FlashCoreB(FB)™

Compact Flash Data Storage, 16-bit ADCs, DACs, RSZ3IL 1/Os,
and ultra-low quiescent current regulator.

Technical Manual

TTERN

INC.
1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181

Email: sales@tern.com http://mww.tern.com

COPYRIGHT

FlashCore-B, 586-Engine, A-Engine, i386-Engine, AGTF are trademarks of
TERN, Inc.
Am188ES and Am186ES are trademarks of Advanceddvavices, Inc.
Paradigm C/C++ is a trademark of Paradigm Systems.
Microsoft, MS-DOS, Windows95/98/2000/XP are tradeks of Microsoft Corporation.
IBM and MicroDrive are trademarks of InternatioBaisiness Machines Corporation.

Version 2.0
October 25, 2010

No part of this document may be copied or reproduseny form or by any means
without the prior written consent of TERN, Inc.

© 1999-201(TERIQI

1950 %" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedk® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentiilmages arising from
the use ofTERN products. It is the Buyer's responsibility to jaitlife and property
against incidental failure.

TERN reserves the right to make changes and improvenerits products without
providing notice.

Temperature readings for controllers are baseth@mesults of limited sample tests; they
are provided for design reference use only.

FlashCore-B™ Chpater 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

TheFlashCore-B(FB)™is a low power embedded controller based on a péggformance 40 MHz 188
CPU, providing a simple interface for 50-pin Comjpd@sh Cards (ranging in size from 8MB — 1GB Flash
cards) which are used to provide non-volatileagerin a wide array of applications, ranging fragitel
cameras to PDAs. 50-pin CompactFlash cards canraksrface with PCs via a standard PCMCIA
adapter, making these ideal storage solutionsgpli@ations requiring mass data exchange. In aalditi

the 50-pin CompactFlash cards cost less than 68®@MCIA cards.

TheFB is an ideal controller for low power battery apptions. An optional 5V low-drop regulator
(TPS76550) accepts unregulated inputs as low dd/4+&nd has a power-off mode which consumes as low
as 3A, both of which can greatly increase the life dfatery.

TheFB is a complete standalone C/C++ programmable emigeclatgroller including a 188 CPU, 512KB
ACTF Flash, 128KB or 512KB SRAM, 512-byte EEPROMgl?annel RS-232 driver, 5V regulator, with
optional real-time clock, battery, 8 channel 16AIiC, and/or 4 channel 12-bit DAC.

By using theFlashCore-B (FB) users can easily add widely used CF standard deasstorage cards to
their embedded application via RS232, TTL 12C, argtlel interface. TERN supports a complete C/C++
programmable software package (EV-P, or DV-P kijoh includes compiler, remote debugger, samples,
and libraries. TERN software supports Linear Bldadress mode, 16-bit FAT flash file system, RS-232,
TTL I12C or parallel communication. Users can watéle to the CompactFlash card or read a file ftbm
CompactFlash card. Users can also transfer théofigePC via the PCMCIA port.

ACTF FLASH 188ES SRAM
512K 80x86 512K
SDL P12 Compatible
EEPROM l< 76550 5V
> S le R DMA(2) regulator
512 BYTES |« > 16-Bit Timers(3)
SDA P11 Ext. Interrupts(6)
32 1/0 lines
2¢ch. [> PWM/PWD 691 RTC
RS-232| g 8 ch.
serial 4 ch. 1 16-bit ADC
ports 12-bit DAC
J1&J2 | CF standard storage carljs

Figure 1.1 Functional block diagram of the FlashCore-B

Measuring 2.1 by 2.35 inches, tRlashCore-Boffers a complete C/C++ programmable computeresyst
with a 16-bit high performance CPU (188) and opsatt 40 MHz (or 20 MHz) system clock with zero-
wait-state. In addition, a 512-byte serial EEPRGMnicluded on-board. Optional features include aup t
512K battery-backed SRAM, 8 channel 16-bit ADC, ard optional real-time clock which provides
information on the year, month, date, hour, minate] second. ThElashCore-B also includes an on-
board 5-volt power regulator and RS232 drivers.

1-1

FlashCore-B™ Chpater 1: Introduction

Two DMA-driven serial ports from the 188 CPU supgpigh-speed, reliable serial communication at a
rate of up to 115,200/57,600 baud (40/20 MHz systdotk) while supporting 8-bit and 9-bit
communication.

There are three 16-bit programmable timers/courdars a watchdog timer. Two timers can be used to
count or time external events, at a rate of upQts MHz (40/20MHz system clock), or to generate-non
repetitive or variable-duty-cycle waveforms as PWitputs. Pulse Width Demodulation (PWD), a
distinctive feature, can be used to measure théhvagfla signal in both its high and low phasesal be
used in many applications, such as bar-code reading

There are 32 user-programmable 1/O pins on the@BB, and six external interrupt inputs. A superviso
chip with power failure detection, a watchdog timrear LED, and expansion ports are on-board.

1.2 Features on the FlashCore-B

Standard Features
* Dimensions: 2.1 x 2.35 x 0.7 inches
* Easy to program in Paradigm C/C++
* Power saving mode: 20 mA at 5V for 20 MHz
* Power-off mode: 3pA low-drop voltage
* Power input: +9V to +12 V unregulated DC with-board linear regulator
+5.1V to +9V unregulated DC with low-droggulator*
* 16-bit CPU (188), Intel 80x86 compatible
* High performance, zero-wait-state operation atviHz
* 512KB ACTF Flash, 128KB SRAM
* 2 channels of RS-232 drivers
* 2 high-speed PWM outputs and Pulse Width Demdthria
* 20+ TTL I/O lines from 188 CPU
* 512-byte serial EEPROM
* 6 external interrupt inputs, 3 16-bit timer/coerg
* 2 serial ports support 8-bit or 9-bit asynchroa@@mmunication
* Supervisor chip (691) for power failure, resetlamatchdog
* 50-pin Compact Flash socket for Compact Flaskisarf size 8MB — 1GB

Optional Featureg*surface-mounted components)

512KB SRAM

* Real-time clock (DS1337)*, lithium coin battery*
* 8 channel, 20KHz, 16-bit ADC (ADS8344)*

* 4 channels, 12-bit DAC (DAC7612)*

1.3 Physical Description

The physical layout of the FlashCore-B is showFigure 1.2.

1-2

FlashCore-B™ Chpater 1: Introduction

J2
7/
Step 2 O Ge O
Jumpe 691
G uUs o o
GND el o Flash oo
P4 o e o @
e o Ul o @
— o o U2 (o3}
e e S o e
e 188 CPU R ° o
e @ A o @
e o o @
e o M o o
e o o o
e @ o @
L) i RTC o e
0| — T o o
o o || RS232 DAC]| |o o
2T S —
° u11 0. J1
° ADC o o
;n& Power Regulato}: X
linear or low-drop| ¢ o © @ o o
[0} @\ Qe 000 e

Iz

Figure 1.2 Physical layout of the FlashCore-B

m

1.4 FlashCore-B Programming Overview

At the factory, an ACTF utility is loaded into tlhwpper sector on the on-board flash. This ACTFtytik
protected and executes at every power up. Upon popyehe ACTF will perform the process as desatibe
by the flow chart below. The remainder of thistemtwill be divided into parts: Prepare for Dekddgde
(STEP 1), Debug Mode (STEP 1), Standalone Mode BS2X: and finally, Production (STEP 3). For your
convenience, the preparation for debug mode is @brtbe factory, meaning you can begin at STEP 1:
Debug Mode.

[Power on or Reset]

SEND out MENU over SERO at 19200, N, 8, 1 to

STEP2 Jumper on ? Hyperterminal of Windows95/98/2000/XP

J2.1=7J2.37?

Text command or download new code

See ACTF-kit and Functions for detail

Read EE for the jump address CS:IP [

[

[RUN the program starting at the CS:IP]

Process Commands]

1-3

FlashCore-B™ Chpater 1: Introduction

1.4.1Prepare for Debug Mode (STEP 1):

To run the FB in Step 1, the debug mode, a debugekenust be loaded into the on-board flash. This i
done at the factory for your convenience. This dekernel must be running to communicate with the
Paradigm C/C++ programming environment. It residethe on-board flash at address 0xEO000. To run
the debug kernel and prepare for debug mode, dfwtlosving:

1. Link the FlashCore-B to your PC and prepare a hypeninal session. Configure the
terminal to 19,200 Baud (9,600 Baud with 20MHz systtlock), 8 bits, No parity, and 1
stop. Connect to SERO of the FlashCore-B.

2. Power on the FlashCore-B without the STEP 2 instialThe STEP 2 jumper is a red
jumper installed on the J2 header pins 1 and 3.

3. At power up, you should see the ACTF Utility menyaur hyper terminal:
ACTF/ACTR Copyright(c) 1996 STE CA USA. Allrighteserved.
>C CFUNCTIONS
>D Download an Intel Extend Hex file into SR
>G Goto and Run
>H HELP
>M MENU
>U Upload a block of Binary data

The “G” command allows you to jump to a locatiodammediately begin execution. It
also sets the start-up jump address. Type “GEQOO@h <enter>. Your FlashCore-B
will jump to that location in the flash and bedorun the debug kernel. The on-board
LED will blink twice, then stay on. This indicatéise FlashCore-B is correctly running
the debug kernel.

4. Now install the STEP 2 jumper (red jumper instaléd2 pins 1 and 3).

5. Now at start up, the ACTF Utility will check if th8TEP 2 jumper is installed. If the
STEP 2 jumper is installed, the CPU will fetch 8tart-up jump address (which we set
in instruction 4 to point to the debug kernel, 0RB0) and jump to that address for
execution. Your FlashCore-B is now ready to comicate with the Paradigm C/C++
for Debug Mode. If the STEP 2 jumper is not detéctee ACTF Utility will send out
its start up menu, and you will be back to instiarct3.

When you jump to the debug kernel (by typing “GEOQQ@hen <enter> at the ACTF menu), if you do not

see the on-board LED blink twice then stay on,dbBbug kernel has been erased. It must be loadéd aga
to run STEP 1 and communicate with the Paradigm+&/ébftware. See the section 1.5.1 for instructions
on how to load the debug kernel.

1.4.2STEP 1: Debug Mode

After completing the pervious section, your Flaste=B is ready to communicate with the Paradigm
C/C++ Environment and debug source code. Use sampiavided in the c:\tern\186\samples\fb and
c:\tern\186\samples\flashcore directories to garesaurce code. Debug your code as needed. You can
then go to STEP 2: Standalone Mode.

1-4

FlashCore-B™ Chpater 1: Introduction

1.4.3STEP 2: Standalone Mode

Now that you have debugged your source code, yeurg@ady to test it in standalone mode. To run
standalone, do the following:

1. Remove the STEP 2 jumper. Prepare a hyper termsigsdion as described by section
14.1.

2. At power-on, you will see ACTF menu. (The key istttthe STEP 2 jumper is not
installed, so the CPU does not fetch the jump af)re

3. You now want to jump to you program. In STEP 1 Beradigm C/C++ environment
downloads your program into the SRAM, starting ddrass 0x08000. We now want to
use the same “G” command as before, but jump te goagram, not the debug kernel.
Type “G08000", then <enter>. The CPU will then jutgpyour program in the SRAM
for immediate execution. It will also set the staptjump address to 0x08000.

4. Re-install the STEP 2 jumper (J2 pins land 3). Mbwvery power up, the ACTF utility
will see the STEP 2 jumper and fetch the jump askjrevhich now points to your
program in the SRAM. Your program will now executestandalone mode at every
power up.

5. When finished with STEP 2: Standalone Mode, yougaback to STEP 1:Debug Mode
by repeating instructions 1 & 2. Then use “GE00G8&n <enter> to jump back to the
debug kernel. The FlashCore-B is now ready to comoate with the Paradigm C/C++
Environment.

6. This cycle between STEP 1 and STEP 2 can be daiieyoar program is complete.

1.4.4STEP 3: Production

This step only applies to those users who havehasexd the full Development version of the
Paradigm C/C++ Environment (DV-P).

