ELTM

100M BaseT Ethernet, RS232, CompactFlash, 16/2AM@E, DAC, Solenoid Drivers,
Relay, Graphic LCD, and Pushbuttons

Technical Manual

Trery

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

E-Engine, A-Engine86, A-Engine, A-Core86, A-CoR86-Engine, MemCard-A,
MotionC, VE232, and ACTF are trademarks of TERN, In
Am188ES and Am186ES are trademarks of Advanceddvba&vices, Inc.
Borland C/C++ is a trademark of Borland Internagilon
Microsoft, MS-DOS, Windows, Windows95, and Window®s®e trademarks of
Microsoft Corporation.

Version 2.10

March 21, 2012

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1993-201% TERQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to jadt life and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@ngsults of limited sample tests; they
are provided for design reference use only.

E-Engine-L Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

TheEL™ is a high performance, low cost, C/C++ programmaiuntroller based on a 40/80MHz 16-bit
CPU. It is intended for networking industrial presecontrol, high-speed data acquisition, and ealpgdileal for
OEM applications. ThE&L is an ideal low cost panel-mounting user interflacenany OEM product.

An Fast Ethernet Module can be installed to provi@@M Base-T network connectivity. This Ethernet
module has a hardware LSI TCP/IP stack. It impldm&CP/IP, UDP, ICMP and ARP in hardware, suppgrtin
internet protocol DLC and MAC. It has 16KB intertednsmit and receiving buffer. The host can actiesduffer
via high speed DMA transfers. The hardware Ethemmedule releases internet connectivity and protpcotessing
from the host processor, which represents a hugeovement over software-based TCP/IP stacks. Thaltireg
system can easily handle transmissions in the 188KBange in real world applications with 4 indeghemt stack
connections simultaneously. Software is availabtecbnnecting to Windows Internet Explorer.

A low power graphic LCD with 192x128 pixels can installed. The LCD has 71x54 mm viewing area
with ultra bright white backlighting. Six mechanligaish-buttons are available for installation adjg#do the LCD.
Easy user interface software is, of course, madéadole.

TheEL provides 2 Analog-to-Digital conversion optionBhe first is a sigma-delta 24-bit ADC(LTC2448)
which offers 8 ch. differential or 16 ch. singleded inputs. A peak single-channel output rate &f-& can be
achieved. The second is a 16-bit parallel ADC (AB&,60-5V), supporting ultra high-speed (1 MHz casien
rate) analog signal acquisition. The AD7655 sanultaneously sample on two channels of a total of 4 analog
inputs. As for Digital-to-Analog outputs, two DA€ are implemented optionally: a 16-bit DAC(LTC260@)ich
provides 8 analog output voltages (0-5V); and a thannel 12-bit DAC(DAC7612) that can output 0-409
analog voltage.

The EL also supports up to 2 GB mass storage CompactEksts with Windows compatible FAT file
system support, allowing the user to easily trariafgje amounts of data to (or from) a PC.

OtherEL features include the 16-bit ACTF Flash (256 KWl dnattery-backed SRAM (256 KW). It also
includes 3 timers, PWMs, PIOs, 512-byte serial EBRR two RS232 ports, 3 timer/counters, and a waigh
timer. The 16-bit counters can be used to coutino external events, up to 10 MHz, or to genenate-repetitive
or variable-duty-cycle waveforms as PWM outputseAl time clock (DS1337, Dallas) is available.

Seven high voltage sink drivers are installed, bep®f sinking 350 mA at 50V per line, and they can
directly drive solenoids, relays, or lights. A rhaaical Reed relay provides reliable, fast switghtontacts with a
specification of 200 V, maximum 1 Amp carry curreéht Amp switching, and 100 million times operatio

Finally, theEL has an on-board optional switching regulator \pithiver-off mode. It can be powered with
9-24V DC.

1-1

Chapter 1: Introduction

E-Engine-L

Features:

4.2 x 3", 200 mA at 5V for 80 MHz
40 or 80 MHz, 16-bit CPU, program in C/C++
256 KW 16-bit Flash, 256 KW 16-bit SRAM, 512 byteE
192x128 (71x54 mm) Graphic LCD and 6 Push-buttons
10+ 1/0Os, Real-time clock, 2 serial ports, PWMunters
16 ch 24-bit ADC (LTC2448), 4 ch 16-bit ADC (AD%5)
8 ch. 16-bit DAC(LTC2600), 2 ch 12-bit DAC (DACYB)
Hardware TCP/IP stack for 100M Base-T Ethernet
CompactFlash card with FAT file system support

7 Solenoid drivers, and 1 Reed Relay

1.2 Physical Description

The physical layout of thEL is shown below.

Step2 Jumpe

7 High-Voltag

driver outputs

8-channel
16-bit DAC
outputs

LCD-Contrast
potentiometer

1-2

Serial Port () Reed Relay,
(Debug Port \ Serial Port 1 contact
)
: L
O a - B‘?
: b W
01 |I\\& ‘ e - i
® O #_527,- :
(%) - _
0' : | —‘1 |@ \": A
| 4-channel
100M 2-channel 16-channe 16?blt ADC
Ethernet 12-bit DAC 24-bit ADC inputs
outputs inputs

CompactFlash
socket

GND

+12V

E-Engine-L Chapter 1: Introduction

b, I e Lm-_

BN 9 - e e
LCD-side shown. Backlight on.

(Power On or Reset)

(STEP 2)

Go to Application Code CS:IP
CS:IP in EEPROM:

0x10=CS high byte
STEP 1
ACTF menu sent out through s&r0 9

0x13=IP | b
at 19200/9600 baud(EE40/80) xR lowbye

Step 2 jumper
set?

-
\-

Figure 1.1 Flow chart for ACTF operation

The “ACTF boot loader” resides in the top protecsedtor of the 512KB on-board Flash chip (29F40)ere is

no ROM socket on thEL. The user’s application program must reside in BRér debugging in STEP1, reside in
battery-backed SRAM for the standalone field tesSsTEP2, and finally be programmed into Flash foomplete
product. For production, the user must produce @mAdownloadable HEX file for the application, bdsm the
DV-P+ACTF Kit. The “STEP2” jumper (J2 pins 38-40)st be installed for every production-version board

1-3

Chapter 1: Introduction E-Engine-L

Step 1 settings

In order to talk t&EL with Paradign C++, thEL must meet these requirements:
1) EE40_115.HEX or EE80_115.HEX must be pre-lodademlFlash starting address 0xfa000.

2) The SRAM installed must be large enough to lyoldr program.

For a 32K SRAM, the physical address is 0x000007#€k0
For a 128K SRAM, the physical address is 0x00000€f
For a 512K SRAM, the physical address is 0x00000AEk

3) The on-board EEPROM must have a Jump AddresbdéoEE40_115.HEX with starting address of 0xfa000.
4) The STEP2 jumper must be installed on J2 pird4(B8

For further information on programming the E-Enginerefer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

By default, in the factory, before shipping, the BEIG kernel (EE40_115.hex) is pre-loaded
in the Flash starting at 0OxFAO00O0, and the RED STER2mper is installed, ready for
Paradigm C++ debugger. User does not need to doaaila DEBUG kernel to start with.

At power-on or RESET, the “ACTF” will check the SPR jumper. If STEP 2 jumper is not installed, 8&TF
menu will be sent out from serial port0 at 19200d&or an EL40, or 9600 baud for a EL80.

If the STEP 2 jumper is install ed, the “jump addocated in the on-board serial EEPROM (see APpwill be
read out and then jump to that address. A DEBUG&eEE40_115.hex” for the EL40 or “EE80_115.heat the
EL80 can be downloaded, residing in “OxFA000” cé $12KB on-board flash chip.

The “EE40_115.hex” can also be downloaded into &Hior easier running all demo projects, which@esigned
for running 40MHz.

1-4

E-Engine-L Chapter 1: Introduction

1.3 E-Engine Programming Overview

Steps for product development:

Preparation for Debugging(DONE in Factory

» Connect EL to PC via RS-232 link, 19,200, 8, N, 1

« Power on EL without STEP 2 jumper installed

* ACTF menu should be sent to PC terminal

¢ Use “D” command to download “L_TDREM.HEX” in SRAM
« “G04000” to run “L_TDREM”

« Download “c:\tern\186\rom\ae86\EE40_115.HEX" fagh

« “GFA000” to setup EEPROM and run remote debugger

« Install the STEP2 jumper (J2.38-40)

« Power-on or reset EL, Ready for Remote debugger

STEP 1 Debugging

« Start Paradigm C++, run “led.ide” or “test.ide”
« Download code to target SRAM.
« Edit, compile, link, locate, download, and remd&bug

U

STEP 2 Standalone Field Test

» "G08000” setup EEPROM Jump Address, points to
application code resides in battery backed S¥F

* Install STEP2 jumper, then power on

» Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.

U

STEP 3 Production DV-P Kit

» Generate application HEX file with DV-P and ACKiR
* ACTF “D” to download “L_29F400.HEX” into SRAM
» Download application HEX file into FLASH

* Modify EEPROM jump address to 0x80000

* Set STEP2 jumper

E-Engine-L Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the “software kit.pdf’ technical nmal on the TERN installation CD, under
tern_docs\manual\software_kit.pdf, for informatmminstalling software.

2.2 Hardwar e Installation

Overview

» Connect PC-IDE serial cable:
For debugging (STEP 1), place IDE connector on S&R0Ored
edge of cable on side of H1 pin 1 (See Fig. 2.lh)s DEBUG
cable is a 10-pin IDE to DB9 cable, made by TERN.

» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
using power jack adapter supplied with EV-P/DV-R Ki

Hardware installation consists primarily of conmegtthe microcontroller to your PC.

