheral components. If you negfaster I/O access, you can modify this numlmsvrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for thpsirpose.

void io_wait
Arguments. char wait
Return value: none.

This function sets the current wait state dependmthe argumemwait.

wait=0, wait states = 0, /O enable for 100 ns
wait=1, wait states = 1, /O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, /O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2External Interrupt Initialization

There are up to eight external interrupt sourcethenlCAN-Engine, consisting of seven maskable iinfgr
pins (NT6-INTO) and one non-maskable interrupdM1). There are also an additional eight internal
interrupt sources not connected to the externa, minnsisting of three timers, two DMA channelsthbo
asynchronous serial ports, and k!l from the watchdog timer. For a detailed discussivolving the
ICUs, the user should refer to Chapter 7 of the AMD186ES Microcontroller User's Manual.

TERN provides functions to enable/disable all & #ight external interrupts. The user can call@rnye
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second imetiin pointer to an appropriate interrupt servioatine
that should be used to handle the interrupt. TBEEN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dked must
be cleared. This can be done using Manspecific EOl command. At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityriog will be handled
first, and a higher priority interrupt will intenpti any current interrupt handlers. So, if the udeoses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine pestds to
issue the nonspecific EOl command to clear theectitnighest priority IR.

To send the nonspecific EOl command, you need i@ WreEOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments. unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€e second argument is a function pointer whighaet
as the interrupt service routine. The overheatherinterrupt service routine, when executed, @a0

us.

CAN-Engine Chapter 4: Software

By default, the interrupts are all disabled aftatialization. To disable them again, you can eggke call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultw#R
return on interrupt.

void intO_init(unsigned char i, void interrupt far (* int0_isr)());
void intl_init(unsigned char i, void interrupt far (*intl_isr)());
void int2_init(unsigned char i, void interrupt far (* int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (* int5_isr)());
void int6_init(unsigned char i, void interrupt far (* int6_isr)());
void int7_init(unsigned char i, void interrupt far (* int7_isr)());
void int8_init(unsigned char i, void interrupt far (* int8_isr)());
void int9_init(unsigned char i, void interrupt far (* int9_isr)());

void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 1/0 Initialization

Two ports of 16 1/O pins each are available onG@A&-Engine. Hardware details regarding these Ph@dli
can be found in the Hardware chapter.

Several functions are provided for access to ti@ IPles. At the beginning of any application whgoa

choose to use the PIO pins as input/output, younsid to initialize these pins in one of the fauailable
modes. Before selecting pins for this purpose,aralce that the peripheral mode operation of thesi
not needed for a different use within the sameieatibn.

You should also confirm the PIO usage that is deedrabove withinae init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this mézdd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am186&Eser’'s Manual.

Please see the sample prograenpio.c in tern\186\samples\ae . You will also find that these
functions are used throughout TERN sample fileanast applications do find it necessary to re-apnte
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingebding on the pin
being used, it might require from 5-U8. The maximum efficiency you can get from the BIs occur if
you instead modify the PIO registers directly vathoutport instruction Performance in this case will be
around 1-2us to toggle any pin.

The data register Bxff74 for PIO port 0, an@xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
» 0, High-impedance Input operation

e 1, Open-drain output operation

e 2, output
» 3, peripheral mode

unsigned int pio_rd:

4-5

Chapter 4: Software CAN-Engine

Arguments: char port
Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesatent 1/0 value for the P1O pins in the seleqted.
void pio_wr:

Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) test#Hected PIO.

4.2 ATimer Units

The three timers present on the CAN-Engine canskd for a variety of applications. All three timeun

at 1/4 of the processor clock rate (L0MHz based@viHz system clock, or one timer clock per 100ns),
which determines the maximum resolution that carobiined. Be aware that if you enter power save
mode, that means the timers will operate at a redlspeed as well.

These timers are controlled and configured thromghode register which is specified using the saftwa
interfaces. The mode register is described inildatahapter 8 of the AMD Am186ES User's Manual.

Pulse width demodulation is done by setting the PhitDn theSY SCON register. Before doing this, you
will want to specify your interrupt service routdjewvhich are used whenever the incoming digitahalig
switches from high to low, and low to high. It mportant to note the the interrupt latency generbtethe
ISRs that handle a signal transition will define thme resolution the user will be able to achieve.

The timers can be used to time execution of yoaer defined code by reading the timer values bedoc:
after execution of any piece of code. For a sarfidedemonstrating this application, see the sanfid
timer.cin the directorytern\186\samples\ae

Two of the timers,TimerO and Timerl can be used to do pulse-width modulation with datée duty
cycle. These timers contain two max counters, ehbe output is high until the counter counts up to
maxcount A before switching and counting up to noaxtd B.

It is also possible to use the outpufléfner 2 to pre-scale one of the other timers, since 1@dsiblution at
the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. The sample filémer02.candtimer12.¢ located irtern\186\samples\galemonstrate this.

The specific behavior that you might want to impéeris described in detail in chapter 8 of the AMD
Am186ES User's Manual.

void t0_init

void t1_init

Arguments:. int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Both of these timers have two maximum counters (MXUNTA/B) available. These can all be specified

usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

The interrupt service routine isr specified here is called whenever the full cosnteached, with othelr
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments. int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

CAN-Engine Chapter 4: Software

Timer 2 behaves like the other timers, except it only dv@s max counter available. |

4.2 .5Analog-to-Digital Conversion

One ADC chip can be installed on the CANE.

