

DataWatch™

C/C++ Programmable 16-bit Industrial Controller

Based on the NEC V25
With 96 field-removable screw terminals

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

DataWatch, V25-Engine, C-Engine, VE232, TinyDrive, V104, MemCard-A, NT-Kit, and
ACTF are trademarks of TERN, Inc.

V25 is a Trademark of NEC Electronics Inc.
Borland C/C++ is a trademark of Borland International.

Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of
Microsoft Corporation.

IBM is a trademark of International Business Machines Corporation.

Version 2.00

October 29, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1999-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

DataWatch Chapter 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description

The DataWatch™ (DW) is a 6.7 by 6.7-inch, low-cost, 16-bit C/C++ programmable industrial controller
based on the NEC V25 processor. The DW supports up to 512 KB ROM/Flash, 512 KB battery-backed
SRAM, a 512-byte EEPROM, a real-time clock (RTC72421), up to three serial ports, three 16-bit
timers/counters, TTL I/O lines, 14 solenoid drivers, power failure reset, watchdog, and 24x4 field-
removable screw terminals. The DW also supports 12-bit ADC, DAC, and a 16x2-character LCD interface.

The DW is designed for industrial and field applications that demand mobility. The 96 (24x4) optional
field-removable screw terminals of the DW allow a unit to be placed and removed without disconnecting
individual wires, which relieves the constant hassle of swapping, moving, and upgrading a system. This
feature saves time and minimizes disastrous cross-wiring. The factory default configuration provides fixed
terminals, if the optional field-removable terminals are not needed.

V25 CPU
80x86/80x88
Compatible

Time-Base Counter
16-bit Timers (2)
DMA (2)
External Interrupts (5)
8-bit I/O Ports (3)
SER0/SER1

Comparator Inputs (8)

Serial EEPROM
 U7

DATA
ADDR
CNTL

MAX691
Supervisor

U6

11 ch. 12-bit ADC*
U10

RTC27421*
U4

(0x8000)

UART SCC2691*
U8

(0xc000)

SRAM U1
(0x00000-0x7ffff)

EPROM U3
(0x80000-0xfffff)

Memory Mapped

I/O Mapped

RS-232 Drivers
U12, U13

RS-485
U14

High-
Voltage
 Drivers

U08,
U18

4 to 1 MUX
U21

4 to 1 MUX U21

6 to 1 MUX U19
GR 1-6
(T3, T4)

WH 5-8
(T4)

WH 1-4
(T3)

GR 7-8
(T4)

BK 1-8
HV 1-6
(T3, T4)

AN 0-10
(T1)

82C55 PPI
(0x4100)

U15 DI 1-8
(T2)

T10, T17

+485/-485
(T1)

4 ch. DAC*
U22

J7 & J8

 KEY:
Terminal Block
Data/Control Path
Peripheral Device

* Optional item

7805 U9
Regulator

5 Volt Output
VCC

7806 U09
Regulator

6 Volt Output
VCC1

+12V Input

H11-H18
Voltage
Select

RE 1-8
(T3, T4)

DataWatch

T2

U2

Figure 1.1 Functional block diagram of the DataWatch

At the 24x4 screw terminals, the DW provides 16 TTL inputs, 8 comparator inputs, 14 solenoid drivers, and
8 bi-directional TTL I/Os with LED indicators.

The 16 TTL inputs are buffered by two PALs and can be configured as multiplexed events counter inputs,
external interrupt inputs or digital inputs. An on-board PPI (82C55) drives 14 solenoid drivers and 8 bi-
directional TTL I/Os. Eight resistor-protected comparators can be used to measure either digital or analog
inputs (0 to 10V) in 16 levels.

Chapter 1: Introduction DataWatch

1-2

An optional 11 resistor-protected 12-bit ADC inputs and four 12-bit DAC outputs can be installed on the
DW. The ADC (TLC2543) features reference inputs (2.5V or 5V), a sample rate of up to 2.5 kHz, and a
0-10V input voltage range. The DAC (MAX537) outputs 0V to 2.5V, with a typical slew rate of 3V/s with a
5 kΩ load. The DAC is installed with a 2.5V precision reference (20 ppm/°C, LT1009).

The 14 solenoid drivers can sink up to 350 mA each at 50V.

A 512-byte serial EEPROM is included on-board. An optional real-time clock provides information on the
year, month, date, hour, minute, second, and 1/64 second, and an interrupt signal.

Two DMA-driven serial ports from the NEC V25 support high-speed, reliable serial communication at a
rate of up to 115,200 baud. One optional UART (SCC2691) supports 8-bit/9-bit RS-485 networking.

Two standby modes, HALT and STOP, can reduce power consumption. A 16-pin LCD interface header
supports various types of LCDs.

TERN also offers custom hardware and software designs, based on the DataWatch or other TERN
controllers.

1.2 Features

Standard Features
• Dimensions: 6.7 x 6.7 x 0.7 inches
• Power consumption: 180 mA at 9V

• Low power version: 75 mA
• Standby: <20 mA

• Power Input: +9V to +12V unregulated DC
• 16-bit CPU (NEC V25), 8 MHz, Intel 80x86 compatible, C/C++ programmable
• ROM and SRAM up to 1MB, 512-byte EEPROM (or up to 2KB)
• 3 timers, 2 counters (100KHz), and external interrupts
• 8 comparator inputs for analog/digital signals
• 14 solenoid drivers and 8 TTL I/Os driven by PPI
• 512-byte serial EEPROM
• Two high-speed serial ports from the V25 CPU (RS-232)
• Supervisor chip (691) for power failure, reset and watchdog
• LCD interface

Optional Features:
• 32KB, 128KB, or 512KB SRAM
• 11 channels of 12-bit ADC, sample rate up to 10 KHz
• 4 channels of 12-bit DAC with 2.5V reference
• SCC2691 UART (on-board) supports 8-bit or 9-bit networking
• 24x4 Field-removable screw terminals
• Real-time clock 72421, lithium coin battery

DataWatch Chapter 1: Introduction

1-3

1.3 Physical Description

The physical layout of the DataWatch is shown in Figure 1.2.

PPI
U15

NEC V25

U2

U1

SRAMROM/
Flash

U3

U
A

R
T

U
8

U13 U12 U11

J7 J8

H3
T1

T2

T3

T4

U
08

U10ADC
J6

U5 U4

H1

U22U6

U16 U19 U21 U17

U
18

U
7

H13

U
14

H17 H18

H11
H2

H16H15

J2

U20

J4

H5

J0

J3

J1

H12
U24

U30

H14

U9

U09

S5 S6 S7 S8

S1

S2

S3

S4

SER0 SER1

48
5

RTCPAL

691 PAL

PALPAL

U
L

N
20

03

U
L

N
20

03

189 188

7662

E
E

REF2
DAC
(U22)

LED:
power on

Step2

Watchdog

LED:
Step2

Figure 1.2 Physical layout of the DataWatch

1.4 DataWatch Programming Overview

Development of application software for the DataWatch consists of three easy steps, as shown in the block
diagram below.

STEP 1 Serial link PC and DataWatch, program in C/C++
Debug C/C++ program on the DataWatch with Remote Debugger

STEP 2 Test DataWatch in the field, away from PC
Application program resides in the battery-backed SRAM

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

You can program the DataWatch from your PC via serial link with an RS232 interface. Your C/C++
program can be remotely debugged over the serial link at a rate of 115,000 baud. The C/C++ Evaluation Kit
(EV) or Development Kit (DV) from TERN provides a Borland C/C++ compiler, TASM, LOC31, Turbo
Remote Debugger, I/O driver libraries, sample programs, and batch files. These kits also include a DEBUG
ROM (TDREM_V25) to communicate with Turbo Debugger, a DB9-IDE10 (PC-V25) serial cable to
connect the controller to the PC, and a 9-volt wall transformer. See your Evaluation/Development Kit
Technical Manual for more information on these kits.

Chapter 1: Introduction DataWatch

1-4

After you debug your program, you can test run the DataWatch in the field, away from the PC, by changing
a single jumper, with the application program residing in the battery-backed SRAM. When the field test is
complete, application ROMs can be produced to replace the DEBUG ROM. The .HEX or .BIN file can be
easily generated with the makefile provided. You may also use the DV Kit or ACTF Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.

1.4.1 Step 1

STEP 1: Debugging

• Write your C/C++ application program in C/C++.

• Connect your controller to your PC via the PC-V25 serial link cable.

• Use the batch file m.bat to compile, link, and locate, or use t.bat to compile, link locate, download,
and debug your C/C++ application program.

DataWatch
DC power jack connects
to the screw terminal of
the DataWatch.

DC +9V 300 mA
Wall transformer
Center Negative

PC-V25 CablePC

GND+12

T1.1 = +12VI
T1.2 = SGND

DEBUG
ROM

Figure 1.3 Step 1 connections for the DataWatch

DataWatch Chapter 1: Introduction

1-5

1.4.2 Step 2

STEP 2: Standalone Field Test.

• Set the jumper on J0 pins 1 and 2 on the DataWatch (Figure 1.4).

• At power-on or reset, if J0 pin 1 (P02) is low, the CPU will run the code that resides in the battery-
backed SRAM.

• If a jumper is on J0 pins 1 and 2 at power-on or reset, the DW will operate in Step Two mode. If the
jumper is off J0 pins 1 and 2 at power-on or reset, the DW will operate in Step One mode. The status of
J0 pin 1 (signal P02 of the NEC V25) is only checked at power-on or at reset.

PPI
U15

NEC V25

U2

U1

SRAMROM/
Flash

U3

U
A

R
T

U
8

U13 U12 U11

J7 J8

H3
T1

T2

T3

T4

U
08

U10ADC
J6

U5 U4

H1

U22U6

U16 U19 U21 U17

U
18

U
7

H13

U
14

H17 H18

H11
H2

H16H15

J2

U20

J4

H5

J0

J3

J1

H12
U24

U30

H14

U9

U09

S5 S6 S7 S8

S1

S2

S3

S4

SER0 SER1

48
5

RTCPAL

691 PAL

PALPAL

U
L

N
20

03

U
L

N
20

03

189 188

7662
E

E

REF2
DAC
(U22)

LED:
power on

Step2

Watchdog

LED:
Step2

Step2 jumper
installs on J0

Figure 1.4 Location of Step 2 jumper on the DataWatch

1.4.3 Step 3

STEP 3: Generate the application .BIN or .HEX file, make production ROMs or download your program to
FLASH via ACTF.

• If you are happy with your Step Two test, you can go back to your PC to generate your application
ROM to replace the DEBUG ROM (TDREM_V25). You need to change DEBUG=1 to DEBUG=0 in
the makefile.

You need to have the DV Kit to complete Step Three.

Please refer to the Tutorial of the Technical Manual of the EV/DV Kit for further details on programming
the DataWatch.

Chapter 1: Introduction DataWatch

1-6

1.5 Minimum Requirements for DataWatch System Development

1.5.1 Minimum Hardware Requirements

• PC or PC-compatible computer with serial COMx port that supports 115,200 baud
• DataWatch controller with DEBUG ROM TDREM_V25
• DB9-IDE10 (PC-V25) serial cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector

for controller)
• center negative wall transformer (+9V 500 mA)

1.5.2 Minimum Software Requirements

• TERN EV/DV Kit installation diskettes
• PC software environment: DOS, Windows 3.1, Windows95, or Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Development Kit (DV) are available from TERN. The EV Kit
is a limited-functionality version of the DV Kit. With the EV Kit, you can program and debug the
DataWatch in Step One and Step Two. You will need the full Development Kit (DV) in order to generate an
application ROM/Flash file, make production version ROMs, and complete the project, you.

DataWatch Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV/DV disk contains important information about the installation
and evaluation of TERN controllers.