2.2.1 Connecting the EL to the PC

The following diagram (Fig 2.1) provides the looatiof the debug serial port and the power jack. Ebe
is linked to the PC via a serial cable (DB9-IDE)iethis supplied with TERN EV-P / DV-P Kits.

The EL communicates through SERO by default. Install3k2 IDE connector on the SERO J1 pin header.
The DB9 connector should be connected to one af k@ COM Ports (COM1 or COM2).

2-1

Chapter 2: Installation E-Engine-L

2.2.2 Powering-on the EL

By factory default setting:

1) The RED STEP2 Jumper is installed. (Defaulirsgin factory)

2) The DEBUG kernel is pre-loaded into the on-bdtash starting at address of OXFA000. (Defaultirsgt
in factory)

3) The EEPROM is set to jump address of OXFAOO@f#DIt setting in factory)

Connect +9-12V DC to the DC power terminal. Theegacterminal at the corner of the board is positive
12V input and the other terminal is GND (see figfoe details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be ds® connect the output of the power jack adaptdr a
theEL. Note that the output of the power jack adapteeigter negative.

The on-board LED shoulldlink twice and remain on, indicating the debug kernel is inm@and ready to
communicate with Paradigm C++ TERN Edition for prergming and debugging.

Serial Port 0O
(Debug Port
LED
Step-2
Jumpel)

iElcle 9-12V
wti Power plug
avamies IS (center negative
: @
‘ @

&
¥ 25.000 EE-
S e g
=) C XS
S5) [
EEEl]
.z-—r*iﬂ
wp (S o

Figure 2.1 Locations of STEP2 Jumper, LED, Power input and DEBUG port

2-2

e

E-Engine-L Chapter 3: Hardware

Chapter 3. Hardware

3.1Am186ES/R8820/IA186/R1120 - Introduction

The Am186ES is based on industry-standard x86 textioire. The Am186ES controllers uses 16-bit
external data bus, are higher-performance, moegyiated versions of the 80C188 microprocessorshwhic
uses 8-bit external data bus. In addition, the ABEIB has new peripherals. The on-chip system imerfa
logic can minimize total system cost. The Am186E® two asynchronous serial ports, 32 PIOs, a
watchdog timer, additional interrupt pins, a pwsielth demodulation option, DMA to and from serial
ports, a 16-bit reset configuration register, ankdagced chip-select functionality.

There are a total of four compatible CPU chipslmamised in th&L:

R8820 from RDC is a drop-in replacement 5V, 40MHipdor the AM186ES. Connecting J0.1=J0.2.
AM186ES(AMD, 5V, 40 MHz), R8820(RDC, 5V, 40 MHz)A186ES(INNOVASIC, 5V, 40 MHz) and
R1120(RDC, 3.3V, 80 MHz).

The multiple sources of the CPU can support lonijfer time of the EL product. The technical
specifications and discussions in this manual as=th on AM186ES.

By default, theEL uses 5V 40 MHz R8820 and low power 55-70 ns SRAM.

Optional 3.3V 80 MHz R1120 can be installed.

At 80 MHz, the low power 55 ns SRAM with batteryckap works fine but will not be able to support
DMA operation.

A fast 10/15/25 ns SRAM (Not low power) can be ugedupport zero wait state and DMA operation at 80
MHz, but the backup battery will be drain in fewyda

There are three pads on the PCB for battery. Odaéspground, while the other two allow a 3V backup
lithium battery to be installed in two differentgitions:

1) If the battery’s positive lead is installed iretpad which is further away from the RTC and
CompactFlash, it supports the RTC only. No batbergkup for the SRAM.

2) If the battery’s positive lead is installed iretpad which is closer to the RTC, it supports BT and
SRAM.

3.2Am186ES — Features

3.2.1 Clock and crystal

Due to its integrated clock generation circuithe Am186ES microcontroller allows the use of a sroae
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4adé& 40 MHz for EL40.

CLKOUTA remains active during reset and bus holdditions. The initial function ae_init(); disables
CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pi
The R8820 uses a 40 MHz crystal.
By default the 3.3V R1120 uses a 20 MHz crystak TPU speed is software programmable with the PLL.

At power-on, the on-board ACTF Flash programs tA4 R running at 20 MHz system clock, so a 9600
baud (instead 19,200 baud) is used for the ACTFumen

Debug kernels for Paradigm C++ TERN Edition arelatbte:

3-1

Chapter 3: Hardware E-Engine-L

c:\tern\186\rom\ae86\EE40_115.hex, or c:\tern\186\ae86\EE80_115.hex

The EE40_115.hex will allow 40 MHEL talk to Paradigm C++ TERN Edition at 115,200 batde
EE80_115.hex will run theL based on R1120 at 80 MHz.

By default, the EE40_115.hex is pre-programmedifer40 MHzEL .
User can use software to setup the CPU speed:

outport(0xfff8,0x0103); // PLLCON, 20MHz cryst&l103=40 MHz, 0107=80MHz

3.2.2 External Interrupts and Schmitt Trigger | nput Buffer

There are eight external interrupts: INTO-INT6 aidI.

/INTO, J2 pin 8, free to use.

/INT1, J2 pin 6, free to use.

INT2, J2 pin 19, RTC DS1337 alarm

/INT3, J2 pin 21, free to use

/INT4, J2 pin 33, used by 100M BaseT Ethernet

INT5=P12=DRQO0, J2 pin 5, used B} as output for LED/EEPROM/HWD
INT6=P13=DRQ1, J2 pin 11, used by USB TXE

/NMI, J2 pin 7

Some of external interrupt inputs, /INTO, 1, 3,rtldNMI, are buffered by Schmitt-trigger invertgts9,
74HC14), in order to increase noise immunity aatigform slowly changing input signals to fast cliagg
and jitter-free signals. As a result of this buffgr these pins are capable of only acting as input

These buffered external interrupt inputs requifelling edge (HIGH-to-LOW) to generate an interrupt

The EL uses vector interrupt functions to respond to resteinterrupts. Refer to the Am186ES User's
manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The Am186ES CPU has two asynchronous serial cheinB88IRO and SER1. Both asynchronous serial
ports support the following:

* Full-duplex operation

e 7-bit, 8-bit, and 9-bit data transfers

e 0dd, even, and no parity

* One stop bit

» Error detection

* Hardware flow control

» DMA transfers to and from serial ports

e Transmit and receive interrupts for each port

e Multidrop 9-bit protocol support

e Maximum baud rate of 1/16 of the CPU clock speed

* Independent baud rate generators
The software drivers for each serial port implemanting-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sasrfpésssl _echo.c and sO_echo.c.

Important Note: For 80MHz EL80, DMA functions aretravailable when by default low power 55 ns
SRAM is installed. If install a 25 ns SRAM, 80MHEL can have all DMA functions, but it will drain the
backup battery fast. Two battery positive padsnlig the battery be installed:

3-2

E-Engine-L Chapter 3: Hardware

1) Support both RTC and low power SRAM, or
2) Support only RTC.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaiphers: Timer0O, Timerl, and Timer2.

Timer0 and Timerl are connected to external pins:

Timer0 output = P10 = J2 pin 12

Timer0 input = P11 = U7 EEPROM pin 5

Timerl output = P1 = J2 pin 29

Timerl input = PO = J2 pin 20
TimerO input P11 is used and shared by on-board=BW®, LED, and HitWD, not recommended for other
external use.

The timer can be used to count or time externahsy®r can generate non-repetitive or variablg-gyitle
waveforms.

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timendtémer 1 or be used as a DMA request source.

The maximum rate at which each timer can operatlDi8Hz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to sigok cycles to respond to clock or gate eventse the
sample programsmer02.c andae_cntl.cin thet er n\ 186\ sanpl es\ ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eitergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the tiatbernate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurmpig signal’s high and low phases on the /INT2=J2
pin 19.

3.2.6 Power-save Mode

The EL can be used for low power consumption applicatidriee power-save mode of the Am186ES
reduces power consumption and heat dissipatiomghlyeextending battery life in portable systems. In
power-save mode, operation of the CPU and intepeapherals continues at a slower clock frequency.
When an interrupt occurs, it automatically retwmgis normal operating frequency.