The AD7655 provides 4 high-speed analog inputs.iftezface to the AD7655 uses the signals, P12, A2,
/CV, and /AD. P12 and A2 are used to determine wbicthe four input channels is being selected, I€V
used to start the conversion, and /AD is usedlecsthe device for a conversion read over the CBta

bus. The /AD chip select signal is generated froeRAL located at U4The following table summarizes
the channel selection:

Channel Pin location P12 A2 Read command
AAl H3 pin 3 Low High inport(0x114)
AB1 H3 pin 1 Low Low inport(0x110)
AA2 H3 pin 4 High High inport(0x114)
AB2 H3 pin 2 High Low inport(0x110)

Refer to the sample codegne_ad.c, in the\ter n\186\samples\cane directory. It shows necessary steps to
read channels on the AD7655. The sample codedsraterporated into the sample project, “cane.ide”.

4.2.60ther library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timab) jumper is set, the functidmtwd() must be called every 1.6
seconds of program execution. If this is not et@tibecause of a run-time error, such as an iefiaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to théue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama roll-over in digits in the year 2000. Onéusion
might be to store an offset value in non-volattlerage such as the EEPROM.

There is a common data structure used to accesssanobth interfaces.
typedef struct{

4-7

Chapter 4: Software

CAN-Engine

unsigned char secl;
unsigned char secl0;
unsigned char minl;
unsigned char min10;
unsigned char hourl;
unsigned char hourl0;
unsigned char dayl;
unsigned char day10;
unsigned char mon1;
unsigned char mon10;
unsigned char yearl,;

One second digit.

Ten second digit.

One minute digit.

Ten mnute digit.

One hour digit.
Ten hour digit.
One day digit.
Ten day digit.
One nmonth digit.
Ten nonth digit.
One year digit.

unsigned char yearl0; Ten year digit.
unsigned char wk; Day of the week.
}TIM;
int rtcl rd

Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret O on success and returns 1 in case of etrcn, as
the clock failing to respond.

Void rtcl _init
Arguments. char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tagekday, yearl0, yearl, month10, monthl, day10ldapurlO,
hourl, minute10, minutel, second10, secondZ,

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsigned char t[14] ={5,9,8,0,6,0,5, 1, 3, 55,30}

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applieatibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delay0
Arguments. unsigned int t
Return value: none

This function is just a simple software loop. Tawual time that it waits depends on processordspse
well as interrupt latency. The code is functiop&dientical to:

while(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.

4-8

CAN-Engine Chapter 4: Software

void delay_ms
Arguments. unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoafp
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crcl6
Arguments. unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedofor
any reason. Depending on the current hardwardgroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgetyin the header filser0.h andser1.h in the directory
tern\186\include

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P softwares kdr communication with the PC. As a result, you
will not be able to debug code directly written $arial port 0.

Two asynchronous serial ports are integrated inAmd86ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can wpata maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggtion download/debugging in Step One and Step
Two. We will use SERL1 as the example in the follaywiliscussion; any of the interface functions wisdoh
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial port dse,
please realize that some pins might be shared atliter peripheral functions. This means that irager
limited cases, it might not be possible to useréageserial port with other on-board controllendtions.

For details, you should see both chapter 10 of Ahel86ES Microprocessor User's Manual and the
schematic of the CAN-Engine provided on the CDhietern_docs\schs directory.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Iofléhe processor frequency.

The following table shows the function argumentattbhxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systenk.cloc

Function Argument | Baud Rate

110
150
300
600
1200
2400

O 0T WN PP

4-9

Chapter 4: Software CAN-Engine

Function Argument | Baud Rate

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1_init() , SER1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,serl_in_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAL1 operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status witérhit1() and
take out the data from the buffer wigktserl() , if any. The input buffer is used as a circulagrbuffer,

as shown in Figure 4.1. However, the transmit djm@ras interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy J
[T T]

1 |

Figure 4.1 Circular ring input buffer

The input buffer ipuf), buffer size isz), and baud ratebfud) are specified by the user wish_init()

with a default mode of 8-bit, 1 stop bit, no parifter s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRegister
(SPOCT/SP1CT) if necessary, as described in chdfterf the Am186ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andhp@sffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wietserl() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4<Ber
will be able to store data for approximately foacends without overwrite.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for récgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhit1() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates data is available in the buffer.

4-10

CAN-Engine Chapter 4: Software

You can usgetserl() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after eveggtserl() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalyardware reset @l close() can stop this
receiving operation.

For transmission, you can ugeitserl() to send out a byte, or ugmtsersl() to transmit a
character string. You can put data into the trahsimg buffer,s1 _out buf , at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthasiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othase, it will
continue to take out the data from the out bufferd transmit. After you cajputserl() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample prograrserl_0.c demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘' charadte‘?’. The translated HEX file is then transtedt out
of SERO. This sample program can be foungtin\186\samples\ae

Softwar e I nterface
Before using the serial ports, they must be inzéd.