2.2 Hardware Installation

Hardware installation for the DataWatch consists primarily of connecting the microcontroller to your PC.

2.2.1 Connecting the DataWatch to the PC

The following diagram (Figure 2.1) illustrates the connection between the DataWatch and the PC. The
DataWatch is linked to the PC via a serial cable (PC-V25).

The TDREM_V25 DEBUG ROM communicates through SER0 by default. Install the 5x2 IDE connector on
the SER0 header of the DataWatch. IMPORTANT: Note that the red side of the cable must point to pin 1
of the SER0 header. The DB9 connector should be connected to one of your PC's COM Ports (COM1 or
COM2).

or COM2
To COM1

PC

9-pin
connector

IDE
connector

J7

TDREM_V25

To J7

RED edge of cable
points to pin 1 of
SER0 (J7)

V25

T2

(DB9)

Figure 2.1 Connecting the DataWatch to the PC

Overview
• Connect PC-V25 cable:

For debugging (Step One), place connector on SER0 with red edge
of cable at pin 1

• Connect wall transformer:
Connect 9V wall transformer to power and to screw terminals on the
DataWatch

Chapter 2: Installation DataWatch

2-2

2.2.2 Powering-on the DataWatch

Connect a wall transformer +9V DC output to the DataWatch via screw terminals as follows:
• Connect the positive lead coming from the bottom of the Vin socket into T1.1 = +Vin of the

DataWatch.
• Connect the ground lead coming from the end of the Vin socket into T1.2 = GND of the

DataWatch.
• Connect the 9V wall transformer plug in to the Vin socket (figure 2.1).

The on-board LED (L0) should blink twice and remain on after the DataWatch is powered-on or reset
(Figure 2.2). Also, the L9 LED should always remain on while the main power is on.

+9V 500mA center negative
wall transformer

GND = T1.2

Positive lead +Vin = T1.1

TDREM_V25

Vin Socket

Red LED (L0)
Blinks at power-on/reset

V25
T1

Red LED (L9)
Remains lit while main power is on

Figure 2.2 The LED (L0) blinks twice after the DataWatch is powered-on or reset

DataWatch Chapter 3: Hardware

3-1

Chapter 3: Hardware

3.1 NEC V25 - Introduction

The NEC V25 is based on industry-standard x86 architecture. The NEC V25 controllers are a higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the NEC V25 has new
peripherals including 256 bytes built-in RAM, high speed serial ports, parallel I/O ports, comparator ports,
timers, and DMA. The on-chip system interface logic can minimize total system cost.

3.2 NEC V25 – Features

3.2.1 Clock

Due to its integrated clock generation circuitry, the NEC V25 microcontroller allows the use of a selectable
system clock frequency of fx/2, fx/4 and fx/8. The design achieves a maximum 8 MHz CPU operation,
while using a 16 MHz crystal.

A built-in clock generator supplies various clocks to the CPU and peripheral hardware. The DataWatch™
uses a 16 MHz crystal. The default system clock output after initialization is 8 MHz on the CLK. The clock
cycle is 125 ns. The normal bus cycle requires two clock cycles, which is 250 ns. With built-in wait state
generation, up to 2 wait states can be inserted. With the default initialization of 2 wait states, EPROMs of
120 ns to 150 ns can be used.

A time base counter provides clock signals for two 16-bit timers, baud rate generator, refresh timing, refresh
address, and time base interrupt request flag. CLK (P07 of the V25) and /REFRQ are two outputs of the
time base counter. A time base interrupt may be generated at 4 different intervals, 128 us, 1.024 ms, 8.192
ms, and 131.072 ms, selectable by software.

3.2.2 External Interrupts

There are five external interrupts: /INTP0-/INTP2, NMI, and INT.

/INTP0 = P11 is used by the SCC2691 UART, if it is installed.
/INTP1 = P12, GR7 at T3
/INTP2 = P13, WH1-4, T3
/NMI = P10, J4 Pin 1
/INT = P14, use as I/O

INTP0 to INTP2 and NMI are edge-detected interrupts, and INT is level-detected. The valid edge for each
edge-sensitive interrupt can be specified in a special function register. Valid edges for these interrupts are
found in the INTM register (Interrupt Mode Register. Page 98 in the NEC V25 User’s Manual).

NMI and INT are special external interrupts. NMI cannot be disabled and therefore is the highest-priority
interrupt that can be detected. INT is an active, high-level sensitive interrupt that is not subject to multiple
servicing control by the interrupt controller. INT is always acknowledged if interrupts are enabled.

The DataWatch uses vector interrupt functions to respond to external interrupts. Refer to the NEC V25
User’s Manual for information about interrupt vectors.

Interrupt Shared Function Physical Location Terminal Block Label

INTP0 P11 SCC UART (U8) -
INTP1 P12 T4 pin 15 GR7
INTP2 P13 T3 pins{4,10,16,22}

T4 pins{4,10,16,22}
Multiplexed WH1-WH8

Chapter 3: Hardware DataWatch

3-2

Interrupt Shared Function Physical Location Terminal Block Label

INT P14 T3 pins{3,9,15,21}
T4 pins{3,9}

Multiplexed GR1-GR6

NMI Dedicated Interrupt J4 pin 1 -

The sample program dw_intp.c demonstrates how to access the external interrupts on the DataWatch board.

3.2.3 Asynchronous Serial Ports

The NEC V25 CPU has two asynchronous serial channels: SER0 and SER1. Both asynchronous serial
ports support the following:

• Full-duplex operation
• 7-bit and 8-bit data transfers
• Odd, even, and no parity
• One or two stop bits
• Error detection
• Hardware flow control
• Transmit and receive interrupts for each port
• Independent baud rate generators

The software drivers for each serial port implement a ring-buffered macro service receiving and ring-
buffered interrupt transmitting arrangement. See the samples files s1_echo.c and s0_echo.c.

An optional external SCC2691 UART is located in U8. For more information about the external UART
SCC2691, please refer to section 3.4.6 and Appendix B.

3.2.4 Timer Control Unit

The NEC V25 CPU has two 16-bit programmable timers: Timer 0 and Timer 1. Both programmable 16-bit
timers are comprised of a 16-bit modulo register, a 16-bit timer register, and an 8-bit control register.

DataWatch Chapter 3: Hardware

3-3

Selector
TM1

Register

MD1
Register

fclk/6

fclk/128

TMC1 Register

TIMER 1

Sets
TMF2

Sets
TMF1

Selector
TM0

Register

MD0
Register

fclk/6

fclk/128

TMC0 Register

TIMER 0

Output
Control

Sets
TMF0

TOUT

Present

Present

Interval Timer Mode

Selector
TM1

Register

MD1
Register

fclk/6

fclk/128

TMC1 Register

TIMER 1

Sets
TMF2

TM0
Register

MD0
Register

Selector

fclk/12

fclk/128

TMC0 Register

TIMER 0

Output
Control

Sets
TMF0

TOUT

Present

Sets
TMF1

Selector

fclk/12

fclk/128

One-Shot Timer Mode

Figure 3.1 Interval Timer Mode and One-Shot Timer Mode Configuration

Timer0 can be programmed as an interval timer or as a one-shot timer. In interval timer mode, the MD0
register value is set to the TM0 register, and then the TM0 countdown begins (Figure 3.1). When TM0
underflows, the TMF0 output is set to 01 and the MD0 register is again set to TM0. The countdown clock,

Chapter 3: Hardware DataWatch

3-4

fclk, is divided by 6 or 128, as defined in the TMC0 register. The square wave generated by Timer0 can be
output to TOUT (U16 pin 7 = P15; not routed to terminal by default).

As a one-shot timer, Timer 0 is configured as two independent timers that count down from the value set in
MD0 and TM0 (Figure 3.1). The countdown frequency is divided by 12 or 128. If the counter is stopped
by either reaching 0 in the count or by setting the TS0 bit to 0 (STOP = 0), a single pulse outputs at TOUT.

Timer1 can only act as an interval timer and has no external output.

TM0 provides a signal output pin TOUT = P15. On the DataWatch, TOUT = P15 is used as a select line
for GR1..6.

3.2.5 Standby Modes

The DataWatch is an ideal core module for applications that require low power consumption. The V25 CPU
has two standby modes, HALT and STOP mode, which reduce power consumption and heat dissipation,
thereby extending battery life in portable systems.

 In HALT or STOP mode, operation of the CPU clock is stopped and program execution is halted. All
registers and RAM content are preserved. HALT mode can drop the power consumption to 50 mA. When
an interrupt occurs, it automatically returns to normal operation.

The difference between HALT mode and STOP mode is that HALT mode allows peripheral hardware (such
as serial ports, DMA controller, etc.) to function. STOP mode disables all devices. The following table
shows which devices are active and which are inactive during HALT and STOP modes.

Item HALT Mode STOP Mode

Oscillator Operates Stops

Internal System Clock Stops Stops

16-bit timer Operates Stops

Time Base counter Operates Stops

HOLD circuit Operates Stops

Serial interface Operates Stops

Interrupt request controller Operates Stops

DMA controller Operates Stops

I/O lines Data Retained Data Retained

Table 3.1 Hardware Status During Standby Mode

To release stop mode, /NMI or /RESET must be triggered. A non-maskable interrupt request, DMA request,
macro service request, or a reset will release HALT mode. Since the serial ports are functional during
HALT mode, it is possible to send a break command to the serial port to resume operations.

The total power consumption is approximately 20 mA in the STOP mode with the low power version of
DataWatch. The STOP mode can be released by NMI input or reset input.

3.2.6 Count External Events using the 16-bit DMA Count Register

The V25 has a built-in, two-channel DMA controller. Since the V25 has no built-in external events counter,
the user may use the two 16-bit DMA Count Registers and the two DMA request lines to count external
TTL-level events at a rate of up to 100 KHz.

Two DMA request lines (P20 and P23) can be programmed to detect external rising edges of TTL-level
pulses and decrement the corresponding pre-loaded DMA Count Register. For a maximum of 65,635 counts

DataWatch Chapter 3: Hardware

3-5

pre-loaded, the counting works well for up to 100 KHz external pulses. An interrupt can be generated upon
completion of the DMA operation when the terminal count becomes zero. An interrupt service routing can
be designed to re-initial the DMA for counting.

A sample program is listed in c:\tern\v25\samples\dw\dw_cnt.c (for details, see also
chapter 4).

3.3 NEC V25 I/O Ports

3.3.1 Port 0, 1, and 2

The NEC V25 has three 8-bit user-programmable I/O ports available. The 24 bi-directional I/O ports (0-2)
are multiplexed with different functions. Individual I/O lines can be specified as input, output, or control
lines. Each port is controlled by a Port Mode Control Register (PMC), a Port Mode Register (PM), and a
Port Data Register (P). You can write or read these registers via the following functions:

 pokeb(0xfff0, 0x??, 0x!!)
or peekb(0xfff0, 0x??)

where ?? is the register offset address and !! is the control/data byte.

The following is a list of the register addresses.

Register
Symbol

Register Offset
Address

R/W Access
Units (bits)

P0 0x00 R/W 8/1
PM0 0x01 W 8
PMC0 0x02 R/W 8/1
P1 0x08 R/W 8
PM1 0x09 W 8/1
PMC1 0x0A R/W 8
P2 0x10 R/W 8/1
PM2 0x11 W 8
PMC2 0x12 R/W 8/1

After power-on/reset, I/O pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.2.

Port

I/O

PMCn = 1

PM = X

PMCn = 0 Status after

ve_init()

DataWatch

Location/Function

 PMn = 1 PMn = 0

P00 - Input Output Input EEPROM (U7) clock SCL

P01 - Input Output Input EEPROM (U7) data SDA

P02 - Input Output Input J0 pin 1. Step 2 Jumper.