3-3

Chapter 3: Hardware E-Engine-L

3.3Am186ES PIO lines

The Am186ES has 32 pins available as user-progréentéD lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO line ban
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojleain
output. A pin’s behavior, either pull-up or pull\p, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins esded for specific on-board usage, as well. These
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.1

PIO | Function Power-On/Reset status | EL Pin No. EL Initial

PO Timerl in Input with pull-up J2 pin 20 Input tvipull-up

P1 Timerl out Input with pull-down J2 pin 29; U20.4 | Input with pull-down
P2 /PCS6/A2 Input with pull-up J2 pin 24; U20.3 umvith pull-up

P3 /PCS5/A1 Input with pull-up J2 pin 15 Input withll-up

P4 DT/R Normal J2 pin 38 Input with pull-up (Step 2
P5 /IDEN/DS Normal J2 pin 30; U20.5 Input with pup-

P6 SRDY Normal J2 pin 35; U20.7 Input with pull-dow
pP7 Al7 Normal U3 pin 22 Al7

P8 Al18 Normal U3 pin 23 A18

P9 A19 Normal J2 pin 10 A19

P10 | TimerO out Input with pull-down J2 pin 12 Inpuith pull-down
P11 | TimerOin Input with pull-up u7.5 Input with lpbup

P12 | DRQO/INT5 | Input with pull-up LED/EL/HWD/ADC U8
P13 | DRQL/INT6 | Input with pull-up J2 pin 11 Inputtivpull-up
P14 | /MCSO Input with pull-up J2 pin 37 Input witblup (ET)
P15 | /MCS1 Input with pull-up J2 pin 23; U20.2 Inputh pull-up

P16 | /PCSO Input with pull-up J1lpinl19;J4pinl CHD

P17 | /PCS1 Input with pull-up J4 pin 2 u4.4,5

P18 | CTS1/PCS2 Input with pull-up J2 pin 22; U20.1 | nput with pull-up
P19 | RTS1/PCS3 Input with pull-up J2 pin 31; J43in | Input with pull-up
P20 | RTSO Input with pull-up J2 pin 27 Input withllpup (Relay)
P21 | CTSO Input with pull-up J2 pin 36; U20.6 Inputh pull-up

P22 | TxDO Input with pull-up J2 pin 34 TxDO

P23 | RxDO Input with pull-up J2 pin 32 RxDO

P24 | /IMCS2 Input with pull-up J2 pin 17 Input witblup

P25 | /MCS3 Input with pull-up J2 pin 18 Input witblup

P26 | Uzl Input with pull-up J2 pin 4 Input with pulp*
P27 | TxD1 Input with pull-up J2 pin 28 TxD1

P28 | RxD1 Input with pull-up J2 pin 26 RxD1

P29 | /CLKDIV2 Input with pull-up J2 pin 3 Input witbull-up*
P30 | INT4 Input with pull-up J2 pin 33 Input withlpup

P31 | INT2 Input with pull-up J2 pin 19 Input withlpup

* Note: P26 and P29 must NOT be forced low duriog/@r-on or reset.

Table 3.1 I/0 pin default configuration after power-on or reset

3-4

E-Engine-L Chapter 3: Hardware

Three external interrupt lines are not shared RItB pins:
INTO = J2 pin 8
INT1 =J2 pin 6
INT3 = J2 pin 21

The 32 PIO lines, PO-P31, are configurable via 1&ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

EL initialization on PIO pins ime_init() is listed below:

outport(0xff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); /l PIOM1

outport(0xff72,0xec7b); /l PDIRO, P12,A19,A18,A17,P2=PCEG€
outport(0xff70,0x1000); /l PIOMO, P12=LED

The C function in the librarge_lib can be used to initialize P10 pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the tableabo

Example: pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgiog pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,

Some of the I/O lines are used by Hie system for on-board components (Table 3.2). Vggest that you
not use these lines unless you are sure that ywadrinterfering with the operation of such comguts
(i.e., if the component is not installed).

You should also note that the external interrug Rins INT2, 4, 5, and 6 are not available for ase
output because of the inverters attached. That vglues of these PIO interrupt lines will alsoiteerted

for the same reason. As a result, calling rd to read the value of P3INT2) will return 1 when pin 19
on header J2 is pulled low, with the result revéi¢he pin is pulled high.

Signal [Pin Function

P4 /DT STEP2 jumper

P11 TimerO input | Shared with RTC, EEPROM data input

P12 DRQO/INT5 LED, U7 serial EEPROM clock, Hit wladog, ADC

P14 /IMCSO0 100M BaseT Ethernet
P17 /PCS1 U4.4,5 select line
P22 TxDO Default SERO debug

3-5

Chapter 3: Hardware E-Engine-L

Signal | Pin Function
P23 RxDO Default SERO debug
/INT4 | J2 pin 33 Ethernet interrupt (if Ethernetdnte installed)

Table 3.2 1/0O lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0O Space

External I/O devices can use I/O mapping for accésa can access such /O devices witportb(port) or
outportb(port,dat). These functions will transfer one bgtevord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000xtfD

The default I/O access time is 15 wait states. May use the function void_wait(char wait) to define the
I/O wait states from 0 to 15. The system clock8sn® (or 50 ns), giving a clock speed of 40 MHzZ0
MHz). Details regarding this can be found in thdtBare chapter, and in the Am186ES User’'s Manual.
Slower components, such as most LCD interfaceshinfiigd the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus sgdeof the system, some components need to be edtdach
I/O pins directly.

For details regarding the chip select unit, pleses Chapter 5 of the Am186ES User's Manual. Thieta
below shows more information about 1/0O mapping.

I/0 space Location Usage

0x0000-0x00ff | J1 pin 19=P16 USER*

0x0100 us ELDAT (LO-L7)
0x0120 us AD7655 read

0x0140 us AD7655 convert
0x0160 ui10 ELCON (LCD control)
0x0180 ui2 ELRDK (keypad read)
0x01e0 U1l CF /O base

*PCSO0 may be used for other TERN peripheral boards.

To illustrate how to interface thelL with external 1/0O boards, a simple decoding cirdéoi interfacing to
an 82C55 parallel 1/0 chip is shown in Figure 3.1.

74HC138 82C55
RST)
A5 1 | A vo| 15 NC = P00-P0O7
A6 210 Y1| 14 /SEL20 ™
A7 310 v2| 13 /SEL40
Y3| 12 /SEL60 | ssE| 20| /cS P10-P17
Y4 11 /SEL80
/PCSO 4 G2A vs| 10 /SELA0 DMR 1 /WR
59 G2B Y69 ISELCO grp IRD
veC 6| c1 vy7lz /SELFO]]
E— L DO-D7 P20-P27

Figure 3.1 Interface to external I/O devices

3-6

E-Engine-L Chapter 3: Hardware

The functionae_i ni t () by default initializes the /PCSO line at base If@Ir@ss starting at 0x00. You
can read from the 82C55 withportb(0x020) or write to the 82C55 witbutportb(0x020,dat). The call to
inportb(0x020) will activate /PCS0, as well as putting the addi@s00 over the address bus. The decoder
will select the 82C55 based on address lines Adnd,the data bus will be used to read the apprepdata
from the off-board component.

3.50ther Devices

A number of other devices are also available onBhe Some of these are optional, and might not be
installed on the particular controller you are gsinFor a discussion regarding the software interfeor
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, theEL has several functions: watchdog
timer, battery backup, power-on-reset delay, posugply monitoring, and power-failure warning. These
will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jungred5 of théEL. The watchdog timer provides a means
of verifying proper software execution. In the tsapplication program, calls to the functioitwd() (a
routine that toggles the P12=HWD pin of the MAX6%Hhould be arranged such that the HWD pin is
accessed at least once every 1.6 seconds. Ibthemper is on and the HWD pin is not accessedimvith
this time-out period, the watchdog timer pulls WO pin low, which asserts /RESET. This automatic
assertion of /RESET may recover the applicatiorgfanm if something is wrong. After tHeL is reset, the
WDO remains low until a transition occurs at the Wilh of the MAX691. When controllers are shipped
from the factory the J5 jumper is off, which dissbthe watchdog timer.

The Am186ES has an internal watchdog timer. Thiisabled by default withe_init().

J5 (WatchDog)

.....

----i‘
i

)

Figure 3.2 Location of watchdog timer enable jumper

Power-failure Warning

The supervisor supports power-failure warning aadkbp battery protection. When power failure is
sensed by the PFI=J1.11, pin 9 of the MAX691 (loth@n 1.3 V), the PFO is low. The PFI pin 9 of 681
directly shorted to VCC by default. In order to W& externally, cut the trace and bring the P&hal out.
You may design an NMI service routine to take prbtections before the +5V drops and processor dies.
The following circuit shows how you might use trengr-failure detection logic within your applicatio

3-7

Chapter 3: Hardware E-Engine-L

—————————————————

2K

! |
9-14 V(8.35 V min) : VCC = +5V |
! |
: 1 c? l
47K ‘ —|— |
Ll PFI, pin 9 of MAX691
| (1.3V min) !
|

Using the supervisor chip for power failure detacti

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atie real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last ab®® years without external power being suppligthen
the external power is on, the battery-switch-oweruit will select the VCC to connect to the VRAM.

3.5.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesO@4), or 2K bytes (24C16) can be installed in U7.
The EL uses the P12=SCL (serial clock) and P11=SDA (sddta) to interface with the EEPROM. The
EEPROM can be used to store important data such asde address, calibration coefficients, and
configuration codes. It typically has 1,000,008serwrite cycles. The data retention is more #tapears.
EEPROM can be read and written by simply callirgfimctionsee_rd() andee_wr().

A range of lower addresses in the EEPROM is resefwe TERN use. Details regarding which addresses
are reserved, and for what purpose, can be foundAppendix C of this manual. Refer to
c:\tern\186\samples\ae\ae_eefor sample code concerning the EEPROM.

3.5.3 Realtime Clock (DS1337)

The DS1337 serial real-time clock is a low-powencklcalendar with two programmable time-of-day
alarms and a programmable square-wave output. Addaad data are transferred serially via a 2-wire,
bidirectional bus. The clock/calendar provides selsp minutes, hours, day, date, month, and year
information. The data at the end of the month iematically adjusted for months with fewer thandziys,
including corrections for leap year. The clock @tes in either 24-hour or 12-hour format with AM/PM
indicator.

The RTC is accessed via software drivetsl init() and rtcl rds(). Refer to sample code in the
\tern\186\samples\fndirectory forfn_rtc.c. The sample code is in tikéashcore-N directory, but applies
to the EL. The RTC is located at U15 and uses a 32KHz cry3ta¢é data sheet can be found in the
tern_docs\partsdirectory and is nameds1337.pdf

It is also possible to configure the real-time &loa raise an output line attached to an extemtaliupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervahis can be used in a time-driven applicataythe
VOFF signal can be used to turn on/off the controlEng the switching power supply, LM2575.