1. When you have finished development of your progngony are ready to use your source
code to generate an Intel Extend HEX file, which taen be burned into the on-board
flash for a production version of the FlashCore-B.

2. Inside Paradigm C/C++, change the config node afry@arget from “186.cfg” to
“actf186.cfg”. This is done by right-mouse clickirggn the config node and selecting
“Edit Node Attributes”.

3. Open “actfl86.cfg” for editing (double-clicking thmnfig node will open it in a text
editor). Follow the instructions at the top of ttanfig file. Save and close.

4. Right-mouse click on the “axe” node of your targetd select “Target Expert”. Within
the Target Expert window, chanB®REMOTE/ROM to No Target/ROM.

5. Now right-mouse click on the “axe” node and selttild Node”. You have now
generated an Intel Extend Hex file. The name offiteewill have the same name as your
target, in the same working directory, but with tHeEX” file extension.

For example, if the name of my target is “My_Prograxe”, then | will have created
“My_Program.hex” in the same directory.

1-5

FlashCore-B™

Chpater 1: Introduction

6. Go to Section 1.5.2 of this manual and follow thstruction for burning HEX files into
the on-board flash.

1.5Burning HEX Files into the On-board Flash

This section will cover two processes:

(1) Burning the debug kernel into the flash to pregaralebug mode.

(2) Burning you application HEX file into the flash tomplete a production version.

1.5.1 Burning the debug kernel into the flash

1. Power on the FlashCore-B without the STEP 2 jumipstalled. See the ACTF
menu at the hyper terminal (Assuming FB linked @ Wa serial cable and hyper
terminal session is ready).

2. Type “D”, then <enter> to alert the ACTF utilityahyou are ready to send a file
into the SRAM. You should see the following at yeerminal:

ACTF/ACTR Copyright(c) 1996 STE CA USA. Allrighteserved.

>C
>D
>G
>H
>M
>U
D

C FUNCTIONS

Download an Intel Extend Hex file into SRA
Goto and Run

HELP

MENU

Upload a block of Binary data

Ready to receive Intel Extend HEX file at 19200dba

3. At the hyper terminal menu, select Transfers, Seext File. Go to c:\tern\186\rom
and select “lo_ee512.hex”. This will download irtte SRAM starting at address
0x04000. As it downloads you will see the termiwaidow fill with UUUU....

4. When it finishes, you will see:

(vjujvlv]viviujvlv]uiviv]viviv]vlv]uivlv]viv]u]vlv]viviu]viv]u]vluvivie]vlu]u)vlu]v)v]V]e)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uivlv]viv]u]vlv]viviu]viv]u]vluvivie]vlu]u)vlu]v)v]u]e)
(vjujvlv]vivivjviv]uiviv]viviv]vlv]uiviv]viv]u]vlv]viviu]viv]u]vluIvivie]vlu]u)vlu]v)v]V]e)
(U]V)v]V]viv]v]v]u]v]vIV]viviv]vIv]v]vIv]viv]v]viv]viviv]vivIv]vIe]vivI]vlv]e)vIV]V)V]IV]V)
(U]V)v]V]vlv]v]v]u]v]vIV]viviv]vIv]vivI]viv]v]viv]viviv]vivIv]vie]vivI]vlv]e)VIe]V)V]V]V)
(U]V)v]V]viv]v]v]u]v]vIV]viviv]vIv]v]vIv]viv]v]viv]viviv]vivIv]vie]vivI]vlu]e)vlV]V)V]V]V)
(vjujvlv]vivivjviv]uiviv]vivivivlv]uiviv]viv]u]vlv]viviu]viv]u]vluivivi]vlu]u)vlu]v)v]V]e)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uiviv]viv]u]vlv]viviu]viv]u]vluIvivi]vlu]u)vlu]v)v]V]v)
UUUUUUUUUUUUUUUUUEND of File Record

CHKSUM=0
CS:1P = 04000

USE Gxxxxx to RUN downloaded code starting at »xxx

5. Use the “G” command to run. Type “G04000", then teen. It will then erase the
flash and prepare to burn a HEX file into the flash

1-6

FlashCore-B™ Chpater 1: Introduction

6. When it has finished preparing the flash, you wadé:
ERASING AM29040 EE SECTOR 0-6 0x80000 to OXEFFFF !
ERASING FLASH EEPROM AM29F040 SECTOR 0
ERASING FLASH EEPROM AM29F040 SECTOR 1
ERASING FLASH EEPROM AM29F040 SECTOR 2
ERASING FLASH EEPROM AM29F040 SECTOR 3
ERASING FLASH EEPROM AM29F040 SECTOR 4
ERASING FLASH EEPROM AM29F040 SECTOR 5
ERASING FLASH EEPROM AM29F040 SECTOR 6
AM29040 EE only takes INTEL EXTEND HEX file staras 0x80000 !
Ready to receive Intel Extend HEX file at 19200dba

7. At the terminal menu, select Transfers, then Seext File. Go to c:\tern\186\rom
and select “af_0_115.hex". This is the debug kerhetill download into the flash
starting at address 0xE0000.

8. When it finishes, the ACTF utility will reset andy will see the ACTF menu. Type
“GE0000", to jump to and execute the debug kerfieé start up jump address will
also be set to OXE000O.

9. Install the STEP 2 jumper. At power up, your FlasheB will execute the debug
kernel and be ready to communicate with Paradig@+&/for STEP 1: Debug
Mode.

1.5.2 Burning your application HEX file into the flash

1. Follow instructions 1-6 of the above section, swttil.5.1. This will prepare the
Flash for a HEX file.

2. At the Hyper terminal menu, select Transfers, ti8and Text File. Go to the
working directory of you project in Paradigm C/C-Select your Intel Extend HEX
file generated by the steps given in the last pi8ection 1.4

3. When it finishes downloading, the ACTF utility witeset. Your application will
have downloaded into the flash starting at addd&86000 (not to be confused with
0x08000, the starting address of your program iES2: Standalone Mode in the
SRAM).

4. Now all that is needed is to set the jump addre$3x80000. Type “G80000". Your
application will then execute out of the flash. ™tart up jump address is now set
to 0x80000.

5. Install the STEP 2 jumper.

6. At every power-up, the CPU will jump to 0x8000 farmediate execution of your
program. To get back to debug mode go to sectibril.

There is no ROM socket on the FB. The User’s apfibc program must reside in SRAM for debugging
and reside in battery-backed SRAM for the standafogid test.

The on-board Flash 29F040B has 256K words of 1&6-wich. It is divided into 8 sectors of 64KB. The
top 16KB sector is pre-loaded with ACTF boot st@nd the sector starting OXEOO00O is for loading the

1-7

FlashCore-B™ Chpater 1: Introduction

remote debug kernel. When application is ready,ekb12.hex” will erase debug kernel, leaving 7asact
for application use.

The top 16KB ACTF boot strip is protected.

The utility HEX file, “lo_ee512.HEX” will automatilly download into SRAM starting at 0x04000 with
ACTF-PC HyperTerminal. Use the “D” command to dowad, and use the “G” command to run.

“lo_eeb512.HEX” will erase the bottom seven sectmd load a “AF_0_115.HEX” or “AF_0_384.HEX”
into the flash starting at OXEO0Q0O, and load yqpli@ation HEX starting at 0x80000. Refer to the e
manual for information on how to change the dowdiog address of your application HEX.

OXFFFFF

The Flash ACTF

and the
SRAM arsg

mapped
into 1MB.
The SRAM
goes frony debug
0x00000 t

0x80000, kernel OxEO0000

and the
Flash goe|

from

0x80000 t
OXFFFFF

0x80000

OXLFFFF 512K

SRAM
128K I
SRAM

0x000(

For production, the user must produce a ACTF-doaatddnle HEX file for the application, based on the
DV-P Kit. The application HEX file can be loadeddrthe on-board Flash starting address at 0x80060.
properly generate your application HEX, you musirgde the config node of your target to “actf186'cfg
which is found in the /TERN/186/config directoryh@n right mouse click on the “.axe” node of your
target and select “Target Expert”. This will allowou to change the “TargetConnection” from
PDREMOTE/ROM to NoTarget/ROM. Then “Build node” Wijenerate your application “.HEX” file.

The on-board EE must be modified with a “G80000fmeaeand while in the ACTF-PC-HyperTerminal
Environment.

The “STEP2” jumper (J2 pins 1-3) must be instafi@devery production-version board.

In order to correctly download a program in STEPithwParadigm C/C++, the FB must meet these
requirements:

1) AF_0_115.HEX must be pre-loaded into Flash istgrdddress OXEO000(done at factory by default).

2) The SRAM installed must be large enough to lyolgr program.

For a 128K SRAM, the physical address is 0x0000Q&x%f
For a 512K SRAM, the physical address is 0x0000W#&x%f

1-8

FlashCore-B™ Chpater 1: Introduction

3) The on-board EE must have a correct jump addmsthe AF_0_115.HEX with starting address of
O0xE0000.

4) The STEP2 jumper must be installed on J2 pifis 1-

1.6 Minimum Requirements for FlashCore-B System Developent

1.6.1Minimum Hardware Requirements

* PC or PC-compatible computer with serial COMxtgbiat supports 115,200 baud

* FlashCore-B controller with DEBUG kernAF_0_115

* Serial cable (RS232; DB9 connector for PC COMt@ard IDC 2x5 connector for controller)
* Center negative wall transformer (+9V 500 mA)

1.6.2Minimum Software Requirements

* TERN EV-P/DV-P

* PC software environment: Windows95/98/2000/XP
The C/C++ Evaluation Kit (EV-P) and C/C++ Developmh&it (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of thBV-P Kit. With the EV-P Kit, you can program and
debug the FlashCore-B in STEP 1 and STEP 2, butcgmunot run STEP 3. In order to generate an
application HEX file for downloading to Flash, andmplete the project, you will need the Development
Kit (DV-P).

1-9

FlashCore-B Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/O©evelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on initeg software.

The README.TXT file on the TERN EV-P/DV-P CD-ROM gtains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

Overview (for FB)
* Connect debug cable:
For debugging (Step One), place ICD connector oRBE5) with
red edge of cable at pin 1
* Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
(installs onto J5 pins 1 and 2)

2.2.1 Connecting the FlashCore-B to the PC

The following picture (Figure 2.1) illustrates tbennection between the FlashCore-B and the PC. The
FlashCore-B is linked to the PC via serial cable.

The AF_0_115.HEX debug kernel communicates thrdsigRO by default. Install the 5x2 IDC connector
to the SERO header (J5).MPORTANT: Note that theed side of the cable must point to pin 1 of the J5
header. Although pin 1 of J5 is for +12V In, itsigll important for the ed side of the cable to point to pin
1. The 5x2 IDC will just not have the connectionta red side of the connector. The DB9 connector
should be connected to one of your PC's COM PQ@&M1 or COM2).

For additional details on the PC-FB serial conmexgtsee Appendix A of this manual, as well as the
FlashCore-B schematic at the end of this manuahdhe TERN CD, under tern_docs\schs.

2.2.2 Connecting the FlashCore-B to Power

The J5 pin header is used for supplying power ¢oRllashCore-B. Pin 1 of the J5 header connect4 2% +
and pin 2 of the J5 header connects to Groundallribe output of the wall transformer to the poyaak
adapter (included with the Evaluation Kit) and alsthe power jack adapter onto J5 pins 1 and ZBe
to confirm polarity before applying power. Rememtyer output of the wall transformer is center-
negative. See the below picture for polarity onFleshCore-B.

2-1

SER1

FlashCore-B

Chapter 2: Installation

il
I
e LS LSRR

SERO (Debug Port)
Power Input +12V In Connect to 5x2 | DC connector for

J5 Header, Pin 1 debugging.

