
C/C++ EV/DV Software Kit
for

TERN 16-bit Embedded Microcontrollers

Technical Manual

 TERN, Inc. All Rights Reserved.
Portions  Borland International. All Rights Reserved.

Portions  Paradigm Systems. All Rights Reserved.

1724 Picasso Avenue, Suite A, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: sales@tern.com http://www.tern.com

COPYRIGHT

A-Engine, A-Core, V25-Engine are trademarks of TERN, Inc.
LOC31, TD31, BC31, TDREM-xx, EV, and DV are trademarks of TERN, Inc.

V25 is a Trademark of NEC Corporation.
Am188ES is a Trademark of Advanced Micro Devices, Inc.

Borland C++ 3.1 and Turbo Debugger are trademarks of Borland International.
Microsoft, MS-DOS and Windows 3.1, Windows 95, and Windows 98 are trademarks of

Microsoft Corporation.
Intel and 386EX are trademarks of Intel Corporation.

Version 2.00

July 15, 1998

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1997-1998
1724 Picasso Avenue, Suite A, Davis, CA 95616, USA

Tel: 530 758 0180 Fax: 530 758 0181
Internet Email: tern@netcom.com http://www.tern.com

Important Notice

TERN is developing complex high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices or systems or other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.

TERN reserves the right to make changes and improvements to its products
without providing notice.

TERN will be responsible for technical support of this kit, NOT Borland. Do not contact
Borland International for technical support assistance.

i

By installing the software on the floppy diskettes, you are signifying that you agree with the terms of the following end-
user license:

LICENSE STATEMENT AND LIMITED WARRANTY FOR BORLAND PRODUCTS

Borland grants you the right to use this Borland software product (“Software”), including Borland on-line documentation
(“Documentation”), in the manner provided below.

This Software is owned by Borland or its suppliers and is protected by copyright law and international copyright treaty.
Therefore, you must treat this Software like any other copyrighted material (e.g., a book), except that you may either make one
copy of the Software solely for backup or archival purposes or transfer the Software to a single hard disk provided you keep the
original solely for backup or archival purposes.

Though Borland does not offer technical support for the Software, they welcome your feedback.

You may transfer the Software and Documentation on a permanent basis provided you retain no copies and the recipient agrees to
the terms of this license statement. Except as provided in this statement, you may not transfer, rent, lease, land, copy, modify,
translate, sublicense, time-share or electronically transmit or receive the Software, media or Documentation. You acknowledge
that the Software in source code form remains a confidential trade secret of Borland and/or its suppliers and therefore you agree
not to modify the Software or attempt to decipher, decompile, disassemble or reverse engineer the Software, except to the extent
applicable laws specifically prohibit such restriction.

If you have purchased an upgrade version of the Software, it constitutes a single product with the Borland software that you
upgraded. You may use or transfer the upgrade version of the Software only in accordance with this license statement.

This Software is subject to U.S. Commerce Department export restrictions, and is intended for use in the country into which
Borland sold it (or in the EEC, if sold into the EEC).

GENERAL TERMS THAT APPLY TO COMPILED PROGRAMS AND
REDISTRIBUTABLES
You may write and compile your own application programs using the Software, including any libraries and source code included
for such purpose with the Software. You may reproduce and distribute, in executable form only, programs which you create
using the Software without additional license or fees, subject to all of the conditions in this statement.

Borland products may include certain files (“Redistributables”) intended for distribution by you to the users of programs you
create. The Redistributables for the Software, if any, are only those files specifically designated as such by Borland in the
Documentation included with the Software. From time to time, Borland may designate other files as Redistributables. You
should refer to the Documentation, including any “readme” or “deploy” files included with the Software, for additional
information.

Subject to all of the conditions in this statement, you may reproduce and distribute exact copies of the Redistributables, provided
that such copies are made from the original copy of the Software or the copy transferred to the single hard disk. Copies of
Redistributables may only be distributed with and for the sole purpose of executing application programs permitted under this
statement that you have created using the Software. Under no circumstances may any copies of Redistributables be distributed
separately. You may not reproduce or distribute any Documentation without Borland’s permission.

The license granted in this statement for you to create your own compiled programs and distribute your programs and the
Redistributables (if any) is subject to all of the following conditions: (i) all copies of the programs you create must bear a valid
copyright notice, either your own or the Borland copyright notice that appears on the Software; (ii) you may not remove or alter
any Borland copyright, trademark or other proprietary rights notice contained in any portion of Borland libraries, source code,
Redistributables or other files that bear such a notice; (iii) Borland provides no warranty at all to any person, other than the
Limited Warranty provided to the original purchaser of the Software, and you will remain solely responsible to anyone receiving
your programs for support, service, upgrades, or technical or other assistance, and such recipients will have no right to contact
Borland for such services or assistance; (iv) you will indemnify and hold Borland, its related companies and its suppliers
harmless from and against any claims or liabilities arising out of the use, reproduction or distribution of your programs; (v) your
programs must be written using a licensed, registered copy of the Software; (vi) your programs may not be merely a set or subset
of any of the libraries, code, Redistributables or other files of the Software; and (vii) you may not use Borland’s or any of its
suppliers’ names, logos, or trademarks to market your programs, except to state that your program was written using the
Software.

ii

All Borland libraries, source code, Redistributables and other files remain Borland’s exclusive property. Regardless of any
modifications that you make, you may not distribute any files (particularly Borland source code and other non-executable files)
except those that Borland has expressly designated as Redistributables. Nothing in this license statement permits you to derive
the source code of files that Borland has provided to you in executable form only, or to reproduce, modify, use, or distribute the
source code of such files. You are not, of course, restricted from distributing source code that is entirely your own. Code that
you generate with a Borland code generator, such as AppExpert, is considered by Borland to be your code.

LIMITED WARRANTY
Except with respect to the Redistributables, which are provided “as is,” without warranty of any kind, the Vendor from whom
you received the Software warrants that the Software media will be free from defects in materials and workmanship, for a period
of ninety (90) days from the date of receipt. Any implied warranties on the Software are limited to ninety (90) days. Some
states/jurisdictions do not allow limitations on duration of an implied warranty, so the above limitation may not apply to you.

Borland’s, its suppliers’, and the Vendor’s entire liability and your exclusive remedy shall be repair or replacement of the
Software media that does not meet the Limited Warranty and which is returned to the Vendor with a copy of your receipt. This
Limited Warranty is void if failure of the Software has resulted from accident, abuse, or misapplication. Any replacement
Software will be warranted for the remainder of the original warranty period or thirty (30) days, whichever is longer. Outside the
United States, neither these remedies nor any product support services offered by Borland are available without proof of purchase
from an authorized non-U.S. source.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, BORLAND AND ITS SUPPLIERS DISCLAIM ALL
OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH REGARD TO THE
SOFTWARE AND THE ACCOMPANYING DOCUMENTATION. THIS LIMITED WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS. YOU MAY HAVE OTHERS, WHICH VARY FROM STATE/JURISDICTION TO
STATE/JURISDICTION.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL BORLAND OR ITS
SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES
FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR ANY
OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THIS BORLAND PRODUCT,
EVEN IF BORLAND HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
STATES/JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATIONOF LIABILITY FOR
CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

HIGH RISK ACTIVITIES
The Software is not fault-tolerant and is not designed, manufactured, or intended for use or resale as on-line control equipment in
hazardous environments requiring fail-safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, direct life support machines, or weapons systems, in which the failure of the Software
could lead directly to death, personal injury, or severe physical or environmental damage (“High Risk Activities”). Borland and
its suppliers specifically disclaim any express or implied warranty of fitness for High Risk Activities.

U.S. GOVERNMENT RESTRICTED RIGHTS
The Software and Documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government
is subject to restrictions as set forth in subparagraphs (c) (1) (ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013 or subparagraphs (c) (1) (ii) of the Commercial Computer Software-Restricted Rights at 48 CFR 52.227-
19, as applicable.

GENERAL PROVISIONS
This statement may only be modified in writing signed by you and an authorized officer of Borland. If any provision of this
statement is found void or unenforceable, the remainder will remain valid and enforceable according to its terms. If any remedy
provided is determined to have failed for its essential purpose, all limitations of liability and exclusions of damages set forth in
the Limited Warranty shall remain in effect.