3-8

E-Engine-L Chapter 3: Hardware

3.5.4 Reed Relay

One Reed Relay can be installed on Hie at location RE1. The relays offer high speed gviiig
compared to electromechanical relays, a specificatif 200 V, maximum 1 Amp carry current, 0.5 Amp
switching, and 100 million times operation. The agel is driven by /RTSO (P20). See
tern\186\samples\el\el_relay.and\tern_docs\parts\relay9007.pdffor details.

3.5.5 High-Voltage, High-Current Drivers

ULN2003A has high voltage, high current Darlingtimansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substréléchannels feature open-collector outputs fokiig
350 mA at 50V, and integral protection diodes fovidg inductive loads. Peak inrush currents ofta 600
mA sinking are allowed. By default, U20 providegHivoltage driver outputs.

Figure 3.3 High Voltage Driver w/ HO header output pins

These outputs may be paralleled to achieve high-kepability, although each driver has a maximum
continuous collector current rating of 350 mA a¥50° he maximum power dissipation allowed is 2.20 W
per chip at 25 degrees @J). The common substrate G is routed to GND. Atent sinking in must return
to GND. A heavy gauge (20) wire must be used taneoha GND terminal to an external common ground
return. K connects to the protection diodes inWh&I2003A chips and should be tied to highest vatay
the external load system. K can be connected tmeggulated on board +12V via HO pinlBLN2003A is

a sinking driver. An example of typical application wiring is shovwalow.

o1

-

>)¥_ Power Supply
>°{

—>0§E— J5.135.2

O Q
K +12V
IGND/SUB

ULN2003 TinyDrive

Figure 3.4 Drive inductive load with high voltage/current drivers.

3-9

Chapter 3: Hardware E-Engine-L

3.5.6 16-bit parallel high speed ADC (AD7655)

The unique 16-bit parallel ADC (AD7655, 0-5V) supisaultra high-speed (1 MHz conversion rate) analog
signal acquisition. The AD7655 contains two lowiseo high bandwidth track-and-hold amplifiers that
allow simultaneous sampling on two channels. Each track-and hold diephas a multiplexer in front to
provide a total of 4 channels analog inputs. Taealel ADC achieves very high throughput by reingjr
only two CPU 1/O operations (one start, one readyamplete a 16-bit ADC reading. With a precision
external 2.5V reference, the ADC accepts 0-5V analputs at 16-bit resolution of 0-65,535.

See sample prograktern\186\samples\EL\EL_ad.cfor details on reading the ADC. The sample program
is also included in the pre-built sample proj&etrn\186\samples\EL\EL.ide

Refer to the data sheet for additional specificetjdtern_docs\parts\ad7655.pdf.

3.5.7 24-bit, 16-channel ADC(LTC2448)

A 24-bit LTC2448 sigma-delta ADC can be installétie LTC2448 chip offers 8 ch. differential or 16 ch
single-ended input channels. Variable speed/résalgettings can be configured. A peak single-okan
output rate of 5 KHz can be achieved.

The LTC2448 switches the analog input to a 2 phacipr at 1.8MHz with an equivalent input resis&i¢
110K ohm. The ADC works well directly with straimgges, current shunts, RTDs, resistive sensors4and
20mA current loop sensors. The ADC can also woel directly with thermocouples in the differential
mode. By default, a precision reference with armdétemperature sensor(LT1019, 2.5V) is installed,
providing local temperature measurement for theoupte applications.

Inputs are routed directly to header H4 pins 3-38¢(Figure 3.5). It should be noted that H4 pin 17
corresponds to input B15, which is tied to the terafure pin on LT019 chip. This input cannot bedus
regularly if the temperature pin is still connecgtbdcause it will already provide a digital convensof the
temperature input).

Pin Header H4
16-channel input
to 24-bit ADC

H4 pin 17

ADC temperature
input (no other inputs
allowed'

H4 pin 1

d

Figure 3.5 16-channel pin layout of U19 24-bit ADC (not populated here).

The software source sample code on TERN €Rern\186\samples\el\el_ad24,allows user to modify
the input reading resolution. For digital inputslyoone byte reading is needed. Also see Chapfer 4
software channel / hardware pin details.

3.5.8 12-hit, 2-channd DAC(7612)

The DAC7612 is a dual 12-bit digital-to-analog certer (DAC) in an SO-8 package. It is complete \aith
rail-to-rail voltage output amplifier, an interne¢éference and a 3-wire serial interface. The DAQr61
outputs a full-scale of 4.096V, making 1 LSB ectoal mV.

3-10

E-Engine-L Chapter 3: Hardware

The buffered outputs can source or sink 7 mA. Tiputs swing to within a few millivolts of supplit
when unloaded. They have an equivalent outputteggie of 40X2 when driving a load to the rails. The
buffer amplifiers can drive 500 pf without goindgaroscillation.

The DAC is installed in U18 on tHeL, and the outputs are routed to H4 (pin 1=VB amdZsVA). The
DAC uses: RS (U10.5) as CLK, LDO (U5.2) as DI, LD10.19) as LD, and /DA (U10.16) as CS. Please
refer to the DAC7612 technical data sheets fromagdrtruments for more information (data sheetlman
found on the TERN CD-ROM in thet er n_docs\ part s directory, filenamedac7612.pdj. See also
the sample programl_da.cin the\ t er n\ 186\ sanpl es\ el \ el . i de project.

3.5.9 16-hit, 8-channe DAC(LTC2600)

The LTC2600 is an eight channel 16-bit digital-tealng converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output ammificapable of driving up to 15mA. It uses a 3-v&iel
compatable serial interface and has an output rah@eREF volts, making 1 LSB equal to REF/65535 V.
The reference voltage input is by default shorte®€C. The REF voltage must be greater than GND and
less than VCC. The DAC outputs are routed to thetdtheader, pins 13-20.

The DAC is installed on thEL at location U21 and uses P26 as the chip selée.synchronous serial
interface is used to send data to the device. Reftre sample codé&tern\186\samples\el\el_da.for an
example on driving the DAC.

The sample is also included in the pre-built sarpptgect\tern\186\samples\el\el.ide.
Refer to the DAC data sheet for additional speaifans;\tern_docs\parts\ltc2600.pdf.

3.5.10 CompactFlash I nterface

By utilizing the compact flash interface on tB&, users can easily add widely used 50-pin CF standa
mass data storage cards to their embedded appficath RS232, TTL 12C, or parallel interface. TERN

software supports Linear Block Address mode, 16T flash file system, RS-232, TTL 12C or parallel

communication. Users can write files to the Complasth card or read files from the CompactFlash.card
Users can also transfer files to a PC via the @Heeport.

CF cards can also be used as a means to storesiraadedata to be displayed onto the LCD. This alow
users to have access to unlimited images to be insad application in conjunction with the LCD. As
dicussed above, the AM186ES suuports DMA to allmages/data to be transferred directly to the image
buffer for increased speed.

Sample code and function prototypes are availablessist in creating applications which use the fil
system to access the CF. Refer to the taigen\186\samples\el\fs_cmdsl.axelhis sample uses the
source codétern\186\samples\flashcore\fs_cmdsl.Also, for a complete listing of file system fuizst
prototypes and data types, refer to the headey fifdeio.h” and “filegeo.h” found thétern\186\include
directory.

3-11

Chapter 3: Hardware E-Engine-L

3.5.11 100 MHz BaseT Ethernet

An WizNet™ Fast Ethernet Module can be installeghtovide 100M Base-T network connectivity. This
Ethernet module has a hardware LSI TCP/IP stackmjiements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAiChas 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memodng host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releagemit connectivity and protocol processing frora th
host processor. It supports 4 independent stackiemtions simultaneously at a 4Mbps protocol
processing speed. An RJ45 8-pin connector is ondofoa connecting to 10/100 Base-T Ethernet network
A software library is available for Ethernet contity.

See targefitern\186\samples\el\el_http.axefor a demo of this module (utilizing the Compaetsti
interface).

e e s

egagsaaaaaaaaﬁ”““ Wi
eegaaee@oam@@@ Vi
Anen

o T

000000006 00em ! ' ol
eeeeeeeeeeecce IIN0I0A REVLI

S

Figure 3.6 WizNet Ethernet Module.

3-12

E-Engine-L Chapter 3: Hardware

3.5.12 Power Supplies

TheEL can be powered by 3 ways:
1) Regulated external 5V DC power via J2.39=VCC #d0=GND, or J1.1=VCC and J1.2=GND.

2) Unregulated 9V to 12V DC power via two pin hea€lel) while a 5V linear regulator(LM7805, UOQ) is
installed. The LM7805 is rated for 1A current, ecah take as high as 35V. However, due to theiinea

regulation, all the input voltage has to drop to, 5Vthe voltage drop with the current (200 mA) is
generating a lot of heat.

3) Unregulated 9V to 12V DC power via screw terrhifi2), while the linear regulator is installed.

TheEL requires good regulated 3.3V DC power for the Eteeand R1120 CPU. Also requires regulated
5V DC power for the rest circuit. There is a 3.3gulator (U14) on board.

(J2) 5V ONLY

'_:..--nnn-ll-

CompactFlash®

(T2)DC 812V

Linear
(T1) DC ¢12V Regulator

Figure 3.7 Power supply inputs shown.

3-13

Chapter 3: Hardware E-Engine-L

3.5.13 192x128 Pixel LCD and Push-buttons

A low-power graphic LCD with 192x128 pixels can imstalled. The LCD has 71x54 mm viewing area
with ultra bright white backlighting. Six mechanliqaush-buttons are available for installation adj#cto
the LCD. Easy user interface software is, of coursade available.

See sampl&tern\186\samples\el\el_Icd.for software details regarding the LCD and pushedng.