Figure 2.1 Connecting the FlashCore-B to the PC

i % L]
b J
L

| o
;
e

i A %

s - E: t*; '.1 r
- "-rl' I’:";'-:! :‘-';:1} -

L L]
At
o i

)

4

vl
g

-l..
LT
-l-:_-l;,ri"‘rl

.
L

[¥
L7
']
=1
i ot

DI Atk

2-2

FlashCore-B Chapter 3: Hardware

Chapter 3: Hardware

3.1188 CPU — Introduction

The 188 CPU is based on the industry-standard x@@tacture. The 188 CPU controllers are higher-
performance, more integrated versions of the 80CGid&8oprocessors. In addition, the 188 CPU has new
peripherals. The on-chip system interface logicrammize total system cost. The 188 CPU has two
asynchronous serial ports, 32 P10s, a watchdog tiadglitional interrupt pins, pulse width demodigdat
capability, DMA to and from serial ports, a 16-t@set configuration register, and enhanced chipesel
functionality.

3.2188 CPU - Features

3.2.1 Clock

Due to its integrated clock generation circuithg 1188 CPU microcontroller allows the use of a srnae
crystal frequency. The design achieves 40/20 MHW @GPeration, while using a 40/20 MHz crystal.

3.2.2 External Interrupts

There are six external interrupts: INTO-INT4 and'BN All six interrupts are active high, but sirtbey
are not pulled down, it is recommended to add goNin resistors to any external interrupts usedssaoh
to have falsely generated interrupts. In additgetting interrupt lines to edge-triggered insteflteel-
sensitive also helps reduce occurrence of excéssupts.

INTO, J2 pin 14

INT1, J2 pin 11

INT2, J2 pin 12

INT3, J2 pin 9

INT4 = P30, J2 pin 10
INT6 = P13, J2 pin 21

These external interrupt inputs require a raisithgee(LOW-to-HIGH) to generate an interrupt.

The FlashCore-B uses vector interrupt functionespond to external interrupts. Refer to the 188/ CP
User’s manual for information about interrupt vesto

3.2.3 Asynchronous Serial Ports

The 188 CPU has two asynchronous serial channERO%ind SER1. Each asynchronous serial port
supports the following:

* Full-duplex operation

* 7-bit, 8-bit and 9-bit data transfers

* Odd, even and no parity

* One stop bit

* Error detection

* Hardware flow control

* DMA transfers to and from serial ports

* Transmit and receive interrupts for each port
* Multidrop 9-bit protocol support

* Maximum baud rate of 1/16 of the CPU clock
* Independent baud rate generators

3-1

FlashCore-B Chapter 3: Hardware

The software drivers for each serial port impleneenng-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sasrfles:s1_echo. ¢ andsO_echo.c in the
tern\ 186\ sanpl es\ae directory.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaiohers: Timer0, Timerl, and Timer2.

TimerO and Timerl are connected to three extermal p

Timer0 output = P10 = J2 pin 22

Timer0 input = P11 = NOT ROUTED TO EXTERNAL PIN

Timerl output = P1 = J2 pin 25

Timerl input = PO = J2 pin 19
These two timers can be used to count or time eat@vents or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. it ba used as an internal timer for real-time coding
time-delay applications. It can also prescale Torand Timerl or be used as a DMA request source.

The maximum rate at which each timer can operat® i8IHz, since each timer is serviced on everytfour
clock cycle. Timer output takes up to six clockleg to respond to clock or gate events. See sampl
programs timer0.c and timerl.ctier n\ 186\ sanpl es\ ae.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be use@ntermte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeyto respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that defihe maximum value the timer will reach. Both
TimerO and Timerl have a secondary maximum cowister for variable duty cycle output. Using both
the primary and secondary maximum count registdssthe timer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurmhe signal’s high and low phases on the INT2=J2
pin 12.

3.2.6 Power-save Mode

The FlashCore-B is an ideal core module for low @oaonsumption applications. The power-save mode
of the 188 CPU reduces power consumption and hssipdtion, thereby extending battery life in pbtéa
systems. In power-save mode, operation of the QRlrgernal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automalfa@turns to its normal operating frequency. When
using a 20 MHz system clock, tk® can drop to as low as 20mA in power-save mode.

3.3188 CPU PIO lines

The 188 CPU has 32 pins available as user-progrdment® lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO linelsan

3-2

FlashCore-B

Chapter 3: Hardware

configured to operate as an input or output witkvithout a weak pull-up or pull-down, or as an open
drain output. A pins behavior, either pull-uppadl-down, is pre-determined and shown below.

After power-on/reset, P1O pins default to varioosfigurations. The initialization routine providégt
TERN libraries reconfigures some of these pinsesziad for specific on-board usage as well. These
configurations, as well as the processor-intereaipheral usage configurations, are listed belowable

3.1.

PIO

PO
P1
P2
P3
P4

P5
P6
P7
P8
P9
P10
P11
P12

P13
P14
P15
P16
P17
P18
P19
P20
P21
P22
P23
P24
P25
P26
P27
P28
P29
P30

P31

Function

Timerl in
Timerl out
/PCS6/A2
/PCS5/A1
DT/R

/DEN/DS
SRDY

Al7

Al8

Al19

Timer0 out
Timer0 in
DRQO/INT5

DRQ1/INT6
/IMCSO0
/MCS1
/PCS0
/PCS1
CTS1/PCS2
RTS1/PCS3
RTSO

CTSO

TxDO

RxDO
IMCS2
/IMCS3

Uzl

TxD1

RxD1
/CLKDIV2
INT4

INT2

Power-On/Reset status

Input with pull-up
Input with pull-down
Input with pull-up
Input with pull-up
Normal

Normal

Normal

Normal

Normal

Normal

Input with pull-down
Input with pull-up
Input with pull-up

Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up

FB Pin No.

J2 pin 19

J2 pin 25

J1 pin 36

J2 pin 13/J1.38
J2 pin 3

J2 pin 8
J2 pin 6
J3.3
None
None

J2 pin 22
None

J9 pin 2

J2 pin 21
J2 pin 4
J2 pin7
J1 pin 19
J2 pin 18
J2 pin 15
J2 pin 16
J2 pin 23
J2 pin 26
U3 pin 10
U3 pin 9
J2 pin 17
J2 pin 20
J2 pin 28
U3 pin 11
U3 pin 12
J2 pin 27
J2 pin 10
J2 pin 12

FlashCore-B Initial

Input tvipull-up
CLK_1
U9 DFFesxtl
Ihpith pull-up
Input with pull-u
Used by Step 2
Input with pull-up
Input with pull-down
A17
A18
Input with pull-up
Inguith pull-down
Input withlpup
Output fo
LED/EE/HWD
Inputttvipull-up
Input withlpup
Input withlpup
CLK for PAL
Open forruse
Inputhwoull-up
Inputhapull-up
Input withllpup
Input withllpup
TxDO
RxDO
Input withlpup
Input withlpup
Open for user
TxD1
RxD1
Input vhipullup*
Input with |pup

Input with [up

* Note: P26, P29 must NOT be forced low during poae or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Three external interrupt lines are not shared Wi pins:
INTO = J2 pin 14
INT1 = J2 pin 11
INT3 =J2 pin 9

The 32 PIO lines, P0-P31, are configurable via hebit registers, PIOMODE and PIODIRECTION

registers. The settings are listed as follows:

3-3

FlashCore-B Chapter 3: Hardware

MODE PIOMODE reg. PIODIRECTIONreg. PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull{
down

FlashCore-B initialization on PI1O pins in ae_inig)listed below:

outport(0xff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1
outport(0xff76,0x0000); /I PIOM1

outport(0xff72,0xec7b); / PDIRO, P12,A19,A18,A17,P2=PC8G€
outport(0xff70,0x1000); /I PIOMO, P12=LED

The C function in the library ae_lib can be usethttalize P10 pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);

pio_rd (0); return 16-bit status of PO-P15, if corresiog pins is in input mode,

pio_rd (1); return 16-bit status of P16-P31, if corrasgiog pins is in input mode,
Some of the 1/0O lines are used by the FlashCorgsBem for on-board components (Table 3.2). We
suggest that you not use these lines unless yosuagethat you are not interfering with the opemanf
such components (i.e., if the component is notiledt).

Signal Pin Function
P2 /PCS6 Chip select for U9 DFF
P4 /DT Step Two jumper
P9 A19 Data Out for ADS8244
P11 TimerO0 input U7 24C04 EE & U10 DS1337 RTC.
EE & RTC outputs can be tri-state, while disabled.
P12 DRQO/INT5 LED, U7 serial EE, U10 RTC, or Hittefadog
P16 /PCSO U16 decoder control line
P22 TxDO Default SERO debug
P23 RxDO Default SERO debug
P27 TxD1 Default SER1 Transmit data
P28 RxD1 Default SER1 Receive data

Table 3.2 1/0 lines used for on-board components

3-4

FlashCore-B Chapter 3: Hardware

3.41/0 Mapped Devices

3.4.11/0 Space

External I/O devices can use 1/O mapping for accéss can access such I/O devices with inportbjport
or outportb(port,dat). These functions will transb@e byte or word of data to the specified 1/Oradd.
The external I/O space is 64K, ranging from 0x0G®O0xffff.

The default I/O access time is 15 wait states. Maly use the function void io_wait(char wait) toidef

the I/O wait states from 0-15. The system clocRGss (or 50 ns), giving a clock speed of 40 Mbiz20
MHz). Details regarding this can be found in thétBare chapter, and in the 188 CPU User’'s Manual.
Slower components, such as most LCD interfaceshinfiigd the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus edeof the system, some components need to be attach
I/O pins directly.

For details regarding the chip select unit, plesseChapter 5 of the 188 CPU User’s Manual.

The table below shows more information about I/(ppiag.

I/0 space Select Usage Location
0x0000-0x00ff /PCSO U16 decoder J1 pin 19
0x0100-0x01ff /PCS1 USER J2 pin 18=P17
0x0200-0x02ff /PCS2 USER J2 pin 15=CTS]
0x0300-0x03ff /PCS3 USER J2 pin 16=RTS]
0x0400-0x04ff /PCS4 Reserved

0x0500-0x05ff /PCS5 USER J2 pin 13=P3
0x0600-0x06ff /PCS6 /CS for U9 DFF U10 pin 2=P2

3.4.2 Real-time Clock DS1337

If installed, a real-time clock DS1337 (Dallas Seomductor, U10) can provide information on year,
month, date, hour, minute, second, and day. ItWagime-of-day alarms or can generate a squarewav
output. It must be backed up with a lithium cointbey. The RTC is accessed via software drivers
rtc1337_init() or rtc1337_rd() (see Software chaptedata sheet in thtern_docs\partsdirectory for
additional information).

3.50ther Devices

A number of other devices are also available orFtaghCore-B. Some of these are optional, and might
not be installed on the particular controller yoe asing. For a discussion regarding the software
interface for these components, please see thev&efichapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withnstalled, the FlashCore-B has several functions
watchdog timer, battery backup, power-on-resetydglawer-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a junged9 of the FlashCore-B (see Figure 3.1). The
watchdog timer provides a means of verifying progaitware execution. In the user's application
program, calls to the function hitwd() (a routimat toggles the P12=HWD pin of the MAX691) shou&d b
arranged such that the HWD pin is accessed at ¢e&st every 1.6 seconds. If the J9 jumper is ahtbe
HWD pin is not accessed within this time-out peritiet watchdog timer pulls the WDO pin low, which

3-5

FlashCore-B Chapter 3: Hardware

asserts /RESET. This automatic assertion of /RE®EY recover the application program if something is
wrong. After the FlashCore-B is reset, WDO reméadng until a transition occurs at the WDI pin of the
MAX691. When controllers are shipped from the fagtine J9 jumper is off, which disables the watando
timer.

In addition, the 188 CPU has an internal watchdimgtt. This is disabled by default with ae_init().

