DataWatchv

C/C++ Programmable 16-bit Industrial Controller
Based on the NEC V25
With 96 field-removable screw terminals

e g AT
. LA, bl S
A Rl

fﬁﬂﬁﬁﬁmﬁﬁﬁtﬂh$a=ﬂ‘“ﬂﬁ‘.=

Technical Manual

TTERN

INC.
1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181

Email: sales@tern.com http://www.tern.com

COPYRIGHT

DataWatch, V25-Engine, C-Engine, VE232, TinyDrivd04, MemCard-A, NT-Kit, and
ACTF are trademarks of TERN, Inc.
V25 is a Trademark of NEC Electronics Inc.
Borland C/C++ is a trademark of Borland Internagion
Microsoft, MS-DOS, Windows, Windows95, and Windo®s®re trademarks of
Microsoft Corporation.
IBM is a trademark of International Business MaelsilCorporation.

Version 2.00

October 29, 2010

No part of this document may be copied or reproduceny form or by any means
without the prior written consent of TERN, Inc.

© 1999-201(TERIQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to jatlife and property
against incidental failure.

TERN reserves the right to make changes and improventerts products without
providing notice.

Temperature readings for controllers are baseth@mnesults of limited sample tests; they
are provided for design reference use only.

DataWatch

Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

The DataWatch™(DW) isa 6.7 by 6.7-inch, low-cost, 16-bit C/C++ programmable industrial controller
based on the NEC V25 processor. The DW supports up to 512 KB ROM/Flash, 512 KB battery-backed
SRAM, a512-byte EEPROM, areal-time clock (RTC72421), up to three serial ports, three 16-bit
timers/counters, TTL 1/O lines, 14 solenoid drivers, power failure reset, watchdog, and 24x4 field-
removable screw terminals. The DW also supports 12-bit ADC, DAC, and a 16x2-character LCD interface.

The DW is designed for industrial and field applications that demand mobility. The 96 (24x4) optional
field-removable screw terminals of the DW alow a unit to be placed and removed without disconnecting
individual wires, which relieves the constant hassle of swapping, moving, and upgrading a system. This
feature saves time and minimizes disastrous cross-wiring. The factory default configuration provides fixed
terminals, if the optional field-removable terminals are not needed.

WH 5-8
)

KEY:
Termina Block [

Data/Control Path [l
Peripheral Device []

4 ch. DAC* DataWatch
I u22 'I'
Memory Mapped
4to 1MUX V25CPU
u21 EPROM U3
80x86/80x88 (0x80000-Oxffff)
Compatible
4t0 1 MUX U21 p SRAN U1
u2 0x00000-0x 7ffff
6t0 1 MUX UL9 DATA ()
ADDR
- Time-Base Counter CNTL 1/0 Manped
Serial EEPROM 16-bit Timers (2) app
ur DMA (2) UART SCC2691*
- External Interrupts (5) us
11 ch. 12-bit ADC* 8hit 1/0 Ports (3) (0Xc000)
SERO/SER1 RTC27421*
U4
MAX691
Supervisor Comparator Inputs (8) (0x8000)
ue 82C55 PPI
(0x4100)

J7& JSH

RS-232 Drivers

u15

* Optiona item
RS-485| [4485/-485
U4 (T1)

U12, U13 (T2)
T10, T17
GR7-8 7805 U9 7806 U09
(T4) Regul ator Regulator
5Volt Output| |6 Volt Output
VCC VCC1
| +12V Input

Figure 1.1 Functional block diagram of the DataWatch

At the 24x4 screw terminals, the DW provides 16 TTL inputs, 8 comparator inputs, 14 solenoid drivers, and
8 bi-directional TTL 1/Oswith LED indicators.

The 16 TTL inputs are buffered by two PALs and can be configured as multiplexed events counter inputs,
externa interrupt inputs or digital inputs. An on-board PPl (82C55) drives 14 solenoid drivers and 8 bi-
directional TTL 1/Os. Eight resistor-protected comparators can be used to measure either digital or analog
inputs (O to 10V) in 16 levels.

1-1

Chapter 1: Introduction DataWatch

An optional 11 resistor-protected 12-bit ADC inputs and four 12-bit DAC outputs can be installed on the
DW. The ADC (TLC2543) features reference inputs (2.5V or 5V), a sample rate of up to 2.5 kHz, and a
0-10V input voltage range. The DAC (MAX537) outputs OV to 2.5V, with atypical slew rate of 3V/swith a
5kQ load. The DAC isinstalled with a 2.5V precision reference (20 ppm/°C, LT1009).

The 14 solenoid drivers can sink up to 350 mA each at 50V.

A 512-byte serial EEPROM isincluded on-board. An optional real-time clock provides information on the
year, month, date, hour, minute, second, and 1/64 second, and an interrupt signal.

Two DMA-driven serial ports from the NEC V25 support high-speed, reliable serial communication at a
rate of up to 115,200 baud. One optional UART (SCC2691) supports 8-hit/9-bit RS-485 networking.

Two standby modes, HALT and STOP, can reduce power consumption. A 16-pin LCD interface header
supports various types of LCDs.

TERN also offers custom hardware and software designs, based on the DataWatchor other TERN
controllers.

1.2 Features

Standard Features
¢ Dimensions: 6.7 x 6.7 x 0.7 inches
* Power consumption: 180 mA at 9V
e Low power version: 75 mA
e Standby: <20 mA
« Power Input: +9V to +12V unregulated DC
e 16-bit CPU (NEC V25), 8 MHz, Intel 80x86 compatible, C/C++ programmable
« ROM and SRAM up to IMB, 512-byte EEPROM (or up to 2KB)
e 3timers, 2 counters (100KHz), and external interrupts
e 8 comparator inputs for analog/digital signals
e 14 solenoid driversand 8 TTL 1/Os driven by PPI
* 512-byte seriadl EEPROM
e Two high-speed seria ports from the V25 CPU (RS-232)
e Supervisor chip (691) for power failure, reset and watchdog
¢ LCD interface

Optional Features

e 32KB, 128KB, or 512KB SRAM

e 11 channels of 12-bit ADC, sample rate up to 10 KHz

e 4 channels of 12-bit DAC with 2.5V reference

e SCC2691 UART (on-board) supports 8-hit or 9-bit networking
e 24x4 Field-removable screw terminals

* Real-time clock 72421, lithium coin battery

1-2

DataWatch Chapter 1: Introduction

1.3 Physical Description

The physical layout of the Datawatch is shown in Figure 1.2,
O O

| f s
T2 =

ﬂ

| e— RS

S4

Ul H14Q:]
g o

LED:

SRAM power on

s3
=

HI3 e

NEC V25

Step2 o U2

|- I~
= H12| =
é] PAL UZ% EA
124 u16 uU19 u21 u17 REF2
g DAC
S ee_PAL []fp PAL T[] w2
g
=]

=

— ﬁﬁ

&

o8
[unzoos 4

=

5

]

H17 H18 s1
Dss " E]D:5]7 Dse HllQ:] T3

L |

O O

uo9 ’

—-
IS

Figure 1.2 Physical layout of the DataWatch

1.4 DataWatch Programming Overview

Development of application software for the DataWatch consists of three easy steps, as shown in the block
diagram below.

STEP1 Serid link PC and DataWatch, program in C/C++
Debug C/C++ program on the DataWatch with Remote Debugger

U

STEP 2 Ted DataWatch in thefield, away from PC
Application program resides in the battery-backed SRAM

]

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

Y ou can program the DataWatch from your PC via serial link with an RS232 interface. Y our C/C++
program can be remotely debugged over the serial link at arate of 115,000 baud. The C/C++ Evauation Kit
(EV) or Development Kit (DV) from TERN provides a Borland C/C++ compiler, TASM, LOC31, Turbo
Remote Debugger, 1/0 driver libraries, sample programs, and batch files. These kits also include aDEBUG
ROM (TDREM_V25) to communicate with Turbo Debugger, a DB9-IDE10 (PC-V 25) serial cableto
connect the controller to the PC, and a 9-volt wall transformer. See your Evaluation/Devel opment Kit
Technical Manual for more information on these kits.

1-3

Chapter 1: Introduction DataWatch

After you debug your program, you can test run the DataWatch in the field, away from the PC, by changing
asingle jumper, with the application program residing in the battery-backed SRAM. When the field test is
complete, application ROMs can be produced to replace the DEBUG ROM. The .HEX or .BIN file can be
easily generated with the makefile provided. Y ou may also use the DV Kit or ACTF Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.
1.41Step 1

STEP 1. Debugging
* Writeyour C/C++ application program in C/C++.
e Connect your controller to your PC viathe PC-V25 serid link cable.

» Usethebatchfilem bat to compile, link, and locate, or uset . bat to compile, link locate, download,
and debug your C/C++ application program.

] T1.1=+12VI —|

T1.2=SGND —>
PC PC-V25 Cable

DC +9V 300 mA
Wall transformer

Center Negative

Datawatch

DC power jack connects
to the screw terminal of
the DataWatch.

Figure 1.3 Step 1 connections for the DataWatch

DataWatch Chapter 1: Introduction

1.4.2Step 2

STEP 2: Standalone Field Test.
* Set thejumper on JO pins 1 and 2 on the DatawWatch (Figure 1.4).

e At power-on or reset, if JO pin 1 (P02) islow, the CPU will run the code that resides in the battery-
backed SRAM.

* If ajumperison JOpins1and 2 at power-on or reset, the DW will operate in Step Two mode. If the
jumper isoff JO pins 1 and 2 at power-on or reset, the DW will operate in Step One mode. The status of
JO pin 1 (signal P02 of the NEC V25) is only checked at power-on or at reset.

l ‘ s ™
z =
ﬂ SERO SEREL]E:] ™ O

J2 o

[e—

NEC V25

Step2 jumper p 2 4
ingtallsonJ0 ———[° i
w3

ujawachdog [
J0f] Step2 —
+ s H12)
! T A
el

Uls U9 u21 u17 REF2

DAC
w2

H16 H17 H18 S1
B [Jwe E3 B3 Q:]
[Iss H1L

uos
ULN2003
U
ULN2003

uo9 \ T4 ‘

Figure 1.4 Location of Step 2 jumper on the DataWatch

1.4.3Step 3

STEP 3: Generate the application .BIN or .HEX file, make production ROMs or download your program to
FLASH viaACTF.

» If you are happy with your Step Two test, you can go back to your PC to generate your application
ROM to replace the DEBUG ROM (TDREM_V25). Y ou need to change DEBUG=1to DEBUG=0in
the makefile.

Y ou need to have the DV Kit to complete Step Three.

Please refer to the Tutorial of the Technical Manual of the EV/DV Kit for further details on programming
the DataWatch.

1-5

Chapter 1: Introduction DataWatch

1.5 Minimum Requirementsfor DataWatch System Development

1.5.1Minimum Hardware Requirements

» PC or PC-compatible computer with serial COMx port that supports 115,200 baud

» Datawatch controller with DEBUG ROM TDREM_V25

 DB9-IDE10 (PC-V25) seria cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector
for controller)

e center negative wall transformer (+9V 500 mA)

1.5.2Minimum Software Requirements

« TERN EV/DV Kit installation diskettes
* PC software environment: DOS, Windows 3.1, Windows95, or Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Development Kit (DV) are available from TERN. The EV Kit
is alimited-functionality version of the DV Kit. With the EV Kit, you can program and debug the
Datawatch in Step One and Step Two. You will need the full Development Kit (DV) in order to generate an
application ROM/Flash file, make production version ROMs, and complete the project, you.