This statement shall be construed, interpreted, and governed by the laws of the State of California, U.S.A. This statement gives
you specific legal rights; you may have others that vary from state to state and from country to country. Borland reserves all
rights not specifically granted in this statement.

iii

1 TERN EV/DV Software Kit Technical Manual

CHAPTER 1 Introduction 1-1

TERN Controllers and Borland C/C++ 3.11-2
What is in the Evaluation (EV) and Development (DV)
kits? 1-2
Borland Technical Manual/Support1-3

Application Development Process1-4
Step One 1-4
Step Two 1-5
Step Three 1-5

Other Considerations1-7
Using C++ with the TERN development kits1-7
System Requirements1-7
Code Size and Large Model Libraries1-7

CHAPTER 2 Installation 2-1

Before Installing 2-2
Operating Systems2-2
TERN Disks 2-2

Installation Process - Windows 95/98 Version2-3

Installation Process - DOS/Win3.1 Version2-4
Borland Installation 2-4
Evaluation/Development Kit Installation2-5

Follow-up Procedures 2-6
Checking your installation 2-6
Cleaning up your environment2-7

Hardware Installation 2-9

Installation Troubleshooting 2-10

CHAPTER 3 Tutorial 3-1

The Sample Program - LED.C3-2
Step One - Download and Debug3-3

PC Environment 3-3
Step One 3-3
Modifying led.c 3-6
Troubleshooting Step One3-7

TERN EV/DV Software Kit Technical Manual 2

Step Two - Field Test 3-11
Step Two Jump Routine3-11
step2.c 3-12
Troubleshooting Step Two3-12

Step Three: Production (DV Kit Only)3-13
Other programs 3-14

Using TERN Development Kits with other software3-
14
Sample files 3-15

CHAPTER 4 Development and Debugging4-1
Development Batchfiles 4-2

m.bat 4-2
t.bat 4-3

Memory Mapping 4-5
Physical Memory Mapping 4-5
Locate Configuration File 4-5

Makefile Options 4-8
USER_OBJS 4-8
BOARD 4-8
EXTENSION 4-8
MEMCARD 4-9
COMPDIR 4-9
EPROM/SRAM/CPU 4-9
OPTIMIZE 4-9

Optimizing Your Code 4-10

3 TERN EV/DV Software Kit Technical Manual

TERN EV/DV Software Kit Technical Manual 1-1

CHAPTER 1 Introduction

This chapter introduces and familiarizes the user with the motivation behind
the Evaluation/Development Software Kits offered by TERN.

It offers general guidance regarding the application development model that is
recommended for use with TERN controllers, as well as providing an overview
of the unique features offered by the TERN software kits.

Introduction

1-2 TERN EV/DV Software Kit Technical Manual

1.1 TERN Controllers and Borland C/C++ 3.1

C is a popular, high-level language, preferred by many professional programmers,
and is also an excellent choice for your first programming language. A powerful,
flexible, portable, and modular language, C is highly suitable for embedded con-
troller programming.

While many major C compilers in the market are moving to supporting only 32-bit
applications, Borland International has granted TERN a license to reproduce and to
distribute their 16-bit Borland C/C++ 3.1 compiler, in conjunction with the "TERN
16-bit C/C++ Embedded Development Kit" (EV/DV Kit).

Borland C/C++ 3.1 (BC31) is one of the best 16-bit ANSI C compilers available
today. It generates reliable, compact and fast 80x86 code, ideal for TERN's 16-bit
controllers. The BC31 compiler also provides excellent code generation, run-time
libraries, and documentation. The EV/DV kit includes a special version of BC31,
TASM, IDE, and Turbo Remote Debugger (TD31).

Since TERN’s controllers use PC-compatible processors (the NEC V25,
AM188ES, and Intel 386 SX), they are especially easy to program in C with present
software environments.

Technical support is provided by TERN, offering prompt responses and seamless
software/hardware technical advice. You can also use a large number of widely
available PC-based application programs as tools . Since you are not tied to a par-
ticular non-PC-compatible processor, you are free to choose the tools with which
you are most comfortable.

With TERN controllers’ PC-compatible processors, you will find more tools, better
tools, and more cost-effective tools than those available for other embedded con-
trollers. As a result, you do not have to waste your time and money learning other
proprietary embedded tools.

1.1.a What is in the Evaluation (EV) and Development (DV) kits?

The Evaluation Kit (EV) is designed for the first-time buyer who wants to make a
prototype stand-alone unit for demonstration within a limited budget. The EV Kit
allows you to download, remotely debug and run your C/C++ program on TERN
controllers.

Contact TERN technical sup-
port either via email at

tech@tern.com

by phone at

530-758-0180

or by fax at

530-758-0181

We are willing to help you
develop your application.

TERN EV/DV Software Kit Technical Manual 1-3

TERN Controllers and Borland C/C++ 3.1

In addition to the EV Kit features, the C/C++ Development Kit (DV) provides all
the extra support that you will need to generate your own application ROM, and
complete your project with TERN controllers. The DV Kit includes a full version
of LOC31, the program that properly locates the address references in your code.

The DV Kit provides the ability to generate application ROM files for OEM prod-
ucts. TERN will provide extensive technical support for DV Kit owners.

If you find yourself needing the additional capabilities offered by the DV kit, you
can always upgrade from the EV kit at a later time.

1.1.b Borland Technical Manual/Support

The Borland C/C++ Compiler Technical Manual is not included with the software
development kits.

The best source of assistance with the IDE (bc.exe) or with Turbo Debugger
(td.exe) can be found by selecting Help from inside the programs.

If you just need more help with programming in C, you might want to order the C
Programming Starter Kit from SAMS Publishing. This includes an excellent
technical manual titled “Teach Yourself C in 21 Days” as well as the Borland 4.0
Electronic Manual on a CD-ROM.

You can contact SAMS
Publishing for this title at
1-800-428-5331.

ISBN for the C Program-
ming Starter Kit is 0-672-
30996-3.

Introduction

1-4 TERN EV/DV Software Kit Technical Manual

1.2 Application Development Process

The development of your application involve three simple conceptual steps. If you
become acquainted with the overall picture of how to complete your project, it
becomes easier to develop code and communicate regarding your project with the
application engineers at TERN.

FIGURE 1.1 Three Steps of Application Development

1.2.a Step One

The first step consists of application development and real-time remote debugging.

STEP 1 Serial link PC and controller, program in C/C++

Debug C/C++ program with remote debugger

STEP 2 Test controller in the field, away from PC

Application program resides in the battery-backed
SRAM

STEP 3 Produce your own application ROMs

Replace DEBUG ROM; project is complete

TERN EV/DV Software Kit Technical Manual 1-5

Application Development Process

In this step, you can begin to develop your application using the software interfaces
offered by the TERN libraries. TERN has tried to provide sample files that provide
thorough coverage of the components on all of its controllers. Engineers can use
these sample files as guidelines for creating larger applications that conform to your
specifications.

The application development process in this step consists of downloading your
application over a serial RS232 connection from one of the COM-ports available on
the PC to the RS232 port on your controller. This can be done using simplified and
comprehensive makefiles and batch files that are provided as part of the software
development kits. The application can be downloaded directly into SRAM by use
of the DEBUG ROM also provided as part of the software development kits.

Using Borland Turbo Remote Debugger, a full-featured debugger, you can then
remotely debug your application by setting break points, single-stepping, register-
checking, or simply running your application.

The tutorial chapter in this manual describes this first step in great detail.

At the completion of this first step, you should have a fully debugged and running
program.

1.2.b Step Two

Your debugged program can now be tested in the field.

By installing the Step Two jumper, you can choose to run the program that was
downloaded into battery-backed SRAM during Step One at power-up/reboot.

You can now disconnect your controller away from the PC and test it in field condi-
tions. If at any point you need to debug your application or download another, you
can simply return to Step One for further development.

The battery-backed SRAM will actually hold your application for 3-5 years under
normal operation conditions. This is sufficient for certain applications, and they do
not need to proceed to the third step.

1.2.c Step Three

Once you have completed your application testing period, and are confident that it
works the way you wish, you can move on to the production step.

The location of the Step
Two jumper differs based
on the controller.

This and other hardware
details can be found in the
technical manual for the
specific controller itself.

Introduction

1-6 TERN EV/DV Software Kit Technical Manual

If you are dealing with large volumes of controllers, or require a non-volatile
medium for your end-product (i.e. Flash or ROM), you will need to be able to gen-
erate .HEX and .BIN files. Using a standard ROM programmer, you can produce
Flash/ROMs to be placed directly into the TERN ROM socket.

It is also possible to program Flash directly on board the controller through the
serial-port. The ACTF Kit makes it possible to download the generated .HEX file
and place it anywhere in Flash you wish. It then becomes possible to place several
applications in Flash, and to choose to run from a specific address through a simple
menu based interface over the serial-port. For further details regarding the ACTF
Kit, please see the ACTF Kit technical manual.