LCD w/
backlight

Push-buttons

—

Figure 3.9 Unlit LCD shown.

3-14

E-Engine-L Chapter 3: Hardware

3.6 Headers and Connectors

3.6.1 Expansion Headers J1 and J2

There are two 20x2 0.1 spacing headers for expanslost signals are directly routed to the Am186ES
processor. These signals are 5V only, and any fergrme voltages will most likely damage the board.

J2 Signal J1 Signal

GND 40 39 VvCC VCC 1 2 GND
P4 38 37 P14 3 4 CLK
/CTSO 36 35 P6 5 6 GND
TXDO 34 33 /INT4 7 8 DO
RXDO 32 31 /IRTS1 VOFF 9 10 D1
P5 30 29 P1 11 12 D2
TXD1 28 27 /RTSO D15 13 14 D3
RXD1 26 25 IRST 15 16 D4
P2 24 23 P15 RST 17 18 D5
/CTS1 22 21 /INT3 P16 19 20 D6
PO 20 19 INT2 D14 21 22 D7
P25 18 17 P24 D13 23 24 GND

16 15 P3 25 26 A7

14 13 D12 27 28 A6
P10 12 11 P13 /WR 29 30 A5
Al19 10 9 /RD 31 32 A4
/INTO 8 7 INMI D11 33 34 A3
/INT1 6 5 N2 D10 35 36 A2

P26 4 3 P29 D9 37 38 Al

GND 2 1 S2 D8 39 40 A0

3.6.2 DAC/ADC/HV HeadersHO, H3 and H4

HO Signals H4 Signals
HV1 1 2 HV3 VB 1 2 VA
HV2 3 4 HV4 BO1 3 4 B0OO
HV5 5 6 HV6 B0O3 5 6 B02
HV7 7 8 K B0O5 7 8 B04
GND 9 10 BO7 9 10 BO6

11 12 B09 11 12 B08

V7 13 14 V8 B11 13 14 B10
V5 15 16 V6 B13 15 16 B12
V3 17 18 \Z3 TMP 17 18 B14
V1 19 20 V2 GND 19 20 GND

H3 Signals
AB1 1 2 AB2
AAl 3 4 AA2
GND 5 6 REF

3.6.3 Jumpers
Jumper Setting Function
J2 pin 38 = J2 pin 40 Step 2
J5 pin1=J5pin 2 Watchdog

3-15

E-Engine-L Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix C.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not feled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissis an I/O address space and a memory address
space. 1/O address space ranges foaB000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigngdnsigned char data
Return value: none

These standard C functions are used to place sgxbdiita at any memory space location. Jdgenent
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsjp place for this particular range of memoily w
be used to activate appropriate chip-select lingsthe corresponding hardware component resporfsiblg
handling this data.

o

4-1

Chapter 4: Software E-Engine-L

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédt@ss in memory space. Once againséyment
address is shifted left by four bits and addedhémffset to find the 20-bit address. This address is then|
output over the address bus, and the hardware anpmapped to that address should return either ap
8-bit or 16-bit value over the data bus. If thisreao component mapped to that address, this fumetill
return random garbage values every time you tpetk into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place ttata into the appropriataddressin I/O space. It is used most often
when working with processor registers that are redgpto 1/0 space and must be accessed using eithq
one of these functions. This is also the functisad in most cases when dealing with user-confijure
peripheral components.

=

When dealing with processor registers, be sureéahe correct function. Usetport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@cspace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigsase refer to the Hardware chapter of thisrtieeh
manual.

41 AE.LIB

AE.LIB is a C library for basic E-Engine operations$ includes the following modules: AE.OBJ,
SERO0.0OBJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You medohk AE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEE.H on-board EEPROM

4-2

E-Engine-L Chapter 4: Software

4.2 Functionsin AE.OBJ

4.2.1 E-Engine Initialization

ae init
This function should be called at the beginningwéry program running on E-Engine core controlldts.

provides default initialization and configuratiohthe various 1/0O pins, interrupt vectors, setsexpanded
DOS 1I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

There are certain default pin modes and interreiings you might wish to change. With that in chithe
basic effects oée init are described below. For details regarding regisse, you will want to refer to the
AMD Am186ES Microcontroller User’'s manual.

Initialize the upper chip select to support theadefROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xffttf (hap MemCard I/O window)

512K ROM Block size operation.

Three wait state operation (allowing it to suppgrtto 120 ns ROMs). With 70 ns ROMSs, this can
actually be set to zero wait state if you requira@éased performance (at a risk of stability in
noisy environments). For details, see the UMCSp@gpMemory Chip Select Register)

reference in the processor User’'s manual.
out port (Oxffal0, 0x80bf); // UMCS, 512K ROM 0x80000-Oxfffff

Initialize LCS (Cower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum oK5RAM.
Three wait state operation. Reducing this valueicgrove performance.

Disables PSRAM, and disables need for externalyread
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so thid CS0 andPCS0-PCS6 (except for PCS4) are configured so:

M CS0 is mapped also to a 256K window at 0x80000. dduwith MemCard, this
chip select line is used for the 1/0 window.
Sets ugPCS5-6 lines as chip-select lines, with three wait staieration.
out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH

Initialize PACS so thaPCS0-PCS3 are configured so that:

Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.
The chip select lines starts at I/O address 0x08fif,each successive chip select line addressed

0x100 higher in 1/O space.
out port (Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

Configure the two PIO ports for default operatidkll pins are set up as default input, except fb2 P
(used for driving the LED), and peripheral funatjgins for SERO and SER1, as well as chip
selects for the PPI.

out port (Oxff 78, 0xe73c) ; /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/1 P16=PCSO, P17=PCS1=PPI
out port (0xf f 76, 0x0000) ; /1 PIOWVL
out port (Oxff 72, Oxec7b); /1 PDI RO, P12, Al19, A18, A17, P2=PCS6=RTC
/1

out port (0xff 70, 0x1000) ; Pl OMD, P12=LED

Configure the PPI 82C55 to all inputs, except fioes 120-23 which are used as output for the ADC.
You can reset these to inputs if not being usedhat function.

out port b(0x0103, 0x9a) ; /1 all pins are input, |20-23 output
out port b(0x0100, 0) ;
out port b(0x0101, 0) ;

4-3

Chapter 4: Software E-Engine-L

out port b(0x0102, 0x01); /1 120=ADCS hi gh

The chip select lines are by default set to 15 sfaites. This makes it possible to interface wigimy
slower external peripheral components. If you negfaster I/O access, you can modify this numlmsvrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for tipsirpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state dependmthe argumemait.

wai t=0, wait states 0, I/O enable for 100 ns
wait=1, wait states 1, 1/ 0O enable for 100+25 ns
wait=2, wait states 2, 1/ O enable for 100+50 ns
wai t=3, wait states 3, I/ O enable for 100+75 ns
wai t=4, wait states 5, 1/ 0O enable for 100+125 ns
wai t=5, wait states 7, 1/0O enable for 100+175 ns
wai t=6, wait states 9, 1/0O enable for 100+225 ns
wait=7, wait states 1 I/ O enable for 100+375 ns

4.2.2 External Interrupt I nitialization

There are up to eight external interrupt sourcetherE-Engine, consisting of seven maskable inpepins
(INT6-INTO) and one non-maskable interruptM 1). There are also an additional eight internadrintpt
sources not connected to the external pins, camgisdf three timers, two DMA channels, both
asynchronous serial ports, and k!l from the watchdog timer. For a detailed discussivolving the
ICUs, the user should refer to Chapter 7 of the AMBL86ES Microcontroller User’'s Manual.

TERN provides functions to enable/disable all & #ight external interrupts. The user can call @fripe
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second imetiin pointer to an appropriate interrupt servioatine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dked must
be cleared. This can be done using Mmspecific EOl command. At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityrig will be handled
first, and a higher priority interrupt will intenpti any current interrupt handlers. So, if the uderoses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine jusstds to
issue the nonspecific EOl command to clear theectitnighest priority IR.

To send the nonspecific EOl command, you need ite WreEOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwaapter). The first argumentndicates whether this
particular interrupt should be enabled or disabl€e second argument is a function pointer whighaet
as the interrupt service routine. The overheatherinterrupt service routine, when executed, @a0

us.

By default, the interrupts are all disabled aftgtialization. To disable them again, you can edgbe call
but pass in 0 as the first argument.

4-4

E-Engine-L Chapter 4: Software

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultw#R
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

Two ports of 16 1/O pins each are available onERENngine. Hardware details regarding these PIGsline
can be found in the Hardware chapter.

Several functions are provided for access to tl@ IPles. At the beginning of any application whgo

choose to use the PIO pins as input/output, younsid to initialize these pins in one of the fauailable
modes. Before selecting pins for this purpose,axake that the peripheral mode operation of thegi
not needed for a different use within the sameieatibn.

You should also confirm the PIO usage that is desdrabove withinae init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this mézdd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am18&Eser’'s Manual.

Please see the sample prograenpio.c in t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qgun
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingebding on the pin
being used, it might require from 5-18. The maximum efficiency you can get from the PBIs occur if
you instead modify the PIO registers directly vétioutport instruction Performance in this case will be
around 1-2us to toggle any pin.

The data register ¥ff74 for PIO port 0, an@xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.

» 0, High-impedance Input operation
e 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P10 status

4-5

Chapter 4: Software E-Engine-L

Each bit of the returned 16-bit value indicatesdtigent 1/0 value for the PI1O pins in the selegted.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) tcstilected PIO.

4.2.4 Timer Units

The three timers present on the E-Engine can be fosea variety of applications. All three timetm at

1/4 of the processor clock rate (10MHz based on HMBMystem clock, or one timer clock per 100ns),
which determines the maximum resolution that carob&ined. Be aware that if you enter power save
mode, that means the timers will operate at a redigpeed as well.