1-6

DataWatch Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/@evelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN EV/DV disk containsportant information about the installation
and evaluation of TERN controllers.

2.2 Hardware Installation

Hardware installation for the DataWatch consistsarily of connecting the microcontroller to you€P

Overview
» Connect PC-V25 cable:
For debugging (Step One), place connector on SEROrad edge
of cable at pin 1
» Connect wall transformer:
Connect 9V wall transformer to power and to scresninals on the
DataWatch

2.2.1 Connecting the DataWatch to the PC

The following diagram (Figure 2.1) illustrates tbennection between the DataWatch and the PC. The
DataWatch is linked to the PC via a serial cable-{R25).

The TDREM_V25 DEBUG ROM communicates through SERO by defaulitdi the 5x2 IDE connector on
the SERO header of the DataWatchMPORTANT: Note that the red side of the cable must point to pin 1
of the SERO header. The DB9 connector should be connected to one of alis COM Ports (COML1 or
COM2).

RED edge of cable o O
points to pin 1 of | |
SERO (J7)

=

IDE
connector

[ToJ

To COM1
or COM2 =
9-pin
connector 1] —
= (DB9)
= -

o | d

Figure 2.1 Connecting the DataWatch to the PC

2-1

Chapter 2: Installation DataWatch

2.2.2 Powering-on the DataWatch

Connect a wall transformer +9V DC output to thedVeatch via screw terminals as follows:
» Connect the positive lead coming from the bottorthefVin socket into T1.1 = +Vin of the
DataWatch.

» Connect the ground lead coming from the end oMinesocket into T1.2 = GND of the
DataWatch.

« Connect the 9V wall transformer plug in to the gotket (figure 2.1).

The on-board LED (LO) should blink twice and remaim after the DataWatch is powered-on or reset
(Figure 2.2). Also, the L9 LED should always remaimwhile the main power is on.

Red LED (L9)
Remains lit while main power is on

(©]

Positive lead +Vin=T1]
GND=T1.2

+9V 500mA center negative Vin Socket
wall transformer

" Red LED (L0)
Blinks at power-on/reset

Figure 2.2 The LED (LO) blinks twice after the DataWatch is powered-on or reset

DataWatch Chapter 3: Hardware

Chapter 3. Hardware

3.1 NEC V25 - Introduction

The NEC V25 is based on industry-standard x86 tachire. The NEC V25 controllers are a higher-
performance, more integrated versions of the 80CGh&8oprocessors. In addition, the NEC V25 has new
peripherals including 256 bytes built-in RAM, higheed serial ports, parallel 1/O ports, comparptots,
timers, and DMA. The on-chip system interface logao minimize total system cost.

3.2NEC V25 — Features

3.2.1 Clock

Due to its integrated clock generation circuithe NEC V25 microcontroller allows the use of a s&lble
system clock frequency dk/2, fx/4 andfx/8. The design achieves a maximum 8 MHz CPU operation
while using a 16 MHz crystal.

A built-in clock generator supplies various cloéggshe CPU and peripheral hardware. The DataWatch™
uses a 16 MHz crystal. The default system clockutLéfter initialization is 8 MHz on the CLK. Théock
cycle is 125 ns. The normal bus cycle requiresdimok cycles, which is 250 ns. With built-in waiate
generation, up to 2 wait states can be inserteth We default initialization of 2 wait states, BEBPRs of

120 ns to 150 ns can be used.

A time base counter provides clock signals for iBebit timers, baud rate generator, refresh timiafresh
address, and time base interrupt request flag. (1¢ of the V25) and /REFRQ are two outputs of the
time base counter. A time base interrupt may begeed at 4 different intervals, 128 us, 1.0248rk92
ms, and 131.072 ms, selectable by software.

3.2.2 External Interrupts

There are five external interrupts: /INTPO-/INTR&VI, and INT.

/INTPO = P11 is used by the SCC2691 UART, if installed.
/INTP1 =P12, GR7 at T3

/INTP2 = P13, WH1-4, T3

INMI = P10, J4 Pin 1

/INT = P14, use as I/O

INTPO to INTP2 and NMI are edge-detected interruatal INT is level-detected. The valid edge fartea
edge-sensitive interrupt can be specified in aigp&unction register. Valid edges for these intpts are
found in thelNTM register(Interrupt Mode Register. Page 98 in the NEC V2BrigsManual).

NMI and INT are special external interrupts. NMihpat be disabled and therefore is the highest-pyior
interrupt that can be detected. INT is an activgh4evel sensitive interrupt that is not subjectultiple
servicing control by the interrupt controller. IN§ always acknowledged if interrupts are enabled.

The DataWatch uses vector interrupt functions &poed to external interrupts. Refer to the NEC V25
User’'s Manual for information about interrupt vesto

Interrupt Shared Function Physical Location Terminal Block Label

INTPO P11 SCC UART (U8) -

INTP1 P12 T4 pin 15 GR7

INTP2 P13 T3 pins{4,10,16,22} Multiplexed WH1-WH8
T4 pins{4,10,16,22}

3-1

Chapter 3: Hardware DataWatch

Interrupt Shared Function Physical Location Terminal Block Label

INT P14 T3 pins{3,9,15,21} Multiplexed GR1-GR6
T4 pins{3,9}

NMI Dedicated Interrupt| J4 pin 1 -

The sample prograhw_intp.c demonstrates how to access the external interauptise DataWatch board.

3.2.3 Asynchronous Serial Ports

The NEC V25 CPU has two asynchronous serial chani®#R0 and SER1. Both asynchronous serial
ports support the following:

* Full-duplex operation

» 7-bit and 8-bit data transfers

« Odd, even, and no parity

* One or two stop bits

» Error detection

* Hardware flow control

e Transmit and receive interrupts for each port
* Independent baud rate generators

The software drivers for each serial port implemanting-buffered macro service receiving and ring-
buffered interrupt transmitting arrangement. $mesamples filesl_echo.@ands0_echo.c

An optional external SCC2691 UART is located in B&r more information about the external UART
SCC2691, please refer to section 3.4.6 and AppeBdix

3.2.4 Timer Control Unit

The NEC V25 CPU has two 16-bit programmable tim&nsier 0 and Timer 1. Both programmable 16-bit
timers are comprised of a 16-bit modulo registek§ it timer register, and an 8-bit control regist

3-2

DataWatch

Chapter 3: Hardware

TIMER O Interval Timer Mode
MDO
TMCO Register Register
Present Output TOUT
6 Control
f./128 Selector Rl_:ggter Sets
L EIN TMFO
TIMER 1
MD1
TMCL1 Register Register
Present Sets
- > TVF1
K ___p ™1 Sets
Selector Register >
f4/128 g TMF2
f/12 TIMER O One-Shot Timer Mode
ck ’ Mm S ts
Register p ¢
f /128 Selector g TMF1
Qutput
| TMCO Regjister Confrol » TOUT
fq/12
W > ™0 Sets
f4/128 Selector Register > TMFO
TIMER 1
MD1
TMC1 Register Register
Presat
fq. /6
dk/—» ™1 Sets
Selector Register >
fq /128 g TMF2

Figure 3.1 Interval Timer Mode and One-Shot Timer Mode Configuration

TimerO can be programmed as an interval timer ca ase-shot timer. In interval timer mode, the MDO
register value is set to the TMO register, and ttenTMO countdown begins (Figure 3.1). When TMO
underflows, the TMFO output is set to 01 and theQMBgister is again set to TMO. The countdownkiloc

3-3

Chapter 3: Hardware DataWatch

folk, is divided by 6 or 128, as defined in the TMC@ister. The square wave generated by TimerO can be
output toTOUT (U16 pin 7 = P15; not routed to terminal by defaul

As a one-shot timer, Timer 0 is configured as tadependent timers that count down from the valtiénse
MDO and TMO (Figure 3.1). The countdown frequeigcdivided by 12 or 128. If the counter is stoppe
by either reaching 0 in the count or by setting$® bit to 0 (STOP = 0), a single pulse outpufEQ@IUT.

Timerl can only act as an interval timer and hasxternal output.

TMO provides a signal output pin TOUT = P15. Oa BataWatch, TOUT = P15 is used as a select line
for GR1..6.

3.2.5 Standby Modes

The DataWatch is an ideal core module for applicetithat require low power consumption. The V25 CPU
has two standby modes, HALT and STOP mode, whidiae power consumption and heat dissipation,
thereby extending battery life in portable systems.

In HALT or STOP mode, operation of the CPU closkstopped and program execution is halted. All
registers and RAM content are preserved. HALT mmatedrop the power consumption to 50 mA. When
an interrupt occurs, it automatically returns tomal operation.

The difference between HALT mode and STOP modeasHALT mode allows peripheral hardware (such
as serial ports, DMA controller, etc.) to functid®TOP mode disables all devices. The followindetab
shows which devices are active and which are macturing HALT and STOP modes.

Item HALT Mode STOP Mode
Oscillator Operates Stops

Internal System Clock Stops Stops

16-bit timer Operates Stops

Time Base counter Operates Stops

HOLD circuit Operates Stops

Serial interface Operates Stops
Interrupt request controller| Operates Stops

DMA controller Operates Stops

I/O lines Data Retained| Data Retaineld

Table 3.1 Hardware Status During Standby Mode

To release stop mode, /NMI or /RESET must be trigdeA non-maskable interrupt request, DMA request,
macro service request, or a reset will release HAhdde. Since the serial ports are functional durin
HALT mode, it is possible to send a break commanithé¢ serial port to resume operations.

The total power consumption is approximately 20 im#ghe STOP mode with the low power version of
DataWatch. The STOP mode can be released by NMt mpreset input.
3.2.6 Count External Eventsusing the 16-bit DMA Count Register

The V25 has a built-in, two-channel DMA controll&ince the V25 has no built-in external events ten
the user may use the two 16-bit DMA Count Registerd the two DMA request lines to count external
TTL-level events at a rate of up to 100 KHz.

Two DMA request lines (P20 and P23) can be prograchin detect external rising edges of TTL-level
pulses and decrement the corresponding pre-loaté8l Count Register. For a maximum of 65,635 counts

3-4

DataWatch Chapter 3: Hardware

pre-loaded, the counting works well for up to 10Zexternal pulses. An interrupt can be generapethu
completion of the DMA operation when the terminalint becomes zero. An interrupt service routing can
be designed to re-initial the DMA for counting.

A sample program is listed ir:\tern\v25\sanpl es\dw dw cnt.c (for details, see also
chapter 4).

3.3NEC V25 1/0O Ports

3.3.1Port0,1,and 2

The NEC V25 has three 8-bit user-programmable B@spavailable. The 24 bi-directional I/O portsAp-
are multiplexed with different functions. Individlu/O lines can be specified as input, output;anmtrol
lines. Each port is controlled by a Port Mode Calnegister (PMC), a Port Mode Register (PM), and a
Port Data Register (P). You can write or readdlregisters via the following functions:

pokeb(0xfff0, 0x??, Ox!!)
or peekb(0xfffO, 0X?7?)

where?? is the register offset address dhds the control/data byte.