To generate .HEX and
.BIN files, you will need
to make sure you have the
Development (DV) ver-
sion of the software devel-
opment kits offered by
TERN.

TERN EV/DV Software Kit Technical Manual 1-7

Other Considerations

1.3 Other Considerations

1.3.a Using C++ with the TERN development kits

Borland C/C++ 3.1 is a great compiler for programming in C++ as well. Using an
object-oriented approach in embedded design has many advantages, as it allows
more complex application design with greater code abstraction.

The TERN header files/libraries are written in C, and in order to compile it with
C++, you must #include the header files in a special manner.

You will need to declare the header files as extern “C” . Doing this is a statement
as simple as:

extern “C” {
 #include “ve.h”
}

This allows you to include the same header files as if you were programming in C.

1.3.b System Requirements

You will need to have a working PC with at least one working serial-port. This
means the com-port must be open to applications in DOS, and is currently unused
by any other applications.

If you have an older PC, you also need to be aware that a high speed UART is
needed to communicate at high baud rates. For example, by default, the DEBUG
ROM provided by TERN communicates with the PC at 115,200 baud. On some
older machines, this might cause the PC to lock. If this occurs, you might need a
slower DEBUG ROM, a faster serial port, or a new machine.

MS-DOS, Windows 3.1, and Windows 95/98 are preferred platforms. Since Bor-
land C/C++ 3.1 is a 16-bit DOS application, the true DOS environment offered by
these operating systems are preferred to others.

1.3.c Code Size and Large Model Libraries

TERN software libraries are distributed in small model form. In most cases, this
makes code run more efficiently and decreases code size tremendously.

Slower DEBUG ROMs are
also provided in your EV/DV
kit. If you look in the rom
subdirectory of the working
directory for your controller,
you should find several
.BIN/.HEX files that are
versions of the DEBUG
ROM operating at slower
baud rates.

Introduction

1-8 TERN EV/DV Software Kit Technical Manual

However, there is a major limitation to using small model code. The data and code
segments are restricted to 64 KB in length. There are still several ways to access
more than 64 KB of data. The controller technical manuals describe this in more
detail, but one option is to use peekb() and pokeb() to access additional data mem-
ory space.

Almost all of our users have found that 64 KB of code segment length is sufficient
for their application. If your code no longer fits within this fixed-size segment
length, you can contact TERN regarding the possibility of purchasing a large model
library. Depending on your specific application, this might not be available.

TERN EV/DV Software Kit Technical Manual 2-1

CHAPTER 2 Installation

This chapter details the initial installation of the TERN software development
kits.

Following the procedures described below, you can create a complete software
environment from which you can develop, download, and debug your code
using simple steps.

This manual should be used together with the software chapters of the manu-
als of the specific hardware controllers you have purchased.

Installation

2-2 TERN EV/DV Software Kit Technical Manual

2.1 Before Installing

2.1.a Operating Systems

The TERN software development kits should work in any Windows/MS-DOS
environment, but there are certain things you as the user should be aware of. TERN
batch files are designed for use in a 16-bit MS-DOS environment. If you are using
a Windows-based operating system, you will still need to do a large part of your
development/installation from the MS-DOS prompt.

Windows 95/98 and NT all limit serial-port access from the MS-DOS environment.
It is very possible that you will incorrectly come to the conclusion that your pro-
gram can not communicate over a certain serial port using a 16-bit MS-DOS based
program, for example Turbo Remote Debugger. This occurs if a different Win-
dows-based application has exclusive serial-port access at that moment, or if Win-
dows does not properly recognize the serial port. Windows NT also uses a serial-
port driver which severely restricts program downloading/debugging over the port.
Many customers write their own NT serial-port driver to enable faster access.

We suggest that you take the simplest approach to program development possible.
Very few customers have problems developing from an MS-DOS/Windows 3.1/95/
98 based machine using a 16-bit compiler, while significantly more have difficul-
ties using Windows NT 4.0 with a 32-bit compiler. Before proceeding, you might
wish to consider finding a simpler machine for code download/debug, although you
can still do application development in whatever platform you prefer.

2.1.b TERN Disks

For installation, you should have the disks from either the TERN Development
(DV) or Evaluation (EV) kits. There are two versions of these disks available.

In the DOS/Win 3.1 version, there are three disks.

Borland C/C++ 3.1 for TERN 16-bit Controllers (Disk 1 and Disk 2)
TERN EV/DV Installation Disk

The Windows 95/98 installation consists of four disks.

After making sure you have sufficient hard-disk space (about 9 MB), you are ready
to install. If you are installing the DOS/Win 3.1 version of the TERN disks, skip
the following section.

To start a MS-DOS window
in Windows 95/98/NT, click
on the Start button, choose
Program, and select MS-
DOS Prompt.

You can also use Alt-Enter to
switch between Full-Screen
and Window mode.

After installing, you can make
sure you have the correct ver-
sion of either the EV/VV kits by
running loc31 from the com-
mand prompt.

The top line will display either
“TERN LOC31 - EV” for the
EV kit, or “TERN LOC31 -
DV” for the DV kit.

TERN EV/DV Software Kit Technical Manual 2-3

Installation Process - Windows 95/98 Version

2.2 Installation Process - Windows 95/98
Version

The installation procedure is designed to set up a software environment from which
you can easily program TERN controllers.

You should read the readme.1st file located on the installation disk for the most
recent changes to the installation disks and process.

From either Windows Explorer or the MS-DOS prompt, run setup.exe on Disk 1 of
the TERN Installation Disks. From that stage on, you can follow the on-screen
prompts to install.

Be sure to read the licensing agreement carefully, it outlines the legal agreement
between you and TERN, Inc.

If you choose to install to a different directory than c:\tern, you will need to be sure
to modify the variable COMPDIR in the makefiles located in your working direc-
tory to reflect this.

The setup program should prompt you to automatically insert the tern\bin sub-
directory into the path. Once you reboot after this step, your TERN installation
should be complete. You should proceed to section 2.4 ”Follow-up Procedures” on
page 6.

Since Borland C++ 3.1 is DOS
based, it has problems with
path names that have spaces or
other non-standard characters.

Be sure not to choose a desti-
nation path for the TERN
installation that has non-com-
patible naming semantics.

Installation

2-4 TERN EV/DV Software Kit Technical Manual

2.3 Installation Process - DOS/Win3.1 Version

The installation procedure is designed to set up a software environment from which
you can easily program TERN controllers.

The install.bat utility is designed to create a TERN directory in your c: drive and
install the appropriate files. You should be sure that you run the batch file from
your MS-DOS prompt window, and not from the Explorer window.

2.3.a Borland Installation

To install Borland for TERN 16-bit Controllers on your hard drive:

1. Insert Disk 1 of the distribution into your floppy drive.

2. At the DOS Prompt, type “a:install”

3. At this stage, it should display the following.

FIGURE 2.1 Installation Screen

4. Hit the space bar to continue, at which point it displays

Installing TERN Files on drive c:
-=-
Use TERN's Low-Cost 16-bit controllers for your next project
Easy to program in Borland C/C++
+ Horsepower supports your development needs now and into the future
+ All TERN controllers are designed and made in USA
+ Excellent in design, compact, reliable, complete, high quality, low cost.
NOTE
I f this is your first time installing TERN files, please edit your
autoexec.bat file and insert c:\tern\bin into your PATH.
Or add a line to your autoexec.bat:
SET PATH=%%PATH%%;c:\tern\bin
 -=

Copy TERN archive volumes...
Please insert Disk 1 into drive a: and press any key to continue.

Please insert Disk 2 into drive a: and press any key to continue.

Be sure to add c:\tern\bin to
your path. This insures you
will be using the correct exe-
cutables as you develop your
application.

You can do this by adding to
c:\autoexec.bat the line:

PATH = c:\tern\bin;%PATH%

TERN EV/DV Software Kit Technical Manual 2-5

Installation Process - DOS/Win3.1 Version

5. After you have placed disk two of the Borland C/C++ distribution in to drive A,
press the space bar again:

After completing the installation of the Borland disks, you should find on your c:
drive a set of directories containing the binaries, header files, and libraries for Bor-
land C/C++ 3.1.

Your TERN directory should contain bin, include, and lib sub-directories.

The include directory should include a set of system header files.

The lib directory will include a set of standard libraries.

The bin directory will include the executables provided with Borland C/C++ 3.1,
including bcc.exe (the C/C++ compiler), bc.exe (the IDE), and tlink.exe (Turbo
Link).