P03 - Input Output Output HWD (Hit Watch Dog)

P04 - Input Output Input WDO (Read watchdog output).
Select line for MUX WH1..8

P05 - Input Output Output On-board LED LD0.

Chapter 3: Hardware DataWatch

3-6

Port

I/O

PMCn = 1

PM = X

PMCn = 0 Status after

ve_init()

DataWatch

Location/Function

 PMn = 1 PMn = 0

P06 - Input Output Input Select line for MUX GR1..6.

P07 CLKOUT Input Output CLKOUT CLKOUT, 8 MHz.

P10 - /NMI - /NMI J4 pin 1.

P11 - /INTP0 - /INTP0 External Interrupt Input 0. Used
by SCC UART.

P12 - /INTP1 - /INTP1 External Interrupt Input 1. Pin
label GR7.

P13 /INTAK /INTP2 - /INTP2 MUX input WH1…WH4.

P14 INT /POLL Output Output MUX input GR1…GR6.

P15 TOUT Input Output Input Select line for MUX GR1..6.

P16 /SCK0 Input Output Output Select line for MUX GR1..6.

P17 READY Input Output READY RN2.7

P20 DMARQ0 Input Output Input MUX input WH5…WH8.

P21 /DMAAK0 Input Output Input U21 pin 8

P22 /TC0 Input Output Input Select line for MUX WH1..8.

P23 DMARQ1 Input Output Output EN485 for SCC RS485 driver.
Pin label GR8.

P24 /DMAAK1 Input Output Input 12-bit ADC CLK

P25 /TC1 Input Output Input 12-bit ADC DIN

P26 /HLDAK Input Output Input 12-bit ADC DOUT

P27 HLDRQ Input Output Input 12-bit ADC CS, pulled high

Table 3.2 I/O pin default configuration

DataWatch I/O initialization in ve_init() is listed below:

 pokeb(0xfff0,0x02,0x80); /* Set PMC0 P07=CLK */
 pokeb(0xfff0,0x01,0xd7); /* Set PM0 for input, P05=LED P03=HWD output */
 pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */
 pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
 pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

 pokeb(0xfff0,0x11,0xf7); /* Set PM2 for input, P23=EN485 output */

The C function in the library ve_lib can be used to initialize PIO pins.

void port_init(char p, unsigned char pmc, unsigned char pm);

Where p = port 0, 1 or 2.

 pmc = define each pin as CONTROL or I/O (0 = I/O; 1 = CONTROL).
 pm = define each I/O pin as input or output (0 = output; 1 = input).

3.3.2 Port T Comparator Inport

Port T is an 8-bit input port whose threshold voltage can be changed in 16 steps. Each Port T input is
compared with the selected threshold voltage (Vth). PTn > Vth results in a value 1, PTn < Vth results in a
value 0. All eight results from PT0 to PT7 are latched to the port T input latches.

DataWatch Chapter 3: Hardware

3-7

The resulting 8-bit latch can be accessed by the function portt_rd(void), which returns the 8-bit result. Vth
can be changed by the function portt_wr(char vref). The variable vref {0 .. 15} sets the reference voltage
by the following equation: Reference = Vth * vref/16. vref = 0 sets Reference = Vth. Vth is connected to
a 10 K pullup resistor network and Vth ≈ 3.57V. PT0 – PT6 are on J2. PT0 – PT2 are pulled up by 10 K
resistors.

Comparator port inputs are accessible via T2. The input pins are labeled CP0…CP7.

Port Direction Label
PT0 INPUT CP0, T2.1.
PT1 INPUT CP1, T2.3.
PT2 INPUT CP2, T2.4.
PT3 INPUT CP3, T2.6.
PT4 INPUT CP4, T2.7.
PT5 INPUT CP5, T2.9.
PT6 INPUT CP6, T2.10.

 PT7 INPUT CP7, T2.12.

3.4 I/O Mapped Devices

3.4.1 I/O Configuration

The I/O on the DataWatch is accessible through four 24-pin terminal blocks (fixed or field-removable).
Figure 3.2 shows the I/O configuration for each terminal block.

Chapter 3: Hardware DataWatch

3-8

T1

• +12VIN

• AN 0-10

• +485/-485

• +485/-485

T2

• DI 1-8

• CP 0-7

• DI 1-8

T3

• GR 1-4

• WH 1-4

• RE 1-4

• BK 1-4

• HV 1-4

T4
• GR 5-8

• WH 5-8

• T10, T17

• RE 5-8

• BK 5-8

• HV 5-6

• T10, T17

Figure 3.2 I/O configuration for terminal blocks

Terminal Blocks 3 and 4 are labeled to be used with color-coded wires for easier installation.
Table 3.3 shows the Function for each type of terminal.

Label Function

RE Outputs 12 volts or 5 volts. Jumpers S1-S8 select the output voltage.
BK High-voltage, high-current drivers.
GR Multiplexed digital input.
WH Multiplexed digital input. *WH1-4 = DAC output if MAX537 (U22) is installed.

DataWatch Chapter 3: Hardware

3-9

Label Function

HV High-voltage, high-current drivers.
CP Comparator inputs.
DI PPI P00-P07. Led indicators.
T10, T17 PPI P10 and PPI P17.
+12VIN Input voltage. 12 volts.
+485/-485 SCC 2691 RS485 port.

Table 3.3 Functions of different terminal types

3.4.2 I/O Space

External I/O devices use I/O mapping. You may access I/O with inportb(port) or outportb(port,dat). The
external I/O space is 64K, ranging from 0x0000 to 0xffff. In the I/O space of 0x0000-0x7fff, the I/O access
time is 500 ns. In the I/O space of 0x8000-0xffff, the I/O access time is 250 ns. Table 3.4 shows more
information on I/O mapped devices.

I/O space time (ns) Decodes Usage

0x0010-0x7fff >500 ns /IORD*/A15*addr+/IOWR*/A15*addr USER
0x8000-0xbfff >250 ns /IOSTB*A15*/A14 RTC
0xc000-0xffff >250 ns /IOSTB*A15*A14 SCC

Table 3.4 I/O Mapped devices

If A15 is not used for decoding, the J2 pin 10 = E signal may be used instead:
 /select_low = IORD*/E*lower_addr + IOWR*/E*lower_addr

The following devices are I/O mapped to the DataWatch. These devices can be accessed using their
libraries or directly through the inport, outport functions.

I/O space Usage

0x4100 PPI (U15)
0x8000 RTC (U4)
0xc000 SCC UART (U8)

3.4.3 Multiplexed Input

The DataWatch multiplexes the GR and WH digital input lines. Lines GR8 and GR 7 are directly input into
P23 and P12 respectively. GR 6 through GR1 are selected as input by P06, P16, and P15. The table in
Figure 3.3 shows the select logic for lines GR6 to GR1.

Chapter 3: Hardware DataWatch

3-10

P14

P06

P15
P16

GR3

GR5

GR4

GR6

GR1
GR2

GR7

GR8

P12

P23A

PAL DIP100

I/O GRn P06 P16 P15
P23 = 8 - - -
P12 = 7 - - -
P14 = 6 0 0 0
P14 = 5 0 0 1
P14 = 4 0 1 0
P14 = 3 0 1 1
P14 = 2 1 0 0
P14 = 1 1 0 1

P23
H5

U19

Figure 3.3 GR multiplexed input

WH 8 through GR5 are multiplexed into P20 and WH4 through WH1 are multiplexed into P13. Both
WH8-WH5 and WH4-WH1 share the same control lines. The table in Figure 3.4 shows the select logic for
lines WH8 to WH5 and WH4 to WH1.

P04
P22

P20

WH5

WH7

WH6

WH8

P13

WH1*

WH3*

WH2*

WH4*

PAL DIP200

PAL DIP200

I/O WH n P04 P22
P20 = 8 0 0
P20 = 7 0 1
P20 = 6 1 0
P20 = 5 1 1
P13 = 4 0 0
P13 = 3 0 1
P13 = 2 1 0
P13 = 1 1 1

* WH1-4 = DAC 1-4 if
MAX537 (U22) is installed
on the DataWatch.

U21

Figure 3.4 WH multiplexed input

3.4.4 Programmable Peripheral Interface (82C55A)

U15 PPI (82C55) is a low-power CMOS programmable parallel interface unit for use in microcomputer
systems. It provides 24 I/O pins that may be individually programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be programmed in sets of 4 and 8 pins to be inputs or outputs.
In MODE 1, each of the two groups of 12 pins can be programmed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshaking and interrupt control signals. MODE 2 is a strobed bi-
directional bus configuration.

DataWatch Chapter 3: Hardware

3-11

7 6 012345

GROUP 1
Port 2

(Lower)

Port 1

Mode

0

1

0

1

0

1

Output

Input

Output

Input

Mode 0

Mode 1

GROUP 2
Port 2

(Upper)

Port 0

Mode

0

1

0

1

00

01

Output

Input

Output

Input

Mode 0

Mode 1

Mode 21X

Command
Select

0

1

Bit
manipulation

Mode
Select

Figure 3.5 Figure 3.3 Mode Select Command Word

The DataWatch maps the 82C55 PPI, at base I/O address 0x4100. The Command Register = 0x4103; Port
0 = 0x4100; Port 1 = 0x4101; and Port 2 = 0x4102.

The following code example will set all ports to output mode:
outportb(0x4103,0x80); /* Mode 0 all output selection. */
outportb(0x4100,0x55); /* Sets port 0 to alternating high/low I/O pins. */
outportb(0x4101,0x55); /* Sets port 1 to alternating high/low I/O pins. */
outportb(0x4102,0x55); /* Sets port 2 to alternating high/low I/O pins. */

To set all ports to input mode:
outportb(0x4103,0x9f); /* Mode 0 all input selection. */

You may read the ports with:
inportb(0x4100); /* Port 0 */
inportb(0x4101); /* Port 1 */
inportb(0x4102); /* Port 2 */

inportb returns an 8-bit value for each port, with each bit corresponding to the appropriate line of the
port.

Port 0 is labeled DI1…DI8 at the terminal blocks and is connected to LED indicators. Port 1 is labeled
T10…T17 and Port 2 is labeled T20…T27 at the terminal blocks.

Chapter 3: Hardware DataWatch

3-12

3.4.5 Real-time Clock RTC72421

If installed, a real-time clock RTC72421 (EPSON, U4) is mapped in the I/O address space 0x0600. It must
be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or rtc_rd()
(see Appendix C and the Software chapter for details).

It is also possible to configure the real-time clock to raise an output line attached to an external interrupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or the
VOFF signal can be used to turn on/off the controller using an external switching power supply. An
example of a program showing a similar application can be found in tern\v25\samples\ve\poweroff.c.

3.4.6 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped in the I/O address space 0xc000-0xffff. The SCC2691
offers the following:

• a full-duplex asynchronous receiver/transmitter
• a quadruple buffered receiver data register
• an interrupt control mechanism
• programmable data format
• selectable baud rate for the receiver and transmitter
• a multi-functional and programmable 16-bit counter/timer
• an on-chip crystal oscillator
• a multi-purpose input/output, including RTS and CTS mechanism

For more information, refer to Appendix B. The SCC2691 on the DataWatch may be used as a network 9th-
bit UART. Use T1 pin 4 (RS485+) and T1 pin 5 (RS485-), to join the multi-drop RS-485 twisted-pair
network.