Watchdog
Jumper
J9

() el (O

us Us
Flash 691
Ul
u2

S
188 CPU R
A
M

Power Regulatof:
linear or low-drop{ ¢ o © o o o
© 00 00 e

Figure 3.1 Location of watchdog timer enable jumper

©0 0000000000 o[@0

©0 0000000 ®00 0 0 0

000000000 000O0O0OOCO0O0O OO
00 00 0000060000000 O0OO0O0

o 0 00
>
E
Or
i
>
(@]

(o]
(o]

Battery Backup Protection

The backup battery protection protects data storéke SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positip&n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atte real-time clock DS1337 are backed up. In
normal use, the lithium battery should last aboty&ars without external power being supplied. Whe
the external power is on, the battery-switch-owesuit will select the VCC to connect to the VRAM.

3.5.2 16-bit ADC (ADS8344)

The ADS8344 is an 8 channel, 16-bit sampling an#ébedigital converter with a synchronous serial
interface. Input voltage range goes from OV to Vvdiere Vref can vary between 500mV and 5V. Three
control lines from the U9 DFF drive the ADS8344S/€ /AD, CLK = CK, and DIN = DIN. DOUT is tied
to the 188 CPU’s Al9, or P9.

It is necessary to initialize P9 (A19 = DOUT) apuh, and P2 as normal (/PCS6) to drive the U9 DFF.
Refer to c:\tern\186\samples\fb\fb_ad.c for santplge.

The ADC digital data output communicates with athbsough a serial tri-state output (DOUT). If
/AD=/CS is low, the ADS8344 will have output on DOUf /AD=/CS is high, the ADS8344 is disabled
and DOUT is free. The effective maximum sampling ia 20KHz.

The ADS8344 can support 8 single-ended inputsdiffdrential inputs. By default TERN software
drivers use 8 single ended inputs. This mode cashbaged via the control byte written to DIN (Retfer
tern\186\samples\fb\fb_ad.c for details).

The ADS8344 also implements an output called BSYeW/CS is high, the BSY signal is in high-
impedance. When /CS is low, BSY will be low whitading the control bits on DIN, and during
conversion. This line is not connected to any ewkepin.

3-6

FlashCore-B Chapter 3: Hardware

The ADS8344 can support analog input ranges ofREF, where REF can be 500mV to +VCC. This
can increase precision if so required.

The CK signal to the ADC is toggled through an aatpin from the on-board DFF, and serial access
allows a conversion rate of up to approximatel\K2&.

In order to operate the ADS8344, five 1/0O lines ased, as listed below:

/ICS Chip select = /AD (U9.11) , high to low traimit enables DOUT, DIN and
CK.
Low to high transition disables DOUT, DIN and CK.

DIN U9 pin 9, serial data input

DOUT Serial data output. Tied to CPU line A19 = R@eds to be initialized as
input.

BSY Output signal. BSY is low when the ADS8344dading the DIN control
pins and during conversion. It is high impedancemvlCS is high. This
line is not connected to any external pin on the FB

CLK Clock = U9 pin 7

REF+ Upper reference voltage (normally VCC). J4n

COM Ground Reference. Set to GND by default onekder, pin 9.

VCC Power supply, +5 V input

GND Ground

All analog inputs are routed to the J4 pin healbheaddition, both positive and negative refereriged are
routed to J4. For additional information, pleaster to the=B schematic in théern_docs\schdirectory.

3.5.3 EEPROM

A serial EEPROM of 512 bytes (24C04) is installedJi7. The FlashCore-B uses the P12=SCL (serial
clock) and P11=SDA (serial data) to interface witt EEPROM. The EEPROM can be used to store
important data, such as a node address, calibratiefficients, and configuration codes. It hasdgfly
1,000,000 erase/write cycles. The data reteniondre than 40 years. EEPROM can be read and mritte
by simply calling functions ee_rd() and ee_wr().

3.5.4 DAC7612

The DAC7612 is a dual, 12-bit digital-to-analog eerter with guaranteed 12-bit monotonicity
performance over the industrial temperature ratigequires a single +5V supply and contains aminp
shift register, latch, 2.435V reference, a dual DAGd high speed rail-to-rail amplifiers. For dfstale
step, each output will settle to 1LSB withips7 Up to two DAC7612s can be installed on the Rlask-
B to give a total of 4 analog outputs.

The DAC7612 uses a four wire serial interface ®@PU. The CPU on the FlashCore-B uses four outputs
from the U9 HC259 to drive the serial interface ifC&elect, Clock, Latch DACs, and Data In). The
FlashCore-B offers up to two DAC7612, providingasgible 4 12-bit serial DAC channels. The

DAC7612 outputs can support a capacitive load 6pb0

Refer to data sheet in the tern_docs/parts dingatiothe TERN CD and to sample code in the
tern/186/samples/fbdirectory for additional information.

3-7

FlashCore-B Chapter 3: Hardware

3.6 Headers and Connectors

3.6.1 Expansion Headers

The FlashCore-B has one 15x2, one 20x2, and ongitid2eader for expansion. Most signals are diyectl
routed to the 188 CPU. These signals are 5V only,any out-of-range voltages will most likely daraag
the board.

Table 3.3 Signals for J1 (20x2), J2 (15x2), and J4 (6x2) expansion ports

Signal definitions for J1:

VCC +5V power supply

GND Ground

DO0-D7 188 CPU 8-bit external data lines
AO0-A7 188 CPU address lines

/WR 188 CPU pin 5
/RD 188 CPU pin 6
/IRST, System Reset
RST

VA-VD U13 & U14 DAC analog outputs.

Signal definitions for J2:

VCC +5V power supply, < 200 mA

GND Ground

Pxx 188 CPU PIO pins

/ICTSO 188 CPU pin 23, Clear-to-Send signal for SERO
/ICTS1 188 CPU pin 86, Clear-to-Send signal for SER1
/IRTSO 188 CPU pin 26, Request-to-Send signal f&RBE
/IRTS1 188 CPU pin 85, Request-to-Send signal f&R SE
INTO-4, Interrupt inputs

NMI

VOFF System power down mode for low-drop regulatoy

Signal definitions for J4:

ADO-AD7 | Inputs for ADC
COM Ground reference
REF Positive reference, 500mV to 5V
J5 Signal
+12VI 1 2 GND
/TXDO 3 4 /TXD1
/RXDO 5 6 /RXD1
7 8
GND 9 10 GND

Figure 3.2 Signals for J5 (5x2)

3.6.2 Jumpers

The following is a list of jumpers and connectonstbe FlashCore-B.

3-8

FlashCore-B Chapter 3: Hardware
Name | Size Function Possible Configuration
J1 20x2 | Main expansion port,
A0-A7, DO-D7, /WR,
/RD, VA-VD
J2 15x2 | Main expansion port Step 2 Jumper => J22.3
J4 6x2 ADO-AD7
J5 5x2 SERO/SER1 connector, | Pins 1,2 for +12V In
+12V In Pins 3,5,9 for SERO
Pins 4,6,10 for SER1
J9 2x1 Watchdog timer Enabled if Jumper is on
Disabled if jumper is off

/

Step .
Jumpe!
GND

P4

ce00000000 0 0 0@ a

©C0 00000 O00QO OO0 o

SER1

J2
@ %1 O
691 —
us ° e
Flash e
)
Ul o e
u2 © e
S o e
188 CPU R ce
A o e
o o
M o e
© e
o e
o o
o @
DAC| | @
o e
U1l o° J1
ADC | [PAC]| |2 7 St—
Power Regulato}: %
linear or low-drop| @ © @ ® ® o ——
Q00006
+12V J4
IN ADC Inputs,
COM, REF

Figure 3.3 Locations of jumpers and connectors on the FlashCore-B (component view)

3-9

FlashCore-B Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@evelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pramgming tools.

For details regarding software function prototypad sample files demonstrating their use, pledse te
Appendix G, “Software Glossary” of the technicalrmal for the AE&AEP in \tern_docs\manuals\ from
the root directory of your CD.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a sisdbw cost solution to application engineers, some
guidelines must be followed. If they are not falkxd, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Reniaébdugger can be a challenge. It is possible taigleb
an interrupt handler, but there is a risk of exgrecing problems. Most problems occur in multi-inigt-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the intérrup
controller for longer than the remote debuggeraarept, the debugger will time-out. As a resulyry®C
may hang-up. In extreme cases, a power reset megguired to restart your PC.

For your reference, be aware that our system istekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an /O address space and a memory address
space. 1/O address space ranges foa6000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. ah@ memory mappings are done in software to define
how translations are implemented by the hardwdneplicit accesses to 1/0O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I1/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in 1/0O space) or non-mapped orgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigngdnsigned char data
Return value: none

These standard C functions are used to place gxbdéata at any memory space location. 3dgment
argument is left shifted by four and added todffset argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space nmibsanshe appropriate address and data are placed o
the address and data-bus, and any memory-spacengap place for this particular range of memory
will be used to activate appropriate chip-selewdi and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

4-1

FlashCore-B Chapter 4: Software

These functions retrieve the data for a specifidt@ss in memory space. Once againstgment
address is shifted left by four bits and addedé&ntfset to find the 20-bit address. This address is the
output over the address bus, and the hardware czenponapped to that address should return either @n
8-bit or 16-bit value over the data bus. If thisrao component mapped to that address, this fometill
return random garbage values every time you tpegk into that address.

-

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tdeta into the appropriataddressin I/O space. It is used most often
when working with processor registers that are redgpto I/O space and must be accessed using either
one of these functions. This is also the functiead in most cases when dealing with user-confijure
peripheral components.

When dealing with processor registers, be sures¢ctiie correct function. Usetport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from poments in 1/O space. You will find that most
hardware options added to TERN controllers are redppto 1/0O space, since memory space is valuable
and is reserved for uses related to the code atad dising 1/0 mappings, the address is output thwer
address bus, and the returned 16 or 8-bit valtleeiseturn value.

For further discussion of I/O and memory mappimgdsase refer to the Hardware chapter of this teetin
manual.

41AE.LIB

AE.LIB is a C library for basic FlashCore-B opeaats. It includes the following modules: AE.OBJ,
SERO0.0BJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You medohk AE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdod,
SERO.H Internal serial port O

SER1.H Internal serial port 1

AEEE.H on-board EEPROM

4.2 Functionsin AE.OBJ

4.2.1 FlashCore-B Initialization

ae init

This function should be called at the beginning@wdry program running on FlashCore-B core contrelle
It provides default initialization and configuraticof the various 1/0O pins, interrupt vectors, sats

4-2

FlashCore-B Chapter 4: Software

expanded DOS I/0, and provides other processoifgpepdates needed at the beginning of every
program.

There are certain default pin modes and interregitrgys you might wish to change. With that in thin
the basic effects of ae_init are described belbar. details regarding register use, you will wantdfer to
the AMD Am188ES Microcontroller User’'s manual.

< Initialize the upper chip select to support thead#tfROM. The CPU registers are configured such
that:

— Address space for the ROM is from 0x80000-0xfff&f (hap MemCard 1/0 window)
- 512K ROM Block size operation.

— Three wait state operation (allowing it to suppgtto 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you regjiricreased performance (at a risk of stability
in noisy environments). For details, see the UMGSper Memory Chip Select Register)
reference in the processor User's manual.

out port (Oxffa0, Ox80bf); // UMCS, 512K ROM 0x80000-Oxfffff

e Initialize LCS (ower Chip Select) for use with the SRAM. It is configured so that:
— Address space starts 0x00000, with a maximum oK5RAM.
— 3 wait state operation. Reducing this value cgorawe performance.

- Disables PSRAM, and disables need for externalyread
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

e Initialize MMCS and MPCS so thtd CS0 andPCS0-PCS6 (except for PCS4) are configured so:

- MCS0is mapped also to a 256K window at 0x80000. #duwith MemCard, this
chip select line is used for the 1/O window.

— Sets upPCS5-6 lines as chip-select lines, with three wait stgieration.

out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, O0x81ff); // CSOMSKH

¢ Initialize PACS so thaPCS0-PCS3 are configured so that:
— Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.