There is a data structure containing importanias@ort state information that is passed as argtitoethe
TERN library interface functions. TheOM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufind associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eitheor
ser0 can be replaced witsl or ser1, for example. Each serial port should use its @@M structure, as
defined inae.h.

typedef struct {
unsigned char ready; /* TRUE when ready * /
unsigned char baud;
unsigned char mode;
unsigned char iflag; /* interrupt status * /
unsigned char *in_buf; [* Input buffer */
int in_tail; /* Input buffer TAIL ptr */
int in_head; /* Input buffer HEAD ptr */
int in_size; [* Input buffer size */
int in_crent; /* Input <CR> count */
unsigned char in_mt; /* Input buffer FL AG */
unsigned char in_full; [* input buffer fu I/
unsigned char *out_buf; /* Output buffer * /
int out_tail; /* Output buffer TAIL ptr */
int out_head,; /* Output buffer HEAD ptr */

int out_size; /* Output buffer size */

unsigned char out_full; /* Output buffer F LAG */
unsigned char out_mt; [* Output buffer MT */
unsigned char tmso; // transmit macro service oper ation

unsigned char rts;

unsigned char dtr;

unsigned char en485;

unsigned char err;

unsigned char node;

unsigned char cr; /* scc CR register */

4-11

Chapter 4: Software CAN-Engine
unsigned char slave;
unsigned int in_segm; /* input buffer segmen t*
unsigned int in_offs; * input buffer offset */
unsigned int out_segm; [* output buffer segm ent */
unsigned int out_offs; [* output buffer offs et*/
unsigned char byte_delay; /* V25 macro service byt e delay */

} COM

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz,igned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value show
in Table 4.1. Argumenit®uf andisiz specify the input-data buffer, aebuf andosiz specify the location
and size of the transmit ring buffer.

=)

The serial ports are initialized for 8-bit, 1 staip and no parity communication.

There are a couple different functions used fangmaission of data. You can place data within thigat
buffer manually, incrementing the head and taifdrupointers appropriately. If you do not call arfethe
following functions, however, the driver interrufar the appropriate serial-port will be disablechieh
means that no values will be transmitted. Thisved| you to control when you wish the transmissibdaia
within the outbound buffer to begin. Once the linipts are enabled, it is dangerous to manipulage t
values of the outbound buffer, as well as the \abfehe buffer pointer.

putsern
Arguments. unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate Sepiart. The return value
returns one in case of success, and zero in aey o#ise.

putsersn
Arguments. char* str, COM *c
Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferser hitn() should be called befor
trying to retrieve data.

Y%

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.
getsern
Arguments. COM *c

Return value: unsigned char value

This function returns the current byte frem in_buf, and increments thie_tail pointer. Once again, this
function assumes thagrhitn has been called, and that there is a characteemirgsthe buffer.

4-12

CAN-Engine Chapter 4: Software

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffeir with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callgabser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedthdouffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means thaxetimight actually be multiple null charactershia byte
array, and the returna@lue is the only definite indicator of the number otdésyread. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yowheck and set the value of these I/O pins appatepfor
whatever form of flow control you wish to implemerBefore using these functions, you should onaérag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to the Am186ES User's Manual.

char sn_cts(void)
Retrieves value oETS pin.

void sn_rts(char b)
Sets the value ®®TStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset efau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délmenhardware as well as disabling the interrupt.

clean_sern
Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial 1/0O ports available orAmA86ES Processor have many other features thait mig
be useful for your application. If you are truhtérested in having more control, please read @ndyft of
the AM186ES manual for a detailed discussion oéofbatures available to you.

4-13

Chapter 4: Software CAN-Engine

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM4C04 provided on-board allows easy storage of nontilelgprogram
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite stmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use sptifi for this purpose.

Addresse$x00 to Ox1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, jump address for Ske, and other data that is of a more permanenteat

The rest of the EEPROM memory spa@e0 to Ox1ff, is available for your application use.

ee wr
Arguments:. int addr, unsigned char dat
Return value: int status

This function is used to write the passedlat to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:. int addr
Return value: int data

This function returns one byte of data from thec#fjeel address.

4.5 Controller-Area-Network (CAN) Interface

The CAN-Engine optionally provides the Philips S080 stand-alone CAN controller. This controller
allows the CAN-E to communicate over a Controllee#& Network, a popular protocol and bus standard fo
microcontroller communication.

BACKGROUND

Controllers communicate over a CAN network usiragfes, at a specified baud rate. Controllers cad se
and receive equally on the CAN network, with thelenying chipset handling collision detection aratio
buffering.

In simplified form, each transmitted frame consgstsnarily of:
- Recipient address (11-bits);
- Data bytes (0-8 bytes);
- Protocol information (CRC consistency, and oth¢s vidicating frame properties).

A controller initializes the CAN chipset by defigithe class of messages it wants to receive. iShisne

by defining an 8-bit address value as well as &it 8&ask. The masked address value is used to ax@mp
to the highest 8-bits of all incoming frames; gfyatig frames are received and inserted into a bdiffethe
application to handle. Unlike many other netwogkschemes, frames travelling on a CAN bus do not
identify who the sender is, and does not necegsadicate a specific recipient.

Transmitted and received packets are buffered inotie hardware chipset (up to 64 bytes), as veetha
interrupt-driven TERN firmware drivers (buffer sidefined by application).

TERN firmware drivers are configured to use the BI30 in BasicCAN mode only. More advanced
features may be available by directly accessingSha1000’s control registers. The datasheet fer th
SJA1000 may be found on the TERN development Ciheardirectonjtern_docs\parts.

4-14

CAN-Engine Chapter 4: Software

SOFTWARE INTERFACE
The CAN driver software interface is shown in tleadier file\ter n\186\include\can.h.