3.5 Other Devices

A number of other devices are also available on the DataWatch. Some of these are optional, and might not
be installed on the particular controller you are using. For a discussion regarding the software interfaces for
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the DataWatch has several functions
that significantly improve system reliability:

• watchdog timer
• power-failure warning
• battery backup
• power-on-reset delay
• power-supply monitoring

Watchdog Timer

The watchdog timer is activated by setting a jumper on J3 pins 1 and 2 of the DataWatch. The watchdog
timer provides a means of verifying proper software execution. In the user's application program, calls to
the function hitwd() (a routine that toggles the P03=HWD pin of the MAX691) should be arranged such
that the HWD pin is accessed at least once every 1.6 seconds. If the J3 1-2 jumper is on and the HWD pin
is not accessed within this time-out period, the watchdog timer pulls the WDO pin low, which asserts
/RESET. This automatic assertion of /RESET may recover the application program if something is wrong.
After the DataWatch is reset, WDO remains low until a transition occurs at the WDI pin of the MAX691.
When controllers are shipped from the factory the J3 1-2 jumper is off, which disables the watchdog timer.

DataWatch Chapter 3: Hardware

3-13

Power-failure Warning

The supervisor supports power-failure warning and backup battery protection. When power failure is
sensed by the PFI pin of the MAX691 (lower than 1.3 V), the PFO is low. You may design an NMI service
routine to take protect actions before the +5V drops and the processor dies. You can also measure the PFI
voltage with one of the 12-bit ADC inputs. The following circuit (Figure 3.6) shows how you might use the
power-failure detection logic within your application.

47K

2K

PFI of MAX691
(1.3 V min)

(8.35 V min)9-14 V

R3=10K

VCC = +5V

J1 pin 11

Figure 3.6 Using the supervisor chip for power failure detection

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to VRAM
(power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72421 are backed up. In
normal use, the lithium battery should last about 3-5 years without external power being supplied. When the
external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

NOTE: When there is no battery on the DataWatch, the VBAT signal should be shorted to ground.

3.5.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytes (24C04--default), or 2K bytes (24C16) can be installed
in U7. The DataWatch uses the P00=SCL (serial clock) and P01=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store important data such as a node address, calibration
coefficients, and configuration codes. It typically has 1,000,000 erase/write cycles, and the data retention is
more than 40 years. EEPROM can be read and written to by simply calling the functions ee_rd() and
ee_wr().

3.6 Inputs and Outputs

3.6.1 12-bit ADC (TLC2543)

The TLC2543 (U10) is an 11 channel 12-bit, switched-capacitor, successive-approximation, serial interface,
analog-to-digital converter. It has three control inputs(/CS=P27; CLK=P24; DIN=P25) and is designed for
communication with a host through a serial tri-state output (DOUT=P26).

The TLC2543 has an on-chip 14 channel multiplexer that can select any one of 11 inputs or any one of
three internal self-test voltages. The sample-and-hold function is automatic. At the end of conversion, the
end-of-conversion (EOC=P13) output goes high to indicate that conversion is complete. TLC2543 features
differential high-impedance inputs that facilitate ratiometric conversion, scaling, and isolation of analog
circuitry from logic and supply noise. A switched-capacitor design allows low-error conversion over the full
operating temperature range.

The analog input signal source impedance should be less than 50Ω and capable of slewing the analog input
voltage into a 60 pF capacitor.

Chapter 3: Hardware DataWatch

3-14

The TLC2543 requires the 5 V25 I/O lines listed below in order to operate:

P27 /CS Chip select, high to low transition enables DOUT, DIN and CLK.
 low to high transition disables DOUT, DIN and CLK.
P25 DIN Serial data input
P26 DOUT 3-state serial data output.
P13 EOC End of Conversion, high indicates conversion complete, data is ready
P24 CLK I/O clock

The remaining four lines are used for reference voltage, power supply and grounding.
 REF+ Upper reference voltage(normally VCC)
 REF- Lower reference voltage(normally GND)
 VCC Power supply, +5 V input
 GND Ground

The reference voltage REF+, can be tied to VCC for a ratiometric application. By default, REF+ is pulled
up to VCC by R8.

3.6.2 12-bit DAC (MAX537)

The MAX537 (U22) combines four 12-bit, voltage output digital to analog converters and four precision
output amplifiers in a 16 pin chip. The MAX537 operates with ±5V power supply. Each DAC has a double-
buffered input. A 16-bit serial word is used to load data into input/DAC register. The DataWatch uses
P20=/LD, P21=DAC /CS, P24=SCLK, and P25=SDI to operate the MAX537. The REF+ of the MAX537
is 2.5V provided by U24. You may write the DAC with the function in the library: v104_da12(ch, dat);

3.6.3 High-voltage, High-current Drivers

ULN2003 has high voltage, high current Darlington transistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substrate. All channels feature open-collector outputs for sinking
350 mA at 50V, and integral protection diodes for driving inductive loads. Peak inrush currents of up to 600
mA sinking are allowed. U18 and U08 are dedicated high-voltage drivers. These outputs may be paralleled
to achieve high-load capability, although each driver has a maximum continuous collector current rating of
350 mA at 50V. The maximum power dissipation allowed is 2.20 W per chip at 25 degrees C (°C). The
common substrate G is routed to T3 GND pins. All currents sinking in must return to the T3 GND pin. A
heavy gauge (20) wire must be used to connect the T3 GND terminal to an external common ground return.
K connects to the protection diodes in the ULN2003 chips and should be tied to highest voltage in the
external load system. K can be connected to an unregulated on board +12V via H2. ULN2003 is a sinking
driver, not a sourcing driver. An example of typical application wiring is shown below.

DataWatch Chapter 3: Hardware

3-15

K +12V

H2

+12V

GND/SUB

GND/SUB

Power Supply

Solenoid

HVx BKx

ULN2003

Figure 3.7 Drive inductive load with high voltage/current drivers.

3.6.4 Power Supply Voltage Outputs

There is a 5V regulator U9 to provide regulated 5V to DataWatch circuit. There is also an additional 6V
regulator in U09 to provide a regulated VCC1=6V for Headers H11 to H18 which can select the output
voltage for RE1 to RE8. User can select either +12V or VCC1=6V for RE1 to RE8 at the screw terminals
T3 and T4.

3.7 Headers and Connectors

3.7.1 Jumpers and Headers

The following table lists the jumpers and connectors on the DataWatch:

Name Size Function Possible Configuration

J1 9x1 RAM/ROM/Flash size
& type selection (ROM or
Flash)

pin 1-2: 32KB or 128KB SRAM
pin 2-3: 512KB SRAM
pin 4-5: ROM or Flash size 256KB-512KB
pin 5-6: ROM or Flash size 32KB-128KB
pin 7-8: Flash
pin 8-9: ROM

J2 6x1 SUM, SUM1 selection pin 1-2: SUM=GND
pin 2-3: SUM=VCC
pin 4-5: SUM1=VCC
pin 5-6: SUM1=GND

J3 2x1 Watchdog Timer Jumper on = WD enabled, else disabled

Chapter 3: Hardware DataWatch

3-16

Name Size Function Possible Configuration

J0 5x1 EEPROM NO Write
Protection

pin 1-2: STEP2
pin 3-4: No EEPROM write protection.

J4 2x1 VOFF, NMI

3.7.2 Terminal Blocks

The DataWatch has a total of 24x4 positions of terminal blocks. A summary of their signals is listed below.

Terminal Signal Names

T1 +12V, GND, 485, AN10-10, SGND

T2 CP0-7, GND, DI1-8, SGND

T3 RE1-4, BK1-4, GR1-4, WH1-4, HV1-4, SGND

T4 RE5-8, BK5-8, GR5-8, WH5-8, HV5-6, T10,
T17, SGND

Table 3.5 Signals on terminals T1-T4

DataWatch Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix E.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff , or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory will
be used to activate appropriate chip-select lines and the corresponding hardware component responsible for
handling this data.

Chapter 4: Software DataWatch

4-2

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment address
is shifted left by four bits and added to the offset to find the 20-bit address. This address is then output over
the address bus, and the hardware component mapped to that address should return either an 8-bit value or a
16-bit value over the data bus. If there is no component mapped to that address, this function will return
random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often when
working with processor registers that are mapped into I/O space and must be accessed using either one of
these functions. This is also the function used in most cases when dealing with user-configured peripheral
components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most hardware
options added to TERN controllers are mapped into I/O space, since memory space is valuable and is
reserved for uses related to the code and data. Using I/O mappings, the address is output over the address
bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 VE.LIB
VE.LIB is a C library for basic DataWatch operations. It includes the following modules: VE.OBJ,
SER0.OBJ, SER1.OBJ, SCC.OBJ, and VEEE.OBJ. You need to link VE.LIB in your applications and
include the corresponding header files. The following is a list of the header files:

Include-file name Description

VE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H Internal serial port 0
SER1.H Internal serial port 1
SCC.H External UART SCC2691
VEEE.H on-board EEPROM

DataWatch Chapter 4: Software

4-3

4.2 Functions in VE.OBJ

4.2.1 DataWatch Initialization

VE_init

This function should be called at the beginning of every program running on DataWatch core controllers. It
provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded
DOS I/O, and provides other processor-specific updates needed at the beginning of every program.

ve_init will initialize the I/O pin functions and store the initial register control bytes into the EEPROM (see
Appendix D). You may use these image registers to determine the status of the port but you must update
these registers in your applications. The port0-2 are initialized as shown below:

void ve_init(void){
 pokeb(0xfff0,0x02,0x80); /* Set PMC0 P07=CLK */
 pokeb(0xfff0,0x01,0xd7); /* Set PM0 for input, P05=LED P03=HWD output */
 pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */
 pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
 pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

4.2.2 External Interrupt Initialization

There are up to five external interrupt sources on the DataWatch, consisting of four maskable interrupt pins
(INTP2-INTP0, INT) and one non-maskable interrupt (NMI). There are also additional internal interrupt
sources not connected to the external pins, consisting of two timers, a time base counter, two DMA
channels, both asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion
involving the interrupts, the user should refer to chapter 4 of the NEC V25 CPU User’s Manual.

TERN provides functions to enable/disable all of the external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service routine
that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors correctly
for the specified external interrupt line.

At the end of interrupt handlers, the user should run a finish interrupt routine. This can be done using the
fint() function.

void intpx_init
Arguments: unsigned char i, void interrupt far(* intpx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer, which will
act as the interrupt service routine.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

void nmi_init(void);
void intp0_init(unsigned char i, void interrupt far(* int0_isr)());
void intp1_init(unsigned char i, void interrupt far(* int1_isr)());
void intp2_init(unsigned char i, void interrupt far(* int2_isr)());

Chapter 4: Software DataWatch

4-4

void timer0_init(unsigned char i, void interrupt far(* timer0_isr)());
void timer1_init(unsigned char i, void interrupt far(* timer1_isr)());
void timer2_init(unsigned char i, void interrupt far(* timer2_isr)());
void time_base_init(char i, void interrupt far(*time_base_isr)());

4.2.3 I/O Initialization

There are two ports of 16 I/O pins available on the DataWatch. Hardware details regarding these PIO lines
can be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application where
you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode operation
of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ve_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion of the I/O ports,
please refer to chapter 7 of the NEC V25 User’s Manual.

Please see the sample program portx.c in tern\v25\samples\ve. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The functions port_wr and port_rd can be quite slow when accessing the Port I/O pins. The maximum
efficiency you can get from the Port I/O pins occurs if you modify the Port registers directly with an
outport instruction instead of using port_wr /port_rd .

See the Hardware chapter for Port register addresses.

void port_init
Arguments: char p, unsigned char pmc, unsigned char pm
Return value: none

p refers to Port 0, Port 1 or Port2.

pmc refers to the 8-bit port mode control register value for port p.
• A ‘0’ bit sets the pin to I/O mode
• A ‘1’ bit sets the pin to CONTROL mode

pm refers to the 8-bit port mode register value for port p. This register is valid for pins only I/O mode pins.
• A ‘0’ bit sets the pin to output
• A ‘1’ bit sets the pin to input

char port_rd
Arguments: char p
Return value: byte indicating Port I/O status for port p.

Each bit of the returned 8-bit value indicates the current I/O value for the Port I/O pins in port p.

void pio_wr
Arguments: char p, char dat
Return value: none

Writes an 8-bit value to port p. Only changes status of I/O mode output pins.