The following is a list of the register addresses.

Register | Register Offset | RIW Access
Symbol Address Units (bits)
PO 0x00 R/W 8/1
PMO 0x01 w 8
PMCO 0x02 R/W 8/1
P1 0x08 R/W 8
PM1 0x09 w 8/1
PMC1 O0x0A RIW 8

P2 0x10 R/W 8/1
PM2 0x11 w 8
PMC2 0x12 R/W 8/1

After power-on/reset, I/0 pins default to variousnfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins esdad for specific on-board usage as well. These
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.2.

Port PMC, = 1 PMC, =0 Status after DataWatch
1/0 PM =X ve_init() Location/Function
PM, =1|PM, =0
P00 - Input Output Input EEPROM (U7) clock SCL
PO1 - Input Output Input EEPROM (U7) data SDA
P02 - Input Output Input JO pin 1. Step 2 Jumper.
P03 - Input Output Output HWD (Hit Watch Dog)
P04 - Input Output Input WDO (Read watchdog output).
Select line for MUX WH1..8
P05 - Input Output Output On-board LED LDO.

3-5

Chapter 3: Hardware DataWatch

Port PMC, = 1 PMC, =0 Status after DataWatch
110 PM =X ve_init() Location/Function
PM, = 1| PM, =0

P06 - Input Output Input Select line for MUX GR1..6.

P07 | CLKOUT Input Output CLKOUT CLKOUT, 8 MHz.

P10 - INMI - /INMI J4 pin 1.

P11 - /INTPO - /INTPO External Interrupt Input 0. Used
by SCC UART.

P12 - /INTP1 - /INTP1 External Interrupt Input 1. Pin
label GR7.

P13 | /INTAK /INTP2 - /INTP2 MUX input WH1...WH4.

P14 | INT /POLL Output Output MUX input GR1...GR6.

P15 | TOUT Input Output Input Select line for MUX GRL1..6.

P16 | /SCKO Input Output Output Select line for MUX GR1..6.

P17 | READY Input Output READY RN2.7

P20 | DMARQO Input Output Input MUX input WH5...WHS.

P21 | /DMAAKO Input Output Input U21 pin 8

P22 | /TCO Input Output Input Select line for MUX WH1..8.

P23 | DMARQ1 Input Output Output EN485 for SCC RS485 driver.
Pin label GR8.

P24 | /IDMAAK1 Input Output Input 12-bit ADC CLK

P25 | /TC1 Input Output Input 12-bit ADC DIN

P26 | /HLDAK Input Output Input 12-bit ADC DOUT

P27 | HLDRQ Input Output Input 12-bit ADC CS, pulled high

Table 3.2 I/O pin default configuration

DataWatch 1/O initialization ive_init() is listed below:

pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */

pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, PO5=LED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMCL1 P17 for READY */

pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

pokeb(0xfff0,0x11,0xf7); /* Set PM2 for input, P23=EN485 output */

The C function in the librarye_lib can be used to initialize PIO pins.
void port_init(charp, unsigned chgosmc, unsigned chgom);
Where p=port0, 1 or?2.
pmc = define each pin as CONTROL or I/O (0 = 1/0O; 1 ©TROL).

pm = define each I/O pin as input or output (0 = ot = input).
3.3.2 Port T Comparator Inport

Port T is an 8-bit input port whose threshold wgdtacan be changed in 16 steps. Each Port T isput i
compared with the selected threshold voltage (M@ > Vth results in a value 1, PTn < Vth resiita
value 0. All eight results from PTO to PT7 areletd to the port T input latches.

3-6

DataWatch Chapter 3: Hardware

The resulting 8-bit latch can be accessed by thetifon portt_rd(void), which returns the 8-bit result. Vth
can be changed by the functiportt_wr(charvref). The variablerref {0 .. 15} sets the reference voltage
by the following equation: Referencé/th * vref/16. vref = 0 sets Reference = Vti/th is connected to
a 10 K pullup resistor network and V&h3.57V. PTO — PT6 are on J2. PTO — PT2 are puifety 10 K
resistors.

Comparator port inputs are accessible via T2. ifipet pins are labeled CPO...CP7.

Port Direction Label

PTO INPUT CPO, T2.1.
PT1 INPUT CP1, T2.3.
PT2 INPUT CP2, T2.4.
PT3 INPUT CP3, T2.6.
PT4 INPUT CP4, T2.7.
PT5 INPUT CP5, T2.9.
PT6 INPUT CP6, T2.10.
PT7 INPUT CP7,T2.12.

3.41/0 Mapped Devices

3.4.11/0 Configuration

The 1/0 on the DataWatch is accessible through 2gupin terminal blocks (fixed or field-removable).
Figure 3.2 shows the I/O configuration for eaclmieal block.

3-7

Chapter 3: Hardware DataWatch

13
« +12VIN
« ANO-10
e +485/-485
« RE14
. +485/-485 o BK 1-4
« HV14
T4
¢« GR58
« WH5-8
« T10,T17
RE 5-8
« BK58
« DI 1-8 « HV56
T10, T17

Figure 3.2 /0 configuration for terminal blocks

Terminal Blocks 3 and 4 are labeled to be used gathr-coded wires for easier installation.
Table 3.3 shows the Function for each type of teaini

Label Function

RE Outputs 12 volts or 5 volts. Jumpers S1-S&téhe output voltage.

BK High-voltage, high-current drivers.

GR Multiplexed digital input.

WH Multiplexed digital input*WH1-4 = DAC output if MAX537 (U22) isinstalled.

3-8

DataWatch Chapter 3: Hardware

Label Function

HV High-voltage, high-current drivers.
CP Comparator inputs.

DI PPl P00-P0O7. Led indicators.

T10, T17 | PPI P10 and PPI P17.
+12VIN Input voltage. 12 volts.
+485/-485 | SCC 2691 RS485 port.

Table 3.3 Functions of different terminal types

3.4.21/0O Space

External I/O devices use I/O mapping. You may a&d&3 with inportb(port) or outportb(port,dat). The
external I/O space is 64K, ranging from 0x0000x&fD In the 1/0O space of 0x0000-0x7fff, the I/@eess
time is 500 ns. In the I/O space of 0x8000-0xffffe 1/0 access time is 250 ns. Table 3.4 shows more
information on 1/0 mapped devices.

1/0 space time (ns) | Decodes Usage
0x0010-0x7fff | >500 ns /IORD*/A15*addr+/IOWR*/A15*att USER
0x8000-0xbfff | >250 ns /IOSTB*A15*/A14 RTC
0xc000-0xffff >250 ns /IOSTB*A15*A14 SCC

Table 3.4 1/0 Mapped devices

If A15 is not used for decoding, the J2 pin 10 sighal may be used instead:
/sel ect | ow = | ORD*/ E*| ower _addr + | OAR*/ E*| ower _addr

The following devices are 1/0O mapped to the DatadNafThese devices can be accessed using their
libraries or directly through thi@port, outport functions.

1/O space Usage

0x4100 PPI (U15)
0x8000 RTC (U4)
0xc000 SCC UART (U8)

3.4.3 Multiplexed I nput

The DataWatch multiplexes the GR and WH digitalinines. Lines GR8 and GR 7 are directly inpubint
P23 and P12 respectively. GR 6 through GR1 areteeleas input by P06, P16, and P15. The table in
Figure 3.3 shows the select logic for lines GRGRL.

3-9

Chapter 3: Hardware DataWatch

/O [GRn [P06 | P16] P15] P23, P23A GRS
P23= | 8 - | - - H5
P12= | 7 N - P12 GR7
Pia= | 6 0 0o o
pla= | 5 0| o 1 | GR6
Pla= | 4 0o 1| o |GR5
Pla= | 3 o | 1 | 1 Ul9 |GRra
P14 = 2 1 0 0 'GR3
Pla= | 1 11 0 1 P14 R
PAL DIP100 @-
P06
Pi6
pi5

Figure 3.3 GR multiplexed input

WH 8 through GR5 are multiplexed into P20 and WHrbtigh WH1 are multiplexed into P13. Both
WHS8-WH5 and WH4-WH1 share the same control lindse Table in Figure 3.4 shows the select logic for
lines WH8 to WH5 and WH4 to WH1.

/IO |WHn | P04 | P22

P20= | 8 0 0 WHB
P20 = 7 0 1 P20 | PAL DIP200 | WH7
P20 = 6 1 0 < | WH6
P20=| 5 1 1 WH5
P13 = 4 0 0 T
P13 = 3 0 1 Po4 u21
P13 = 2 1 0 P22
P13 = 1 1 1

| WH4*
* WH1-4 = DAC 1-4 if P13 | WH3*
MAX537 (U22) isinstalled < WH2*
on the DataWatch. PAL DIP200 | WH1*

Figure 3.4 WH multiplexed input

3.4.4 Programmable Peripheral I nterface (82C55A)

Ul5 PPI (82C55) is a low-power CMOS programmablealfel interface unit for use in microcomputer
systems. It provides 24 I/O pins that may be iiiglly programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be progreeah in sets of 4 and 8 pins to be inputs or outputs
In MODE 1, each of the two groups of 12 pins carplegrammed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshakimgirterrupt control signals. MODE 2 is a strobéd b
directional bus configuration.

3-10

DataWatch Chapter 3: Hardware

|—J GROUP 1

Port2 | O Output
(Lower)

1 Input

Portl [O Output

1 Input

Mode 0 Mode 0

1 Mode 1
GROUP 2
Port 2 0 Output
(Upper)
1 Input

Port 0 0 Output

1 Input

Mode | 00 | Mode O

01| Model

1X | Mode 2

Command 0 Bit
Select manipulatiol

1 Mode

Selec

Figure 3.5 Figure 3.3 Mode Select Command Word

The DataWatch maps the 82C55 PPI, at base 1/0 ssl@el100. The Command Register = 0x4103; Port
0 = 0x4100; Port 1 = 0x4101; and Port 2 = 0x4102.

The following code example will set all ports tatjput mode:

out port b(0x4103,0x80); /* Mode O all output selection. */

out port b(0x4100, 0x55); /* Sets port O to alternating high/low 1/O pins. */

out port b(0x4101, 0x55); /* Sets port 1 to alternating high/low 1/O pins. */

out port b(0x4102, 0x55); /* Sets port 2 to alternating high/low /O pins. */
To set all ports to input mode:

out port b(0x4103, 0x9f); /* Mode O all input selection. */

You may read the ports with:

i nportb(0x4100); /* Port 0 */
i nportb(0x4101); /* Port 1 */
i nportb(0x4102); /* Port 2 */

i nportb returns an 8-bit value for each port, with eadhcbiresponding to the appropriate line of the
port.

Port O is labeled DI1...DI8 at the terminal blocksids connected to LED indicators. Port 1 is labele
T10...T17 and Port 2 is labeled T20...T27 at the teairirocks.