These timers are controlled and configured throaghode register which is specified using the saftwa
interfaces. The mode register is described inildatahapter 8 of the AMD Am186ES User’s Manual.

Pulse width demodulation is done by setting the PhitDn theSY SCON register. Before doing this, you
will want to specify your interrupt service routdjewvhich are used whenever the incoming digitahalig
switches from high to low, and low to high. It mportant to note the the interrupt latency gendrbtethe
ISRs that handle a signal transition will define thme resolution the user will be able to achieve.

The timers can be used to time execution of yoaer defined code by reading the timer values bedoc:
after execution of any piece of code. For a sarfidedemonstrating this application, see the saniid
timer.c in the directorytern\186\samples\ae.

Two of the timers,TimerO and Timerl can be used to do pulse-width modulation with dakde duty
cycle. These timers contain two max counters, ahbe output is high until the counter counts up to
maxcount A before switching and counting up to naaxd B.

It is also possible to use the outpufléfmer2 to pre-scale one of the other timers, since 1@dsiblution at
the maximum clock rate specified gives you only 280 Only by usinglimer2 can you slow this down
even further. The sample filésner02.c andtimer12.c, located irtern\186\samples\ae, demonstrate this.

The specific behavior that you might want to impésrnis described in detail in chapter 8 of the AMD
Am186ES User's Manual.

void t0_init

void tl _init

Arguments: int tm, int ta, int th, void interrupt far(*t_ig()
Return values: none

Both of these timers have two maximum counters (MMOUNTA/B) available. These can all be specified
usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

The interrupt service routineisr specified here is called whenever the full cosntgached, with other
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it onlydraes max counter available.

E-Engine-L Chapter 4: Software

4.2.5 Analog-to-Digital Conversion

One ADC chip can be installed on the EE.

The AD7655 provides 4 high-speed analog inputs.iftezface to the AD7655 uses the signals, P12, A2,
/ICV, and /AD. P12 and A2 are used to determine wbicthe four input channels is being selected, I€V
used to start the conversion, and /AD is usedlecsthe device for a conversion read over the @Rta

bus. The /AD chip select signal is generated froenRAL located at U4The following table summarizes
the channel selection:

Channel Pin location P12 A2 Read command
AAL H3 pin 3 Low High inport(0x114)
AB1 H3 pin 1 Low Low inport(0x110)
AA2 H3 pin 4 High High inport(0x114)
AB2 H3 pin 2 High Low inport(0x110)

Refer to the sample codee_ad.c, in the\tern\186\samples\ee directory. It shows necessary steps to read
channels on the AD7655. The sample code is alspocated into the sample project, “ee.ide”.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timdb) jumper is set, the functidmitwd() must be called every 1.6
seconds of program execution. If this is not eietibecause of a run-time error, such as an iefioitp or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to thé&re ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama roll-over in digits in the year 2000. Onéusion
might be to store an offset value in non-volattlerage such as the EEPROM.

There is a common data structure used to accesssanabth interfaces.
t ypedef struct{

unsi gned char secl; One second digit.

unsi gned char secl0; Ten second digit.

4-7

Chapter 4: Software E-Engine-L

unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten minute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl0; Ten day digit.
unsi gned char nonl; One nmonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.
}TIM

intrtcl rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrc, as
the clock failing to respond.

Void rtcl_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tevdekday, year 10, year 1, month10, month1, day10, dayl, hour10,
hour1, minutelO, minutel, second10, secondl, O }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t86 byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8 0, 6, 0, 5, 1, 3, 5, 5 3, 0};

Delay

In many applications it becomes useful to pauserkegxecuting any further code. There are functions
provided to make this process easy. For applieatibat require precision timing, you should useliware
timers provided on-board for this purpose.

void delayO
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Tawual time that it waits depends on processordspse
well as interrupt latency. The code is functiopadlentical to:

while(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms

4-8

E-Engine-L Chapter 4: Software

Arguments: unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crcl6
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaeay ofcount size pointed to byptr.

void ae reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwareagroation, this might either start executing codanf
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgedyin the header filser0.h andser1.h in the directory
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funatigmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P softwares kdr communication with the PC. As a result, you
will not be able to debug code directly written $arial port 0.

Two asynchronous serial ports are integrated inAM86ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can wpata maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggtion download/debugging in Step One and Step
Two. We will use SERL1 as the example in the follaywiliscussion; any of the interface functions wisdoh
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial port dse,
please realize that some pins might be shared atliter peripheral functions. This means that irager
limited cases, it might not be possible to use réaoe serial port with other on-board controllenétions.
For details, you should see both chapter 10 of Ah&l86ES Microprocessor User's Manual and the
schematic of the E-Engine provided on the CD inténa_docs\schs directory.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Ioflhe processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systerk.cloc

Function Argument | Baud Rate

110
150
300
600
1200
2400
4800
9600

coO~NO Ok~ WNBR

4-9

Chapter 4: Software E-Engine-L

Function Argument | Baud Rate

9 19,200 (default)
10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1_i ni t (), SER1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autboadly store the receiving
serial data stream into the memory by DMA1 operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status withr hit 1() and
take out the data from the buffer wilet ser 1() , if any. The input buffer is used as a circulagrbuffer,

as shown in Figure 4.1. However, the transmit djm@ras interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy J
[T T]

1 |

Figure 4.1 Circular ring input buffer

The input buffer ipuf), buffer size isiz), and baud ratebud) are specified by the user wtl_i ni t ()

with a default mode of 8-bit, 1 stop bit, no parifffter s1_ini t() you can set up a hew mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRedbister
(SPOCT/SP1CT) if necessary, as described in chaptef the Am186ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andipessffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyde buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4bdBer
will be able to store data for approximately foacends without overwrite.

However, it is always important to take out datayetom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for réegiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhit1() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates awata is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after eveget ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oaljphardware reset &l_cl ose() can stop this
receiving operation.

4-10

E-Engine-L Chapter 4: Software

For transmission, you can ugait ser1() to send out a byte, or ugmut sersi1() to transmit a
character string. You can put data into the trahsimg buffer,s1_out buf, at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out buffex] transmit. After you cajput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘.’ charadte‘?’. The translated HEX file is then transimit out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be initad.

There is a data structure containing importanas@ort state information that is passed as argtitoetie
TERN library interface functions. The@OM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #erial communication ports more practical. Siiice
allows you to monitor the current value of the bufind associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integgac Any interface that makes reference to eitheor
ser0 can be replaced witkl or ser1, for example. Each serial port should use its @@M structure, as
defined inae.h.

typedef struct ({
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */

unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* I nput buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crcnt; /* 1 nput <CR> count */

unsi gned char in_nt; /* Input buffer FLAG */
unsi gned char in_full; /[* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /[* Qutput buffer MI */

unsi gned char tnso; /'l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsigned int in_segm /* input buffer segment */
unsi gned int in_offs; /* input buffer offset */
unsi gned i nt out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

4-11

Chapter 4: Software E-Engine-L

unsi gned char byte_del ay; /* V25 macro service byte delay */
} com

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz,igned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value show
in Table 4.1. Argumentduf andisiz specify the input-data buffer, aptuf andosiz specify the location
and size of the transmit ring buffer.

-

The serial ports are initialized for 8-bit, 1 st and no parity communication.

There are a couple different functions used fangmaission of data. You can place data within thigat
buffer manually, incrementing the head and taifdrupointers appropriately. If you do not call aofethe
following functions, however, the driver interrufatr the appropriate serial-port will be disabledieh
means that no values will be transmitted. Thisved| you to control when you wish the transmissibdaia
within the outbound buffer to begin. Once the fintpts are enabled, it is dangerous to manipulage t
values of the outbound buffer, as well as the \abfehe buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate sepiart. The return valug
returns one in case of success, and zero in aey o#ise.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated charactengtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

1%

DMA transfer automatically places incoming dataitite inbound bufferser hitn() should be called befor
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufée this serial port.
getsern
Arguments: COM *c

Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again, this
function assumes thagr hitn has been called, and that there is a charactegmrsthe buffer.

4-12

E-Engine-L Chapter 4: Software

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffeir with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callgabser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null characterstia byte
array, and the returnadlue is the only definite indicator of the number otdg/read. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are
working with byte arrays, the single-byte versiofishese functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission ativing of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appatgpfor
whatever form of flow control you wish to implemerBefore using these functions, you should on@érag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to the AM186ES User’s Manual.

char sn_cts(void)
Retrieves value o€ TS pin.

void sn_rts(char b)
Sets the value ®RTStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Wefau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délnenhardware as well as disabling the interrupt.

clean_sern
Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #&itl header buffer pointers.

The asynchronous serial 1/0O ports available orAmA86ES Processor have many other features thait mig
be useful for your application. If you are truhtérested in having more control, please read @ndyft of
the AM186ES manual for a detailed discussion oéofbatures available to you.

4-13

Chapter 4: Software E-Engine-L

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM4CO04) provided on-board allows easy storage of nontilelgprogram
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite skmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use sptifi for this purpose.

Addresse€x00 to Ox1f on the EEPROM is reserved for system use, inctudomfiguration information
about the controller itself, jump address for Skeyp, and other data that is of a more permaneniraat

The rest of the EEPROM memory spa@e0 to Ox1ff, is available for your application use.

ee wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedah to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:; int addr
Return value: int data

This function returns one byte of data from thec#fjel address.