DataWatch Chapter 4: Software

4-5

Example 4.1 Set port 0 as I/O, bits 0 – 3 as input, 4 – 7 as output.

port_init(0, 0x00, 0xf0);
 p = Port 0,
 pmc = 0 (I/O),
 pm 0-3 = 1, pm 4-7 = 0.

Example 4.2 Set pins 20 and 23 as DMA Request. All other port 2 pins as output.

port_init(2, 0x09, 0x00);
 p = Port 2,
 pmc = bit 0 and 3 = 1 (Control), all others = 0 (I/O)
 pm = all 0s. Since pins 20 and 23 are control functions, the pm field is not

relevant.

In most cases it is only necessary to change the value of one or two pins in the port data register Since the
port data register is a read/write register, it is possible to mask the pins that do not need to change. In this
case, the port_init function cannot be used. Instead, the port data register can be directly accessed using the
poke and peek functions.

Example 4.3 Using bitwise OR to set a single bit high, set pin 23 high without
modifying the other pins. Assume all port 2 is output and that all pins
are low.

pokeb(0xfff0, 0x10, (unsigned char) (peekb(0xfff0, 0x10) | 0x08));

Assuming that all of port 2 is outputting low, the peekb function will return a value of

0x00. A bitwise ‘OR’ with the value 0x00 and the mask 0x08 equals 0x08.
Port 2 now outputs 0x08.

Example 4.4 Using bitwise AND to reset a single bit low, set pin 23 low without
modifying the other pins. Assume settings are the same after executing
Example 4.3.

pokeb(0xfff0, 0x10, (unsigned char) (peekb(0xfff0, 0x10) & 0xF7));

Assuming the settings from Example 4.3 are still present, the peekb function should return

a value of 0x08. A bitwise ‘AND’ with the value 0x08 and the mask 0xF7
equals 0x00. Port is again set to 0x00 (all pins low).

While the port data registers are read/write registers, the port control registers pmc and pm are not.
Modifying only certain pins in these registers requires the use of global variables to store the values of these
registers. This means that any changes to the pmc or pm registers must be accounted for in the global
variable. As in the previous example, the bitwise OR and AND expressions can be used to mask the
register bits.

Example 4.5 Set port 2 pins 0 through 3 as output.

// The following global variable defines the pm2 register

unsigned char pm2;

Chapter 4: Software DataWatch

4-6

/* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits 0 through 3 are low. Use AND to set bits low */

pokeb(0xfff0, 0x11, (pm2 = (pm2 & 0xF0))); //pm2 must be set to a new register

value

Example 4.6 Set port 2 pins 0 through 3 as input.

// The following global variable defines the pm2 register

unsigned char pm2;

/* assume pm2 has been correctly maintained. The following code will modify the pm2

register such that bits 0 through 3 are high. Use OR to set bits high */

pokeb(0xfff0, 0x11, (pm2 = (pm2 | 0x0F))); //pm2 must be set to new register value

4.2.4 Port T

Port T is an 8-bit input port whose threshold voltage can be changed in 16 steps. Comparator operation is
performed through this port. Each Port T input is compared with the selected threshold voltage (Vth). PTn
> Vth results in a value 1, PTn < Vth results in a value 0. All eight results from PT0 to PT7 are latched to
the port T input latches.

The resulting 8-bit latch can be accessed by the function portt_rd(void) which returns the 8-bit result. Vth
can be changed by the function portt_wr(char vref). The variable vref {0 .. 15} sets the reference voltage
by the following equation: Reference = Vth * vref/16. vref = 0 sets Reference = Vth. Vth is connected to
a 10 K pullup resistor network and Vth ≈ 3.57V. PT0 – PT6 are on J2. PT0 – PT2 are pulled up by 10k
resistors.

void portt_wr(char vref)

 where vref is a number to select VREF

 vref = 0 VTHx 1
 vref = 1 VTHx 1/16
 vref = 2 VTHx 2/16
 vref = 3 VTHx 3/16
 vref = 4 VTHx 4/16
 vref = 5 VTHx 5/16
 vref = 6 VTHx 6/16
 vref = 7 VTHx 7/16
 vref = 8 VTHx 8/16
 vref = 9 VTHx 9/16
 vref = 10 VTHx 10/16
 vref = 11 VTHx 11/16
 vref = 12 VTHx 12/16
 vref = 13 VTHx 13/16
 vref = 14 VTHx 14/16
 vref = 15 VTHx 15/16

char portt_rd(void)

 returns an 8-bit character representing the comparator output if the voltage at PT0 < Vref, bit 0=0 else 1.

DataWatch Chapter 4: Software

4-7

4.2.5 Timer Units

The two timers present on the DataWatch can be used for a variety of applications. The timers run at a
maximum of 1/6 of the processor clock rate, which determines the maximum resolution that can be
obtained.

These timers are controlled and configured through a mode register that is specified using the software
interfaces. The mode register is described in detail in chapter 9 of the NEC V25 User’s Manual.

The timers can be used to time execution of your user-defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\v25\samples\ve.

The specific behavior that you might want to implement is described in detail in chapter 9 of the NEC V25
User’s Manual.

void timer0_init
void timer1_init
Arguments: unsigned char mode, unsigned int md0, unsigned int tm0
Return values: none

The argument mode is the value that you wish placed into the TMC0/TMC1 mode registers for configuring
the two timers.

The argument md0 is the modulo timer count and t0 is the timer count.

void timer0_interrupt
void timer1_interrupt
Arguments: unsigned char i, void interrupt far (* timer0_isr)()
Return values: none

The argument i enables the interrupt and (*timer0_isr)() or (*timer1_isr)() points to the interrupt service
routine. The interrupt service routine is called whenever count 0 is reached, with other behavior possible
depending on the value specified for the control register.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) jumper is set, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop or
stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Chapter 4: Software DataWatch

4-8

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a rollover in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

A common data structure is used to access and use both interfaces.

typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use the
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t

DataWatch Chapter 4: Software

4-9

Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr .

void ve_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

4.2.7 Count External Events using the 16-bit DMA Count Register

A sample program for using the two 16-bit DMA Count Registers and the two DMA request lines to count
external TTL level events is listed in c:\tern\v25\samples\dw\dw_cnt.c. Additional information
may be found in the Hardware chapter (chapter 3).

Void counter0_init
Arguments: unsigned int count0
Return value: none

This function is used to initialize P20=DR0 for DMA0 external TTL rising edges counting.

Void counter1_init
Arguments: unsigned int count1
Return value: none

This function is used to initialize P23=DR1 for DMA1 external TTL rising edges counting.

The unsigned int count0/1 will be written into DMA terminal count registers.

Example: counter0_init(0); will initialize the DMA0 counter for the maximum counts of 65,356

void counter0_interrupt
Arguments: unsigned char i, void interrupt far(* cnt0_isr) ())
Return value: none

Chapter 4: Software DataWatch

4-10

void counter1_interrupt
Arguments: unsigned char i, void interrupt far(* cnt1_isr) ())
Return value: none

These functions initialize the “counting to zero interrupt”. The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer, which will
act as the interrupt service routine. By default, the interrupts are all disabled after initialization.

To disable them again, you can repeat the call but pass in 0 as the first argument.

See the sample program c:\tern\186\samples\dw\dw_cnt.c.
void counter0_interrupt(unsigned char i,void interrupt far(*cnt0_isr)()

);
void counter1_interrupt(unsigned char i,void interrupt far(*cnt1_isr)()

);

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header files ser0.h and ser1.h in the
tern\v25\include directory.

The internal asynchronous serial ports are functionally identical. SER0 is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits for communication with the PC. As a result, you will
not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the NEC V25 CPU: SER0 and SER1. Both ports have
baud rates based on the 8 MHz clock.

By default, SER0 is used by the DEBUG ROM for application download/debugging in Step One and Step
Two. We will use SER1 as the example in the following discussion; any of the interface functions that are
specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for use,
please realize that some pins might be shared with other peripheral functions. This means that in certain
limited cases, it might not be possible to use a certain serial port with other on-board controller functions.
For details, you should see chapter 11 of the NEC V25 User’s Manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These baud
rates are achieved by specifying a divisor for the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions.

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

DataWatch Chapter 4: Software

4-11

Function Argument Baud Rate

12 76,800

13 115,000

14 230,000

15 460,800

16 1 Meg

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 16 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the receiving
serial data stream into the memory by macro service operation. In terms of receiving, there is no software
overhead or interrupt latency for user application programs even at the highest baud rate. Macro service
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), mode (mode), and baud rate (baud) are specified by the user with
s1_init().The mode is the setting value for the serial port control register. A value of 0xC9 will set the
serial port in the following manner:

transmit enable, receive enable, no parity, 8 data bits, 1 stop bit

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user does
not take out the data from the ring buffer with getser1() before the ring buffer is full, new data will
overwrite the old data without warning or control. Thus it is important to provide a sufficiently large buffer
if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4-KB buffer
will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

Chapter 4: Software DataWatch

4-12

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If there
is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise, it will
continue to take out the data from the out buffer, and transmit. After you call putser1() and transmit
functions, you are free to do other tasks with no additional software overhead on the transmitting operation.
It will automatically send out all the data you specify. After all data has been sent, it will clear the busy flag
and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted out
of SER0. This sample program can be found in tern\186\samples\ve.

Software Interface

Before you can use the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ve.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

DataWatch Chapter 4: Software

4-13

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. mode is the serial control
register value. b is the baud rate value shown in Table 4.1. The arguments ibuf and isiz specify the input-
data buffer, and obuf and osiz specify the location and size of the transmit ring buffer.

If mode = 0xc9, the serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within the
output buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one
of the following functions, however, the driver interrupt for the appropriate serial-port will be disabled,
which means that no values will be transmitted. This allows you to control when you wish the transmission
of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return value
returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns one
in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

Chapter 4: Software DataWatch

4-14

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are working
with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriately
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the NEC V25 User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the NEC V25 processor have many other features that might
be useful for your application. If you are truly interested in having more control, please read Chapter 11 of
the User’s Manual for a detailed discussion of other features available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are prototyped in scc.h in the tern\v25\include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses the 8 MHz system clock
for driving serial communications. The divisors and function arguments for setting up the baud rate for this
third port are different than for SER0 and SER1.

DataWatch Chapter 4: Software

4-15

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600 (default)

9 19,200

10 31,250

11 62,500

12 125,000

13 250,000

Unlike the other serial ports, macro service transfer is not used to fill the input buffer for SCC. Instead, an
interrupt-service-routine is used to place characters into the input buffer. If the processor does not respond
to the interrupt—because it is masked, for example—the interrupt service routine might never be able to
complete this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see Appendix B of this manual. In most TERN applications, MR1 is set to 0x57,
and MR2 is set to 0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd parity,
up to 2 stop bits, and 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SER0 and SER1. A COM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c
Return value: none

This initializes the SCC2691 serial port to baud rate b, as defined in the table above. The values in m1 and
m2 specify the values to be stored in to MR1 and MR2. As discussed above, these values are normally
0x57 and 0x07, as shown in TERN sample programs.

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INT0 on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:

Chapter 4: Software DataWatch

4-16

 int0_init(1, scc_isr);

By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once this
is done, you can transmit and receive data as needed. If you do need to do limited flow control, the MPO
pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex communications,
please see ve_scc.c in the directory tern\v25\samples\ve.

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to the
SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral board,
you will need to disable receive while transmitting. While transmitting, you will also need to place the
RS485 driver in transmission mode as well. This is done by using scc_rts(1). This uses pin MPO (multi-
purpose output), found on the J1 header. While you are receiving data, the RS485 driver will need to be
placed in receive mode using scc_rts(0).