— The chip select lines starts at I/0 address 0x0@@6,each successive chip select line
addressed 0x100 higher in I/O space.

out port (O0xffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

« Configure the two PIO ports for default operatigkl pins are set up as default input, except for
P12 (used for driving the LED), and peripheraldiion pins for SERO and SER1, as well as chip
selects for the PPI.

out port (Oxff 78, 0xe73c) ; /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/] P16=PCSO, P17=PCS1=PPI

out por t (0xff 76, 0x0000) ; /1 PIOWVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, Al19, A18, A17, P2=PCS6=RTC
/1

out por t (0xf f 70, 0x1000) ; Pl OMD, P12=LED

« Configure the PPI 82C55 to all inputs, except fioes 120-23 which are used as output for the
ADC. You can reset these to inputs if not beingdufor that function.

out port b(0x0103, 0x9a) ; /1 all pins are input, 120-23 output

out port b(0x0100, 0);

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

The chip select lines are by default set to 15 wiate. This makes it possible to interface witdngn
slower external peripheral components. If you nexjfaster I/O access, you can modify this numizevrd

4-3

FlashCore-B Chapter 4: Software

as needed. Some TERN components, such as thelReal€lock, might fail if the wait state is decreds
too dramatically. A function is provided for tipsirpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state dependimthe argument wait.

wait=0, wait states = 0, |/O enable for 100 ns
wait=1, wait states = 1, |/O enable for 100+25 ns
wai t=2, wait states = 2, 1/0O enable for 100+50 ns
wai t=3, wait states = 3, |1/0O enable for 100+75 ns
wai t=4, wait states = 5, |/O enable for 100+125 ns
wait=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |/O enable for 100+375 ns

4.2.2 External Interrupt I nitialization

There are up to six external interrupt sourceshenRlashCore-B, consisting of maskable interrups pi
(INTO-INT4, INT6). There are also an additionaglei internal interrupt sources not connected to the
external pins, consisting of three timers, two DMannels, both asynchronous serial ports, and Me N
from the watchdog timer. For a detailed discus&wolving the ICUs, the user should refer to Cleapt

of the AMD Am188ES Microcontroller User's Manual.

TERN provides functions to enable/disable all ¢f hexternal interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiqdar
interrupt should be enabled, and the second isetifin pointer to an appropriate interrupt serviogtine
that should be used to handle the interrupt. TBBN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriateervice bit for the IR signal currently being bkad

must be cleared. This can be done using the NoifspEOl command. At initialization time, intenpt

priority was placed in Fully Nested mode. This nwetre current highest priority interrupt will bentaed

first, and a higher priority interrupt will interpti any current interrupt handlers. So, if the ud®oses to
clear the in-service bit for the interrupt currgritking handled, the interrupt service routine jusstds to
issue the nonspecific EOl command to clear theetifinighest priority IR.

To send the nonspecific EOl command, you need tiewhe EOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far (* intx_isr) ())
Return value: none

These functions can be used to initialize any drth@external interrupt channels (for pin locai@nd
other physical hardware details, see the Hardwaapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl&te second argument is a function pointer whidh w
act as the interrupt service routine. The overlwathe interrupt service routine is approximatyus.

By default, the interrupts are all disabled aftetialization. To disable them again, you can edghe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultwsiR
return on interrupt.

FlashCore-B Chapter 4: Software

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

There are two ports of 16 1/O pins available on ffeshCore-B. Hardware details regarding these P1O
lines can be found in the Hardware chapter.

There are several functions provided for accesthe¢oPIO lines. At the beginning of any application
where you choose to use the PIO pins as input/6ugpu will probably need to initialize these pinsone

of the four available modes. Before selecting gorsthis purpose, make sure that the peripheraleno
operation of the pin is not needed for a diffenese within the same application.

You should also confirm the PIO usage that is dieedrabove within ae_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not availabledar y
application. There are several PIO lines that aegdor other on-board purposes. These are alfibedc
in some detail in the Hardware chapter of this tézdl manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am18&Ker's Manual.

Please see the sample program ae_pio.teinn\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-cguné
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the P1O pingebding on the pin
being used, it might require from 5-10 us. The mmann efficiency you can get from the PIO pins ociéur
you instead modify the PIO registers directly watioutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for PIO port 0, andf@affor P1O port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
» 0, High-impedance Input operation

e 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned int pio_rd:

Arguments: char port

Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesatirent 1/0 value for the PI1O pins in the seleqted.

4-5

FlashCore-B Chapter 4: Software

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) tostilected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore-B carsée for a variety of applications. All three éra run
at ¥ of the processor clock rate, which determites maximum resolution that can be obtained. Be
aware that if you enter power save mode, that mgensmers will operate at a reduced speed as well

These timers are controlled and configured throaighode register which is specified using the safwa
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the PhitDn the SYSCON register. Before doing thisyyo
will want to specify your interrupt service routgjewvhich are used whenever the incoming digitahalig
switches from high to low, and low to high.

The timers can be used to time execution of yoer defined code by reading the timer values bedoc
after execution of any piece of code. For a sarfildelemonstrating this application, see the saniib
timer.c in the directory tern\186\samples\ae.

Two of the timers, TimerO and Timerl can be useddopulse-width modulation with a variable duty
cycle. These timers contain two max counters, wtiee output is high until the counter counts up to
maxcount A before switching and counting up to noaxt B.

It is also possible to use the output of Timerpr®-scale one of the other timers, since 16-bitltg®n at
the maximum clock rate specified gives you only 280 Only by using Timer2 can you slow this down
even further. Sample files demonstrating thistamer02.c and timerl2.c in the FlashCore-B samibde f
directory.

The specific behavior that you might want to impésthis described in detail in chapter 8 of the AMD
AM188ES User’s Manual.

void t0_init

void tl _init

Arguments: int tm, int ta, int tb, void interrupt far(*t_ig)
Return values: none

Both of these timers have two maximum counters (MAUNTA/B) available. These can all be
specified using ta and th. The argument tm isvidllee that you wish placed into the TOCON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified hisrealled whenever the full count is reached, vather
behavior possible depending on the value specifiethe control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except iydrds one max counter available.

FlashCore-B Chapter 4: Software

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timer (J9)dsmected, the function hitwd() must be called evie6y
seconds of program execution. If this is not exeduecause of a run-time error, such as an iefioibp
or stalled interrupt service routine, a hardwasetevill occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to taéue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff ieme. Backed up by a lithium-coin battery, tleal
time clock can be accessed and programmed usinghterdace functions.

There is a common data structure used to accesssanooth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten mnute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl0; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}TIM

intrtc rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the temaé clock within the argumemtstructure. The structurg
should be allocated by the user. This functioomet 0 on success and returns 1 in case of ecrohn, &s
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

FlashCore-B Chapter 4: Software

This function is used to initialize and set a vahie the real-time clock. The argumerghould be a null-
terminated byte array that contains the new timeesto be used.

The byte array should correspond tevdekday, year 10, year1, month10, month1, day10, dayl, hour 10,
hour1, minutel0, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intcetheal time clock is June 5, 1998, Friday, 13:55t86 byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8 0, 6, 0, 5, 1, 3, 5, 5 3, 0};

Delay

In many applications it becomes useful to pausereegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should use
hardware timers provided on-board for this purpose.

void delayO
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Tdwual time that it waits depends on processordspse
well as interrupt latency. The code is functiopadlentical to:

VWhile(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int

Return value: none

This function is similar to delayO, but the pasgedrgument is in units of milliseconds insteadaafp
iterations. Again, this function is highly depentlapon the processor speed.

unsigned int crcl6
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kgteay ofcount size pointed to bwptr.

void ae reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwardgugation, this might either start executing coctarf
the DEBUG ROM or from some other address.

FlashCore-B Chapter 4: Software

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgetlyin the header file ser0.h and serl.h in thectbry
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funetlgndentical. SERO is used by the debug kernel
provided as part of the TERN EV-P/DV-P softwares Kdr communication with the PC. As a result, you
will not be able to debug code directly written garial port O.

Two asynchronous serial ports are integrated inAimd88ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can tepata maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggion download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the followiligcussion; any of the interface functions whioh a
specific to SER1 can be easily changed into functials for SERO. While selecting a serial portidse,
please realize that some pins might be shared atfiter peripheral functions. This means that inaier
limited cases, it might not be possible to usersage serial port with other on-board controllenétions.
For details, you should see both chapter 10 of Ael88ES Microprocessor User's Manual and the
schematic of the FlashCore-B provided at the entiiefmanual.

TERN interface functions make it possible to use ofh a number of predetermined baud rates. These
baud rates are achieved by specifying a divisodf6 of the processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systenk;céo20 MHz system clock would have the baud rates
halved.

Function Argument | Baud Rate
110

150

300

600

1200
2400
4800
9600
19,200 (default)
38,400
57,600
115,200
250,000
500,000
15 1,250,000

© 00 N o 0o B~ W N PP

L e e =
A W N B O

Table 4.1 Baud rate values

After initialization by callingsl1_i ni t (), SER1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the speatifie baud rates.

4-9

FlashCore-B Chapter 4: Software

An input buffer,ser1_i n_buf (whose size is specified by the user), will autbosdly store the
receiving serial data stream into the memory by OMdperation. In terms of receiving, there is no
software overhead or interrupt latency for userliappion programs even at the highest baud rat®1AD
transfer allows efficient handling of incoming datdhe user only has to check the buffer status wit
serhit1() and take out the data from the buffer wgtht ser 1() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howeuhe transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy ¥
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), anduzbrate (baud) are specified by the user withi ni t ()

with a default mode of 8-bit, 1 stop bit, no pariffter s1_i nit() you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRegister
(SPOCT/SP1CT) if necessary, as described in chaptef the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andipesdsfects from the external environment, seinalut
data will automatically fill in the buffer circulbr without stopping, regardless of overwrite. lethiser
does not take out the data from the ring buffehwji¢t ser 1() before the ring buffer is full, new data
will overwrite the old data without warning or caoit Thus it is important to provide a sufficigntarge
buffer if large amounts of data are transferredr &le, if you are receiving data at 9600 baud,
KB buffer will be able to store data for approxielgtfour seconds.

However, it is always important to take out datdyeltom the input buffer, before the ring buffeslis
over. You may designate a higher baud rate forstrarting data out and a slower baud rate for recgiv
data. This will give you more time to do other tjgn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates data is available in the buffer.

You can us@et ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after eveggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Qalyardware reset @l_cl ose() can stop this
receiving operation.

For transmission, you can ugait ser 1() to send out a byte, or ugmut sersl1() to transmit a
character string. You can put data into the trahsing buffer,s1_out buf, at any time using this
method. The transmit ring buffer address (obuf) baffer length (osiz) are also specified at theetiod
initialization. The transmit interrupt service witheck the availability of data in the transmit fieuf If
there is no more data (the head and tail pointergqual), it will disable the transmit interrutherwise,
it will continue to take out the data from the duffer, and transmit. After you catlut ser 1() and
transmit functions, you are free to do other tagkh no additional software overhead on the tratsng
operation. It will automatically send out all thatd you specify. After all data has been sent,ilitalear
the busy flag and be ready for the next transmissio

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dth receive an input
HEX file from SER1 and translate every ‘' charadi® ‘?.” The translated HEX file is then transtad
out of SERO. This sample program can be fourtdeinn\ 186\ sanpl es\ ae.

Softwar e I nterface

Before using the serial ports, they must be inied.

4-10

FlashCore-B Chapter 4: Software

There is a data structure containing importanisgort state information that is passed as argtihoetine
TERN library interface functions. The COM struawhould normally be manipulated only by TERN
libraries. It is provided to make debugging of $&ial communication ports more practical. Siitce
allows you to monitor the current value of the leufind associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eitBeors
ser0 can be replaced with sl or serl, for examphch serial port should use its own COM structage,
defined in ae.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_mnt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /'l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */

} COM

sn_init

Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitle specified parameters.is the baud rate value
shown in Table 4.1. Argumenitsuf andisiz specify the input-data buffer, antduf andosiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 staip no parity communication.