The library file for the CANE implementation islatation:\ter n\186\lib\can.lib, and
\tern\186\lib\large\can_|.lib.

CAN messages are defined using this CanMsg stei¢similar to SJA1000 hardware representation):

typedef struct _can_msg {
UCHARS descriptor[2];
UCHARS data[8];

} CanMsg;

The two-byte descriptor field consists of mesdayéll bits), Remote-Transmission-Request/RTR (tag
bit), and Data Length Code/DLC value (4 bits). Jénéields can be accessed on a message using thed
macros defined igan.h:

SET_CAN_MSG_ID(msg, val)
READ_CAN_MSG_ID(msg)
SET_CAN_MSG_RTR(msg, val)
READ_CAN_MSG_RTR(msg)
SET_CAN_MSG_DLC(msg, val)
READ_CAN_MSG_DLC(msg)

TERN firmware drivers use a ring-buffer to storessages for transmit and receipt. The overall
mechanism is similar to standard serial port imgetation (see section 4.1). The best sample
demonstrating these functions is: \tern\186\saswé@me\can_echo.c

int can_set_hw
Arguments: unsi gned char board_type
Return values: none

This function configures the CAN port accordinghe architecture of your board. This function ddcae
called first, before any other CAN function is assed. Availabléoard_type values are defined in
can.h. If this call is not accurate, the CAN port can he accessed.

For the CAN-Engine, this call should read:
can_set_ hw(BOARD_CANE);

int can_init

Arguments: unsi gned char baud, CanMsg* inputBuf, int iSize, CanMsg*
out put Buf, int 0Size, unsigned char address, unsigned char nask
Return values: 0 for success, non-zero error code.

This function is used to initialize message busfiegpport for the CAN port.

Baud - specifies the baud rate to be used for commtinitgasupported values are defineccam.h. These
include: 1MHz, 500KHz, 250KHz, 125KHz, 100KHz, 50KH0KHz, and 10KHzNote: at higher baud
rates, termination resistors may be required onrybiRN board for clean transmit and receive.

inputBuf , iSize - these variables represent the ring-buffer alextéor receiving messages.
inputBuf should be a CanMsg array, whif#ze indicates the size of the array. TERN drivers imject
messages into this array on an interrupt-driveisbas

4-15

Chapter 4: Software CAN-Engine

outputBuf, oSize — similar to above; these variables represent tigguffer allocated for buffering
messages to be transmitted.

address , mask — these two byte values are used to determininghwimessages transmitted on the
CAN network should be “received”. For all messadglesmask value and the first 8-bits of the message
address are AND’ed together, and then compareuetaddr ess value.

void can_transceiver_enable
Arguments: unsi gned char enabl e
Return values: none

After software drivers have been enabled, the CraNgceiver must still be enabled using a digitébou
pin. Once the transceiver is enabled, the pofth&ilconnected to the CAN bus, and able to
transmit/receive messages.

On the CAN-EnNgine, the transceiver is controllethg SER1 RTS pin:.
sl rts(0); // RTS1 low - enable

void can_hit
Arguments: none
Return value: non-zer o if packet received if receive buffer is empty

Use this function to determine whether a packetieesn received and buffered. Call this functiofoiee
calling can_get() to retrieve actual message.

void can_get
Arguments: CanMsg* nessage
Return value: none

This function is used to retrieve a CAN messagey afan_hit() has already been called. The argtmen
should be a pointer to a separately alloc&adM sg variable. The next message in the receive bufiiér
be copied into this variabléNote: Make suremessagepoints to an allocated area of memory!

void can_put
Arguments: CanMsg* nessage
Return values: none.

This function addsessage to the transmit buffer. Messages in the transniitelo are sent on a FIFO
basis.

void can_flush
Arguments: none
Return values: none.

This function can be used to make sure the trartsuffér does not over-flow. It will not return ulrell
currently buffered messages are fully transmitéex] the transmit buffer is completely empty.

4-16

CAN-Engine Chapter 4: Software

4.6 12CHIP TCP/IP MODULE

4.6.1Background

The 12CHIP TCP/IP module from Wiznet provides adware implementation of the TCP/UDP IP
protocol stack. The module allows for vastly imggd network performance by offloading time-consignin
network management code to hardware. Detailed dentation for the module is available from Wiznet or
on your TERN development CD.

The I2CHIP module is mapped directly into processemory space for better performance. The direct
mapping location, as well as the size of the mampete can differ from controller to controller. hgw
working with different TERN controllers enabled ithe I2CHIP module, you must select the proper
#define statements to describe your hardware canafigpn. See section 4.6.5 below for more details

4.6.212Chip Summary

The I12CHIP module allows a total of 4 simultanesoskets. Each socket can be configured for TCP,
UDP, as well as lower-level raw IP packet modesie $ockets can also be configured for a 'listewese
socket, or as a client socket. The module allowsaftotal of 8 KB of packet RECEIVE memory buffer,
and 8 KB of packet TRANSMIT buffer across all 4 kets.

The buffers are mapped directly into the processneémory, meaning they can be accessed directly &o
pointer. The existing driver code sits on top of themory layer and provides easier interfaces i th
underlying data.

The user application has full ability to set moai®) meaningful TCP/UDP/IP flags, ranging from the
obvious (port/address), to the less obvious (timegtions). The provided drivers should work cotie
under both small AND large memory model compilagion

The module is interrupt-driven, and updates eadketoas needed when the state of the connection
changes. Available socket states include all T@ERs CLOSED, SYNSENT, SYNACK, SYNRECYV,
CLOSE_WAIT1, CLOSE_WAIT2, etc...).