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of these
functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functions is to disable send and receive. If you are using RS485, you will need to use this feature when
transitioning from transmission to reception, or from reception to transmission.

Transmission and reception of data using the SCC is in most ways identical to SER0 and SER1. The
functions used to transmit and receive data are similar. For details regarding these functions, please refer to
the previous section.

putser_scc
See: putsern

putsers_scc
See: putsersn

getser_scc
See: getsern

getsers_scc
See: getsersn

DataWatch Chapter 4: Software

4-17

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which is
not connected to either of the headers. The RTS pin corresponds to the MPO pin found on the J1 header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER0 and SER1.

scc_close
See: sn_close

serhit_scc
See: sn_hit

clean_ser_scc
See: clean_sn

Occasionally, it might also be necessary to check the state of the SCC for information regarding errors that
might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val

The returned value val will be in the form of 0ABC0000 in binary. Bit A is 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

4.5 Functions in VEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board provides easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, the jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

DataWatch Appendix A: DataWatch Layout

 A-1

Appendix A: DataWatch Layout
The DataWatch measures 6.7 x 6.7 inches. Its layout is shown below.

PPI
U15

NEC V25

U2

U1

SRAMROM/
Flash

U3

U
A

R
T

U
8

U13 U12 U11

J7 J8

H3
T1

T2

T3

T4

U
08

U10ADC
J6

U5 U4

H1

U22U6

U16 U19 U21 U17

U
18

U
7

H13

U
14

H17 H18

H11
H2

H16H15

J2

U20

J4

H5

J0

J3

J1

H12
U24

U30

H14

U9

U09

S5 S6 S7 S8

S1

S2

S3

S4

SER0 SER1

48
5

RTCPAL

691 PAL

PALPAL

U
L

N
20

03

U
L

N
20

03

189 188

7662

E
E

REF2
DAC
(U22)

 L9 LED:
power on

Step2

Watchdog

L0 LED:
Step2

(0.00, 0.00)
(0.35, 0.35) (6.35, 0.35)

(6.35, 6.35)

(6.7, 6.7)(0.35, 6.35)

Appendix B: UART SCC2691 DataWatch

B-1

Appendix B: UART SCC2691
1. Pin Description
 D0-D7 Data bus, active high, bi-directional, and having 3-State
 /CEN Chip enable, active-low input
 /WRN Write strobe, active-low input
 /RDN Read strobe, active-low input
 A0-A2 Address input, active-high address input to select the UART registers
 RESET Reset, active-high input
 INTRN Interrupt request, active-low output
 X1/CLK Crystal 1, crystal or external clock input
 X2 Crystal 2, the other side of crystal
 RxD Receive serial data input
 TxD Transmit serial data output
 MPO Multi-purpose output
 MPI Multi-purpose input
 Vcc Power supply, +5 V input
 GND Ground

2. Register Addressing

A2 A1 A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR

Note:
 ACR = Auxiliary control register
 BRG = Baud rate generator
 CR = Command register
 CSR = Clock select register
 CTL = Counter/timer lower
 CTLR = Counter/timer lower register
 CTU = Counter/timer upper
 CTUR = Counter/timer upper register
 MR = Mode register
 SR = Status register
 RHR = Rx holding register
 THR = Tx holding register

3. Register Bit Formats

MR1 (Mode Register 1):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RxRTS

 0 = no
 1 = yes

 RxINT

0=RxRDY
1=FFULL

 Error

 0 = char
1 = block

 ___Parity Mode___

 00 = with parity
 01 = Force parity
 10 = No parity
 11 = Special mode

Parity Type

 0 = Even
 1 = Odd

In Special
 mode:
 0 = Data
 1 = Addr

 Bits per Character

 00 = 5
 01 = 6
 10 = 7
 11 = 8

DataWatch Appendix B: UART SCC2691

 B-2

MR2 (Mode Register 2):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Channel Mode

 TxRTS CTS Enable
Tx

 Stop Bit Length
(add 0.5 to cases 0-7 if channel is 5 bits/character)

 00 = Normal
 01 = Auto echo
 10 = Local loop
 11 = Remote loop

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = 0.563 4 = 0.813 8 = 1.563 C = 1.813
 1 = 0.625 5 = 0.875 9 = 1.625 D = 1.875
 2 = 0.688 6 = 0.938 A = 1.688 E = 1.938
 3 = 0.750 7 = 1.000 B = 1.750 F = 2.000

CSR (Clock Select Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Receiver Clock Select Transmitter Clock Select

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

 when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

CR (Command Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Miscellaneous Commands Disable

 Tx
 Enable
 Tx

 Disable
 Rx

 Enable
 Rx

0 = no command 8 = start C/T
1 = reset MR pointer 9 = stop counter
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C = reset MPI
5 = reset break change change INT
 INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

SR (Channel Status Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Received
 Break

 Framing
 Error

 Parity
 Error

 Overrun
 Error

 TxEMT TxRDY FFULL RxRDY

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

Note:
* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are
reset when the corresponding data character is read from the FIFO.

Appendix B: UART SCC2691 DataWatch

B-3

ACR (Auxiliary Control Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BRG Set
 Select

 Counter/Timer Mode and Source

 Power-
 Down
 Mode

 MPO Pin Function Select

0 = Baud
rate set 1,
see CSR
bit format

1 = Baud
rate set 2,
see CSR
bit format

 0 = counter, MPI pin
 1 = counter, MPI pin divided by
 16
 2 = counter, TxC-1x clock of the
 transmitter
 3 = counter, crystal or external
 clock (x1/CLK)
 4 = timer, MPI pin
 5 = timer, MPI pin divided by
 16
 6 = timer, crystal or external
 clock (x1/CLK)
 7 = timer, crystal or external
 clock (x1/CLK) divided by 16

 0 = on,
 power
 down
 active
 1 = off
 normal

 0 = RTSN
 1 = C/TO
 2 = TxC (1x)
 3 = TxC (16x)
 4 = RxC (1x)
 5 = RxC (16x)
 6 = TxRDY
 7 = RxRDY/FFULL

ISR (Interrupt Status Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI Pin
 Change

 MPI Pin
 Current
 State

 Not Used Counter
 Ready

 Delta
 Break

 RxRDY/
 FFULL

 TxEMT TxRDY

 0 = no
 1 = yes

 0 = low
 1 = high

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

IMR (Interrupt Mask Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI
 Change
Interrupt

 MPI
 Level
 Interrupt

Not Used

 Counter
 Ready
 Interrupt

 Delta
 Break
 Interrupt

 RxRDY/
 FFULL
 Interrupt

 TxEMT
 Interrupt

 TxRDY
 Interrupt

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

CTUR (Counter/Timer Upper Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [15] C/T [14] C/T [13] C/T [12] C/T [11] C/T [10] C/T [9] C/T [8]

CTLR (Counter/Timer Lower Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [7] C/T [6] C/T [5] C/T [4] C/T [3] C/T [2] C/T [1] C/T[0]

DataWatch Appendix C: RTC72421 / 72423

 C-1

Appendix C: RTC72421 / 72423

Function Table

 Address Data
A3 A2 A1 A0 Register D3 D2 D1 D0 Count

Value
 Remarks

0 0 0 0 S1 s8 s4 s2 s1 0~9 1-second digit register

0 0 0 1 S10 s40 s20 s10 0~5 10-second digit register

0 0 1 0 MI1 mi8 mi4 mi2 mi1 0~9 1-minute digit register

0 0 1 1 MI10 mi40 mi20 mi10 0~5 10-minute digit register

0 1 0 0 H1 h8 h4 h2 h1 0~9 1-hour digit register

0 1 0 1 H10 PM/AM h20 h10 0~2
or
0~1

PM/AM, 10-hour digit
register

0 1 1 0 D1 d8 d4 d2 d1 0~9 1-day digit register

0 1 1 1 D10 d20 d10 0~3 10-day digit register

1 0 0 0 MO1 mo8 mo4 mo2 mo1 0~9 1-month digit register

1 0 0 1 MO10 mo10 0~1 10-month digit register

1 0 1 0 Y1 y8 y4 y2 y1 0~9 1-year digit register

1 0 1 1 Y10 y80 y40 y20 y10 0~9 10-year digit register

1 1 0 0 W w4 w2 w1 0~6 Week register

1 1 0 1 Reg D 30s
Adj

IRQ
Flag

Busy Hold Control register D

1 1 1 0 Reg E t1 t0 INT/
STD

Mask Control register E

1 1 1 1 Reg F Test 24/ 12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;

 2) Mask AM/PM bit with 10's of hours operations;

 3) Busy is read only, IRQ can only be set low ("0");

 4)

Data bit PM/AM INT/STD 24/12
 1 PM INT 24
 0 AM STD 12

 5) Test bit should be "0".

Appendix D: Serial EEPROM Map DataWatch

D-1

Appendix D: Serial EEPROM Map
Part of the on-board serial EEPROM locations are used by system software. Application programs must not use
these locations.

0x00 Node Address, for networking
0x01 Board Type 00 VE
 10 CE
 01 BB
 02 PD
 03 SW
 04 TD
 05 MC
0x02
0x03
0x04 SER0_receive, used by ser0.c
0x05 SER0_transmit, used by ser0.c
0x06 SER1_receive, used by ser1.c
0x07 SER1_transmit, used by ser1.c

0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™

0x18 MM page register 0
0x19 MM page register 1
0x1a MM page register 2
0x1b MM page register 3

DataWatch Appendix E: Software Glossary

E-1

Appendix E: Software Glossary
The following is a glossary of library functions for the DataWatch.

void ve_init(void) ve.h

 Initializes the V25 processor. The following is the source code for ve_init()
 pokeb(0xfff0,0x02,0x80); /* Set PMC0 P07=CLK */
 pokeb(0xfff0,0x01,0xd7); /* Set PM0 for input, P05=LED P03=HWD output */
 pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */
 pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
 pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

pokeb(0xfff0,0x11,0xf7);// Set PM2 for input, P23=E N485 output

Reference: led.c

void ve_reset(void) ve.h

 Resets the V25 processor.

void delay_ms(int m) ve.h

Approximate microsecond delay. Does not use timer.

Var: m – Delay in approximate ms

Reference: led.c

void led(int i) ve.h

Toggles P05 used for led.

Var: i - Led on or off

Reference: led.c

void delay0(unsigned int t) ve.h

Approximate loop delay. Does not use timer.

Var: m – Delay using simple for loop up to t.

Reference:

Appendix E: Software Glossary DataWatch

E-2

void halt(void) ve.h

Enables HALT standby mode, which halts the system clock to reduce power consumption.
Peripheral CPU devices (serial ports, timers, DMA) will not be effected. System clock restored
by interrupt.

Reference: ve_halt.c

void hitwd(void) ve.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See the Hardware chapter of this manual for more information on the MAX691.

void port_init(char p, char pmc, char pm) ve.h

Initializes I/O port mode control and port mode.

Var: p = port 0, 1 or 2.
 The PMC and PM variables define each pin of the 8-bit port selected.

For example: PM = 0xf0 would set bits 0 – 3 as low and bits 4 – 7 as high.

 pmc = CONTROL or I/O mode (0 = I/O; 1 = CONTROL).
 pm = I/O pin as input or output(0 = output; 1 = in put).

Reference: portx.c

void port_wr(char p, char dat) ve.h

Writes a bit to a Port I/O line. Port I/O line must be in an output mode

Var: p – Port 0, 1, or 2
 dat – 8-bit data for port p

Reference: portx.c

unsigned int port_rd(char p) ve.h

Reads an 8-bit I/O port.

Var: port – 0: Port 0
 1: Port 1
 2: Port 2

Reference: portx.c

DataWatch Appendix E: Software Glossary

E-3

void portt_wr(char vref) ve.h

Selects reference voltage for the comparator input port.