There are a couple different functions used fondnaission of data. You can actually place dat&iwit
the output buffer manually, incrementing the head il buffer pointers appropriately. If you dotrecall
one of the following functions, however, the drivieterrupt for the appropriate serial-port will be
disabled, which means that no values will be trattech This allows you to control when you wisteth

4-11

FlashCore-B Chapter 4: Software

transmission of data within the outbound buffebémin. Once the interrupts are enabled, it is demgs
to manipulate the values of the outbound buffervel as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the trabhdffer for the appropriate serial port. The retu
value returns one in case of success, and zemyiother case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated characteingtinto the transmit buffer. The return valueurets
one in case of success, and zero in any other case.

DMA transfer automatically places incoming dataoirthe inbound buffer. serhitn() should be called

before trying to retrieve data.

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufée this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte fram in_buf, and increments tha_tail pointer. Once again, thif
function assumes thatr hitn has been called, and that there is a characteemrésthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffeir with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret¢ASCII: 0x0d) is retrieved.

This function makes repeated callgyabser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtmdouffer.

Be careful when you are using this function. Téteimed character string is actually a byte array
terminated by a null character. This means thextetimight actually be multiple null charactershia byte
array, and the returned@lue is the only definite indicator of the number otds/read. Normally, we
suggest that thgetsers andputsers functions only be used with ASCII character stsinij you are
working with byte arrays, the single-byte versiofishese functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awgiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadev

4-12

FlashCore-B Chapter 4: Software

flow control in the form of CTS (Clear-To-Send) aRd@S (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appaigfor
whatever form of flow control you wish to implemenBefore using these functions, you should once
again be aware that the peripheral pin function gmiusing might not be selected as needed. Failsie
please refer to the Am188ES User's Manual.

char sn_cts(void)
Retrieves value o€ TS pin.

void sn_rts(char b)
Sets the value dRTStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Hefau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délshardware as well as disabling the interrupt.
clean_sern

Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the &mitl header buffer pointers.

The asynchronous serial 1/0 ports available on Ah€l88ES Processor have many other features that
might be useful for your application. If you amuly interested in having more control, please read
Chapter 10 of the User’s manual for a detailedwdismon of other features available to you.

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-Bgaovides easy storage of non-volatile program
parameters. This is usually an ideal locationtéeesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite skmywmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spaadlfi for this purpose.

Addresses 0x00 to Ox1f on the EEPROM is reservedystem use, including configuration information
about the controller itself, jump address for S2epnd other data that is of a more permanent @atur

The rest of the EEPROM memory space, 0x20 to Oxd Hiyailable for your application use.

ee wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedia to the specifieédddr. The return value is 0 in success.

4-13

FlashCore-B Chapter 4: Software

ee rd
Arguments: int addr
Return value: int data

This function returns one byte of data from thecsfped address.

45 FILESYSLIB

FILESYS.LIB is C library that includes fileio.objd filegeo.obj that supports data transfers to famah
Compact Flash cards installed on the FlashCoretBeoFB-0.

4.5.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any othek diperations. It should also be called if a newddar
installed.

This function will return O if a card with FAT fiystem is located and initialized. Any other return
indicate the card was ‘busy’ (not found), or if kligeometry is not correct. If 0 is not return, dhec
<filegeo.h> for error-code description.

4.5.2 File System Access and Modification

A fs_descrip structure is used as a file handlarnt@pen file. The structure might change over tiamal
you should be careful in accessing any fields diye@his structure is used in many of the functiails
that define file management on the FlashCore-BR30F

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen()s thust later be freed by a corresponding call to
fs_FBlose(), even if an error occured at some pwitit the file.

2) a call to fs_findfirst(), passing in a fs_depcriariable you've created (in any way). The fda't
actually open, and you are responsible for freéiegvariable.

The structure is defined below:

aaaaaaaaaaaaaaa * *****************/

struct fs_descrip {
unsigned int ff_dirpos; // The number of theedtory entry for this file.
unsigned int ff_start, // The starting cluster
ff_current; // The clasturrently being written to.
char ff_attrib; /I Attribute byte, see FAxxabove.
char ff_mode; /I Either fREAD or fWRITE or FBLES.

4-14

FlashCore-B Chapter 4: Software

unsigned int ff_ctime, ff_cdate; /I Fdeeated time and date.
unsigned int ff_mtime, ff_mdate; /I Fiteodified time and date.
unsigned int ff_adate; /I File accessaiddno time stored.
unsigned long ff_fsize, /I File size indy.

ff_position; // The 'read' pointer.
int ff_status; /I For passing error information.
char ff_name[FNLEN+1]; // File name, with \0.
unsigned char *ff_buf; // Cluster buffer, sestonust be read and written

/l from disk in entirety, so this area bufferenth Created on the heap!

aaaaaaaaaaaaaaa * ***************/

struct fs_descrip *fs_fopen(const char *filename, int flags)

Opens and prepares a file for operation. The argtsrage as follows:

The flag should be one of the following values:
O_RDONLY : (open file for read only, failsfife doesn't exist),
O_WRONLY : (open/creates a file, fails if fibxists),
O_APPEND : (open a file and prepares to apppositioning file pointer at the end of the pragja

where the flags are defined as:

#tdef i ne O _RDONLY 0x1
#defi ne O WRONLY 0x2
#def i ne O_APPEND 0x4

The function returns a 'struct fs_descrip' handléhe open file, or NULL if it fails. It is importd to note
that if a file is successfully opened, it shouldays be closed using fs_FBlose() to free any memseg
for the file handle. The function call fs_FBlos®()! also finalize any modifications to the file.

int fs_findfirst(char *pathname, struct fs_descrip *descrip)

Finds the *first* file entry (including directorieand 'labels' corresponding to the argument 'patieha
The handle for the file is returned in the 'descamument (you must allocate memory for it before
making the call). This file is not* actually open@eu don't need to fs_FBlose() it later, either).

This function returns one of the following:

fOK: a file was found.

4-15

FlashCore-B Chapter 4: Software

fend: The end of the directory specifiedpiathname' was reached, but no file found.

error code : Check this file and <filegeo.h> fooe-code descriptions.

For version 1.0, pathname MUST be "*.*". Any ottpthname will generate an error. In later versjon
other pathnames/wildcards may be supported. Swllao fs_findfirst("*.*",) returns the fitsfile
entry in the root directory.

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in file's directory. The details of the file are tten into the
same argument file descriptor. As before, theififtnot* actually opened.

Return values:
fOK: afile was found.
fEND: The end of the directory specified iatlpname' was reached, but no file found.

error code : Check this file and <filegeo.h> fotoe-code descriptions.

Use this function, in combination with fs_findfir$o iterate through the entries in a directory.

unsigned char fs fgetc(struct fs descrip *fs_descrip)

Get a single byte from the opened file pointedyteHe file descriptor.
RETURNS:

Normally, next byte of data.

0" : Default return value if a read froile fis not possible. In this case, check fs_desefipstatus to
determine the cause. Might be fEOF (end of fifl).EGAL (illegal operation), or other error
code. (fOK indicates the read value was "\0").

unsigned char fs_fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointetydhe file descriptor.
RETURNS:

Normally, the character that was just writtene file.
\O' : Default return value if a read froite fis not possible.
In this case, check fs_descrip->fitis$ to determine the cause.

Might be fEOF (end of file), fILLEGALillegal operation),

4-16

FlashCore-B Chapter 4: Software

or other error code (full disk).

char fs fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened filedéscrip’, of up to n characters. Returns wheewdine
\n', or end of file is reached.

RETURNS:

The contents of fs_descrip->ff_status (fOK ifialcorrect).

char fs fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string tbhe opened file pointed by fs_descrip.
RETURNS:
The number of characters successfully output.

This function automatically adds carriage returrb&fore newline \n', as in standard DOS practice

char fs_FBlose(struct fs_descrip *fs_descrip)

Closes a file previously opened with fs_fopen, sgvany lingering changes, updating directory egtrie
and freeing memory associated with fs_descrip (o@ $0 only fs_FBlose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

Returns error code associated with file; the cmist®f fs_descrip are no longer valid after this
call, do not check its ff_status field.

void fs_ StampTimeHM SMDY (struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'accessidifitation’, or 'creation' for a file pointed toy b
fs_descrip in the directory entry. Since not aliteyns have RTC, the user is expected to use thedidun
if they wish to use file timestamps. fs_fopen, fBldse, etc... will not. DOS usually stores timegtanm
'packed' storage format (documentation availablmen

4-17

FlashCore-B Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@evelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and praxgming tools.

For details regarding software function prototypad sample files demonstrating their use, pledse te
Appendix G, “Software Glossary” of the technicalrmal for the AE&AEP in \tern_docs\manuals\ from
the root directory of your CD.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simpbw cost solution to application engineers, some
guidelines must be followed. If they are not falkxd, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Reniaébdugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrecing problems. Most problems occur in multi-ini@t-
driven situations. Because the remote kernel rynmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatiomogram enables interrupt and occupies the intérrup
controller for longer than the remote debuggeraarept, the debugger will time-out. As a resulyry®C
may hang-up. In extreme cases, a power reset megguired to restart your PC.

For your reference, be aware that our system istekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssisf an I/O address space and a memory address
space. /O address space ranges foa6000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. ah@ memory mappings are done in software to define
how translations are implemented by the hardwdneplicit accesses to 1/0O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expjicticess any address in 1/0O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in 1/0O space) or non-mapped orgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigngdnsigned char data
Return value: none

These standard C functions are used to place sggbdata at any memory space location. Jdgeent
argument is left shifted by four and added todffset argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space nibsamnshe appropriate address and data are placed o
the address and data-bus, and any memory-spacengap place for this particular range of memory
will be used to activate appropriate chip-selaewtdi and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments. unsigned int segment, unsigned int offset

4-1

FlashCore-B Chapter 4: Software

Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifidt@ss in memory space. Once againstgment
address is shifted left by four bits and addedé&mtfset to find the 20-bit address. This address is thep
output over the address bus, and the hardware amenpoapped to that address should return either gn
8-bit or 16-bit value over the data bus. If thisrao component mapped to that address, this fometill
return random garbage values every time you tpegk into that address.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tdeta into the appropriataddressin I/O space. It is used most often
when working with processor registers that are redgpto I/O space and must be accessed using either
one of these functions. This is also the functiead in most cases when dealing with user-confijure
peripheral components.

When dealing with processor registers, be sures¢ctiie correct function. Usetport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in I/O space. You will find that most
hardware options added to TERN controllers are redppto 1/0O space, since memory space is valuable
and is reserved for uses related to the code atad dising 1/0 mappings, the address is output thwer
address bus, and the returned 16 or 8-bit valtleiseturn value.

For further discussion of I/O and memory mappimdsase refer to the Hardware chapter of this testin
manual.

41AE.LIB

AE.LIB is a C library for basic FlashCore-B opeaats. It includes the following modules: AE.OBJ,
SERO0.0BJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You medohk AE.LIB in your applications and
include the corresponding header files. AlthoughlAE includes drivers for things like ADC, DAC, and
RTC, these drivers were originally written for tAeEngine, the first TERN controller based on theé3 18
CPU, and are not the same for the FlashCore-B.uBg&on on the drivers for the FB’s ADC, DAC, and
RTC will be included in this chapter. Yet AE.LIBilsprovides the FB user with drivers for SERO, SER
EEPROM, timers/counters, and watchdog. Softwareedsifor the FlashCore-B ADC, DAC, and RTC are
found in the sample code provided in tteen\186\samples\fb directory. The following is a list of the
header files included in AE.LIB (only topics highiited inBOL D apply to the FB):

Include-filename | Description

AE.H PPI,timer/counter, ADC, DAC, RTC,Watchdog,
SERO.H Internal serial port O

SER1.H Internal serial port 1

AEEE.H on-board EEPROM

4-2

FlashCore-B Chapter 4: Software

4.2 Functionsin AE.OBJ

4.2.1 FlashCore-B Initialization

ae init

This function should be called at the beginningwdry program running on FlashCore-B core contrelle

It provides default initialization and configuratiocof the various 1/0O pins, interrupt vectors, sats
expanded DOS 1/0, and provides other processorifgpagpdates needed at the beginning of every
program.