2.3.b Evaluation/Development Kit Installation

After installing the Borland disks, you can install the EV/DV Kit by following the
same procedure as before.

Insert the disk into drive A, and type “a:install” from the MS-DOS Prompt. This
process will create additional working directories for all TERN controllers accord-
ing to processor core type. It will also install TERN-specific header files into the
include directory, as well as library files into the lib directory.

If you have an AMD188ES-based controller, (i.e. A-Engine, TD40, A104, etc.)
your working directory is based in c:\tern\186.

If you have a V25-based controller, (C-Engine, V25-Engine, TD, V104, etc.) your
working directory is based in c:\tern\v25.

If you have a 386-based controller, (i386Engine) your working directory is based in
c:\tern\386.

Reconstructing archive...
Extracting archive...
Finishing up...
Installation Complete!
C:>

Installation

2-6 TERN EV/DV Software Kit Technical Manual

2.4 Follow-up Procedures

Before proceeding and trying the tutorial contained in this manual, or the
sample files in the TERN directory, there are a few simple things you
should do to make sure your environment is complete.

2.4.a Checking your installation

Before going any further, you should check that the necessary files have
been installed. You can always check readme.1stfor updated information
regarding changes in the directory structure.

Borland C++ 3.1 has been installed in your root installation directory. You
should find directories named bin, lib, and include that contain the binary,
library, and standard header files for the Borland C++ 3.1 installation.
Without these files, your compilations will fail. If you are interested in
using other compilers/development environments for your work, please see
section 3.5.

TERN controllers currently use three lines of micro-processors: the NEC
V25 (V25), AMD188ES (186), and Intel 386EX (386). There are a number
of controllers that are driven by each line of processor controllers, and you
should check your technical manual to see exactly which product group you
fall under.

Each processor group shares many
libraries as well as sample files. Each
has been installed in a directory off of
the root installation directory, named
after its moniker. This means you
should find sub-directories V25, 186,
and 386 in your main TERN install
directory. These sub-directories are
the main working directories for your
development.

Within these working directories, you
should find the Makefile, as well as
led.c, which are used in the tutorial.

TERN EV/DV Software Kit Technical Manual 2-7

Follow-up Procedures

Each processor group shares a common directory structure.

2.4.b Cleaning up your environment

First, make sure once again that c:\tern\bin is in your path.

Next, you will need to modify Makefile configuration values for your current hard-
ware/software environment in your specific working directory. Valid choices for
options are always listed in the Makefile itself. If there is a conflict between what
is described in the manual and the Makefile, the Makefile is most likely more
recent and correct.

TABLE 2.1 Working Directory Structure

Name Contents

lib Library files for your line of controller.

include Header files.

samples Sample files for each controller. Sample files for each controller
organized by name.

config Configuration files for locating your executable in memory
space. If you must modify this, details can be found in chapter
Four.

rom This directory contains default .HEX and .BIN files provided by
TERN for other versions of the DEBUG ROM.

startup Standard start-up code that is linked to your executable.

The lower half of the Makefile
should only be modified if you
need to make advanced
changes to the compiling/link-
ing process.

Most configuration changes
should be made using variables
near the top of the Makefile in
the working directory you are
currently working with.

For details regarding which
header files and library files
you will be using in your appli-
cation, you should refer to the
software section of the techni-
cal manual for your controller.

Installation

2-8 TERN EV/DV Software Kit Technical Manual

A more detailed value-by-value description of the Makefile options can be found in
a later section in this manual. For now, you just need to make sure that the
BOARD value corresponds to the controller you have purchased, and the COMP-
DIR value is set to the directory to which you have installed the TERN develop-
ment kits.

You can also confirm that you have installed the correct version of either the DV or
EV Kits by running tern/bin/loc31.exe with no arguments from the DOS prompt.
The first line of the result will show the version of loc31.exe you have installed.

TABLE 2.2 Common Makefile option values

Variable Name Default Value Description

SRAM 1 Size of SRAM installed on board.

EPROM 0 Size of ROM on board (32K for
DEBUG).

DEBUG 1 Choose to either compile/locate/
link for debugging/downloading
purposes (1), or for ROM burning
(2).

COMPDIR c:\tern Directory to which TERN soft-
ware is installed.

CURRDIR $(COMPDIR)\386 Current working directory.

BOARD N/A
The string ID for the controller
that you are currently using.

TERN EV/DV Software Kit Technical Manual 2-9

Hardware Installation

2.5 Hardware Installation

For details regarding default hardware configuration, you should refer to the techni-
cal manual for the specific controller you have purchased.

This section is meant to provide a general overview of the process.

You should have received, as part of the EV/DV kit, a DEBUG ROM that has
already been placed securely within the ROM socket. The DEBUG ROM contains
the TERN remote debugging kernel, and is used for Step 1 and Step 2 of the appli-
cation development.

There should also be a serial cable attached to your controller ready for connection
to the PC. One end of the cable is a 5x2 IDC connector, which is connected to your
controller’s serial port (SER0 in the case of most TERN controllers). The other end
is a DB9 connector that should be connected to one of the available and properly
configured serial ports on the PC.

The wall transformer should be plugged into the power jack on the controller.
After this simple step, the LED on the controller should flash twice and then remain
on, indicating that the controller has been initialized by the DEBUG ROM and is
prepared to download/debug a user application.

TERN controllers require a 9-12V
center-negative power supply for
the voltage regulator. The wall
transformer offered with the EV/DV
Kit will only support 110V 60 Hz
operation.

International customers should
acquire their own wall transformers
that have the same specification.

ROM is non-volatile memory in
which permanent applications
can be burned.

The DEBUG version of the
ROM is probably one of the
few non-surface mount compo-
nents on your controller, and
should have a distinctive TERN
sticker on top.

Installation

2-10 TERN EV/DV Software Kit Technical Manual

2.6 Installation Troubleshooting

Q. My installation does not look complete, or I am missing some of the necessary
sub-directories.

First, make sure that you had sufficient disk-space for the entire install. The Bor-
land executable and library files are quite large, and might not have been extracted
correctly.

Depending on other TERN software products you might have installed, the overall
size of the distribution is almost 9 MB.

Q. An error was reported during installation, or the disks seem faulty.

Contact TERN tech support at (530) 758-0180. We will do our best to diagnose
the problem and rectify the situation as possible.

Q. The hardware did not respond as described during hardware installation.

Ideally, your hardware is in the same configuration as when it was shipped from
TERN. This means that the DEBUG ROM socket is installed on the controller, and
the PC-V25 serial cable is connected to the correct header (SER0) with the correct
orientation.

You should refer to the controller technical manual for details regarding hardware
installation.

TERN EV/DV Software Kit Technical Manual 3-1

CHAPTER 3 Tutorial

This chapter walks you through the process of downloading and debugging
your first TERN controller-based application.

After completing this chapter, you will be familiar with the process of using
TERN batch files to compile and download your application. You should also
become accustomed using Turbo Remote Debugger. The development process
outlined in this chapter will parallel your own, and you should find it to be of
great assistance no matter which step of development you are currently in.

Once again, this tutorial is purposely hardware-general. For details regarding
hardware configuration, and locations of headers and jumpers, and other
technical details, refer to the technical manual for your specific TERN control-
ler.

Tutorial

3-2 TERN EV/DV Software Kit Technical Manual

3.1 The Sample Program - LED.C

You should change your directory to the appropriate working directory for your
controller (\186 for AMD AM188ES-based controllers, \v25 for NEC V25-based
controllers, \386 for the Intel 386EX-based controllers).

There, we provide a simple program utilizing TERN controllers to demonstrate the
development process. led.c makes the LED blink on and off continously.

The file shown above is the 186 version. The other versions are identical except for
different include file and initialization function names. After initializing the con-
troller, this program just sits in an infinite while loop repeatedly toggling the LED
by calling led(). The for loop is provided to burn processor cycles and slow down
the rate at which the LED is toggled.

For a detailed description of the function interface and other software details, you
should refer to the software section of the technical manual for your controller.

TERN EV/DV Software Kit Technical Manual 3-3

Step One - Download and Debug

3.2 Step One - Download and Debug

3.2.a PC Environment

Type path at the MS-DOS prompt to verify that the directory c:\tern\bin is
included. If not, you will need to modify autoexec.bat appropriately. Please see
the Installation chapter for more details.

To test the environment, go to directory tern\186>and type m led. This should
pass without error as it compiles your target source code. This batch file is
described in more detail in the next chapter. It produces a test.exefile in your
working directory. This is the executable that will be downloaded to the remote
controller via serial link using Turbo Remote Debugger.