3-11

Chapter 3: Hardware DataWatch

3.4.5 Real-time Clock RTC72421

If installed, a real-time clock RTC72421 (EPSON,) imapped in the 1/O address space 0x0600. It mus
be backed up with a lithium coin battery. The RiEGccessed via software drivets_init() or rtc_rd()
(see Appendix C and the Software chapter for dgtail

It is also possible to configure the real-time &léa raise an output line attached to an extemtatiupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervahis can be used in a time-driven applicatathe
VOFF signal can be used to turn on/off the controllsm@ an external switching power supply. An
example of a program showing a similar applicatan be found iter n\v25\sampl es\ve\power off.c.

3.4.6 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped in k& dddress space 0xc000-0xffff. The SCC2691
offers the following:

» afull-duplex asynchronous receiver/transmitter

» aquadruple buffered receiver data register

» aninterrupt control mechanism

» programmable data format

» selectable baud rate for the receiver and transmitt

» amulti-functional and programmable 16-bit couriiewr

e an on-chip crystal oscillator

e amulti-purpose input/output, including RTS and GW&chanism

For more information, refer to Appendix B. The S&32 on the DataWatch may be used as a network 9th-
bit UART. Use T1 pin 4 (RS485+) and T1 pin 5 (RS48%0 join the multi-drop RS-485 twisted-pair
network.

3.50ther Devices

A number of other devices are also available orlth@Watch. Some of these are optional, and might n
be installed on the particular controller you aseng. For a discussion regarding the softwarefates for
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the DataWatch has several functions
that significantly improve system reliability:

» watchdog timer

» power-failure warning

» battery backup

* power-on-reset delay

* power-supply monitoring

Watchdog Timer

The watchdog timer is activated by setting a jumperd3 pins 1 and 2 of the DataWatch. The watchdog
timer provides a means of verifying proper softwexecution. In the user's application programisdal

the functionhitwd() (a routine that toggles the PO3=HWD pin of the MB®4) should be arranged such
that the HWD pin is accessed at least once evérgdconds. If the J3 1-2 jumper is on and the HWD

is not accessed within this time-out period, theéchwdog timer pulls the WDO pin low, which asserts
/RESET. This automatic assertion of /RESET mayvecthe application program if something is wrong.
After the DataWatch is reset, WDO remains low uatttansition occurs at the WDI pin of the MAX691.
When controllers are shipped from the factory 8id<2 jumper is off, which disables the watchdogeti.

3-12

DataWatch Chapter 3: Hardware

Power-failure Warning

The supervisor supports power-failure warning aadkbp battery protection. When power failure is
sensed by the PFI pin of the MAX691 (lower than\)3the PFO is low. You may design an NMI service
routine to take protect actions before the +5V drapd the processor dies. You can also measufeRhe
voltage with one of the 12-bit ADC inputs. The &lling circuit (Figure 3.6) shows how you might dlse
power-failure detection logic within your applicati

9-14 V(8.35 V min) ' VCC = +5V |
| R3=10K |

47K J1 pin 11 % |
& PFI of MAX691

oK 1 1.3V min) |

Figure 3.6 Using the supervisor chip for power failure detection

Battery Backup Protection

The backup battery protection protects data stordle SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiyén), and connects whichever is higher to VRAM
(power for SRAM and RTC). Thus, the SRAM and tealitime clock RTC72421 are backed up. In
normal use, the lithium battery should last abebty®ars without external power being supplied. Wi
external power is on, the battery-switch-over diraill select the VCC to connect to the VRAM.

NOTE: When there is no battery on the DataWatch, the VBATsignal should be shorted to ground

3.5.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesO@4--default), or 2K bytes (24C16) can be installed
in U7. The DataWatch uses the POO=SCL (serialkjland PO1=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store impordatd such as a node address, calibration
coefficients, and configuration codes. It typigdihs 1,000,000 erase/write cycles, and the d&tatien is
more than 40 years. EEPROM can be read and writtdoy simply calling the functionse_rd() and
ee_wr()

3.6 Inputs and Outputs

3.6.1 12-bit ADC (TLC2543)

The TLC2543 (U10) is an 11 channel 12-bit, switchagacitor, successive-approximation, serial iatef
analog-to-digital converter. It has three contrgltits(/CS=P27; CLK=P24; DIN=P25) and is designed fo
communication with a host through a serial tristatitput (DOUT=P26).

The TLC2543 has an on-chip 14 channel multipleket tan select any one of 11 inputs or any one of
three internal self-test voltages. The sample-asid-function is automatic. At the end of conversitme
end-of-conversion (EOC=P13) output goes high ticate that conversion is complete. TLC2543 features
differential high-impedance inputs that facilitatetiometric conversion, scaling, and isolation ofilag
circuitry from logic and supply noise. A switchedpacitor design allows low-error conversion over fill
operating temperature range.

The analog input signal source impedance shoulédsethan 5Q and capable of slewing the analog input
voltage into a 60 pF capacitor.

3-13

Chapter 3: Hardware DataWatch

The TLC2543 requires the 5 V25 1/O lines listedoeln order to operate:

P27 ICS Chip select, high to low transition eral®dOUT, DIN and CLK.
low to high transition disables DOUT, DIN and KCL
P25 DIN Serial data input
P26 DOUT 3-state serial data output.
P13 EOC End of Conversion, high indicates coneersbmplete, data is ready
P24 CLK I/O clock
The remaining four lines are used for referencéagal, power supply and grounding.
REF+ Upper reference voltage(normally VCC)
REF- Lower reference voltage(normally GND)
VCC Power supply, +5 V input
GND Ground

The reference voltage REF+, can be tied to VCGfraatiometric application. By default, REF+ islpdl
up to VCC by R8.

3.6.2 12-bit DAC (MAX537)

The MAX537 (U22) combines four 12-bit, voltage auttpligital to analog converters and four precision
output amplifiers in a 16 pin chip. The MAX537 oats witht5V power supply. Each DAC has a double-
buffered input. A 16-bit serial word is used to dodata into input/DAC register. The DataWatch uses
P20=/LD, P21=DAC /CS, P24=SCLK, and P25=SDI to afeethe MAX537. The REF+ of the MAX537
is 2.5V provided by U24. You may write the DAC witie function in the libraryw104_dal2(ch, dat);

3.6.3 High-voltage, High-current Drivers

ULN2003 has high voltage, high current Darlingtoansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substraéchannels feature open-collector outputs fokiig
350 mA at 50V, and integral protection diodes fovidg inductive loads. Peak inrush currents ota600
mA sinking are allowed. U18 and U08 are dedicatigti-ioltage drivers. These outputs may be parallele
to achieve high-load capability, although eacharivas a maximum continuous collector current gatif
350 mA at 50V. The maximum power dissipation alldvie 2.20 W per chip at 25 degrees°C)(The
common substrate G is routed to T3 GND pins. Atrents sinking in must return to the T3 GND pin. A
heavy gauge (20) wire must be used to connect 3h&ND terminal to an external common ground return.
K connects to the protection diodes in the ULN2@B#s and should be tied to highest voltage in the
external load system. K can be connected to argufaied on board +12V via HRILN2003 is asinking
driver, not a sourcing driver. An example of typical application wiring is sholwelow.

3-14

DataWatch

Chapter 3: Hardware

ULNZ2003

LW

Power Supply

Figure 3.7 Drive inductive load with high voltage/current drivers.

3.6.4 Power Supply Voltage Outputs

There is a 5V regulator U9 to provide regulatedté\DataWatch circuit. There is also an additionél 6
regulator in U09 to provide a regulated VCC1=6V Hwaders H11 to H18 which can select the output
voltage for RE1 to RE8. User can select either +d2VCC1=6V for RE1 to RE8 at the screw terminals
T3 and T4.

3.7 Headers and Connectors

3.7.1 Jumpers and Headers

The following table lists the jumpers and connextam the DataWatch:

Name | Size | Function Possible Configuration
J1 Ix1 RAM/ROM/Flash size pin 1-2: 32KB or 128KB SRAM
& type selection (ROM or | pin 2-3: 512KB SRAM
Flash) pin 4-5: ROM or Flash size 256KB-512KB
pin 5-6: ROM or Flash size 32KB-128KB
pin 7-8: Flash
pin 8-9: ROM
J2 6x1 SUM, SUML1 selection pin 1-2: SUM=GND
pin 2-3: SUM=VCC
pin 4-5: SUM1=VCC
pin 5-6: SUM1=GND
J3 2x1 Watchdog Timer Jumper on = WD enabled, dilszbled

3-15

Chapter 3: Hardware

DataWatch

Name | Size Function

Possible Configuration

JO 5x1 EEPROMNO Write pin 1-2: STEP2

Protection

pin 3-4: No EEPROM write protection.

J4 2x1 VOFF, NMI

3.7.2 Terminal Blocks

The DataWatch has a total of 24x4 positions of teailrblocks. A summary of their signals is listezldw.

Terminal

Signal Names

T1

+12V, GND, 485, AN10-10, SGND

T2

CPO-7, GND, DI1-8, SGND

T3

RE1-4, BK1-4, GR1-4, WH1-4, HV1-4, SGND

T4

RE5-8, BK5-8, GR5-8, WH5-8, HV5-6, T10,
T17, SGND

Table 3.5 Signals on terminals T1-T4

3-16

DataWatch Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix E.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not folemy you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an 1/0 address space and a memory address
space. /O address space ranges fox@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwareplicit accesses to I/0O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in 1/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsign#dnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3égment
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsjp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

Chapter 4: Software DataWatch

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédt@ss in memory space. Once agains#gmentaddress
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component mépgieat address should return either an 8-bit vatug
16-bit value over the data bus. If there is no jponent mapped to that address, this function eilinn
random garbage values every time you try to petekthrat address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

D
)

This function is used to place ttata into the appropriataddressin /O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perad
components.

When dealing with processor registers, be sureéahe correct function. Useitport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@cspace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigsase refer to the Hardware chapter of thisrtieeh
manual.

4.1VE.LIB

VE.LIB is a C library for basic DataWatch operasort includes the following modules: VE.OBJ,
SERO0.0OBJ, SER1.0BJ, SCC.OBJ, and VEEE.OBJ. You medohk VE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-file name | Description

VE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port O

SER1.H Internal serial port 1

SCC.H External UART SCC2691

VEEE.H on-board EEPROM

4-2

DataWatch Chapter 4: Software

4.2 Functions in VE.OBJ

4.2.1 DataWatch Initialization

VE_init

This function should be called at the beginningwdry program running on DataWatch core contralldts
provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

ve_init will initialize the I/O pin functions and storegtnitial register control bytes into the EEPROM€gs
Appendix D). You may use these image registerseterchine the status of the port but you must update
these registers in your applications. The port®e2igitialized as shown below:

void ve_init(void){
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */
pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, . ED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for REXDBY
pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, #ARTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for pordde */

4.2.2 External Interrupt I nitialization

There are up to five external interrupt sourceshenDataWatch, consisting of four maskable interpips
(INTP2-INTPO, INT) and one non-maskable interruptMI). There are also additional internal interrupt
sources not connected to the external pins, camgistf two timers, a time base counter, two DMA
channels, both asynchronous serial ports, andNME from the watchdog timer. For a detailed discussion
involving the interrupts, the user should refechapter 4 of the NEC V25 CPU User's Manual.