There are certain default pin modes and interrefitrgys you might wish to change. With that in thin
the basic effects of ae_init are described belbar. details regarding register use, you will wantdfer to
the AMD Am188ES Microcontroller User’'s manual.

* |nitialize the upper chip select to support thedalllt ROM. The CPU registers are configured
such that:

* Address space for the ROM is from 0x80000-0xftth map MemCard I/O window)
* 512K ROM Block size operation.

* Three wait state operation (allowing it to suppap to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you requireréased performance (at a risk of stability irsgoi
environments). For details, see the UMCS (Uppemigly Chip Select Register) reference in the
processor User's manual.

out port (Oxffa0, 0x80bf); // UMCS, 512K ROV| 0x80000-Oxfffff

* |nitialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:
* Address space starts 0x00000, with a maximuml@kKsRAM.
* 3 wait state operation. Reducing this value itaprove performance.

* Disables PSRAM, and disables need for exterradye
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

* Initialize MMCS and MPCS so th&l CSO andPCS0-PCS6 (except for PCS4) are configured so:

*MCS0 is mapped also to a 256K window at 0x80000. #duwith MemCard, this
chip select line is used for the I/O window.
* Sets upPCS5-6 lines as chip-select lines, with three wait staieration.

out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH

* |nitialize PACS so thaPCS0-PCS3 are configured so that:
* Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.

* The chip select lines starts at I/O address 000@0th each successive chip select line addressed
0x100 higher in I/O space.

out port (Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

* Configure the two PIO ports for default operatiofill pins are set up as default input, exceptfae
(used for driving the LED), and peripheral funatijsins for SERO and SER1, as well as chip selects
for the PPI PPI does not apply to FB).

out port (Oxff 78, 0xe73c); /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/1 P16=PCSO, P17=PCS1=PPI

out port (Oxff 76, 0x0000) ; /1 Pl OVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, A19, A18, Al7, P2=PCS6=RTC
/1

out port (Oxff 70, 0x1000) ; Pl OMD, P12=LED

4-3

FlashCore-B Chapter 4: Software

Thislast section does not apply tothe FB, asit isnot installed with the 82C55 PPI chip.

* Configure the PPI 82C55 to all inputs, exceptlfoes 120-23 which are used as output for the ADC.
You can reset these to inputs if not being usedHhat function.

out port b(0x0103, 0x9a) ; /1 all pins are input, |20-23 output

out port b(0x0100, 0);

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

The chip select lines are by default set to 15 wi@te. This makes it possible to interface widngn
slower external peripheral components. If you negfaster I/O access, you can modify this numimavrd
as needed. Some TERN components, such as thelReal€lock, might fail if the wait state is decreds
too dramatically. A function is provided for tipsirpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state dependimthe argument wait.

wait=0, wait states = 0, |/O enable for 100 ns
wait=1, wait states = 1, |/O enable for 100+25 ns
wait=2, wait states = 2, |/O enable for 100+50 ns
wai t=3, wait states = 3, |1/O enable for 100+75 ns
wai t=4, wait states = 5, |/O enable for 100+125 ns
wai t=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |/ O enable for 100+375 ns

4.2.2 External Interrupt I nitialization

There are up to six external interrupt sourceshenRlashCore-B, consisting of maskable interrups pi
(INTO-INT4, INT6). There are also an additionaglei internal interrupt sources not connected to the
external pins, consisting of three timers, two DMannels, both asynchronous serial ports, and Me N
from the watchdog timer. For a detailed discus&wolving the ICUs, the user should refer to Cleapt

of the AMD Am188ES Microcontroller User's Manual.

It is important to refer to your controller’s schatic (found in tern_docs\schs, or at the end of thi
technical manual) to determine which interrupts miglready be in use by on-board components (and
should therefore not be used by user applicatidrgble 3.2 of Chapter 3 also gives a summary otlvhi
interrupts and PIOs are reserved by certain haelwasoard.

TERN provides functions to enable/disable all ¢ hexternal interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiqdar
interrupt should be enabled, and the second isctifin pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBBN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriateervice bit for the IR signal currently being bkad

must be cleared. This can be done using the NoifspEOl command. At initialization time, intenpt

priority was placed in Fully Nested mode. This netre current highest priority interrupt will bentaed

first, and a higher priority interrupt will interpti any current interrupt handlers. So, if the ud®oses to
clear the in-service bit for the interrupt currgrtking handled, the interrupt service routine juestds to
issue the nonspecific EOl command to clear theetifinighest priority IR.

To send the nonspecific EOl command, you need tiewhe EOI register word with 0x8000.
out port (0xff22, 0x8000);

FlashCore-B Chapter 4: Software

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any drte@external interrupt channels (for pin locai@nd
other physical hardware details, see the Hardwaapter). The first argumentndicates whether this
particular interrupt should be enabled or disabl€te second argument is a function pointer whidh w
act as the interrupt service routine. The overtwrathe interrupt service routine is approximayus.

By default, the interrupts are all disabled aftetialization. To disable them again, you can egghe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in tltatan not be masked (disabled). The defaultwsR
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

There are two ports of 16 1/O pins available on ffeshCore-B. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

There are several functions provided for accesth¢oPIO lines. At the beginning of any application
where you choose to use the PIO pins as input/6ugpu will probably need to initialize these pinsone

of the four available modes. Before selecting gorsthis purpose, make sure that the peripheraleno
operation of the pin is not needed for a diffenese within the same application.

You should also confirm the PIO usage that is dieedrabove within ae_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not availabledar y
application. There are several PIO lines that aeddor other on-board purposes (Table 3.2 hehifyl
which PIO are not available). These are all desediin some detail in the Hardware chapter of this
technical manual. Your controller's schematic isoahn excellent source for determining a PIO line’s
availability (tern_docs\schs on your TERN CD). Rodetailed discussion toward the I/O ports, please
refer to Chapter 11 of the AMD Am188ES User’'s Mdnua

Please see the sample program ae_pio.teinn\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-cunt
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingebding on the pin
being used, it might require from 5-10 us. The mmaxn efficiency you can get from the PIO pins ociéur
you instead modify the PIO registers directly watioutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for PI1O port 0, andf@affor P1O port 1.

void pio_init
Arguments: char bit, char mode

4-5

FlashCore-B Chapter 4: Software

Returnvalue: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
normal operation

input with pullup/pulldown

output
input without pullup/pulldown

R I
whh = o

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesatirent 1/0 value for the PI1O pins in the seleqted.
void pio_wr:

Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) tostilected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore-B carsée for a variety of applications. All three éra run

at ¥ of the processor clock rate, which determites maximum resolution that can be obtained. Be
aware that if you enter power save mode, that méansimers will operate at a reduced speed as well
System clock for the FB is 40MHz. The FB’s CPU uadsnes-one operating frequency, making the CPU
clock 40MHz as well. If the timers/counters areviemd every four CPU clocks, the maximum rate at
which the timers can operate is 10MHz.

These timers are controlled and configured thromghode register which is specified using the sakwa
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the Phitin the SYSCON register. Before doing thisyyo
will want to specify your interrupt service routgjevhich are used whenever the incoming digitahalig
switches from high to low, and low to high.

The timers can be used to time execution of yoer defined code by reading the timer values bedock
after execution of any piece of code. For a sarfildelemonstrating this application, see the saniib
timer.c in the directory tern\186\samples\ae.

Two of the timers, TimerO and Timerl can be useddopulse-width modulation with a variable duty
cycle. These timers contain two max counters, whbe output is high until the counter counts up to
maxcount A before switching and counting up to noaxt B.

It is also possible to use the output of Timerpite-scale one of the other timers, since 16-bitltg®n at
the maximum clock rate specified gives you only ¥80 Only by using Timer2 can you slow this down
even further. Sample files demonstrating thistamer02.c and timerl2.c in the FlashCore-B samibde f
directory.

The specific behavior that you might want to impéerhis described in detail in chapter 8 of the AMD
AM188ES User’'s Manual.

void t0_init |

FlashCore-B Chapter 4: Software

void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_ig()
Return values: none

Both of these timers have two maximum counters (MAUNTA/B) available. These can all be

specified using ta and tb. The argument tm isviddee that you wish placed into the TOCON/T1CON
mode registers for configuring the two timers. Thapter on timers in the AMD AM188ES user’'s manual
can help with determining the correct value to ta the timer control register.

The interrupt service routine t_isr specified hisrealled whenever the full count is reached, vather
behavior possible depending on the value specifiethe control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except iyd@s one max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timer (J9)dsmected, the function hitwd() must be called e\ie6y
seconds of program execution. If this is not exedupecause of a run-time error, such as an iefioibp

or stalled interrupt service routine, a hardwarsetewill occur. Using the watchdog timer can be an
excellent way to recover program execution if asbraccurs due to hot-swapping compact flash cards.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to taére ofledd.

Delay

In many applications it becomes useful to pausereegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Tdwual time that it waits depends on processordspse
well as interrupt latency. The code is functiopadlentical to:

Vhile(t) { t--; }

FlashCore-B Chapter 4: Software

Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delayO, but the pasgedrgument is in units of milliseconds insteadaafp
iterations. Again, this function is highly depentlapon the processor speed.

unsigned int crcl6
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kteay ofcount size pointed to bwptr.

void ae reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwardgumation, this might either start executing cooenf
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgedtlyin the header file ser0.h and serl.h in thectbry
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funetlgndentical. SERO is used by the debug kernel
provided as part of the TERN EV-P/DV-P softwares Kdr communication with the PC. As a result, you
will not be able to debug code directly written arial port O.

Two asynchronous serial ports are integrated irl8&CPU: SERO and SER1. Both ports have baud rate
based on the 40 MHz clock, and can operate at éanmiax of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggion download/debugging in STEP 1 and STEP
2. We will use SERL1 as the example in the followiligcussion; any of the interface functions whioh a
specific to SER1 can be easily changed into functials for SERO. While selecting a serial portidse,
please realize that some pins might be shared atfiter peripheral functions. This means that inaier
limited cases, it might not be possible to usersage serial port with other on-board controllenftions.
For details, you should see both chapter 10 of Ael88ES Microprocessor User's Manual and the
schematic of the FlashCore-B provided at the entiiefmanual.

TERN interface functions make it possible to use oh a number of predetermined baud rates. These
baud rates are achieved by specifying a divisodf6 of the processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systenk;cloc

Function Argument | Baud Rate

1 110
2 150
3 300

4-8

FlashCore-B Chapter 4: Software

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1_i ni t (), SER1 is configured as a full-duplex serial pard & ready to
transmit/receive serial data at one of the speatifie baud rates.

An input buffer,ser1_i n_buf (whose size is specified by the user), will autbosdly store the
receiving serial data stream into the memory by OMdperation. In terms of receiving, there is no
software overhead or interrupt latency for userliappion programs even at the highest baud rat®1AD
transfer allows efficient handling of incoming datdhe user only has to check the buffer status wit
serhit1() and take out the data from the buffer wgtht ser 1() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howeuhe transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy ¥
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), anduzbrate (baud) are specified by the user withi ni t ()

with a default mode of 8-bit, 1 stop bit, no pariffter s1_i nit () you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRegister
(SPOCT/SP1CT) if necessary, as described in chaptef the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andipesdsfects from the external environment, seinalut
data will automatically fill in the buffer circulbr without stopping, regardless of overwrite. lethiser
does not take out the data from the ring buffehwji¢t ser 1() before the ring buffer is full, new data
will overwrite the old data without warning or cooit Thus it is important to provide a sufficigntarge
buffer if large amounts of data are transferredr &le, if you are receiving data at 9600 baud,
KB buffer will be able to store data for approxielgtfour seconds.