If you find an error during this or any of the following process, see the following
Troubleshooting sections of this chapter for details.

3.2.b Step One

For the first step of the development process, you will be using the batch file t.bat.
This batch file is discussed in more detail in the next chapter.

The default setup for Turbo Debugger is to communicate with your controller using
COM1 of the PC at 115,200 baud. These settings are set within t.bat, and can also
be specified using command-line arguments.

Connect and power-on your controller as described in the installation chapter of the
technical manual for your controller.

Begin by entering “t.led” at the DOS prompt.

You will see a series of compilation messages as the program is compiled and
linked with TERN libraries, and then is located to the appropriate address in mem-
ory. If all goes well, compilation will succeed and Turbo Remote Debugger will be
called to try to communicate with, and debug, your controller application.

The TD31 DEBUG window should come up with the prompt shown below.

c :\tern\186> t led ↵

If you are using a 20 MHz ver-
sion of an AM188ES control-
ler that is also available at 40
MHz, you must modify your
baud rate setting to 57,600
baud. The default setting of
115,200 baud is for the 40 MHz
version.

All other TERN controllers
have a default setting of
115,200 baud.

Tutorial

3-4 TERN EV/DV Software Kit Technical Manual

 If it does not, do not
give up. This is one
of the most challeng-
ing aspects of con-
figuring your
installation. The
Troubleshooting
section on page 8
has many hints on
the steps you can
follow to correct
your problem.

Enter ‘Y’ (or just press Enter) to continue. A Wait prompt will display at the upper
right corner of your screen while your program is downloaded to the controller. A
64K file may take approximately 6 seconds to download at the default setting of
115,200 baud.

If downloading proceeds without any errors, the TD31 window will show the led.c
source file and the prompt Ready at the right upper corner of the screen. The fol-
lowing picture shows the initial TD31 window, and highlights for your benefit a
few areas of special interest.

File Edit View Run Breakpoint Data Options Window Help Ready

Module: LED FILE: C:\tern\186\LED.C 1

Watches 2

//

//

//

//

#include "ae.h"

char ledd;

unsigned int i, k;

void main(void)
{

/***/

/***/

led.c
Test LED

TURN LED ON AND OFF
Copyright (C) 1997 STE. All Rights reserved

F1-Help F2-Bkpt F3-Mod F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

Do not confuse the TD31
Debugger window with the edi-
tor. You cannot edit your
source code while debugging
it.

TERN EV/DV Software Kit Technical Manual 3-5

Step One - Download and Debug

There are two windows in the TD31 screen as you see it: #1 is the source code win-
dow, #2 is the watch window. You can use Alt-1 and Alt-2 to activate the appropri-
ate window.

The small triangle circled in the bottom left corner of the source code window
shows your current position in the code. This indicates the current line of code that
is about to be executed.

You can also select the menu option View->CPU. This brings up a new window
showing more detailed information regarding the current CPU status. This window
shows you the value of the registers, and the assembly instructions that are about to
be executed. You can step through these the same way you would step through
your C-level code. Also shown is the original C language code from which these
instructions were compiled. This allows you to take a finer-grained approach
toward debugging your application.

The bottom menu indicates some basic debugging commands. To begin, you can
use F8 to single-step to the next line of code. The triangle and line number will
reflect the change with each step. You can also use F7 to try to trace into a function
call as you are about to execute it. If the source code for this function isn’t avail-
able (for example, if it is a library function provided by TERN), the debugger will
just single-step over the function call.

Use Alt-2 to select the watch window. You can watch any of the declared variables
in this window. For starters, try typing “i” after you have activated the watch win-
dow. Pressing Enter will include i in your watch list. Add “k” and “ledd” in your
watch window the same way; as you step through the code further, you will see
these values change.

F2 will set a breakpoint on the current line of the cursor. A breakpoint line is high-
lighted in red. Pressing F2 again will toggle the breakpoint, either setting or
removing it.

F9 runs the program led.c uninterrupted. The LED on your controller should flash
continuously. While the program is executing, the prompt Ready is replaced by
Running. Once the code reaches a breakpoint, it stops running and the cursor is
pointed at the location of the breakpoint.

At any point, you can press Ctrl-Break to halt execution of the program. You
should do this before disconnecting or powering-off your controller. Otherwise,
the Debugger might lock-up while it waits for a response from the controller.

The watch window is case sensi-
tive, so be careful while you
select the variable you wish to
watch.

These watch variables are not
dynamically updated. If you need
to view the current value of any
variable, you will have single-
step through the code, or set
breakpoints.

Also, there are variables that
might be out-of-scope as you step
into other functions. These vari-
ables will be displayed as ???? in
the watch window.

Tutorial

3-6 TERN EV/DV Software Kit Technical Manual

Once you are finished with the debugging process, you can quit TD31 by hitting
Alt-x. The batch file now brings up the IDE window (bcc.exe) that is provided as
part of Borland C++ 3.1 for you to modify your C source code. You can also exit
this IDE window using Alt-x again. This will bring you back to the MS-DOS
Prompt.

There is one thing you need to be aware of during this first step. There are two win-
dows that look very similar (both have a blue background) during this operation:
the Turbo Debugger window and the Borland C++ 3.1 IDE source editor window.

The TD31 debugger window has the following pull-down menu items at the top of
the screen:

Turbo Debugger is used for remote debugging. It downloads the located code to
the embedded controller that has been connected to your PC via serial port, and
controls the debug operation including single step, breakpoints, and run. Remem-
ber that your application is actually running on the controller, and not the PC.

The other application window is the BC31 IDE source editor window. It has this as
the available pull-down menu items at the top of the screen:

The obvious differences between these two windows are the "Search" menu for the
BC IDE and the "View" menu for the TD31.

If you see the "View" option in the top row menu 3rd position, you are in Turbo
Remote Debugger (TD31), and your code is running and debugging on the remote
controller, NOT on the PC. If you see the "Search" option in the top row menu third
position, you are currently using the Borland C++ 3.1 IDE.

3.2.c Modifying led.c

Now that you are more familiar with the debugging/development environment, you
can modify and compile your first custom application, using led.c.

Go ahead and change the line k=30000; to k=3000;. This variable determines how
long the program delays before toggling the LED on and off. Making k smaller
shortens this delay.

You can modify t.bat if you want
to change the applications that
are loaded during this debug-
ging process. Although you can-
not use a different debugger, you
can choose to use a different edi-
tor for your project.

Many customers prefer to work
with a Windows 95/98-based edi-
tor. For ideas on how to inte-
grate this with the TERN
development kits in other ways,
see the section 3.5 “Other pro-
grams”

Do not run your program in the
IDE environment. Attempting to
run an embedded application that
has already been located on your
PC will cause it to crash.

TERN EV/DV Software Kit Technical Manual 3-7

Step One - Download and Debug

You can use F9 from within the BC3.1 IDE to recompile led.c and report any initial
syntax errors. This step does not actually link your generated object file with
TERN libraries, or re-locate the executable. You will still need to run either m.bat
or t.bat from the DOS prompt again to re-compile and generate the executable for
downloading/debugging.

Use F2 to save the changes that you have made, and alt-x out of the editor.

You can now repeat the Step One procedure by again running:

From within the debugger, use F9 to run the new updated led.c again. The LED
should respond by flashing much faster.

3.2.d Troubleshooting Step One

Q. I can’t successfully run m.bat. It gives me error messages and does not
compile the application correctly.

The first thing to check is if your installation is complete. Please check again the
steps described in the Installation chapter.

Q. I have no problems entering Turbo Debugger, but when I try to run, the
machine freezes up.

The most common cause of this problem is the Windows NT serial port drivers. As
a test of the actual controller, after Turbo Debugger has successfully downloaded
the program and before you start executing code, press Alt-X to exit out of TD31.
Your code already rests in SRAM. Proceed to Step Two and see if the code can
execute correctly. If it does, it is quite possible the source of your problem lies
somewhere in the software/hardware configuration of your particular PC.

Q. Modifying the file does not give me any different behavior, the LED is still
blinking at the same rate.

First, make sure the source file has been modified and saved as you expected.
Next, try running m.bat on your target source. The file test.exe should be gener-
ated. Make sure that this file has a current modification date/time. Occasionally,
the compilation will fail without the user noticing, and an older test.exe down-
loaded to the controller.

c :\tern\186> t led ↵

Tutorial

3-8 TERN EV/DV Software Kit Technical Manual

Q. Running t.bat actually brings up Turbo Debugger with a different source code
than the one specified in the command line; or, as I step through the code, it
looks like what is being executed is not the source file shown.