4.5 16 channel 24-bit ADC

Delta-Sigma ADC LTC2448

The LTC2448 ADC (U22) provides 16 channels of 0BY.2analog single-ended (24 differential) inputs.
The following functions will drive the 24-bit ADChe order of functions given here should be folldvre
actual implementation.

void ad24_setup(unsigned char chip, unsigned int control_byte);
void ad24 rd(unsigned char* raw);
The control bytecontrol_byte, drives the LTC2448 in 16 channel single-ended nwitte value 0xb000.
In code, the control byte is calculated this way:
ch_sel=0; /Iselect channel
control_byte=control_byte+speed[10]; //add speed desired to 0xb000
control_byte=control_byte+ (ch_sel<<8); //add channel selection w/ 8 bit left shift

NOTE: “ch_sel” and the desired channel signal do not match ngtebd use the following scheme to select
the desired signal on the board:

4-14

E-Engine-L Chapter 4: Software

ch_sdl On U1l Header
chip H4 pin
0 BOO 4
1 BO2 6
2 B0O4 8
3 BO6 10
4 BO8 12
5 B10 14
6 B12 16
7 B14 18
8 BO1 3
9 BO3 5
10 BO5 7
11 BO7 9
12 B09 11
13 B11 13
14 B13 15
15 B15 (TMP) 17

The LTC2448 also supports 8 channel differentiatiendr his can be achieved by changing the contrig by
passed to the ‘ad24_setup’ routine to 0xa0000 (kped channel selection is added on the same wialy as
single-ended mode). See the LTC2448 data sheetddétails on how to define the control byte,
‘L TC2448.pdf’ in the tern_docs\parts directory.

For a sample file demonstrating the use of the Apl€ase seel_ad24.cint er n\ 186\ sanpl es\ el .

This sample is also included in tHeide test project in théer n\186\samples\el directory.

4-15

EL Appendix A EL Layout

EL Layout

The EL measures 4.217 x 3.0 inches. All dimensions are in inches. For mounting holes,
arrows point to the center of the mounting hole. For pin headers, arrows point to pin 1 of the
header, and to the center the pin. The 6 RED dots are locations of 6 Keys on the opposite
side. RED square isthe LCD viewing area. Dimensions are in inches.

4.15, 0.503 15, 0.
4.217,3.0 415, 0.308

l 3.783, 2.708 Y f 41,01
o _

3 1 - w
5 Y b e
N~ t;) » ~
8 > =
o §
w
3.63, 2.65 &
o
=
- (6}
« | 2.925,0.129
o
N
§ 2.575, 0.129
[qV}
o 1°960G0L = 3
o[mgiﬁgﬁﬂ
| E iy 2.225,0.129
Y 1.875,0.129
w |
S J4 Pin 1: 1.75, 0.292
N
g 1,525, 0.129
‘_| =
1.175, 0.129
S
(0))
N 0.58, 0.52
S
D e 2
[42] - N
[o'e) . 1]
Q ‘ o
(\I %
o w
S g IR E L e
o
S & T AT y\
N
5 0.05, 1775 0.592, 0.808 0.0

0.1,01

Appendix B: EL Bezel Dimension. 10/25/2006

All dimensions are inches. Plate materials

.

4 Standoffs 0.4” height
On the back side

2.60

A

6 Key Holes, 1/8" Dia.
0.47

A

0.47

2.8

NAAAANAND
AV AC AT Aw AW

03
Fan Y

4.0

A
A 4

0.35

™ [*0.02¢

0.6

0.5 1.17¢

A

A A
y

N

(@]

A 4

5.C

A

Bezel Aluminum Plate thickness 0.063 inch.
Van Dyke Fabrication,
vandykefab@vandykefab.com
accting@vandykefab.com

4181 Citrus Ave., Rocklin, CA 95677

916 630 7075/7005

4 Standoffs (Parts number: BSOS-440-14)
Total PIN length = 0.437”

Bezel Plate thickness=0.063"

Standoff height=0.437-0.030=0.407"

” TERN1724 Picasso Ave., Ste. A, Davis, CA 95616, USA

INC. Tel: 530-758-0180 Fax: 530-758-0181
sales@tern.com http://www.tern.com

\ 4

EL Appendix C: Serial EEPROM Map

Appendix C: Serial EEPROM Map

Part of the on-board serial EEPROM locations aesl Uy system software. Application programs mustuse
these locations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO_receive, used by ser0.c

0x05 SERO_transmit, used by ser0.c

0x06 SERL1 _receive, used by serl.c

0x07 SER1_transmit, used by serl.c

0x10 CS high byte, used by ACTR™

0x11 CS low byte, used by ACTR™

0x12 IP high byte, used by ACTR™

0x13 IP low byte, used by ACTR™

0x18 MM page register O

0x19 MM page register 1

Oxla MM page register 2

Ox1b MM page register 3

EL Appendix D: Softwar e Glossary

Appendix D: Software Glossary

The following is a glossary of library functions fine A-Engine86.

void ae_init(void) ae.h

Initializes the AM188ES processor. The followisghe source code fae_init()
outport(Oxffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, 0 wait states

outport(Oxffa8,0xa0bf); // 256K block, 64K MCS0, PCS1/0O
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffad,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins areinput, 20-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

enabl e();

Reference: led.c

void ae_reset(void) ae.h

Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int i) ae.h

Toggles P12 used for led.

Var: i- Led on or off

Reference: led.c

Appendix D: Software Glossary EL

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple for loop up to t.

Refer ence:

void pwr_save en(int i) ae.h

Enables power save mode which reduces clock spEiatkrs and serial ports will be effected.
Disabled by external interrupt.

Var: i—1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peeigh use.

Var: i — 1 enables clock output, O disables (saves current when
disabled).
Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 - 31
Mode — above mode select

Reference: ae _pio.c

EL Appendix D: Softwar e Glossary

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be incariput mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0-31
dat — 1/0

Reference: ae pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16 bit PIO port.

Var: port—0: PIOO0- 15
1: PIO16-31

Reference: ae _pio.c

void outport(int portid, int value) dos.h

Writes 16-bitvalue to I/O addresgortid.

Var: portid — /O address
value — 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bitvalue to 1/0 addresportid.

Var: portid — I/O address
value — 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h
Reads from an I/O addregsrtid. Returns 16-bit value.
Var: portid — 1/0 address

Reference: ae_ppi.c

Appendix D: Software Glossary EL

int inportb(int portid) dos.h

Reads from an I/O addrepsrtid. Returns 8-bit value.

Var: portid — /O address

Reference: ae_ppi.c

int ee_ wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae _eec

int ae_adl2(unsigned char c) ae.h

Reads from the 11-channel 12-bit ADC. Returnsit2b data of the previous channel.
In order to operate ADC, 120,121,122 must be outgud P11 must be input.
P11 is shared by RTC, EE. It must left high at pean/reset.

Unipolar:
Vref- = 0x000
Vref+ = Oxfff

Use 1 wait state for Memory and 1/0O without RDY380 us execution time
Use 0 wait state for Memory and 1/0O with VEPO1® %0 us execution time

Var: ¢ — ADC channel.

c={0...a},inputch=0-10

c=b, input ch = (vref+ - vref-) /2
c=c, input ch = vref-

c=d, input ch = vref+

c=e, software power down

Reference: ae_adl12.c

EL Appendix D: Softwar e Glossary

void io_wait(char wait) ae.h

Setup /O wait states for I/O instructions.

Var: wait — wait duration {0...7}
wait=0, wait states = 0, /O enable for 100 ns
wait=1, wait states = 1, |/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, /O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtcl_init(unsigned char * time) ae.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = monl10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = sec10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtcl_rd(TIM *r) ae.h

Reads from the real time clock.

Var: *r — Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, min10, hounlr1@p
unsigned char dayl, day10, monl, monl0, yearIl@ea
unsigned char wk;
}TIM;

Reference: rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h

Appendix D: Software Glossary

EL

void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual
ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer02.c, timer 2.c, timerO.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void intO_init(unsigned char i, void interrupt far (*int0_isr)());
void intl_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMil¢gn-Maskable Interrupt).
Var: i—1: enable, O: disable.

int #_isr — pointer to interrupt service.
Reference: intx.c

void S0_init(unsigned char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void sl _init(unsigned char b, unsigned char* ibuf, intisiz, serl.h

unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b - baud rate. Tabl e bel ow for 40MEz and 20MHz C ocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0siz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) | baud (20MHz)
1 |110 55

2]150 110

3 [300 150

4 600 300

5 [1200 600

6 [2400 1200

7 4800 2400

8 [9600 4800

9 [19200 9600

EL Appendix D: Software Glossary

10 [38400 19200
11 |57600 38400
12 |115200 §7600
13 |23400 115200
14 |460800 23400
15 921600 460800
Reference: sO_echo.c, s1_echo.c, s1_0.c
void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h

unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1
m2 = SCC691 MR2
b — baud rate. T abl e bel ow for 8MHz d ock.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM
structure.
ml bit Definition
7 (RXRTS) receiver request-to-send control, 0=no, 1 =yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Bloc k
4-3 Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
2 (Parity Type), 0O=Even, 1=0dd
1-0 # bits) 00=5, 01=6, 10=7, 11=8
n2 bit Definition
7-6 Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
5 (TXRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 Stop bit), 0111=1, 1111=2
b baud (8MHz)
1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 (31250
11 [62500
12 [125000
13 [250000

Reference: sO_echo.c, s1_echo.c, s1_0.c

int putserO(unsigned char ch, COM *¢); ser0.h
int putser 1(unsigned char ch, COM *c¢); serl.h
int putser_scc(unsigned char ch, COM *c); scc.h

Appendix D: Software Glossary EL

Output 1 character to serial port. Character élisent to serial output with interrupt isr.