TERN provides functions to enable/disable all af #xternal interrupts. The user can call any ef th
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isieitn pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the user shoulda finish interrupt routine. This can be donmgishe
fint() function.

void intpx_init
Arguments: unsigned char i, void interrupt far(* intpx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€de second argument is a function pointer, whith
act as the interrupt service routine.

By default, the interrupts are all disabled aftgtialization. To disable them again, you can edgbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiR
return on interrupt.

void nm _init(void);

void intpO_init(unsigned char i, void interrupt far(* intO_isr)());
void intpl_init(unsigned char i, void interrupt far(* intl_isr)());
void intp2_init(unsigned char i, void interrupt far(* int2_isr)());

4-3

Chapter 4: Software DataWatch

void tinmerO_init(unsigned char i, void interrupt far(* tinerO_isr)());
void tinmerl_init(unsigned char i, void interrupt far(* tinerl_isr)());
void timer2_init(unsigned char i, void interrupt far(* tinmer2_isr)());
void time_base_init(char i, void interrupt far(*time_base_isr)());

4.2.31/0O Initialization

There are two ports of 16 1/O pins available onfEadaWatch. Hardware details regarding these Ri€xsli
can be found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatimere
you choose to use the PIO pins as input/output,wiprobably need to initialize these pins in aofethe
four available modes. Before selecting pins fas gurpose, make sure that the peripheral modeatiper
of the pin is not needed for a different use witthie same application.

You should also confirm the PIO usage that is deedrabove withinve_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altitledc
in some detail in the Hardware chapter of this mézdl manual. For a detailed discussion of thedddts,
please refer to chapter 7 of the NEC V25 User’s in

Please see the sample prograortx.c in t er n\ v25\ sanpl es\ ve. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qgun
the PIO lines.

The functiongort_wr andport_rd can be quite slow when accessing the Port I/O. fiihe maximum
efficiency you can get from the Port I/O pins occifiyou modify the Port registers directly with an
outport instruction instead of usirgprt_wr/port_rd.

See the Hardware chapter for Port register addsesse

void port_init
Arguments: char p, unsigned char pmc, unsigned char pm
Return value: none

p refers to Port O, Port 1 or Port2.

pmc refers to the 8-biport mode control register value for pog.
* A0’ bit sets the pin to I/0O mode
* A1 bit sets the pin to CONTROL mode

pm refers to the 8-biport mode register value for pog. This register is valid for pins only I/O mode gin
* A0’ bit sets the pin to output
* A1 bit sets the pin to input

char port_rd

Arguments: char p

Return value: byte indicating Port 1/O status for port p.

Each bit of the returned 8-bit value indicatesabegent 1/0 value for the Port I/O pins in pprt
void pio_wr

Arguments: char p, char dat

Return value: none

Writes an 8-bit value to popt Only changes status of I/O mode output pins.

4-4

DataWatch Chapter 4: Software

Example 4.1 Set port 0 as 1/O, bits 0 — 3 as input, 4 — 7 as tput.

port_init(0, 0x00, 0xf0);
p = Port O,
pmc = 0 (1/0),
pmO0-3=1, pm4-7=0.

Example 4.2 Set pins 20 and 23 as DMA Request. All other port gins as output.

port_init(2, 0x09, 0x00);
p = Port 2,
pmc = bit 0 and 3 = 1 (Control), all others = 0 (1/O)
pm = all 0s. Since pins 20 and 23 are control fumsjothepm field is not
relevant.

In most cases it is only necessary to change the vd one or two pins in the port data registéncs the
port data register is a read/write register, passible to mask the pins that do not need to @harg this
case, theport_init function cannot be used. Instead, the port dagester can be directly accessed using the
poke andpeek functions.

Example 4.3 Using bitwise OR to set a single bit high, set pi&3 high without
modifying the other pins. Assume all port 2 is oygut and that all pins
are low.

pokeb(0xfff0, 0x10, (unsigned charpéekb(0xfff0, 0x10)| 0x08));

Assuming that all of port 2 is outputting low, theekb function will return a value o
0x00. A bitwise ‘OR’ with the valu®x00 and the maskix08 equalsOx08.
Port 2 now outputex08.

Example 4.4 Using bitwise AND to reset a single bit low, set pi23 low without
modifying the other pins. Assume settings are theame after executing
Example 4.3.

pokeb(0xfff0, 0x10, (unsigned charpgéekb(0xfff0, 0x10)& OxF7));

Assuming the settings from Example 4.3 are stéisent, thgeekb function should returr
a value of0x08. A bitwise ‘AND’ with the valueOx08 and the masRxF7
equalsOx00. Port is again set @x00 (all pins low).

While the port data registers are read/write registthe port control registemnc and pm are not.
Modifying only certain pins in these registers riegsi the use of global variables to store the \sbfdhese
registers. This means that any changes tqihe or pm registers must be accounted for in the global
variable. As in the previous example, the bitw3R and AND expressions can be used to mask the
register bits.

Example 4.5 Set port 2 pins 0 through 3 as output.

/I The following global variable defines the pm2 register

unsigned chapm?;

4-5

Chapter 4: Software DataWatch

/* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits 0 through 3 are low. Use AND to set bitslow */

pokeb(0xfff0, Ox11, (pm2 = (pm2 & OxFO)));//pm2 must be set to a new register
value

Example 4.6 Set port 2 pins 0 through 3 as input.

/I The following global variable defines the pm2 register
unsigned chapm?;

/* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits 0 through 3 are high. Use OR to set bits high */

pokeb(0xfff0, 0x11, (pm2 =(pm2 |O0x0F)))y/pm2 must be set to new register value
424 Port T

Port T is an 8-bit input port whose threshold vgdtaan be changed in 16 steps. Comparator opeliatio
performed through this port. Each Port T inputdasnpared with the selected threshold voltage (VRN

> Vth results in a value 1, PTn < Vth results imadue 0. All eight results from PTO to PT7 areched to
the port T input latches.

The resulting 8-bit latch can be accessed by thetifon portt_rd(void) which returns the 8-bit result. Vth
can be changed by the functiportt_wr(charvref). The variablerref {0 .. 15} sets the reference voltage
by the following equation: Referencevth * vref/16. vref = 0 sets Reference = Vth. Vth is connected to
a 10 K pullup resistor network and V#h3.57V. PTO — PT6 are on J2. PTO — PT2 are puledyy 10k
resistors.

void portt_wr(char vref)

where vref is a number to select VREF

vref =0 VTHx 1
vref=1 VTHX1®6
vref =2 VTHXIB
vref =3 VTHXB
vref =4 VTHX14
vref=5 VTHXI®
vref =6 VTHX®
vref=7 VTHXIB
vref =8 VTHXI®
vref=9 VTHXS
vref =10 VTHR/6
vref =11 VTH#/16
vref =12 VTHR/6
vref =13 VTHS8/16
vref = 14 VTH®/16
vref = 15 VTH%/6

char portt_rd(void)

returns an 8-bit character representing the ematpr output if the voltage at PTO < Vref, bit Oslée 1.

4-6

DataWatch Chapter 4: Software

4.25 Timer Units

The two timers present on the DataWatch can be foged variety of applications. The timers run at a
maximum of 1/6 of the processor clock rate, whia@tedmines the maximum resolution that can be
obtained.

These timers are controlled and configured throaginode register that is specified using the softwar
interfaces. The mode register is described in bietahapter 9 of the NEC V25 User’'s Manual.

The timers can be used to time execution of yoer-defined code by reading the timer values befmic
after execution of any piece of code. For a sarfidedlemonstrating this application, see the sanfid
timer.c in the directorytern\v25\samplesive.

The specific behavior that you might want to impéernis described in detail in chapter 9 of the NEXS
User’s Manual.

void timer0_init

void timerl_init

Arguments: unsigned char mode, unsigned int mdO, unsignetnidt
Return values: none

The argumeninodeis the value that you wish placed into IFdCO/TMC1 mode registers for configuring
the two timers.

The argumentndO is the modulo timer count and is the timer count.

void timerQ_interrupt
void timerl_interrupt
Arguments: unsigned char i, void interrupt far (* timerO_{3r)
Return values: none

The argument enables the interrupt and (*timerO_isr)() or (*&¢irh_isr)() points to the interrupt service
routine. The interrupt service routine is callebdewever count 0 is reached, with other behaviosiptes
depending on the value specified for the contrgister.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timé®) jumper is set, the functidmtwd() must be called every 1.6
seconds of program execution. If this is not exetibecause of a run-time error, such as an iefioitp or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to théue ofledd.

Chapter 4: Software DataWatch

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama rollover in digits in the year 2000. Oneimn
might be to store an offset value in non-volattlerage such as the EEPROM.

A common data structure is used to access andaikerterfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten mnute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char year1l; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret O on success and returns 1 in case of etrci, as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tadekday, year 10, year1, month10, month1, day10, dayl, hour10,
hourl, minutel0, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsi gned char t[14] ={ 5, 9, 8 0, 6, 0, 5 1, 3, 5 5, 3, 0};

Delay

In many applications it becomes useful to pauserkeéxecuting any further code. There are functions
provided to make this process easy. For applicatibat require precision timing, you should use th
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t

4-8

DataWatch Chapter 4: Software

Return value: none

This function is just a simple software loop. Tdwual time that it waits depends on processordspee
well as interrupt latency. The code is functiop&dientical to:

While(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr.

void ve_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.2.7 Count External Eventsusing the 16-bit DMA Count Register

A sample program for using the two 16-bit DMA Colegisters and the two DMA request lines to count
external TTL level events is listedin \ t er n\ v25\ sanpl es\ dw dw_cnt . c¢. Additional information
may be found in the Hardware chapter (chapter 3).

Void counterQ_init
Arguments: unsigned int countO
Return value: none

This function is used to initialize P20=DRO for DNd&xternal TTL rising edges counting.

Void counterl_init
Arguments: unsigned int countl
Return value: none

This function is used to initialize P23=DR1 for DNI&xternal TTL rising edges counting.
The unsigned int count0/1 will be written into DM&rminal count registers.

Example: counterQ_init(0); will initialize the DMA@ounter for the maximum counts of 65,356

void counterQ_interrupt
Arguments: unsigned char i, void interrupt far(* cntO_ig)))
Return value: none

Chapter 4: Software DataWatch

void counterl_interrupt
Arguments: unsigned char i, void interrupt far(* cntl_isr))()
Return value: none

These functions initialize the “counting to zerdemupt”. The first argument indicates whether thi
particular interrupt should be enabled or disabl@the second argument is a function pointer, whidh
act as the interrupt service routine. By defablk, interrupts are all disabled after initialization

oY

To disable them again, you can repeat the calpass in 0 as the first argument.

See the sample program: \ t er n\ 186\ sanpl es\ dw\ dw_cnt . c.

void counterO_interrupt(unsigned char i,void interrupt far(*cntO_isr)()
)

void counterl_interrupt(unsigned char i,void interrupt far(*cntl_isr)()

K

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prgiedy in the header fileser0.h and serl.h in the
t er n\ v25\i ncl ude directory.

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits t@mmunication with the PC. As a result, you will
not be able to debug code directly written foralguort 0.

Two asynchronous serial ports are integrated inNBE€ V25 CPU: SERO and SER1. Both ports have
baud rates based on the 8 MHz clock.