4.6.3Network Initialization

The first step is to configure your board with greper network settings.

1. You will need to connect a standard Ethernet calite RJ45 connector to your local area
network.

2. Determine your network settings. Ask your netwadministrator, or, on a Windows PC
connected to the same local area network (througlbaor switch), and run ‘ipconfig’ inside a
DOS window.

The results will show three sets of values (sample shown here):
IP Address ... :192.168.2.50
Subnet Mask ... : 255.255.255.0
Default gateway : 192.168.2.1

3. Your C-Eye controller should be set to use the stubmask and default gateway shown here.
In the sample code, these values are in thesetatioaly-defined arrays:

u_char GatewayAddress|] = {192, 168, 2, 1};
u_char SubMask]] = {255, 255, 255, 0};

4-17

Chapter 4: Software CAN-Engine

You need to select another IP address on the sabmetsas your PC. This means the first 3
values will be the same as your PC's address ialtbge example; the last digit needs to be
different from any other device on your subnet.

For example, we choose: 192.168.2.206. (192.168&2emains the same.)
This value should also be set statically, as below:
u_char ControllerTcpAddress[] = {192, 168, 2, 206},

The MAC address needs to be unique from any otheiced on the subnet. If you're using
multiple C-Eye's on the same network, connectedh&o same hub, make sure they have
different MAC addresses. Contact TERN if you amrking with multiple C-Eyes and would
like our help selecting unique MAC address ranges.

Save the file after making your network changes, lauild this node again (right-click on the
.axe node, and select 'Build node").

4.6.4User Application

The typical user application follows this basic rabd

configure the i2chip module with network paramefdrbyte IP address, 6-byte MAC address, 4-
byte gateway address, 4-byte netmask, and buffecation between the 4 available sockets if
needed); after this is done, the module can alréadyemotely ping'ed at the above address. See
above section for more details.

establish a socket with appropriate type/port patarms (TCP stream server socket on port 80, for
example).

regularly monitor the status of the socket usirg 'select' function as part of the main application
loop. ie. respond to incoming connections, creategoing connections, and read/write data.

4.6.5'i2chip_hw'

Because of the large number of controllers withchtthe i2chip module is used, you must be careful t
define properly the specific hardware you're wogkivith. Expect the 'i2chip_hw' code to be updaieer
time to support newer systems. The documentatidi2éhip_hw.h' has precedence over the architestur
listed in this email.

Each hardware architecture is selected via ‘#deftadements. These are listed below. To setefinéd
value (should be uniform across your entire tanget just in a single .c or .h file):

4-18

right click on the .axe node,
select 'Edit local options',
select ‘Compiler->Defines’,

in this field, all of the relevant #define valudsosld be stored. By default, this should include
__PDREMOTE_(a value informing the complier that you're curhgtebugging the application).
You can add to this to form, for example:PDREMOTE__ ;TERN_186;TERN_P51(186-based
controller on a P51 expansion board).

CAN-Engine

Chapter 4: Software

Supported #define values included:

TERN_186

TERN_RE

TERN_586

TERN_P51

I2CHIP_MMC

TERN_SC
TERN_RL

TERN_CEYE
TERN_EE

186-based A- boards (EE, C-Eye included)
TERN_ST For the Smart-TFT, this must be explicitly defined.
TERN_ST_MMC A version of the ST w/ MM-C expansion board.

All other 186-based boards (RE, RL, RD, RA, RB) wiised with an expansion board.
TERN_RD For the R-Drive, this macros MUST be explicitly ited.
TERN_RL For the R-Engine-L, this macros MUST be explicitifined.

586-based boards, 5E or 5P that relies on expamsaxtule (either P51 or MMC) for
I2CHIP Ethernet. These are accessed through I/@eroaly (I2CHIP_WINDOW _[O).

TERN_5E This must be explicitly defined for the 586-Engbwards. It would
indicate custom-mapping for the 5E hardware (typicequiring
added wires for J4).

TERN_5P This must be explicitly defined for the 586-EngiRédsoard.
TERN_5E This must be explicitly defined for the 586-Driventroller.

Indicates P51 expansion board and ‘windowed' adoe®e memory mapped module;
another macros also needed to indicate the Engiiditecture you're working with.

Indicates MMC expansion board and also ‘windowedéss to module; for the MM-C,
make sure 'i2chip\mmc.c' is also included in younjgxt.

Note: defining TERN_MMC and I12CHIP_MMC have diffete meaning in the
httpd_fs sample code (using CompactFlash filesystem).

[2CHIP_MMC Indicates we should be using MM-C for [2CHIP/Ethetrn
capability.

TERN_MMC Indicates we should also be using MM-C for filesyst

For the SensorCore/R-Engine-L controllers, implyindirect mapping at 0x80000 with
‘even byte' only shifted addressing.

For the EE/CEye controller, implying direct mappatgOx80000 (if no expansion board
used).

The TERN SCA also fits in this category; define TEFEE when working with the
TERN SCA.

4-19

Chapter 4: Software CAN-Engine

TERN_EL For the Ethernet-LCD (EL) controller, implying wioded access at 0x80000 with 186-
based processor.
TERN_5D For the 586-Drive, or other 586-based devicesubas DIRECT memory mapping.