Var: ch — character to output
¢ — pointer to serial port structure

Reference: sO_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c); ser0.h
int putsersl(unsigned char *str, COM *c); serl.h
int putsers_scc(unsigned char ch, COM *c¢); scc.h

Output a character string to serial port. Charaetitbe sent to serial output with interrupt isr.

Var: str — pointer to output character string
¢ — pointer to serial port structure

Reference: serl sin.c

int serhitO(COM *¢); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *c); scc.h

Checks input buffer for new input characters. Retd if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

unsigned char getserO(COM *¢); ser0.h
unsigned char getser1(COM *c); serl.h
unsigned char getser_scc(COM *c); scc.h

Retrieve 1 character from the input buffer. Asssittetserhit routine was evaluated.

Var: ¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers scc(COM *c, int len, unsigned char *str); scc.h

Retrieves a fixed length character string fromitmpait buffer. If the buffer contains less charaster
than the length requestedt; will contain only the remaining characters frore thuffer. Appends
a ‘\0’ character to the end dfr. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure
len — desired string length
str — pointer to output character string

Reference: ser1.h, ser0.h for source code.

Lopr XTAL2 V3=5V DEFAULT, 40MHZ us u10 Ul2 244V voe I1
x2 |:| X1 JO 00 3" | 2 L0 Do [o] 2 /LoD JROKLL) o o] 20 veo OND 40 o o 39 VeCP vcC 175 o 2 G
1o 7] DL 4 5 DL DL 4 5 RS BSY 29 5 7 RDK P 38 Q Q37 pia 3 7 CLK
16MZ 2 7] 2 Lrs Tt 712 L e7w Br_3| 1AL 26PT3 | CTS0 O O35 P6 2 ¢ &D
=8B BroTtmms B B TROL K4 2Y4 Y1 9 +7 X0 34 2 S 33 T1NT4 728
13|24 Ao 13| LT R 51182 2A4 e Br 32 3 3l yrrs1 voEo g S0 D1
v 614 52 g (15 Lop 614 0 o [157AD1 K261 3,3 333 [15 Ko P5 30 8 Q29 p1 112 ST
v g HE SHEEBHE S B8 naeE spms St men
cs b8 &8 - b8 &8 a0 18% 202 M5 P2 2 23 P15 ST 17
jL11af jL211f 10 1 | CTST 22 21 JINT3 P1619 D6
g; [ReT 1y 3K TRST1] SR G\D 2A1 PO 20 o INT2 Dla2l 2 22 br
CLR GLR P25 18 Q S i7 poa 3230 3)
UL 74FCZ73 /| ADL GND 74FCZ73 6 5 P3 25 2 S5 A7
1M s R7 Do U20 3 D127 2 S o8 A
=iF =][s ic e e Hem oo
7] AL3 33(31313(313 19 2 2B 2C 73 7/ NM 1133 2 S 37 A3
—H 12 a2 87J)65432 T—i383C Hvs L 2325 o2t
—2] A1 2B ac [L3 H o—3 D0 o=
—31 A10 A 51 A SSCFSGG PS__>1lsgsc iz > ?9 Lo oS8 AL
7 G\D 1 31 G\D | CTS0 T V6 1 s2 39 A0
—£{ no —Slics M0 11 cRBSOB "o 314 LCTS0 81 68 6C [H1HVE S O
—=1 A8 — Do 2= 21BYO | Re- 7B 7C
5 B8 D 3 29 REF B8 5
—21INe —Slm EXT RE+ [29 REF G K
0] NS 9] 295 R [28 Voo
i v 0] 518 weC 2 ULNZ003 G\D_1 26
T2/ PR 1] 515 "o 26— 2 P27 D11
13 12| 71 Som A28 w DI__3 28 D12
14 BOO B (24— A5 5 /L1 4 29 D13
141N L3 DI1 AO MO+ (22— A Yo D3
15 31 _DI0 19 23 TWP A6 2 4 TAD 5 30 D4
A5 Ry L4 D10 AL ALS B vipd
16 RY 5] 103 2710] A% A 95 14 Aar—318 YIPIzTov 76 31 D5
Siaps Hy RO e g BRI T s PR
181 a7 L7 NC 28— A 2 Y4 3
19 8 27 A13 AAAA /RST 6 0 /RDL 9)
191 a6 AL2 5678901 G Y5] 4
207 S 9 A2 o6 AT P17, 4] &, Ve B9 HO AL0TO 5
o1 0 55 ALl LTC2449 5. aalle= HV1 1 2 Hv3 A9 11 6
- AG2T| AT A0 ISTRT0 VUYL [TC2449 @B Y7 p—— K2 3 VA Ag 12|48 Ve F
—5=1 A3 A8 A9 5= 341567 (812 O O A7 RDY (55—
23 A3 AT722| 8, JS[23 A8 BO5 11 74HC138 V5 5 6 _H\V6 Ve 13| 5. ROl 38
o] a2 BOG BIO V7 7 A7 14 ¥ VS 39—
B0/ | | |B09 w1 voe QD O A6 15125 S5 [a0-
l808 1169 11 2 5 16 41 RST
10K1 voe SV T5 ve v 13 3 8 Vi 7] M4 RST [a2-
2 P6 ViV Imavy Vs 15 3 STi6 e A3 18| RS W23
TTNT4 V2 Virizve wiarg § vV A2 19|42 /LD 172
TRST Ve Ve rIawe vi19-3 § V2 AL_20] s ' REC 75
5 /1NT3 REF/ CR p+L [RST 21155 Bvi | 46-
.*_| c5 /N 1/ CSSDO ’10 FLEX20 HDRD20 1221 50 o6 |4 D8
'}g 7 71NTO el 9 Lo 192X128 G LCD D223 28 D9
¢ 8 7TNT1 — 24 DLO
=HE 5 P26 [TC260 25] &, 22 [B0-G\b
£yt 10 pii i E_E REE 9
+,,C13 Us 1 8 vee c3 2
HE T v MAXG9T 1 LGN EBBIUAAEBE | 3 voe 2| NG Ne— Rl4 gy CAPNP CaPNP
L €20 [c15 VBATL|\pn gor |16 A 2| AAAFFBBB@ 35 /CV TVP 3| TEvp ouT | 6_REF vee/ ¥
= VRAMZ | V&, RST [57) rsT P17 5] 4Y IN2AB2NI &N, P32 an GDa] W Ut Q RI3 o Jp1
b2 VCC 3 14 \WDO G\D_4 33 _RST V33 /1 NT4 GND
Hh, VCC WO BYTE ST o==—d1 2 AL
QD 4] &S P I3TIcs A2 5] BYIE 7655 os G327AD TTI010 I TR I 2T
& 01 'v3 2 | RAM AND 6] pg 3 RI PB1 PB010 T 5 6 P RST
|‘& [C1a T VD &b 7] P, D3 KI === G T > ¢ G
e 0 7 NM 9e v Pz ——p9PB010 & .8 D
9 PF DO 9 28 D15 24-BI T ADC | NPUTS K2 === &b 1> D3
+ 1 CL 110] 20 D15 57 bia — B9 PBO10 1112 il
=HE D1 2 o p 4[ZeoDis VB 1 2 VA K3 aw “1og131d A7
D312 G G S [25 D12 B 3 2 50 ——%p? PBOI0 A6 1518 A5
PHpopNooNDD £ BO3 5 02 ka3 G\D A4 19 20 A3
U7 24C04S 805 7 O O 8 Boa eSS PBOLO A2 25 59 AL
1 8 vcC BT TR B06 K5 G\D A &b
N v e o) 3 1fafafalal1ls Boo 11 S12 Bos ——%gf8—PE010 23 24b—as
AL W P15 ABL 1 2 AB? o4 318 7182 iz 2 & 0 K6 GD —q 2526 p——
Hee, Kt o = SsTE O © oo K65 oG —Jd2728p—
v DA 5 P11 S O
s VCC AAL 3 4 A2 D6 TNP 17 8 Bl
PEI o o D7 G123 §)
G\D_ 5 o O 6 REF G\D HDRD20
u13 voe u1s
RXDL 1 8 LD 1 8 VA
G 2 RO VCC 7 rxot R 2|2 VATV
TrRisB| LRE B 7Txp1 D3] X S{rean
TXDL4] 5 TDA 4] 5 VB
IXDL4 | 57 ap N Ul IDA 43¢5 ve
[Tcass Q P17 GND 1[G DAC7612
BL V33 2] NG| 4 vs3
U9 74HC14Z VCC 1 2 va vee hcomeavVaid petem uL7 vee
JINT4 110] 149 1] _[cn1 Ci+ 1M~y voe 169 coto SI P REED RELAY- 9007
INTa 2] 7% gn [13_/RST L3 vear BBLIL17 Vi 2] o & [
/INT3 3 2 RST 10UF32K XTAL3 u1s Cl- 3 4/ TXD1 STE
INT3 424 &Y I 7INro Is X6 X5 1l "z & va or 4| &, P31
T 5 TNTO W1 2 P12 = |Fe—=3] 7 INr2 © 5 2 RXDI 2 _G\D, Title
5134 SY [INT1 VoeE 3] 2. BP 5P v 6] - RIOTT 5 s 1'® 2 N1
3Y 4A MEE 24 A scL = V- Til Ci7] <9 =L = 5 c—=NL ETHERNET- LCD
€ AR INT1 A A s TTX00 7] Yoo 151 [0 T
e / RXDO 8 2l R20 9 RXDO c2- V- Si ze |[Docunment Nunber REV]
5 ATTID B EL- MAN. SCH
Dat e: Cct ober 30, 2006 [Sheet 1 of 1