You should check the modification date of the file test.exe created in your working
directory. Since this is the file that is downloaded into your controller, it should
have been updated when you recompiled with either m.bat or t.bat. If the modifica-
tion date is earlier than that, be sure that the environment variable DEBUG is set to
1. Otherwise, the makefile will generate a .BIN or .HEX file instead of creating an
executable for downloading and debugging. The test.exe from the previous compi-
lation will be downloaded instead.

Q. t.bat displays “Waiting for handshake from remote driver (Ctrl-Break to
quit)”. Turbo Debugger 3.1 never shows its window.

This is one of the most difficult parts of your system configuration. There are sev-
eral things that might go wrong in this stage, all with similar symptoms.

If you have waited several seconds and Turbo Debugger never fully loads, press
Ctrl-Break to quit. You should quit Borland C++ as well and try to run t.bat from
the beginning again.

The DB25 end of the serial cable connector should be attached to one of the serial
COM ports on your PC. Double-check the connection to make sure it is not loose.
Make sure that your batch file has been set up correctly to use the appropriate COM
port.

Make sure that the controller is powered-on and the serial cable has been connected
to the correct serial port. The hardware, including serial cable, is thoroughly tested
before shipment, and the probability of faulty hardware at this phase is low. You
should also double-check that the serial cable has been attached with the correct
orientation. Refer to the technical manual for your specific controller for details
regarding this process.

Check that when the controller is first powered-on, the controller’s LED flashes
twice and stays lit. If this does not occur, it indicates a few possible problems.
Make sure that the DEBUG ROM is installed in the ROM socket correctly. Next,
make sure that the Step Two jumper, as described in your hardware manual, is not
in place at power-on.

If an external examination does not solve your problem, you will have to check
your operating-system and software configurations.

TERN EV/DV Software Kit Technical Manual 3-9

Step One - Download and Debug

Windows 95/98. Turbo Debugger runs in a DOS shell on your 32-bit Windows
operating system. If another application holds exclusive access to the COM port,

there is often no indication while you use
your DOS application. The first thing
you will want to check is that there is
really no other device currently using the
COM port you believe you are currently
using. You can check the Devices win-
dow from within Control Panel for details
about attached devices. Make sure that
no other devices, especially modems and
serial-mouses, share these COM ports.
Interrupt conflicts on the PC might also
be a source of problems. You should
probably go through all of the hardware
devices and make sure that each is config-
ured for “Automatic settings” under the
Resources tab, as is shown in the figure.

Make sure that no application, such as
HyperTerminal, currently has the “port” open even if no device is attached. This is
also sufficient to deny access to your DOS based program.

Windows NT. Windows NT can have the same com-port usage conflicts as
described for Windows 95/98. This will be the first thing you will want to check.
Also, as was mentioned in the Introduction chapter, Windows NT restricts serial
port access in a manner that makes it difficult to communicate at high baud rates. If
you are using NT, consider moving your system to a Windows 95/98/DOS machine
for download and debug.

If all of the above steps fail, you should also make sure the COM ports are enabled
in the BIOS settings for the machine. Reboot your computer, and enter the BIOS
Configuration menu. Some machines have certain serial ports disabled in BIOS.

If you still have difficulty completing your serial communication with the embed-
ded controller, it is very possible that the UART on your PC is not capable of han-
dling the high speed transfer rate of 115,200 baud that is default on most TERN
controllers. This is especially true if you have an older machine.

Please try transferring your system to a different machine to confirm if this is the
source of the problem. If it is, you can burn your own DEBUG ROM that operates

You can usually enter BIOS Con-
figuration by hitting DEL upon
boot-up before the Operating
Systems is loaded.

Tutorial

3-10 TERN EV/DV Software Kit Technical Manual

at a slower baud rate. These can be found in the \ROM sub-directory in your work-
ing directory. If you do not have a device programmer handy, or if there isn’t an
appropriate ROM for your controller, you can contact TERN to request a special
version of the DEBUG ROM to be sent to you.

If all efforts fail, contact TERN technical support staff at (530) 758-0180 or
tech@tern.com.

TERN EV/DV Software Kit Technical Manual 3-11

Step Two - Field Test

3.3 Step Two - Field Test

Within Step Two of the development process, you will download the application tat
you developed and initially debugged in Step One into SRAM for a field-test. In
many applications, it is not practical to fully test all controller capabilities in the
development environment. By using the battery-backed SRAM on TERN control-
lers, you can actually run your executable for up to five years.

After Step One, your application will be downloaded and located into the SRAM.
The battery (if installed) on your controller will keep the executable in memory
even after you disconnect the external power supply.

Power off the system, and place the Step Two jumper (as described in the technical
manual for your controller) onto the controller.

Whenever you power-on or reset the board with the Step Two jumper in place, the
DEBUG ROM will start executing your code loaded in SRAM.

At this stage, you are actually executing your code from SRAM and your program
is ready to be tested in the field.

3.3.a Step Two Jump Routine

Upon execution, the DEBUG ROM will check the Step Two jumper. If the jumper
is not in place, the DEBUG ROM will continue execution from within the DEBUG
ROM. This code waits for Turbo Remote Debugger to initiate download of a new
program for debugging (Step One).

If it is enabled, the DEBUG ROM checks the 512-byte serial EEPROM that is on
all TERN core controllers for an address within SRAM from which to begin execu-
tion.

Power On or Reset

YES

Go to Application Code CS:IP

STEP 2

Go to DEBUG

STEP 1

Step 2 jumper

NO

set?
CS:IP in EEPROM:

0x10=CS high byte
0x11=CS low byte
0x12=IP high byte
0x13=IP low byte

A simple functional flow chart of
the DEBUG ROM

Tutorial

3-12 TERN EV/DV Software Kit Technical Manual

The Step Two Jump Address is set as part of factory configuration, and you ordi-
narily do not need to modify it. If, however, you choose to locate your program in
SRAM to a different address, or if you accidentally write over the EEPROM loca-
tion that holds this data, you might need to reset the Jump Address.

3.3.b step2.c

The program step2.c is located in the engine controller sub-directory of the sam-
ples\ sub-directory of your current working directory.

• For the 186, it is found in the AE sub-directory,

• the V25 version is found in the VE sub-directory,

• and for 386 controllers it is found in the IE sub-directory.

You can modify step2.c to reflect the address at which your software program is
located. Running this program from within the debugger will write the updated
address values to the EEPROM on your controller. If you are not sure where your
program is located, run m.bat on your target. A .loc file named after your target
will be created. This file shows the various segment locations, include the CODE
segment. Details regarding this batch file is found in the next chapter.

3.3.c Troubleshooting Step Two

Q. The Step Two jumper is in place, but when the board is reset, my application
isn’t running.

As a first step, always try your system out with led.c. Make sure it downloads cor-
rectly using Turbo Debugger into the SRAM. While you are in the debugger, run
the application several times to make sure it appears to work correctly.

Make sure that the DEBUG ROM is the ROM that is currently placed into the
ROM socket. Make sure that a battery is installed on your board. This is the only
item that keeps your program in static RAM after you remove the external power
supply. Use a voltmeter to confirm that the battery charge is still around 3V. Any-
thing lower than 2.6V will probably not be acceptable.

Next, double check that the Step Two jump address is correct. If you are not sure,
run step2.c again to write the correct value into EEPROM.

If all fails, contact TERN technical support at (530) 758-0180, or by email at
tech@tern.com.

TERN EV/DV Software Kit Technical Manual 3-13

Step Three: Production (DV Kit Only)

3.4 Step Three: Production (DV Kit Only)

If your program is behaving as you expect, you can generate a .HEX or .BIN file
that can be burned into a ROM device using a device programmer. If you would
like to use the ACTF Kit to program a Flash device over the serial port, refer to the
ACTF technical manual for more details regarding this phase of the development
process.

For led.c, you can go ahead and use a 32K ROM (27C256-70). For other details
regarding supported ROMs, (such as timing, hardware configuration changes, etc.)
refer to the technical manual for your controller.

You will have to edit the Makefile to generate .HEX and .BIN files instead of a
downloadable executable.

Edit the Makefile flags to reflect the following:

DEBUG = 0
EPROM = 0

Save the changes you have made to the Makefile and exit your editor.

Run m.bat on your target once again.

This will compile led.c and locate it for ROM use. You should find that led.bin has
been created. This can be used by most device programmers to burn your own
ROM.