Also, be very aware that every board requires fardifit runtime library. When working with the 18&ded
boards (EE, C-Eye), you should be compiling withlie'. When working with the R- series of boa(R&,
RL, SC), you should be compiling with 're.lib'".

4.6.6 Sample Code

Wiznet provides a variety of generic TCP/UDP/IP plamapplications, including FTP, DHCP, SMTP, etc.

TERN has ported a few of these over specific totB&N platform, and expanded them by adding support
to TERN peripherals (like the CF-based FAT16 fikteyn). These samples are described below.

4.6.7 Testing

As you download and test the code below, you chovidwo basic steps for testing:

1) make sure you can "ping" the board. From a PCiéacan the same LAN subnet, open a
DOS command prompt window. In this window, run dmenmand 'ping XXX.XXX.XXX.XXX'
(where xxx.... corresponds to the address of ymoaird, such as 192.168.2.205).

2) for the HTTP server code, you can open up InteEhgilorer and open up the URL:
http://192.168.2.205

3) for generic TCP server code, you can open up atatiennection. On Windows PCs, you
can type the command 'telnet xXxX.Xxx.xxx.xxx ygrfr any DOS command prompt (xxx =
board address, yy = port number). You can alscauerd-party Telnet application, like
the excellent CRT available from VanDyke.com fax Hame purpose.

4.6.8 Code Arrangement

NOTE: Within the i2chip sample project, for convemie we have created a "i2chip_src" [SourcePool].
This node contains the files common to all i2Zchgsdxd applications. The applications (.axe) nodekis
directory all refer "indirectly" to this SourcePodindicated by BOLD letters). Within your own
application, you need to add the same files irsth&ce poolgocket.c, i2chip_hw.c) to your own
.axe node.

4.6.81 186-BASED BOARDS
For 186-based boards, your project is in the ptajem\186\samples\i2chip\i2chip.ide.

4-20

CAN-Engine Chapter 4: Software

httpd_fs

(httpd_fs_u.axe , andhttpd_fs_r.axe for different hardware platforms: the EE40, and RE +
P51 expansion board respectively)

This sample layers a simple http daemon serveropnof the i2chip module, and the TERN FAT16
filesystem. For details on the TERN FAT16 filesysie see: \tern\186\includelfileio.h, and
\tern\186\samples\flashcore\readme.txt.

Relevant files are:

-httpd.c , the main application + request handling code. fitipd prepares 3 server sockets
(each with 2 KB tx/rx buffers), all on standard {p86. Incoming requests are parsed (only GET
requests are handled at this point). Once the stdsi@rocessed by locating the proper data (o
error response is set), the appropriate HTTP heatercreated, and the data is finally sent out th
socket.

-httpd_fs.c , this file translates the request into filesysteemavior. Based on path, the right
subdirectory is found, and the file located/load@then the request is finalized, the file is closed.
(Depending on the desired behavior, it might beeféasfficient to create a filesystem "cache” to
load frequently read files... rather than openilugiog the same file every time a request is
processed.)

Note that you might need to add additional filesgsspecific #defines, in order for httpd_fs.c tecgie
correctly. Familiarize yourself with filesytem aodby looking at: samples\flashcore\readme.txtyels as
other samples relevant to your platform.

Common options requiredERN_16_BIT (for boards with integrated 16-bit CF interfaceess)

FS_NO_DMAO (if DMA use not advised)

- socket. c, implementation of the socket abstraction forigtehip module. Required for any
user application using i2 chip module.

Functions are defimetsocket.h’,

- i2chip_hw.c, the relevant hardware description file; require &y user application using
i2chip module.
- ae.lib, used for A- family of boards (includingetiE, C-Eye)
OR re.lib, used for R- family of boards (including RL, RD
- filesy16.lib, necessary libraries for filesystem access.
- mm16.lib,
- heapsize.c, define heap needed for dynamic allocation; usefs.

4-21

Chapter 4: Software CAN-Engine

tcp_client.

This sample provides for a simple RS232-based Ti>c A 115200 baud, N81 serial connection is
opened on SER1 with a simple menu based inter&geported commands include:

-'c (for establishing a new connection to a remote TCP server),
-7 (for listing local network configuration),
- 'w (to begin sending/receiving data over the newly cre ated

connection).

The relevant files are:

- tcp_client.c, the user application which connects serial<->TCR.da
- socket.c, socket implementation, as above.
- i2chip_hw.c, hardware interfacce, as above.
- ae.lib, library for A/R- family of boards, as above.
OR re.lib
tcp_echo

This sample provides for a simple TCP echo sermet ports: 4000, 4001, 4002, 4003. The 4 sockets a
established to listen to each of the 4 ports.

When a conection is established, the program m@nitocoming data. Any data that is received is
immediately sent back out the same port.

The relevant files are:

- tcp_echo.c, the user application which echoes incoming TCR.dat
- socket.c, socket implementation, as above.
- i2chip_hw.c, hardware interfacce, as above.
- ae.lib, library for A/R- family of boards, as al®
ORre.lib

4-22

CAN-Engine Chapter 4: Software

io_ping
This very basic sample is only useful for the nagecdntinued I2CHIP, bus-based expansion board.

httpd_img

For customers using the C-Eye controller, a HT TBeddadaemon serving up bitmap images is available ir
the samples\ceye\ directory.

http_adc

This sample responds to any incoming TCP connegtionport 80) by serving up a basic HTML page,
with the contents of some hypothetical ADC caldala.