Var: vref – {0 ... 15} defines reference as follow s
 reference = Vth * vref/16.
 For vref – 0: reference = Vth.
 Vth : Threshold voltage ≈ 3.57V

Reference: portt.c

char portt_rd(void) ve.h

Reads from the 8-bit comparator input port. Returns 8-bit value.
bit = 0, PTn < Vref
bit = 1, PTn > Vref
where PTn is the input voltage and Vref is the selected threshold voltage.

Reference: portt.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid – I/O address
 value – 16 bit value

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid – I/O address
 value – 8 bit value

int inport(int portid) dos.h

Reads from an I/O address portid. Returns 16-bit value.

Var: portid – I/O address

int inportb(int portid) dos.h

Reads from an I/O address portid. Returns 8-bit value.

Var: portid – I/O address

Appendix E: Software Glossary DataWatch

E-4

int ee_wr(int addr, unsigned char dat) veee.h

Writes to the serial EEPROM.

Var: addr – EEPROM data address
 dat - data

Reference: ve_ee.c

int ee_rd(int addr) veee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr – EEPROM data address

Reference: ve_ee.c

void rtc_init(unsigned char * time) ve.h

Sets real time clock date, year and time.

Var: time – time and date string
 String sequence is the following:

time[0] = weekday
time[1] = year10
time[2] = year1
time[3] = mon10
time[4] = mon1
time[5] = day10
time[6] = day1
time[7] = hour10
time[8] = hour1
time[9] = min10
time[10] = min1
time[11] = sec10
time[12] = sec1

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtc_rd(TIM *r) ve.h

Reads from the real-time clock.

Var: *r – Struct type TIM for all of the RTC data

typedef struct{
 unsigned char sec1, sec10, min1, min10, hour1, hour10;
 unsigned char day1, day10, mon1, mon10, year1, year10;
 unsigned char wk;

} TIM;

Reference: rtc.c
void timer0_init(unsigned char mode, int md0, int tm0); ve.h

DataWatch Appendix E: Software Glossary

E-5

void timer1_init(unsigned char mode, int md0, int tm0);

Timer 0, 1 initialization.

Var: mode – TMC Timer mode. See ch. 9 for the TMC register

tm – Count time for the count down timer.
md – Count time for the modulo timer.

Reference: timer.c, timer0.c, timer1.c

void timer0_interrupt(char i, void interrupt far (*timer0_isr)()); ve.h
void timer1_interrupt (char i, void interrupt far (*timer1_isr)());

Initialization for timer interrupts.

Var: i – 1: enable, 0: disable.

 timer #_isr – pointer to interrupt service.

Reference: timer0.c, timer1.c

void nmi_init(void interrupt far (* nmi_isr)()); ve.h
void intp0_init(unsigned char i, void interrupt far (*intp0_isr)());
void intp1_init(unsigned char i, void interrupt far (*intp1_isr)());
void intp2_init(unsigned char i, void interrupt far (*intp2_isr)());

Initialization for interrupts 0 through 2 and NMI (Non-Maskable Interrupt).

Var: i – 1: enable, 0: disable.

 int #_isr – pointer to interrupt service.

Reference: intpx.c

void s0_init(char m, char b, unsigned char* ibuf, int isiz, ser0.h
 unsigned char* obuf, int osiz, COM *c) (void);

void s1_init(char m, char b, unsigned char* ibuf, int isiz, ser1.h
 unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: m – mode for serial control register.

b – baud rate.
 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See VE.H for COM
structure.

b Baud

1 110
2 150
3 300
4 600
5 1200

Appendix E: Software Glossary DataWatch

E-6

b Baud

6 2400
7 4800
8 9600
9 19,200 (default)
10 38,400
11 57,600
12 76,800
13 115,000
14 230,000
15 460,800
16 1 Meg

Reference: s0_echo.c, s1_echo.c, s1_0.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h
unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: m1 = SCC691 MR1

m2 = SCC691 MR2
b – baud rate.

 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See VE.H for COM
structure.

m1 bit Definition

7 (RxRTS) receiver request-to-send control, 0=no, 1 =yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Bloc k
4-3 (Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
2 (Parity Type), 0=Even, 1=Odd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8

m2 bit Definition

7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
5 (TxRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bit), 0111=1, 1111=2

b baud

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 31250
11 62500
12 125000
13 250000

DataWatch Appendix E: Software Glossary

E-7

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putser0(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); ser1.h
int putser_scc(unsigned char ch, COM *c); scc.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch – character to output
 c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsers0(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); ser1.h
int putsers_scc(unsigned char ch, COM *c); scc.h

Outputs a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str – pointer to output character string
 c – pointer to serial port structure

Reference: ser1_sin.c

int serhit0(COM *c); ser0.h
int serhit1(COM *c); ser1.h
int serhit_scc(COM *c); scc.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else 0.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

unsigned char getser0(COM *c); ser0.h
unsigned char getser1(COM *c); ser1.h
unsigned char getser_scc(COM *c); scc.h

Retrieves 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsers0(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); ser1.h
int getsers_scc(COM *c, int len, unsigned char *str); scc.h

Appendix E: Software Glossary DataWatch

E-8

Retrieves a fixed-length character string from the input buffer. If the buffer contains less characters
than the length requested, str will contain only the remaining characters from the buffer. Appends
a ‘\0’ character to the end of str. Returns the retrieved string length.

Var: c – pointer to serial port structure

len – desired string length
str – pointer to output character string

Reference: ser1.h, ser0.h for source code.

Date: March 12, 1999 Sheet 1 of 2

Size Document Number REV

B DW.SCH

Title

DATAWATCH

STE/TERN CA USA

VRAM

A13

A15
CE2
R/W

A16

A12
A7

A14

A18

STE COPYRIGHT 1995, ALL RIGHTS RESERVED.

A18 1

A16
 2

A14 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2 15

GND 16

VDD 32

A15
31

CE2 30

R/W 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE1 22

D7 21

D6 20

D5 19

D4 18

D3 17

U1

RAM271024

A16

A12
A7 A13

A14
A17P
AW

VPP 1

A16
 2

A15 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2 15

GND 16

VCC 32

/PGM
31

NC 30

A14 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE 22

D7 21

D6 20

D5 19

D4 18

D3 17

U3

PROM1024

VCC
A18

A15VCC

/RD 1

RXD 2

TXD 3

MPO 4

MPI 5

A2 6

A1 7

A0 8

X1 9

X2 10

RST 11

GND 12

VCC 24

/WR 23

D0 22

D1 21

D2 20

D3 19

D4 18

D5 17

D6 16

D7 15

/EN 14

/INT 13

U8

SCC2691

R/W

VCC

/RAMI
/ROM
/MRD
/TIMER

/IORD

RXD
/IORD

DIP000.PDS

LCD

A19

X1

/MREQ

A15
A14

CLK I0/CLK 1

I1 2

I2 3

I3
 4

I4 5

I5 6

I6 7

I7 8

I8 9

GND 10

VCC 20

I/O7 19

I/O6 18

I/O5
17

I/O4 16

I/O3 15

I/O2 14

I/O1 13

I/O0 12

/OE/I9 11

U5

PAL16V8

A18
C4

10PF

XTAL1 16MHZ

A7
VCC

/RST

R/W
/MSTB

/IOSTB
/MREQ

X2

GND
/REFEQ

C5
10PF

SCL
SDA
P02

C3

DIPCAP

C2

DIPCAP

C14

DIPCAP

P06
P05

P04
HWD

IC

CLK

C9

DIPCAP

P07/CLK 12

D0 13

D1 14

D2 15

D3 16

D4 17

D5 18

D6 19

D7 20

A0 21

A1 22

A2 23

A3 24

A4 25

A5
 26

A6 27

A7 28

A8 29

A9 30

A10
 31

A11 32

P
0
6

1
1

P
0
5

1
0

I
C

9

P
0
4

8

P
0
3

7

P
0
2

6

P
0
1

5

P
0
0

4

G
N
D
/
E
A

3

/
M
R
E
Q

2

/
I
O
S
T
B

1

/
M
S
T
B

8
4

R
/
W

8
3

/
R
E
F
E
Q

8
2

/
R
S
T

8
1

V
D
D

8
0

X
2

7
9

X
1

7
8

G
N
D

7
7

V
T
H

7
6

I
C

7
5

PT7 74

PT6 73

PT5 72

PT4 71

PT3 70

PT2 69

PT1 68

PT0 67

P17/RDY 66

P16/SCKO 65

P15/TOUT 64

P14/INT/POLL 63

P13/INTP2/INTAK 62

P12/INTP1 61

P11/INTP0
60

P10/NMI 59

P27/HLDRQ 58

P26/HLDAK 57

P25/TC1 56

P24/DA1
55

P23/DR1 54

A
1
2

3
3

A
1
3

3
4

A
1
4

3
5

A
1
5

3
6

A
1
6

3
7

A
1
7

3
8

A
1
8

3
9

A
1
9

4
0

R
X
D
0

4
1

G
N
D

4
2

/
C
T
S
0

4
3

T
X
D
0

4
4

R
X
D
1

4
5

/
C
T
S
1

4
6

T
X
D
1

4
7

P
2
0
/
D
R
0

4
8

I
C

4
9

V
D
D

5
0

P
2
1
/
D
A
0

5
1

P
2
2
/
T
C
0

5
2

I
C

5
3

U2

PD70320_V25

V25S

D[0..7]

IC
VTH

GND
X1

X2
R/W

/IOSTB

PT7 D1
D3
D5
D7

TXD
MPO

RST

A0
A1
A2
MPI

CLK

/SCC
/PPI

D0
D2
D4
D6 1 2

 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16

H1

HDRD16

D0
D1
D2
D3
D4
D5
D6
D7

P11
/SCC

D3
D4
D5
D6
D7

A10

A11
A9
A8A6

A5
A4
A3
A2
A1
A0
D0
D1
D2

/MRD

/ROM

A6
A5
A4
A3
A2
A1
A0
D0
D1
D2

D3
D4
D5
D6
D7

A10

A11
A9
A8

/MRD

/RAM

VCC
R/W

A17
A17

CE2
VRAM

A17P

1
2
3
4
5
6
7
8
9

J1

HDRS9

1
2
3
4
5
6

J2

HDRS6

VRAM

PT0
PT1
PT2
PT3

 1 2
 3 4
 5 6
 7 8

RP5

 1 2
 3 4
 5 6
 7 8

RP4

C8
DIPCAP

GND

GND

VCC
VCC
SUM1

SUMCP1
CP2
CP3

CP0 1 2
 3 4
 5 6
 7 8

RP8

 1 2
 3 4
 5 6
 7 8

RP9

AD0
AD1
AD2
AD3

 1 2
 3 4
 5 6
 7 8

RP1

 1 2
 3 4
 5 6
 7 8

RP2

AN0
AN1
AN2
AN3

AD0
AD1
AD2
AD3VCC

VCC

VCC
VLC
R/W

PT4
PT3
PT2
PT1
PT0
P17
P16
P15
P14
P13

PT6
PT5

AD0
AD1 AD0 1

AD1 2

AD2 3

AD3
 4

AD4 5

AD5 6

AD6 7

AD7 8

AD8
 9

GND 10

VCC 20

EOC 19

CLK 18

DIN
17

DOUT 16

CS 15

REF+ 14

REF- 13

AD10
12

AD9 11

U10

LTC2543

TDP100.PDS

GND
A0

LCD

A3
A2
A1
A0

D0
D1
D2
D3
D4
D5
D6
D7

A11
A10
A9
A8
A7
A6
A5
A4

+12VI

C16
10UF35V

P12
P11

P27
P26
P25
P24
P23

/NMI

AD2
AD3
AD4
AD5
AD6
AD7
AD8

AD9
AD10

REF+
GND

P27
P26
P25
P24 AD4

AD5
AD6
AD7

AD8
AD9
AD10

 1 2
 3 4
 5 6
 7 8

RP3

RP8S1

AN4
AN5
AN6
AN7

AN8

AN10

AD4
AD5
AD6
AD7

AD8
AD9
AD10

AN9

CP4
CP5
CP6
CP7

 1 2
 3 4
 5 6
 7 8

RP10 10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN6

10K RN10S1

SUM
PT0
PT1

PT4

PT4

PT5

PT2
PT3

PT7

PT7

U20

LM285

PT6

REF+
R8

2K

AW
A18

+12V

VOFF
R9

300K

SENSOR

VCC
GND
P12
P13
P14
P15
P16
P20
P21
P22

+12VI

P05
DI[1..8]