Power-off the board, and you can replace the DEBUG ROM with your newly
burned ROM. Upon power-up, you should find that the code in the ROM now exe-
cutes, and the LED flashes continuously.

c :\tern\186> m led ↵

Step Three is only available if
you are using the Development
Kit, as opposed to the Evalua-
tion (EV) kit.

The default factory setting for
>128K SRAM (SRAM = 1) is
address 0x0800:0000.

For 32K SRAM (SRAM = 0)
setting is address 0x0400:0000.

Tutorial

3-14 TERN EV/DV Software Kit Technical Manual

3.5 Other programs

3.5.a Using TERN Development Kits with other software

Many application developers have become familiar with a particular IDE. Having
a graphical user interface that users are familiar with increases efficiency dramati-
cally. Although Borland C++ is more than sufficient for any development applica-
tion, there are certain benefits to using an environment development that is
Windows-based.

Fortunately, since TERN provides integrated batch files that actually manage the
compilation process, application developers can usually integrate the TERN soft-
ware development kits into their environment without much difficulty. This sec-
tion shows how you would add TERN batch files as Tool Utilities to Microsoft
Visual Studio 5.0. Most other advanced IDE should also have similar functional-
ities, and you should be able to parallel the steps shown below.

Once you have started Microsoft Visual Studio 5.0, go into the Tools menu and
select Customize. Select the Tool tab; this allows you to create quick menu/tool-
bar access to commands that are executed often. Create a new tool by clicking on
the New button near the top-right of the dialog. Start by creating a tool for using
m.bat, as shown.

The initial directory should be your working directory. Since the only argument for
m.bat is the target name, you can click on “Prompt for arguments”. Whenever you
choose to use this tool, a dialog-window into which you can type the name of your
target will pop up.

By choosing “Use Output Window”,
the compilation results will actually
show up in the bottom Microsoft
Visual Studio Output window, simi-
lar to what would happen if you were
compiling with a built-in compiler.
This also allows you to scroll-back
and see detailed information about
your errors without having to pause
the screen in DOS.

TERN EV/DV Software Kit Technical Manual 3-15

Other programs

The same steps can be applied to t.bat. Turbo
Debugger still needs to be run in a DOS window,
and you cannot choose to “Use Output Window”.
Since this does not give you the opportunity to
examine your errors in detail, you should check your
compilation with m.bat before using t.bat. The tool
dialog should be setup as shown.

The arguments are set up differently to show how
else you might use these tools for maximum effi-
ciency. By selecting $(FileDir) as your initial direc-
tory, it means that compilation will occur in the

directory where the current file you have open is located. Remember that this
should usually be the working directory, since makefile is only located there.

$(FileName) can also be used as a shortcut for the target name. This works per-
fectly for the TERN development environment, since the batch files expect as an
argument the target name, which is the name of the file without extension You can
also preset your COM port/baud rate settings this way, as well, by incorporating the
arguments into the command line arguments.

3.5.b Sample files

The various steps of development are discussed in more detail in the following
chapters. For now, you can also try experimenting with the numerous other sample
files available for your controller. These should all be included in the samples\
sub-directory of your working directory.

Keep in mind that although some peripheral boards have sample directories for
board-specific sample files, all boards still share the core functionalities demon-
strated by the sample files in the various engine directories (AE, IE, VE).

If at any time you run into difficulties with the development process, feel free to
contact TERN technical support for assistance.

Tutorial

3-16 TERN EV/DV Software Kit Technical Manual

TERN EV/DV Software Kit Technical Manual 4-1

CHAPTER 4 Development and
Debugging

This chapter discusses in more detail the development and debugging process.
It introduces you to the tools available at hand, and describes many specific
technical features present in the TERN software development kits.

Once you begin your full application development, this chapter will provide
the depth of knowledge it will take to carry your project to completion.

Development and Debugging

4-2 TERN EV/DV Software Kit Technical Manual

4.1 Development Batchfiles

For a detailed description of the function interface and other software details, you
should refer to the software section of the technical manual for your controller

Two batch files are provided for your development. In general, they can be used to
entirely automate your compilation process.

4.1.a m.bat

m should be used while you are in the initial development phase of your applica-
tion. It compiles your code, returning any errors necessary without connecting to
the remote target.

The PC screen often scrolls too quickly while compiling to see all of the error mes-
sages effectively. If you hit the Pausekey on the key-board during scroll, the oper-
ation should stop while you read error messages. You can hit the spacebar to
continue the makefile operation.

This batch file actually works by first compiling your source code with the startup
files provided by TERN. Libraries for your controller are then linked in together to
create the executable. LOC31 is used to actually generate the final re-located exe-
cutable that runs on the controller. This step is necessary, as the memory mapping
for the PC is dramatically different from what occurs on the controller.

Command: m.bat
Arguments: TargetName

The batch file m.bat is used to compile your target source files, link, and then
re-locate the output code withloc31.exe. It uses the makefile to compile all of
the necessary source files, and then links in the necessary TERN libraries
depending on the TERN controller specified.

The argument TargetName is just the filename of the target source file you
wish compiled, without extension. The default extension for this file will be .c,
but can be modified by changing the makefile and batch files.

Example: m led

TERN EV/DV Software Kit Technical Manual 4-3

Development Batchfiles

Running m generates a number of files. These include the .map file that shows the
segments as generated by Borland C++ 3.1, while the .loc file shows the segments
as they are located onto memory space on the controller. The .loc file is of special
interest during the development process.

The <target>.loc file can be used to check the location and length within memory
space of various segments, as they are generated by LOC31 for execution on the
controller. The segments of interest are class CODE and DATA. These segments
can not be larger than 64 KB in length if you are using the small model libraries.

The locations where these segments are located are specified by the makefile using
a configuration file. These are all found within the config\ sub-directory of your
working directory, and differ depending on if you are generating code for debug-
ging purposes (locating the program in SRAM) or for ROM burning (locating the
code for ROM, data for SRAM). For example, the file TEST128.td is used for
downloading an application into SRAM of 128 KB or larger in debug mode.

If you are about to generate a .HEX file for use in a device programmer or the
TERN ACTF Kit, you will also wish to use m.bat. The end result will be a cor-
rectly located .HEX (or .BIN if properly specified in the configuration file) file
with which you can program an EPROM. If you examine the .loc file created for
DEBUG and for ROM burning, you will see significant differences.

A more detailed discussion of memory mapping and how you might choose to
modify it is below.

4.1.b t.bat

t.bat is used when you actually wish to download your application into SRAM on
the controller remotely. It also initiates the remote debugger to debug the applica-
tion.

The first phase of t.bat is identical to m.bat. This means the same discussion
regarding the compilation process applies. It also means that if you have been able
to complete m.bat with no errors, the first phase of running t.bat should also finish
with no difficulty. In addition to the single target command argument accepted by
m.bat, t.bat takes two others used to specify the communication process between
your computer and controller.

The TERN ACTF Kit can be used
to directly load your generated
.HEX files into Flash chips
placed into the ROM socket.

For details, contact TERN.

Development and Debugging

4-4 TERN EV/DV Software Kit Technical Manual

Although the files generated by t.bat are similar to those generated for m.bat, they
are deleted at the end of the batch file. The intention is that m.bat is used exclu-
sively for compilation purposes, and t.bat should be used when you need to down-
load and debug your code directly.

If you run into any problems during the download process while using t.bat, you
should refer to the troubleshooting section for Step One of the development process
in the Tutorial chapter.

Command: t.bat
Arguments: TargetName { ComPort BaudRate }

t.bat compiles the target specified by TargetName. You do not need to append
the suffix. If you wish to change the suffix of the target, you will need to mod-
ify t.bat appropriately, as well as the makefile’s SUFFIX environment vari-
able to recognize your target file.

Example: t led

The command line arguments ComPort and BaudRate specify the ports and
baud rate you wish Turbo Debugger to use while communicating with your
embedded controller. You must provide both arguments if you want to pro-
vide one. If these optional arguments are not included, t.bat will use the
default values specified in the batch file. The initial default values are COM
port = COM1 and BaudRate = 115,200 baud.

Available values for ComPort and BaudRate are as follows:

• ComPort = 1/2/3/4 for COM1/COM2/COM3/COM4

• BaudRate = 1/2/3/4 for 19,200/38,400/57,600/115,200 baud.

Example: t led 2 2 To specify target = led, with communications over
 COM2 at 38,400 baud.

TERN EV/DV Software Kit Technical Manual 4-5

Memory Mapping

4.2 Memory Mapping

This section is intended to introduce the way in which memory on TERN control-
lers is mapped and used for code and data. Different TERN controllers may have
specific differences, and you should always refer to the technical manual for any
differences.