The main .c file littp_adc.c) defines the HTML return definitions near the tifithe program. It relies
on two generic "adc" functions which the user @program to provide actual ADC data:

void adc_init(void);
UINT16 adc_rd(UCHARS channel);

Related files:

- socket.c, socket implementation, as above.

- i2chip_hw.c, hardware interfacce, as above.

- ae.lib, library for A/R- family of boards, above.
ORre.lib

dhcp_ip

This sample program demonstrates how to interfae DHCP server, in order to dynamically set IRelev
addresses. Instead of statically setting yourd@ess, your controller can now query a LAN-bassrder
to determine IP address, netmask, and gatewayssldre

Related Files:

- socket.c, i2chip_hw.c, as above.
- .\utils\system_timer.c,

This simple software timer library makes it eas@ido simple "timed" tasks. We use it for some BHC
behavior, and it may be useful to you in your priyrapplication as well. For details, see systemetih.

Note that in order to ussystem_timer.c, you may need to defifEERN_186 or TERN_586.

4-23

Chapter 4: Software CAN-Engine

4.6.8.2 586-BASED BOARDS
For 586-based boards, your project is the file:
\tern\586\samples\i2chip\586_io.ide

The same samples as above are duplicated. Plef@seta above comments for more details about basi
implementation.

Related files include:

- socket.c, socket implementation, as above.

-i2chip_hw.c, hardware interface, as above.

- 586.lib, 586-based system library.

- filesy16.lib, for integrated CompactFlash on 586-Engine-P/6Bxds.
filesys.lib, for expansion CompactFlash on MM-C or FC-0 egan boards.

- mm16.lib, for integrated CompactFlash on 5P/5D boards.
mma.lib, for expansion CompactFlash on MM-C or FC-0 exgan boards.

- i2chip\mmc.c, for accessing MM-C page/window modes.

4.6.9Version info

- Version 1.00: Initial release of this sample set.

- Version 1.1: Addindittpd_img , andhttp_adc to this sample set.
- Version 1.11: Adding RD and RL notes.

- Version 1.2: Added 586-based versions for boti®/and P51.

- Version 1.21: Added 586-Drive direct memory.

4-24

CAN-Engine Layout CAN-Engine

CAN-Engine L ayout

All dimensions are in inches.