By default, SERO is used by the DEBUG ROM for aggtion download/debugging in Step One and Step
Two. We will use SER1 as the example in the follmyvdiscussion; any of the interface functions trat
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial port dse,
please realize that some pins might be shared otiter peripheral functions. This means that inaier
limited cases, it might not be possible to useréageserial port with other on-board controllendtions.

For details, you should see chapter 11 of the NBE Mser's Manual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor forgrecessor frequency.

The following table shows the function argumentatthxpress each baud rate, to be used in TERN
functions.

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

4-10

DataWatch Chapter 4: Software

Function Argument | Baud Rate
12 76,800

13 115,000
14 230,000
15 460,800
16 1 Meg

Table 4.1 Baud rate values

After initialization by callings1_i ni t (), SER1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifi@ baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by macro sempEration. In terms of receiving, there is nosafe
overhead or interrupt latency for user applicaiwagrams even at the highest baud rate. Macrocgervi
transfer allows efficient handling of incoming datd’he user only has to check the buffer status wit
serhit1() and take out the data from the buffer vt ser 1() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howg\the transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

v vy ¥
[T T]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size i6iz), mode (hode), and baud ratebfud) are specified by the user with
sl init().The mode is the setting value for the serial porttrol register. A value dixC9 will set the
serial port in the following manner:

transmit enable, receive enable, no parity, 8 Hasa 1 stop bit

Due to the nature of high-speed baud rates andipessffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4kEer
will be able to store data for approximately foacands.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and retheoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates ratalis available in the buffer.

You can usget ser 1() to get the serial input data byte by byte usingd-from the buffer. The in_tail
pointer will automatically increment after eveget ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oaljphardware reset &l_cl ose() can stop this
receiving operation.

4-11

Chapter 4: Software DataWatch

For transmission, you can ugait ser1() to send out a byte, or ugaut sersl1() to transmit a
character string. You can put data into the trahsimg buffer,s1_out buf, at any time using this
method. The transmit ring buffer addresvyf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeufIf there

is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out buffex] transmit. After you capput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample prograrmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘.’ charadte‘?’. The translated HEX file is then transimit out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ve.

Software Interface
Before you can use the serial ports, they mushitialized.

There is a data structure containing importanias@ort state information that is passed as argtitoethe
TERN library interface functions. The@OM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #erial communication ports more practical. Siiice
allows you to monitor the current value of the bufind associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eitideor
ser0 can be replaced witkil or serl, for example. Each serial port should use its @@M structure, as
defined inve.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* 1 nput buffer HEAD ptr */

int in_size; /[* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_nt; /* Input buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /'l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsi gned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byt e_del ay; /* V25 macro service byte delay */
} Com

4-12

DataWatch Chapter 4: Software

sn_init
Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitle specified parametersodeis the serial control
register valueb is the baud rate value shown in Table 4.1. Tharaggntsbuf andisiz specify the input-
data buffer, andbuf andosiz specify the location and size of the transmit idfer.

If mode = 0xc9, the serial ports are initialized &bit, 1 stop bit, no parity communication.

There are a couple different functions used fangmaission of data. You can actually place dataiwithe
output buffer manually, incrementing the head aildbiuffer pointers appropriately. If you do natllcone
of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedisEtlows you to control when you wish the transios
of data within the outbound buffer to begin. Otite interrupts are enabled, it is dangerous to pudatie
the values of the outbound buffer, as well as @daes of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one bytitch into the transmit buffer for the appropriate separt. The return value
returns one in case of success, and zero in ay o#ise.

putsers
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated charactengtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferserhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsen
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments thia_tail pointer. Once again, this
function assumes thaerhitn has been called, and that there is a charactegmirgsthe buffer.

getsers
Arguments: COM c, int len, char* str
Return value: int value

4-13

Chapter 4: Software DataWatch

This function fills the character buffstr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret¢ASCII: 0x0d) is retrieved.

This function makes repeated callgytetser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null characterstia byte
array, and the returnedlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetsersandputsersfunctions only be used with ASCII character stsinij you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yocheck and set the value of these 1/O pins appatalyi
for whatever form of flow control you wish to imphent. Before using these functions, you shouldeonc
again be aware that the peripheral pin function gmiusing might not be selected as needed. FRailgje
please refer to the NEC V25 User’'s Manual.

char sn_cts(void)
Retrieves value oETS pin.

void sn_rts(char b)
Sets the value ®RTS tob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset efau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délnenhardware as well as disabling the interrupt.
clean_sen

Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the #&itl header buffer pointers.

The asynchronous serial I/O ports available orNBE V25 processor have many other features thattmig
be useful for your application. If you are truhtérested in having more control, please read @ndt of
the User’s Manual for a detailed discussion of pthatures available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are profmyg inscc.hin thet er n\ v25\ i ncl ude directory.

The SCC is a component that is used to providére éisynchronous port. It uses the 8 MHz systesukcl
for driving serial communications. The divisors dadction arguments for setting up the baud rateHis
third port are different than for SERO and SERL1.

4-14

DataWatch Chapter 4: Software

Function Argument | Baud Rate
110

150

300

600

1200
2400
4800
9600 (default)
19,200
31,250
62,500
125,000
250,000

© 00 N O 0o B~ W N PP

=
N P O

[
w

Unlike the other serial ports, macro service trangf not used to fill the input buffer for SCCslead, an
interrupt-service-routine is used to place charadt&o the input buffer. If the processor does nespond
to the interrupt—because it is masked, for example—interrupt service routine might never be able t
complete this process. Over time, this meansmaiht be lost in the SCC as bytes overflow.

Special control registers are used to define hav3EC operates. For a detailed description of tergis
MR1 andMR2, please see Appendix B of this manual. In mosRNEpplications, MR1 is set @x57,
and MR2 is set t@x07. This configures the SCC for no flow control (RT&TS not used/checked), no
parity, 8-bit, normal operation. Other configuraticare also possible, providing self-echo, evenatity,
up to 2 stop bits, and 5 bit operation, as welh@®matic hardware flow control.

Initialization occurs in a manner otherwise similarSERO and SER1. AOM structure is once again
used to hold state information for the serial pofte in-bound and out-bound buffers operate asrbef
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned chardigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue g as defined in the table above. The valuesirand
m2 specify the values to be stored ilrM&®1 andMR2. As discussed above, these values are normallyj
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, armif andosiz define the output buffer.

After initializing the serial port, you must alsetaup the interrupt service routine. The SCC26%RU
takes up external interrupfNTO on the CPU, and you must set up the approprideerupt vector to
handle this. An interrupt service routing;c_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

4-15

Chapter 4: Software DataWatch

intO_init(1, scc_isr);

By default, the SCC is disabled for bdttansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deeliggou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomaledile showing RS232 full duplex communications,
please sewe_scc.dn the directoryt er n\ v25\ sanpl es\ ve.

RS485 is slightly more complex to use than RS28%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i86r installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you willso need to place the
RS485 driver in transmission mode as well. Thiddee by usingcc_rts(1) This uses pin MPO (multi-
purpose output), found on the J1 header. While areureceiving data, the RS485 driver will needhéo
placed in receive mode usisgc_rts(0)

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallysha
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofethe
functions are disabled by default. If you are gdR8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send andvwedenction of the SCC2691. One major use ofdéhes
functions is to disable send and receive. If yaiusing RS485, you will need to use this featunerw
transitioning from transmission to reception, anfrreception to transmission.

Transmission and reception of data using the S@Cn®ost ways identical to SERO and SER1. The
functions used to transmit and receive data aréasimFor details regarding these functions, pe@ser to
the previous section.

putser_scc
See: putsern

putsers_scc
See: putsersn

getser_scc
See: getsern

getsers_scc
See: getsersn

4-16

DataWatch Chapter 4: Software

Flow control is also handled in a mostly similastfeon. The CTS pin corresponds to the MPI pincivtis
not connected to either of the headers. The REgiresponds to the MPO pin found on the J1 header

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.

scc_close
See: sn_cl ose

serhit_scc
See: sn_hit

clean_ser_scc

See: clean_sn

Occasionally, it might also be necessary to chbekstate of the SCC for information regarding extbat
might have occurred. By callingcc_err, you can check for framing errors, parity erroifsp@rity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val

The returned valueal will be in the form of OABC0000 in binary. Bit & 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit Glicates an over-run error.

4.5 Functions in VEEE.OBJ

The 512-byte serial EEPRON24CO04) provided on-board provides easy storage of ndati® program
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slowmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use sptifi for this purpose.

Addresse€)x00 to Ox1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, the jump address ftapSTwo, and other data that is of a more permametoire.

The rest of the EEPROM memory spa@e?0to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedlat to the specifiediddr. The return value is 0 in success.
ee rd
Arguments: int addr

Return value: int data

This function returns one byte of data from thec#fjeel address.

4-17

DataWatch Appendix A: DataWatch L ayout

Appendix A: Datawatch L ayout

The DataWatch measures 6.7 x 6.7 inches. Its layout is shown below.

(0.35, 6.35) (6.7, 6.7)
O O
3 (6.35, 6.35)
T1
T2 R f'
SERO SERl Ug O
‘ [apc o0 fui 9] fue e huu | -
— R
1L I p— sS4
U3 Ul i H14QI:|
s512 @
NEC V25 L9 LED:
ROM/ SRAM power on
Flash &
LO LED:
Step2 o U2 £ S3
+ e & Q‘:
- i| PAL Us d :]UA RTC |

L
J3Watchdo
R T . R v I
< P Q }- U6 691 | é” PAL uzzqle E)
b 2 > uU16 u19 u21 u17 RDEAFCZ
| g e PAL []pp PAL] w2
e 8 s
=" B e E = I=
[ss [ss s [ss Hulel] T3
U9 T4
|
el Q
(0.35, 0.35) (6.35, 0.35)

(0.00, 0.00)

A-1

Appendix B: UART SCC2691 DataWatch

Appendix B: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
ICEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

AO0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

XUCLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TxD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bit6 | Bit5 | Bit4 HETE [Bit2 [Bit1 [Bito
RxRTS RXINT Error __ ParityMode___ Parity Type Bits per Character
0=no 0=RxRDY 0 =char 00 = with parity 0=Even 00=5
l=vyes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0 =Data
1=Addr

B-1

DataWatch

Appendix B: UART SCC2691

MR2 (Mode Register 2):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
Tx (add 0.5 to cases 0-7 if channel is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0.625 5=0875 9=1625 D=1.875
10 = Local loop 2=0688 6=0938 A=1688 E=10938
11 = Remote loop 3=0.750 7=1.000 B=1750 F=2.000
CSR (Clock Select Register):
[Bit7 | Bit6 | Bit5 | Bit4 [BIit3 [Bit2 [Bit1 [Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] =0:
0= 50 1=110 2=1345 3=200 0= 50 1=110 2=1345 3=200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=38.4k D=Timer E=MPI-16x F=MPI-1x C=38.4k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A=7200 B =1800 8=2400 9=4800 A=7200 B =1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX RXx Rx
0 = no command 8=gtart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=vyes 1=yes 1=vyes 1=yes
2 =reset receiver A = assert RTSN
3 =reset transmitter B = negate RTSN
4 =reset error status C=reset MPI
5 = reset break change change INT
INT D =reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are
reset when the corresponding data character is read from the FIFO.