4.2.a Physical Memory Mapping

On TERN controllers, the SRAM and ROM are each mapped into a total of 512 KB
of memory space. This gives a combined memory space of 1 MB, or 20 bit
addresses.

The SRAM is mapped starting from address 0x00000, and
goes until 0x7ffff. The ROM socket is mapped from
address 0x80000 to 0xfffff. This means any access will be
translated into an access into either RAM or ROM depend-
ing on the address of the access. Code placed in ROM is
actually located at the top of the memory map, meaning that
a 128 KB ROM will extend from 0xe0000 to 0xfffff.

Although this is the size of the actual memory map, most
users will not use the entire available physical memory
map. For example, using a 32 KB of SRAM means that
only addresses 0x00000 to 0x07fff will be valid in the
SRAM mapped region. 128 KB of SRAM extends to
0x20000.

When using the DEBUG ROM for debugging purposes, the application code and
data are both downloaded into SRAM. This means the code and data segment will
both be located in the lower half megabyte of memory address space. The
DEBUG ROM also contains specific code used for initializing the hardware in
preparation for the debugger.

If you are burning your own ROM, your code will be located in the upper half of
the memory space. The data segment rests in the lower half of the memory space.

4.2.b Locate Configuration File

The configuration files used by loc31 are provided for you in the config\ sub-direc-
tory of your working directory. In most cases, you need only modify the one cur-

0x00000

0xFFFFF

0xFC000

0x04000

0x07FFF

0x80000

Up to 512K SRAM

32K SRAM

0xE0000 Up to 512K ROM

Development and Debugging

4-6 TERN EV/DV Software Kit Technical Manual

rently used for your compilation. If you are not sure which file is currently used
based on your selected makefile environment variables, you can watch the last line
of your m.bat compilation. It should have something similar to

\tern\bin\loc31 -c\tern\186\config\TEST128.td -DHASFARDATA led

TEST128.td is the configuration file used for this particular compilation. The con-
figuration files with the .td extension are used when compiling with DEBUG. The
.rm extension configuration files are used when compiling for ROM use. They are
different in several respects.

One part that is common to both is the definition of the various maps. These are
used to set properties for each segment of memory space. This allows you to iso-
late errors more easily since loc31 will not allow you to place data segments within
a reserved map, for example.

In the TEST128.td file, there are four maps set up representing four different logi-
cal areas in the memory map. This file is intended for a 128 KB SRAM.

map 0x00000 to 0x00fff as reserved
map 0x01000 to 0x07fff as rdwr
map 0x08000 to 0x1ffff as rdonly
map 0x20000 to 0xfffff as reserved

The first map segment, 0x00000 to 0x00fff is set up as reserved for certain core
debugging functionalities. This includes the interrupt vector as well as necessary
SRAM space for the debugger. 0x01000 to 0x07fff acts as the simulate SRAM for
this application, while 0x08000 to 0x1ffff acts as the read-only ROM. In fact, this
last mapped region is also available for read and write access, but it is set as read-
only to parallel the situation if your code actually rests in read-only ROM.

If you are using a 32 KB SRAM, you may find that the data segment allocated for
your code is insufficient, but that there is excess memory space allocated for the
code segment that is unused (you might check this fact by looking at the length of
each segment in the .loc file). You can modify the size of each segment, as well as
where each is located.

You can re-map the segments above as needed for your new memory mapping
structure. Be sure to also modify the two variables for the classes DATA and
CODE. By default, DATA starts at 0x0100, while CODE begins at 0x0400. For
example, you might choose to set CODE = 0x0600, allowing it to range from

TERN EV/DV Software Kit Technical Manual 4-7

Memory Mapping

0x0600-0x07ff, a total of 8 KB worth of code. This also allows you to give a total
of 24 KB to your data segment.

If you run your program in Step Two, you will want to make sure to run step2.c, as
described in the Tutorial chapter, to jump to the correct address to begin execution.
The value set into EEPROM should be the same address as the location of your
CODE.

TEST128.rm, used for locating your application in memory space for burning into
ROM, has a simpler map setup.

map 0x00000 to 0x07fff as rdwr
map 0x08000 to 0xdffff as reserved
map 0xe0000 to 0xfffff as rdonly

The RAM size is setup by default to be only 32 KB. If you are using a larger
SRAM with your own ROM, you will want to modify the configuration if you
expect to address all 64 KB of data segment.

The segment from 0xe0000 to 0xfffff is the address space for the 128 KB EPROM.
Your application will be located here. Once again, you can specify the actual loca-
tion of each segment using CODE and DATA .

You can also specify whether you wish to generate a .BIN or .HEX file. Different
device programmers will require different generated files. The TERN ACTF Kit,
for example, requires you to generate .HEX files for downloading into Flash.

Near the top of the .rm configuration files, you will find a line that begins with hex-
file. This directive tells loc31 where to place the offset for the executable, the size
of the ROM, as well as the type of generated file.

If you wish to generate a .BIN file, the general syntax will be:

hexfile binary offset=0xe0000 size=128

A .HEX file syntax is similar, and the general syntax is:

hexfile Intel86 offset=0xe0000 size=128

Offset specifies the location where the executable will be placed. If you need to
modify this value, you will need to change it here as well as below, where CODE is
specified. Size should be equal to the size of the overall ROM, in KB.

Development and Debugging

4-8 TERN EV/DV Software Kit Technical Manual

4.3 Makefile Options

The makefile is located in your working directory (depending on which controller
you are using).

Several environment variables are available for your use. In general, you will not
need to modify the core makefile settings. You should instead just modify makefile
options as needed for your particular hardware and software configuration.

4.3.a USER_OBJS

You can set the value USER_OBJS to the source code object files you need to link
into your final executable. This is the environment variable you will need to mod-
ify if you are working with multiple source files. The target filename, as specified
by using t.bat or m.bat is already selected as one of the objects to be compiled and
linked. If you have any others, you should add their names here as well.

For example, if you have source files named FileOne.c and FileTwo.c, set the
value

USER_OBJS = FileTwo.obj

You can then compile both executables and link them with the final executable by
using “m fileone”.

4.3.b BOARD

This is a string constant that defines the core controller you are using. You should
be sure to use one of the default strings. In general, this should already be defined
correctly and you will not need to modify it.

It is used to determine the appropriate libraries and include files that must be added
to your compilation.

4.3.c EXTENSION

This is the extension of your target file. If you are compiling a C file, as default,
this will most likely be set to c. If you are using a C++ file, this might be set to .cpp
instead.

TERN EV/DV Software Kit Technical Manual 4-9

Makefile Options

4.3.d MEMCARD

There are two different sets of libraries, C series and D series, for the AMD Flash
memory cards you are using with the MemCard. The valid choices here are
TYPE_C_CARD for the C family of flash cards, and TYPE_D_CARD for the D
family of flash cards.

4.3.e COMPDIR

This directory is the root directory into which TERN software is installed. By
default, this value is \tern. You should be aware that since you are working with
DOS applications, path names must not contain spaces or other special characters
(i.e., *, ?, @, etc.), unlike in Windows 95/98.

Several other directories are just extensions of this one variable. These include
CURRDIR (the current working directory), CONFIGDIR (the directory where
configuration files are contained), STARTUP_DIR (directory containing various
startup files), and the INCLUDE_DIR (the include directory for your compila-
tion).

4.3.f EPROM/SRAM/CPU

These options should all be configured as commented in the makefile for your par-
ticular hardware configuration.

4.3.g OPTIMIZE

This flag indicates the extent to which your code should be optimized. Optimiza-
tion for speed does not dramatically speed up your code. If you have time-critical
applications, the best solution is to probably write assembly level code that gives
you more precision control over execution.

Development and Debugging

4-10 TERN EV/DV Software Kit Technical Manual

4.4 Optimizing Your Code

There are a few hints we can provide about optimizing your code to run on hard-
ware provided with TERN controllers.

First of all, standard optimizing techniques can be applied to reduce the complexity
of code. References for this can be found in programming texts. Code that uses
floating point, for example, should be avoided if performance is a concern.

Many of the chip-select lines on TERN controllers are programmed with a high
wait-state value for maximum reliability. In environments with high noise values,
it might be necessary to leave this wait-state value high. If you are seeking higher
performance though, you will wish to turn down the default wait-state values.

Depending on the processor on which your TERN controller is based, the wait-
select line for the RAM/ROM might be set to as high as five wait-states. If you turn
this value down, you should find a dramatic increase in performance. If you are
using peripheral devices, the default I/O wait state value is often as high as 15 wait
states.