3.367, 2.175 3.575, 2.333
0.483, 2.267 1.233, 2.267
3.183, 2.217

0.333, 2.217
BI1AR ' |

RDC
REB20
0221-0-L0
BU-FF20T

0.175, 0.275

CompactFlash®

, 0.125

Wow W e

0.117

2408,0058 442, 0125
1.433,0.075

LopF AL2 vee J1 Uil CFB
x2|:|x1 GND 40 o 39 vocP VCC 1~ o 2 GO 1 D oo b8
6 7 P4 38 3 CO_.7 P14 3 5 o4 ok 2] 5P D1 pa7
MHZ / CTS0 36 3 S 35 F6 52 b D 3] 5 Dpis 28
TXDO 3 33 /1 NT4 =) 29
2 2 81 Trrsl Vo9 R ST0 b1 5| D5 D13 35
22 5 o— NOEES & o313 DL D6 Di4
P5_30 20 PL PR_T1 8 g 12 D2 6| 00 Dbie 52
Jo XL 28 2 O 57 TRrso D513 7 P e B2
vee [RXDL 26 <2 925 /RST 15 8| Worver 33
I P22 23 P15 RST 17 ol PSS v
V33 /| CTST 22 21 /INT3 P1619 D6 10 (35
d3 < o= A9 VRS2
PO__ 20 9 INT2 Di421 22 D7 11 36
. HDRS3 P25 18 Q S i7 s 3233 §2) 12| A8 LI IST
0[9[9|9]9|919(9]9|9|9|8|8l8| 8[8|8|8|8[8|8| 7| 7|7z w A g 2 Dlz%o SE f %VOC VOC%
019|8{7/6/5|4|3|2(1|0[9|8| 7|6/5(4]3] 2|7]0] 98| 7|6 S Ae /oS-
1 P13 VR 29 30 A5 15] e \ss [40
9 [RD31 32 _Ad 16 241
PPPPPP/ GPPYPPGPPVPP/ / | | Pl o O 281 RsT
111110RN22C11N11C32LUNN3N 7 /NM 11 33 34 A3 17 a2
2310 SD54C67DESC "CGCTT1l 5 10 35 8 g 36 A2 i A S o
—L A T SS017 35, |75 3 P29 37 3 3 38 Al 7191 % Reo 44
—2] Acs P15 (11 1 39 5 6 AQ 2—2? A0 BVZ (I3
—5 ADL / MCSO |5 brD40 J2 53 D0 BVI |52
5] R® PS 7 Uz RAMA4 23| D8rag
6] A2 P4 75— 1 44 24|22 D9r7e-
—>1 AoLo Mo —5{ A0 A5 (o3 S W D10 {25
—&1 ADS P6 (22— —S{AL A4 RS- co2 aNp 22—
—9] A1 HOLD 57— S = UL 29F8
TI0] Aoz Hrve 65 Sl o AT —1lms a6 48
11 AMLBSET 65 6 39 2 47
12| 8 B [ea- v JAS A 5|t Y ras
—5{ap G\D 22~ e —4 Al3 QD S
131 a3 AMLBSET A0 183 —5{D1 D14 |35 —&{ Al2 DI5 (>
e Ry o 6 o2 B3 6l A o @
—T&] Ve vCC 25— —I1{D3 D12 |53 —S A0 D14 (55—
mvalves A2 59~ 1o Yee G0 a3 B DT
vy 3 [s8- el e v 9|8 Plirao
19| AES el v a3 B ol N BB
—20] 32 > me 5% PLorso i v B
—21] 728 A8 - TelX Bre TIz| R BT
—2z| ot AT [5a- o b, e 15|/ RST VC 55—
23| BL A AR TIs | YR N e 14| NS DLliss—
241 poo Ao B G\D_ | RE 19 (26 15 (34—
25| BO0Rra A 10 51 208 Al 16| RC PO 33
—| TXDOTD, | AR/ [/ G VCCGAAVAAAAAALL 4 3 Sl A7 A0S T N\C D2 35—
SEWRLDSSSNXXCKKN11C111111 87 7 57148 A9 53— —Ig] A7 D9 37—
ONRDEY210D12 CABD38C765432 —£51 A6 AL7 == —Tol A7 DL 55—
2|2(2l213|313]3|3|3]3]|3|3] A/IAAAI/IAA/IAS G\ND 1 Aéé}\l,\li\lEE,\llNlNER ﬂﬁg %A
6| 7|8(5[0| 1| 2[3|2{5{6| 7|8[o|o| 1] 2| 3| 4{5{6| 7|8[9|0 AV__ 2] Ay AAAFEBBB v 211 e 28
P12 3 IN2AB2NI a\D 22 27
G 4] 29 PD RST 23]A2 GDI55
| BYTE RST S5 —4 A2 ICE g
5ol AB cs £3 24 A1 A0 22
a1 b RD
ap 8] MU Ex JP1 JP2
D091 3 DS 5 V33 1 2 /INT4 aND [~ 5|, /RST
RO 1 10] D14 4 IR 3 4 [RD —qd3 2p—SO
Voo AV 1l 5p o D 3 3 P14 A RST_ A
an 2 G G 3 2 A4 9 P—ab aw 4 c—
c20 c21 o1 cs DHDDDNODNDD 2 LA AL3 78
A . A 4567DVVD8 901 125 9 10 A2 —d9 10—
Ak kR Hhk AD7655 oo g4I PTA a1 an
RN1 111{1)1)1{1/1{2]2|2]2|2 AD7655 AB1 1 2 AB2 uo 13 14 A7 DL 13 14 DO
3 6/7]8[9)10|1(2] 6 —_——— O——= 15 16 ==——-(d 15 16 0——F~>
u7 D4 P12 1l vgl_8 VB A 1 A5 03 1518 D2
i 0 vee -8 vee D5 AL S o o 4 AR P26 221G gy | L VCC 4 19 20 A3 19 20 [o
2] a1 W |7 _G\D D6 P29 3| p “&l 6 G A2 31 92 Al o7 21 22 b D6
31 a2 sa [SFZ G 5 5 o 6 REF —4lpo val- > VA A0 23 24 SO S0 _§2324 03
VSS SDA HDRDG CTCTAa —d 25 26 p—Y35 —d 25 26 b—
AOTS [—d 2728 pb— —d 27 28 pb—
Ue FD28 FD28
VBAT 1 |16 wa uoo T2
VRAM 2| VB, RS 15/ reT A5 1l vy b5 /CAN LM7805
VCC 3| v oo 10K Yok A6 215 vi /AD Ve
GND 4| &5 el [A3 /LCS RN10SL B1 A7 3| ¢ N R AeY, 12V 1 3
Ve
5] 5on GEO [1Z T RAM T2 va u14 v5 prz_/rstc
6170 vor AL <]_1 [cVoREN s va BE_ G
7l o8 pPo [0 7WM gy VCC + |3 vBAT V33 2] "RZ| 4 vs3 IRST 6| e pLO_
—81oss prI [—2PE voc 3]y o[el P17, 49 @A Y6 p—2— 2
o BTHL C11 1 52 ®B Y7 b LCF GN\D +VI AR _12v
VA BB1117 P <
V) vee @ou: g ui7 Yoo 74HC138 LMr805
/INT4 1 _49 Cl+ 1 | 16 Cl+ LMB40
INTa_2] 78 Y3 rsT wo 173 o 2 pi2 Ve 2] S VSO ey Tle] v
[1INT3 3 2 _RST 32K XTAL3 uis Cl- 3 4/ TXDL Ci8
N3 4] 25 8Y [TI7rinro X6 X5 1 8 V4 o+ 4| & 110 TRXDL Cl- STE
T 5125 20 TNTO R1G L1 _||:||—X6 2| S VEp TN S 5| S RLMomor ©F e\ Title
613y 1A [INT1 VCC LC 2R p12 VOFE 3] p“gcp 6 P12 V- 6] v, Tir [ALIxXD1 ¢zl c19 CAN- ENG NE
QD71 4y 8 LNTI 680 Hospapr>Pll [IX0 7} 50 15 (20T T T
LED / RXDO 8 9 RXDO c2- V- Si ze |[Docunment Nunber REV]
7ARCIA 05133 Rzl RO 5 CANE. M SCH
VAX232D -M
Date: February 29, 2008][Sheet 1 of