B-2

Appendix B: UART SCC2691 DataWatch
ACR (Auxiliary Control Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode

0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rateset 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)

transmitter 1= off 4 =RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (x2/CLK) 6 =TxXRDY
see CSR 4 =timer, MPI pin 7 =RxXRDY/FFULL
bit format 5 =timer, MPI pin divided by

16

6 = timer, crystal or external
clock (x1/CLK)
7 =timer, crystal or external

clock (x1/CLK) divided by 16
ISR (Interrupt Status Register):

[Bit7 Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes
IMR (Interrupt Mask Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n
CTUR (Counter/Timer Upper Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
[oT[ig | orre | orpyy | ot | orpuy | CTag) [cTi9 | crrg |
CTLR (Counter/Timer Lower Register):
[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit2 [Bito |
[T | _crmiel | cmisl | cmi4 | 13 | cm2 | cmiy |_crmo |

B-3

DataWatch

Appendix C: RTC72421 / 72423

Appendix C: RTC72421 / 72423

Function Table

Address Data

Az | A, | A; | Ay | Register | 3 D, D, Do Count Remarks
Value

0 (0 0 |0 |9 S3 S S S 0~9 1-second digit register

0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register

0 (0 1 ({0 | My mig | miy miy, [mig 0~-9 1-minute digit register

0 (O 1|1 Mk Migq Misg | Migg | 0~5 10-minute digit register

0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register

0 |1 |0 |1 | Hg PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1

0 |1 110] dg dy d, d; 0~9 1-day digit register

0 |1 1 (1 Do dgy | dig 0-~3 10-day digit register

1]0 0 |0 | MQ mog | mo, mo, [mo, | 0~9 1-month digit register

1]0 0 |1 MQg mo | 0~1 10-month digit register

1 0 1 0 Y Ys Y4 Yo Y1 0~9 1-year digit register

1 |0 1]1 Yo Yso | Yao Yoo | Y10 0~9 10-year digit register

1 |1 0|0 | W vy W, Wy 0~6 Week register

1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D

Adj | Flag
1 |1 110 Reg E qt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test 24/12 Stop Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse

2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)

Data bit| PM/AM INT/STD 24/12
1 PM INT 24
AM STD 12

5) Test bit should be "0".

C-1

Appendix D: Serial EEPROM Map DataWatch

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations aeal U/ system software. Application programs mustse
these locations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO_receive, used by ser0.c

0x05 SERO_transmit, used by ser0.c

0x06 SER1_receive, used by serl.c

0x07 SERL1_transmit, used by serl.c

0x10 CS high byte, used by ACTR™

0x11 CS low byte, used by ACTR™

0x12 IP high byte, used by ACTR™

0x13 IP low byte, used by ACTR™

0x18 MM page register 0

0x19 MM page register 1

Oxla MM page register 2

0x1b MM page register 3

D-1

DataWatch Appendix E: Software Glossary

Appendix E: Software Glossary

The following is a glossary of library functions fine DataWatch.

void ve_init(void) ve.h

Initializes the V25 processor. The followinglietsource code fae init()
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */

pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, PO5=LED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */

pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

pokeb(0xfff0,0x11,0xf7);// Set PM2 for input, P23=E N485 output

Reference: led.c

void ve_reset(void) ve.h

Resets the V25 processor.

void delay _ms(int m) ve.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ve.h

Toggles P05 used for led.

Var: i- Led on or off

Reference: led.c

void delayO(unsigned int t) ve.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple for loop up to t.

Reference:

E-1

Appendix E: Software Glossary DataWatch

void halt(void) ve.h

Enables HALT standby mode, which halts the systiewkao reduce power consumption.
Peripheral CPU devices (serial ports, timers, DMA will not be effected. System clock restored
by interrupt.

Reference: ve halt.c

void hitwd(void) ve.h

Hits the watchdog timer using PO3. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See the Hardware chapter of this manual for more information on the MAX691.

void port_init(char p, char pmc, char pm) ve.h
Initializes 1/0 port mode control and port mode.

Var: p=port0,1or2.
The PMC andPM variables define each pin of the 8-bit port sedct
For examplePM = 0xfO would set bits 0 — 3 as low and bits 4 — 7 as.high

pmc = CONTROL or I/O mode (0 =1/0; 1 = CONTROL).
pm = 1/O pin as input or output(O = output; 1 =in put).

Reference: portx.c

void port_wr(char p, char dat) ve.h

Writes a bit to a Port I/O line. Port I/O line mim in an output mode

Var. p—Port0, 1, 0r2
dat — 8-bit data for port p

Reference: portx.c

unsigned int port_rd(char p) ve.h

Reads an 8-bit I/O port.
Var: port—0: Port 0

1: Port1l
2: Port 2

Reference: portx.c

E-2

DataWatch Appendix E: Software Glossary

void portt_wr(char vref) ve.h

Selects reference voltage for the comparator ippreit

Var: vref — {0 ... 15} defines reference as follow S
reference = Vth * vref/16.
For vref — 0: reference = Vth.

Vth : Threshold voltage =3.57V

Reference: portt.c

char portt_rd(void) ve.h

Reads from the 8-bit comparator input port. Red8+bit value.

bit =0, PT, < Vref

bit=1, PT,> Vref

where PT is the input voltage and Vref is the selectedghodd voltage.

Reference: portt.c

void outport(int portid, int value) dos.h

Writes 16-bitvalue to I/O addresgortid.

Var: portid — /O address
value — 16 bit value

void outportb(int portid, int value) dos.h

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 8 bit value

int inport(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 16-bit value.

Var: portid — 1/0 address

int inportb(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 8-bit value.

Var: portid — 1/0 address

E-3

Appendix E: Software Glossary DataWatch

int ee wr(int addr, unsigned char dat) veee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ve ee.c

int ee_rd(int addr) veee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ve_ee.c

void rtc_init(unsigned char * time) ve.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = mon10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = secl10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtc_rd(TIM *r) ve.h

Reads from the real-time clock.

Var: *r— Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, min10, hounlr1@o
unsigned char dayl, day10, monl, monl0, yearll@ea
unsigned char wk;
}TIM;

Reference: rtc.c
void timerQ_init(unsigned char mode, int md0, int tm0); ve.h

E-4

DataWatch Appendix E: Software Glossary

void timer1_init(unsigned char mode, int mdO, int tm0O);

Timer 0, 1 initialization.
Var: mode — TMC Timer mode. See ch. 9 for the TMC register

tm — Count time for the count down timer.
md — Count time for the modulo timer.

Reference: timer.c, timerO.c, timerl.c

void timerQ_interrupt(char i, void interrupt far (*timer0_isr)()); ve.h
void timerl_interrupt (char i, void interrupt far (*timer1_isr)());

Initialization for timer interrupts.

Var: i—1: enable, O: disable.
timer #_isr — pointer to interrupt service.

Reference: timer0.c, timerl.c

void nmi_init(void interrupt far (* nmi_isr)()); ve.h
void intpO_init(unsigned char i, void interrupt far (*intp0_isr)());
void intpl_init(unsigned char i, void interrupt far (*intpl_isr)());
void intp2_init(unsigned char i, void interrupt far (*intp2_isr)());

Initialization for interrupts 0 through 2 and NMilgn-Maskable Interrupt).

Var: i—1: enable, O: disable.
int #_isr — pointer to interrupt service.

Reference: intpx.c

void S0_init(char m, char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void sl _init(char m, char b, unsigned char* ibuf, intisiz, serl.h

unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: m — mode for serial control register.

b — baud rate.
ibuf — pointer to input buffer array

isiz — input buffer size

obuf — pointer to output buffer array
osiz — ouput buffer size
c — pointer to serial port structure. See VE.H for COM
structure.

Baud

110
150
300
600
1200

GO WNPR T

E-5

Appendix E: Software Glossary

DataWatch

b Baud

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400
11 57,600
12 76,800
13 115,000
14 230,000
15 460,800
16 1 Meg

Reference: S0_echo.c, s1_echo.c, sl 0.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h
unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1
m2 = SCC691 MR2

b

— baud rate.

ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0siz — ouput buffer size
€ — pointer to serial port structure.
structure.

See VE.H for COM

ml bit

Definition

I—‘I\)-FU'IO’\I
o w

(RXRTS) receiver request-to-send control, 0=no, 1
(RXINT) receiver interrupt select, 0=RxRDY, 1=FIF
(Error Mode) Error Mode Select, 0 = Char., 1=Bloc
Parity Mode), 00=with, 01=Force, 10=No, 11=Spe
(Parity Type), 0=Even, 1=0dd

bits) 00=5, 01=6, 10=7, 11=8

=yes
O FULL

cial

=

Definition

who

Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R
(TXRTS) Transmit RTS control, 0=No, 1= Yes

(CTS Enable Tx), 0=No, 1=Yes

Stop bit), 0111=1, 1111=2

emote loop

oo~NoOoUuh~hwWNER T

DataWatch Appendix E: Software Glossary

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putserO(unsigned char ch, COM *¢); ser0.h
int putser1(unsigned char ch, COM *¢); serl.h
int putser_scc(unsigned char ch, COM *¢); scc.h

Output 1 character to serial port. Characterbéllsent to serial output with interrupt isr.

Var: ch — character to output
C — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c¢); ser0.h
int putsersl(unsigned char *str, COM *c); serl.h
int putsers_scc(unsigned char ch, COM *c); scc.h

Outputs a character string to serial port. Charagiiébe sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure

Reference: serl sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *¢); scc.h

Checks input buffer for new input characters. Retu if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure

Reference: S0_echo.c, s1_echo.c, sl 0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getser 1(COM *c); serl.h
unsigned char getser_scc(COM *¢); scc.h

Retrieves 1 character from the input buffer. Asssithatserhit routine was evaluated.

Var: c — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers scc(COM *c, int len, unsigned char *str); scc.h

E-7

Appendix E: Software Glossary DataWatch

Retrieves a fixed-length character string fromitiput buffer. If the buffer contains less charaster
than the length requestedt; will contain only the remaining characters frore thuffer. Appends
a \0’ character to the end dfr. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string length
str — pointer to output character string

Reference: serl.h, ser0.h for source code.

XTAL1 16MHZ STE COPYRI GHT 1995, ALL RI GHTS RESERVED.