SGND

A1
A0

RST
R/W
/IORD
/PPI

D[0..7]

P23
P04
P06
-5V

PT5
PT6

CP1

+12V

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

T1

T24

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

T2

T24

CP0

SUM1

GND

P02
GND

VCC
WP +12VI

GND
SGND

GND

1
2
3
4
5

J0

HDRS5

VCC

RXD1

/RXD1

CTS1

/CTS1

INA 1

CA
 2

OUTA 3

INB 4

CB 5

OUTB 6

GND
 7

VCC 14

IND
13

CD 12

OUTD 11

INC 10

CC 9

OUTC
 8

U13

75C189
1489

RTS0

RXD0

/RXD0

CTS0
CTS0

/CTS0

 1 2
 3 4
 5 6
 7 8
 9 10

J7 HDRD10

GND
/RXD0
/TXD0

GND

L9

LED

VCC R12

220

VCC
IC

TXD1
A19

P22
P21

GND

P20

ICA12
A13
A14
A15
A16
A17
A18

C6

DIPCAP

C15

DIPCAP

C18

DIPCAP

VRAM
VBAT VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI 9

U6

MAX691

C1
DIPCAP

C19

DIPCAP

/RST C17

DIPCAP

RXD1
TXD0

RXD0
GND

/RST
RST

GND

-12V

-VOUT 1

GND 3

-VIN 2
U30

LM79L05
79L05

/RXD1
/TXD1

GND

D1
1N5817

-5V

RTS1 TXD0

RTS0

/TXD0
GND

-12VCTS1
 1 2
 3 4
 5 6
 7 8
 9 10

J8 HDRD10

 1 2
J6

HDRD2

TXD1

/TXD1

RTS1

GND-V 1

AI 2

AO 3

BI1 4

BI2 5

BO 6

GND 7

+V 14

DI2 13

DI1 12

DO 11

CI2 10

CI1 9

CO 8

U12

75C188
1488

+V AN0

AN1
AN2

AN3

GND

GND

GND
AN4

485+
485-
/RST
GND

C20
10UF35V

+V

CP2

CP3
CP4

CP5
CP6

CP7

GND

GND

GND

GND
DI7

DI8
P21
P20
P16
P15
P14
P13
P12

P22

VCC
GND

A0
A1

+12VI

P05
DI[1..8]

SGND

RST
R/W

/IORD
/PPI

D[0..7]

P23
P04
P06

DI1

DI2
DI3

GND

GND

GND

DI4
DI5

DI6

DI[1..8]

-12V

+V

AN5
AN6

AN7
AN8

AN10

NC 1

C+ 2

G 3

C- 4

V+ 8

OS 7

LV 6

V- 5

U11

ICL7662

GND

GND

GND

AN9

GND
C10

10UF35V

C+

C-
GND

VCC

GND

485-
485+

C11

10UF35V

GND
RXD

TXD
P23

+V

RO 1

/RE 2

DE 3

DI 4

VCC 8

B 7

A 6

GND 5

U14

LTC485

R4

10K

VCC

+12V+12VI

+12V I 1

G

2

VCC 3

U9
LM7805

C7
10UF35V

C12
10UF35V

VCC

PFI

WDI
/RAM
/RAMI
WDO

/PFO

VOFF

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN3

10K RN10S1

HWD

/NMI

 1 2
J3

HDRD2

 1 2
J4

HDRD2

VCC
GND

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN1

10K RN10S1

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN2

10K RN10S1
VCC

IC

P11

P22

P27
P26
P25

/NMI

P24

P20

SDA
P17
P14
P13
P12

VCC

P02

VTH
VCC

PFI

P06

/RST
/IOSTB

/MRD

/TIMER
/MREQ/ROM

/SCC

/PPI

HWD

A0 1

A1 2

A2 3

VSS
 4

VCC 8

WP 7

SCL 6

SDA
 5

U7

24C04

GND

WP

VCC

SCL

-
 1 + 2

+ 3

B1

BTH1

SDA

+12V
R1

2K

R2

10.7K

PFI

VBAT

A0
A1
A2
A3

/TIMER
VCC

VOFF

/IORD
GND

VCC

485-

485+
R5

680 R6
220

R7

680

VRAM

/RST
D0
D1
D2
D3

STD 1

/CS0 2

ALE
 3

A0 4

A1 5

A2 6

A3 7

/RD
 8

GND 9

VRAM 18

X2 17

X1
16

CS1 15

D0 14

D1 13

D2 12

D3
11

/WR 10

U4

72421

R/W

-5V

Date: March 12, 1999 Sheet 2 of 2

Size Document Number REV

B DW.2

Title

DATAWATCH

GND

WH5
HV5

GR5

RE5

GND
RE6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

T4

T24
T24

SGND

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

T3

T24
T24

GND

HV1

GND
RE2

WH1
GR1

RE1

SGND
VCC

I0/CLK 1

I1 2

I2 3

I3 4

I4 5

I5 6

I6 7

I7 8

I8 9

GND 10

VCC 20

I/O7 19

I/O6 18

I/O5 17

I/O4 16

I/O3 15

I/O2 14

I/O1 13

I/O0 12

/OE/I9 11

U21

PAL16V8

EO

DIP200.PDS

P22
P21
P20

WH5
WH6

WH1
WH2
WH3

0 10

1 11

2 12

3 13

4 1

5 2

6 3

7 4

EI 5 EO 15

A0 9

A1 7

A2 6

GS 14

U17

74HC148

VCC

P23AP16
P15
P14

GR5
GR6

I0/CLK 1

I1 2

I2 3

I3 4

I4 5

I5 6

I6 7

I7 8

I8 9

GND 10

VCC 20

I/O7 19

I/O6 18

I/O5 17

I/O4 16

I/O3 15

I/O2 14

I/O1 13

I/O0 12

/OE/I9 11

U19

PAL16V8

DIP100.PDS

0 10

1 11

2 12

3 13

4 1

5 2

6 3

7 4

EI 5 EO 15

A0 9

A1 7

A2 6

GS 14

U16

74HC148

GR1
GR2
GR3P05 P05

RST RSTR/W
/IORD
/PPI
A0
A1

R/W
/IORD
/PPI
A0
A1

P04 P04

P06 P06

P21
P20
P16
P15
P14
P13
P12

P22

VCC
GND

VCC
GND
P12
P13
P14
P15
P16
P20
P21
P22

D[0..7] D[0..7]

P23 P23

P06

GR4
GR5
GR6
GR7
GR8

 1 2
H5

HDRD2
HDRD2

P23A

P12

GND

P06

GR7
GR8

P16
P15

P23

P23A P04

WH4
WH5
WH6
WH7
WH8

P14
GR1
GR2
GR3
GR4
P12

P13

GND

P04

WH7
WH8

P22
P21

EO
P20
WH1
WH2
WH3
WH4
P13

WH2
GR2

HV2

GND

WH3
GR3

RE3

HV3

GND
RE4
SGND

SGND

GND
RE8

WH6
GR6

HV6

GND

WH7
GR7

RE7

HV7

SGND

SGND

WH8
GR8

T10
SGND

WH4
GR4

HV4
SGNDGND

D2
D3

D5
D4

D[0..7]
T20

 1 2
H3

HDRD2
HDRD2

SGND

D[0..7]

DI[1..8] L9

LED
L10

LED

LD9
L1

LED
L2

LED

LD1 DI1

RED1 RE1

RED2 RE2

A 1

B 2 C 4

D 3

F1

1A FUSE

A 1

B 2 C 4

D 3

F2

1A FUSE

+12VI+12VI

DI[1..8] DI[1..8]

+12VI
RED1

SGNDSGND

1
2
3
4
5
6
7
8
9
10
11
12

P1

HDRS12

VCC
+12VI

VCC
+12VI

VCC
RED3

+12VI

VCC
RED4

RED2

RED3 RE3A
 1

B 2 C
 4

D 3

F3

1A FUSE

L3

LED
L4

LED
L5

LED

LD2

LD3

LD4

DI2

DI3

DI4

L11

LED
L12

LED
L13

LED

LD10

LD11

LD12

T21

T22

T23
DI7
DI6
DI5

DI8
R/W

D0
D1

VCC
D7
D6

RST

/WR 40

P07 41

P06 42

P05 43

P04
 44

NC 1

P03 2

P02 3

P01 4

P00
 5

/RD 6

R
S
T

3
9

D
0

3
8

D
1

3
7

D
2

3
6

D
3

3
5

N
C

3
4

D
4

3
3

D
5

3
2

D
6

3
1

D
7

3
0

V
D
D

2
9

P17 28

P16 27

P15 26

P14 25

P13
24

NC 23

P12 22

P11 21

P10 20

P23
19

P22 18/
C
S

7

G
N
D

8

A
1

9

A
0

1
0

P
2
7

1
1

N
C

1
2

P
2
6

1
3

P
2
5

1
4

P
2
4

1
5

P
2
0

1
6

P
2
1

1
7

U15
PPI8255
PPIS

T13
T14
T15
T16
T17

T22
T23
T10
T11
T12

/PPI T21

T24

T25

T26

/IORD

DI4
DI3
DI2
DI1

L14

LED
L15

LED

LD13

LD14

LD15

L6

LED
L7

LED

LD5

LD6

LD7

DI5

DI6

DI7

RED4 RE4

RED5 RE5

A 1

B 2 C 4

D 3

F4

1A FUSE

A 1

B
 2 C 4

D
 3

F5

1A FUSE

+12VI

VCC
RED5

+12VI

VCC
RED6

+12VI

VCC
RED7

1
2
3
4
5
6
7
8
9
10
11
12

P2

HDRS12

+12VI

VCC
RED8

RED6 RE6

RED7 RE7

A 1

B 2 C 4

D 3

F6

1A FUSE

A 1

B 2 C 4

D 3

F7

1A FUSE

L8

LED

LD8 DI8

LD0 P05
L0

LED

L16

LED

LD16

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20

H4

HDRD20
HDRD20

T20
T21
T22
T23

VCC

T27
A0

A1
GND

T27 T26
T25
T24
T20

K
HV1
HV2
HV3
HV4
HV5
HV6
HV7

+12VI 1 2
H2

HDRD2
HDRD2

C13

10UF35V

1B 1

2B 2

3B 3

4B 4

5B 5

6B 6

7B 7

G 8

1C 16

2C 15

3C 14

4C 13

5C 12

6C 11

7C 10

K 9

U18

ULN2003

GND
T11
T12
T13
T14
T15
T16
T17

LD9
10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN8

1K
RN10S1

LD1

GND

LD010
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN4

1K
RN10S1

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN7

10K
RN10S1

T24
T25
T26
T27

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN5

10K
RN10S1

T10

RED8 RE8A 1

B 2 C 4

D 3

F8

1A FUSE

VCC

T11
T12
T13
T14
T15
T16
T17

VCC

HV1
HV2
HV3
HV4
HV5
HV6
HV7

VCC

LD2
LD3
LD4
LD5
LD6
LD7
LD8

VCC

LD10
LD11
LD12
LD13
LD14
LD15
LD16

GND