2 c14 X2 X1
I |__| l_—|04 U5 DI P000. PDS VCC u3 uL
cs CLK 1 200
DI PCAP DI PCAP /108TB gloPF As 2| Y/ CK VCToT 1 oo Voo
[NGTB ;; 3 8 | Al8 1 320 1 32 VRAM
c3 GND RLW 10pPF A5 41,2 1% 17 RAM Ale 2 PP VO BT Aw AL6Z| A8 YOPI3T A16
P Sen REFE A9 5|13 A i us vee AI5 3| 418 30 _AL7P ALa3| A8 ALS30cer
xS SDA o A 61|48 A - [ORD1 [o voo 1249 ALz 4|5 NCIHo A1z ALza| A% B2 o RwW
DI PCAP P02 VCC INREQ 712 e 7 R RD 2| h8 Voo mw A7 51432 Ald o8 Al3 A7 5| a22 RWros Atz
HWD X2 /TosTE 81,5 & MaTrsee ™o 3| Rp B[22 AG e s [27 28 A6 6| g e (2728
e P04 X1 RW_ 9 2 /PPl MPO__ 4 21 DL A5 7 26 A9 A5 7 26 A9
¢ 1T " G\D '8 1700 77 Wl 5| MO DL 555 AL ~5 A9 S5 ATL AL B RS A9 S5 AT1
gy GND. Olawp /oe/19 ML STvem b2 (22D AL ALL A ALL
P05 H A7 6| WP e B A3 o MLzaTve A3 o4 ALLIoaTvRD
DI PCAP P06 ric PALI6VE Na—a oo B A2 IR it AT0] s AE 23 A0
A0 8 AL 11 22 ROM ALLL 52 T RAM
8|88 717171 7|7 arK_9]2° b5 M6 o6 A0 12|l CESTy Ao1z| AL /CEL ST By
2|1jolol8|7[6|5 X1 D6 A0 D7 |2 A0 D7
o7 1 2 D> RsT 11| X2 b7 Tz 7s0c 7] 20 06 |55 114 20 06 |49
o 7 L VXXGVI o o I RST /EN L DL os B2 DL o5 22
: RDZINTC W2 550 2] o /1N A3 51 b2 D 8 > D2 D4 [38
sD DH _ O O Sfaww > olaw D3
CcLK12 T pr7 LZ4_PT7 b7) SCC2691
3 BTt [r3—pre b0 2 W PROVIOZ4 VRAM RANE 71024
114 72 P15 A0 11 2 VIC
= PD70320_v2s BT 77 G 13 2 &171 v L c8
6 V255 pr3 [L0_PT3 15 5 & 16 DI PCAP
D417 P1s 69 PT2 J1
T2 e pT1 HDRD16 RP1 RPS RP4 1
FTt [er—pT0 ANO 1 2 AD0 ADO 1 2. cPo_ 1 2 PTO G\D 1
7 66 P17 ANL 3 ADL ADL 3 7] Ori_ 3 1 SUM
AQ_21 ol LR 65 P16 TDP100. PDS 5 5 6] o2 5 PT2. VCC 3
Al 22 Pler a0 [64 P15 u10 vee 57 8 AD3 AD3 7 8] Cr3_7 8 P13 VCC :
54 P14/ 1 NT/ POLL g5 ABR—3] A0 vec |25 RP2 RPY RP5 S0 6
P13/ 1 NTP2/ | NTAK |82 P13 ADL EOC 22— _ 7
Ad 29 P12/ 1 NTP1 {81 P12 Hap2 ok [35-B24 — 2 LD 1 24 CB4 1 2 PT4 8
A5 60 P11 P25 5 ADS CP5 PT5
o A S N 494 O T
A6 27 PLL N0 [59 /N ADA 5] 4a% DINI6pos AN6 5 6 A6 AD6__ 5 6] Cr6_5 6 PT6 9
AT 2 58 P27 A 6 5 P27 Al 7 AD7. AD7T 7 81 P77 7 FDRS9
A= P27/ HLDRQ [25-F2 A 51 ans cspi> 2l
P26/ HLDAK AD6 REF+ RNG
29 30 P25/ TC1 [28 P25 7S D7 REF- (13 GND A , Relo —~An—10
AL0 3 55 po 10 AN8 AD8 ADS PT7
All 32 pp P24 DAL 52 P23 10| ADE ADLO 711 ADe AN 3 4 AD9. AD9 3 8 PTO
23 ANIO 5 AD1O ADIO 5 'SUM 7 PT1
+12V] }7 [TC2543 7 T 7 3 3 u20 R8
C16 EEI RP8S1 S 3__‘31 + +12V
10UF35V ooc veeke o R2 3 P15 Lvess 2K
g 5
5(5/5 <
2155 u13 voe 1 SUML RO
c1s Ic LED 220 [RXD0 [A veo 149 T0K RNIOSL +12V VOFE
T P22 Ak VS = rxor vV
[J7 HDRDLO R0 3| a2 300K
DI PCAP Voo 1 2 CTS0 4] T RXDL
rxoo 323 §aarse T 51 (3B R o crst T2
s P20 [RXD0 58 6 RT | CTSO 6] 5 +12v] ke
+ 7 8 ao, 7| NB I crs sa G
Hh e e G\D oUTC ks
DI PCAP - 0 o 75CI89 Z ke
1489 7 €}
J8 HDRDLO TR <P
/RST C17 cl1o 1 2 uL2 € Ci
b b xp— 32 S aars1 -1av 1[4 v Al €
cL H H U0 ROL 53 ST wsi TX0 2] 5 oy [13.GD +V € Gl
DI PCAP DI PCAP DI PCAP S12v 2 7 3 7TXD0 3 12t ANL Gl
;; VN Jeur L1 -sv a3 S0 D [SN) c20 G
Us 3| ao 5| B3 oo |10 TXDL glOUFG}SV GND e
RTSO 3 ANB D
VBAT 1l\p gor |16 _RST %7_ TW7OL05 1N5817 Bo, AL —/ o ANA gc
VRAM 2| 2, RST 15 7TReT 79L05 DL J6 g O
vee 3 v oo +12V1 +12V1 o o 2 4V D
D 4| X5 o |13 7 RAM FDRD2 Al G
51 S0 E Iz rram 33 c12 ULl € D
6| POV SEOMTwer 1 2 HWD 10UF35V 1Mo L8+ A D
7| ek PP [mo7ero FDRD2 U9 RXD | NV T Al gc
B &L PO e LM7805 e GD P € D
voe P23 e v s p12v A D
VAXGOT a4 +12v 1|, oo L3 Qvcc TXD ANLO ge
/INM__ 1 S L 10K~] 7662 c10 G D
S oUrssV S
g 10UF35V 10UF35V -
[1..8]
RNL 10 <} an)? w
5 R1 1 8 VRAM
g PE! 21 Plso e
. SIAE X1 P2&
6 Uz VCC 2K 4 A0 cs1 5 /RST STE/ TERN CA USA
> i o vee |89 21 AL Do |14
7 > 7 W B1 5 3 DL Title
3 3] AL WP 5 sar 7] A2 DL 5
2 scL 8- SCa A3 1Az D2 DATAWATCH
2 41vss spa[—=-SDA 1. D _81/ro D3 |ii
1 G\D_ 9 G\D /WR 0 R'w Si ze |[Docunment Numnber
10K RN10S1 10K RN10S1 24004
0 0s 0 0s BTFL 72471 B DW SCH
Dat e: March 12, 1999 [Sheet 1 of

T3 T4
R . R 1
G G
& 2 & 2
3 3
Dl P100. PDS DI P200. PDS 2 2
uLe uLo vee uL7 w21 vee H : H .
R 10009 ap2bBlE _Ilioak vec|2 Al 1000 po p2 P20 —Lloak voc|2S 6 6
ey 7 P15 crs 219 VES To g 1199 A9P7 o1 s 2119 VSS9 RE s e
G312 PEPi6 TR 3 8 P23A B 12 [63 8_EO [eX
R 2 R 12 1706 2 A2 12 1706 2 N 8 8
R4 134 3 R 41,3 1/C6 (AL B HA 134 3 Wiz 41,3 1/C6 AL P G 9 9
GR5 1 14 P12 GR8_5 6 GR4 51 14 P13 Wi8 5 6 W4 o
4 3 14 17104 4 14 1104 W 10 W 10
R6 2 66 5 GR3 62 76 5 VB 7
5 3 15 1/C8 5 15 1708 11 11
RT3 167 ez 3 2 7 W SGND S
6 16 1/Ce 6 16 1/Ce 12 12
RE 4 58 3 GRL B4 218 3 VAL RE3 R
7 17 1701 7 17 1701 13 13
P06 5 15 P23A G\lDll_g |8 Sy i Bld P04 5 15 _EO G\lDll_g '8 | /0 i £20 GR 14 % 14
P06 S54E Eo G\D /oE 19 il P04 _S4E EO G\D /OoE/19 1 R & 15
7ARCIA PALTIEVS 7ARCIA PALIEVE H 16
= 18
P23A 1 2 P23 5 19
o 20
HDRD2 A 2
HDRD2 H3 1 22
F1 SGND 1 2 ap e 23
RED] 1 4 RE1 © O
2] aS =t HDRD2 24 24
HDRD2 T24 T24
L1 DI[1..8 L9
“IA FUSE LD1 M D1 L VaZallih V]
P1 D0, 7] D0, 7]
1 F2 LED LED D3 D4
RED2 1[-] 4 RE2 L2 L10
% ac =t LD2 A D2 LD10 AIA* T21 DL D6
DO D7
3 LED LED RST Vo s
“TIA FUSE L3 L11 —
s 3|313|3/3{3l3|3/3|3[2 PPl 8255
¢ s LD3 A D3 LD11 RIA* T22 333123213303(32 Pl 8:
8 ———
REDZ 1 4 RE3 LED LED
9 AC RDDDDNDDDDV -
2 31 L4 L12 RIW_40 28 T17
10 BD LD4 M D4 LD12 RA* T23 8 41| Lo ?012304567B§% 27
L 7421 poe p15 [2 >
TA FUSE LED LED 643 poS s T
L5 L13 5_aa] H0° P [2aTis
4 LD5 A D5 LD13 AR T24 e e 23
RED4 1[-] 4 RE4 D4 7] 22 T12
Z1AC =t LED LED 3 3] O3 P12 ST 11
BD PO2 P11 I
L6 L14 24| o7 P16 [20Ti0
LD6 A D6 LD14 AR T25 DIl 5] b5 P23 |19 123
“TIA FUSE 1TaRp 6|98 /¢ P pppPP P23 18 122
LED LED CNAA2N22222
s o s SD107C65461
REDS 1[ac] 4RE LD7 Dl 7 LDl T2 T
BD LED LED e |718° 194234 B 6l f 2
L8 L16 D 20
“IA FUSE LD8 A* Dis LD16 AIA* T27 AL 124
N N A0 125
F6 LED LED T27| [126
REDG 1[-] 4 RE6
>1AC =t -
BD "
Lo voo 1 2
1A FUSE LDO M P05 1203 5 & 4
—N— 15
F7 LED 223 8
RED 1 [acl|_4 RE7 12393 §
Ay <n o Toa 119 712 B uis
25 13 2 7 10 giclLl6 Hv7
26 15 e 218 1C s e
“IA FUSE 27 17 53128202 mvs
5 G\D Z (13~ A4
— 114 aBac L3 HVZ
F8 5| 2h e [12- 1va
REDg 1 4 RES T2 6 11 A2
%2 farsq R g 17158 6C o mvL
o8| BRI K, 1 2 +12vI
RNA —
TA~ FUSE 10 ULRZ003 013_L HDRD2
0 9 LDL D9 HDRD2
T] 0 10UF35V |GND
) 7 1
3 S >
4 5 3
5 4 L6 DL4
6 3 LD/ 5
7 2 6 [Title
voC 1vee cC. DATAWATCH
10K 10K 1K 1K Si ze |[Docunment Numnber REV|
RNL0S1 RNL0S1 RNLOS1 RNLOS1 5 ow 2
Dat e: March 12, 1999 [Sheet 2 of