However, it is always important to take out datdyeliom the input buffer, before the ring buffeslis
over. You may designate a higher baud rate forstratting data out and a slower baud rate for recgiv
data. This will give you more time to do other tn without overrunning the input buffer. You caseu

4-9

FlashCore-B Chapter 4: Software

serhit1() to check the status of the input buffer and rethnoffset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates data is available in the buffer.

You can usget ser 1() to getthe serial input data byte by byte usingd~ffom the buffer. The in_tail
pointer will automatically increment after eveggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalhardware reset &l _cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsing buffer,s1_out buf, at any time using this
method. The transmit ring buffer address (obuf) baffer length (osiz) are also specified at theetiod
initialization. The transmit interrupt service witheck the availability of data in the transmit feuf If
there is no more data (the head and tail pointergqual), it will disable the transmit interruPtherwise,
it will continue to take out the data from the duffer, and transmit. After you calut ser 1() and
transmit functions, you are free to do other tagith no additional software overhead on the trattng
operation. It will automatically send out all thatd you specify. After all data has been sent,ilitalear
the busy flag and be ready for the next transmissio

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dubh receive an input
HEX file from SER1 and translate every "’ charadie ‘?." The translated HEX file is then transted
out of SERO. This sample program can be fourtdeinn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be iniéed.

There is a data structure containing importaniasgort state information that is passed as argtihoetine
TERN library interface functions. The COM struawhould normally be manipulated only by TERN
libraries. It is provided to make debugging of $&ial communication ports more practical. Siitce
allows you to monitor the current value of the leufind associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eitBeors
ser0 can be replaced with sl or serl, for examphch serial port should use its own COM structage,
defined in ae.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */

unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /[* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /1 transmit nacro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

4-10

FlashCore-B Chapter 4: Software

unsi gned char cr; /* scc CR register */
unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsi gned int in_offs; /* input buffer offset */
unsi gned i nt out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */

} COM

sn_init

Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 witte specified parameters.is the baud rate value
shown in Table 4.1. Argumenitsuf andisiz specify the input-data buffer, antuf andosiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stap no parity communication.

There are a couple different functions used fondnaission of data. You can actually place datiwit
the output buffer manually, incrementing the head t&il buffer pointers appropriately. If you dotreall
one of the following functions, however, the drivieterrupt for the appropriate serial-port will be
disabled, which means that no values will be trattech This allows you to control when you wisteth
transmission of data within the outbound buffebémin. Once the interrupts are enabled, it is demgs
to manipulate the values of the outbound buffervel as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte ‘outch’ into the sanit buffer for the appropriate serial port. Théura
value returns one in case of success, and zemyiother case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated characteingtinto the transmit buffer. The return valueurets
one in case of success, and zero in any other case.

DMA transfer automatically places incoming dataoihe inbound buffer. serhitn() should be called
before trying to retrieve data.

ser hitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufée this serial port.
getsern

Arguments. COM *c
Return value: unsigned char value

4-11

FlashCore-B Chapter 4: Software

This function returns the current byte fram in_buf, and increments tha_tail pointer. Once again, this
function assumes thatr hitn has been called, and that there is a charactegmirgsthe buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffeir with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret@ASCII: 0x0d) is retrieved.

This function makes repeated callgygbser, and will block untillen bytes are retrieved. The retwra ue
indicates the number of bytes that were placedtmdouffer.

Be careful when you are using this function. Téteimed character string is actually a byte array
terminated by a null character. This means thexietimight actually be multiple null charactershe byte
array, and the returna@lue is the only definite indicator of the number otds/read. Normally, we
suggest that thgetsers andputsers functions only be used with ASCII character stsin you are
working with byte arrays, the single-byte versiafishese functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadev
flow control in the form of CTS (Clear-To-Send) aRd@S (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appatgfor
whatever form of flow control you wish to implemenBefore using these functions, you should once
again be aware that the peripheral pin function gmiusing might not be selected as needed. Failgje
please refer to the Am188ES User’'s Manual as veetha FB schematic in the tern_docs\schs directory.

char sn_cts(void)
Retrieves value o€ TS pin.

void sn_rts(char b)
Sets the value d®RTStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Hefau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délahardware as well as disabling the interrupt.
clean_sern

Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the &itl header buffer pointers.

4-12

FlashCore-B Chapter 4: Software

The asynchronous serial 1/0 ports available on Ah€l88ES Processor have many other features that
might be useful for your application. If you amuly interested in having more control, please read
Chapter 10 of the User’'s manual for a detailedwdismon of other features available to you.

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-Bgaovides easy storage of non-volatile program
parameters. This is usually an ideal locationtéeesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slmywmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spaadlfi for this purpose.

Addresses 0x00 to Ox1f on the EEPROM is reservedystem use, including configuration information
about the controller itself, jump address for S2epnd other data that is of a more permanent @atur

The rest of the EEPROM memory space, 0x20 to Oxd Hiyailable for your application use.

ee wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedia to the specifieédddr. The return value is 0 in success.
ee rd

Arguments: int addr

Return value: int data

This function returns one byte of data from thec#fjperd address.

45 Other FB Funtions

Funtions included below are not included in anydilp. Their delcartion and definitions have been
included in the sample code in the tern\186\sanipledirectory. To utilize these functions and have
access to the hardware they support, the usereonpgtthe function definitions into their applicatioode.

451RTC

The real-time clock can be used to keep track aff ieme. Backed up by a lithium-coin battery, tleal
time clock can be accessed and programmed usingrtedface functions. The RTC on the FB differs
from the RTC on most other TERN controllers. ThiM Btructure as defined below remains the same, but
the software drivers differ by a small amount.slaiso important to note that the drivers for tiBeRTC

are not part of any library, including ae.lib. Taedrivers are declared and defined in the sampiie co
FB_rtc.c in the tern\186\samples\FB directory. Tser must copy the definitions into their sourcdeco

There is a common data structure used to accesssanooth interfaces.

4-13

FlashCore-B Chapter 4: Software

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl0; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten minute digit.
unsi gned char hourl1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl0; Ten day digit.
unsi gned char nonl; One nmonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

int rtc1337_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the temé clock within the argumenmtstructure. The structurg
should be allocated by the user. This functioomet 0 on success and returns 1 in case of ecrohn, &s
the clock failing to respond.

int rtc1337_rds
Arguments: char * realTime
Return value: unsigned char error_code

This function places the current value of the temé clock into the character stringal Time. It is similar
to the above function, yet makes it simpler to thea the result of the function call for other ppggs by
placing the result into a character string, notThe structure.

Void rtc1337_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumerghould be a null-
terminated byte array that contains the new timleevto be used.

The byte array should correspond tedekday, year 10, year1, month10, month1, day10, dayl, hour 10,
hour1, minutelO, minutel, second10, secondl, O }.

If, for example, the time to be initialized intcetheal time clock is June 15, 2002, Friday, 13:65tBe
byte array would be initialized to:

unsigned char t[14] = { 5, 0, 2, O, 6, 1, 5, 1, 3, 5, 5 3, 0};

4.5.2 ADC

4-14

FlashCore-B Chapter 4: Software

unsigned int fb_ad16(unsigned char k)
Arguments: unsigned char k
Return value: unsigned int data

This function passes a control bit¢o the ADS8344. The bytedetermines the which channels and
mode are being selected. Modes can include singleekor differential inputs. The return vakleta is
the 16-bit result of the previous conversion.

Control bytes are as follows (these are also définehe ADS8344 data sheets in the tern_docs\parts
directory): By default, the internal clock is setkt.

For single ended inputs:

k = 0x86 ADO
k = Oxc6 AD1
k = 0x96 AD2
k = 0xd6 AD3
k = Oxa6 AD4
k = Oxe6 AD5
k = 0xb6 ADG6
k = Oxf6 AD7

For differential inputs:

k = 0x82 ADO = IN+, AD1 = IN-
k = 0x92 AD2 = IN+, AD3 = IN-
k = 0xa2 AD4 = IN+, AD5 = IN-

k = Oxb2 ADG6 = IN+, AD7 = IN-

/I Same as above just change in polarity
k = Oxc2AD1 = IN+, ADO = IN-

k = O0xd2 AD3 = IN+, AD2 = IN-
k = Oxe2AD5 = IN+, AD4 = IN-
k = 0xf2 AD7 = IN+, AD6 = IN-

4.5.3 DAC

The FB can support two 2-channel 12-bit DACs. Each habitof resolution, yielding a 0-4.095 volt
output range, making 1LSB equal to 1 millivolt. T@és one software driver for each 2-channel DARe T
user must format the passed argument to deternminghvehannel the output will be written to, seedvel
for details. As mentioned in the hardware chapter,settling time is |/s, and each channel can sink or
source 7mA.

void fb_dal(int dat); /I drives DAC at U13, Outputs = VA & VB
void fb_da2(int dat); /I drives DAC at U14, Outputs = VC & VD

4-15

FlashCore-B Chapter 4: Software

Arguments: int dat
Return value: void

This function passes a 12-bit value to output oa @fithe four analog outputs on the FB. FB_dal
corresponds to VA & VB while FB_da2 correspond¥ & VD. The argument passed to the function
must be formatted to determine which channel tpaut

Of the 16-bitint passed, the lower 12 bits represent the voltapge riven on the output. Bits 15 and 14
should be zero, bit 13 should be one, and bit b2ilshbe a zero for channel A and one for channel B.

Example of how to format:

dat = (output_voltage) & OxXOFFF; /I AND with @xFF for lower 12 bits
dat = dat | 0x2000; /I OR with 0x2000 for chaln&
dat = dat | 0x3000; /I OR with 0x3000 for chalnB

Refer to FB_da.c in the tern\186\samples\FB dimydiar sample code and function definitions.

46 FILESYSLIB

FILESYS.LIB is C library that includes fileio.objd filegeo.obj that supports data transfers to famah
Compact Flash cards installed on the FlashCoreiBeoFB-0.

4.6.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any othek diperations. It should also be called if a newddar
installed.

This function will return 0 if a card with FAT fiystem is located and initialized. Any other return
indicate the card was ‘busy’ (not found), or if kdigeometry is not correct. If 0 is not return, dhec
<filegeo.h> for error-code description.

4.6.2 File System Access and Modification

A fs_descrip structure is used as a file handlant@pen file. The structure might change over tiamal
you should be careful in accessing any fields diyed@his structure is used in many of the functalls
that define file management on the FlashCore-BB0OF

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen(js thust later be freed by a corresponding call to
fs_FBlose(), even if an error occured at some pwittt the file.

4-16

FlashCore-B

Chapter 4: Software

2) a call to fs_findfirst(), passing in a fs_depcriariable you've created (in any way). The fda't

actually open, and you are responsible for freéiiegvariable.

The structure is defined below:

aaaaaaaaaaaaaaa * *****************/

struct fs_descrip {

unsigned int ff_dirpos; // The number of theedtory entry for this file.
unsigned int ff_start, // The starting cluster

ff_current; // The clasturrently being written to.
char ff_attrib; /I Attribute byte, see FAxxabove.
char ff_mode; /I Either fREAD or fWRITE or FBLE®.
unsigned int ff_ctime, ff_cdate; /I Fdeeated time and date.
unsigned int ff_mtime, ff_mdate; /I Fiteodified time and date.
unsigned int ff_adate; /I File accessat dno time stored.
unsigned long ff_fsize, Il File size indy.

ff_position; // The 'read' pointer.
int ff_status; /I For passing error information.
char ff_name[FBLEN+1]; // File name, with \0.
unsigned char *ff_buf; // Cluster buffer, sestonust be read and written

/I from disk in entirety, so this area buffererih Created on the heap!

* * *k%k * *hkkkkkkkkkkkhkk /

struct fs_descrip *fs_fopen(const char *filename, int flags)
Opens and prepares a file for operation. The argtsrare as follows:
The flag should be one of the following values:

O_RDONLY : (open file for read only, failsfife doesn't exist),
O_WRONLY : (open/creates a file, fails if fibxists),

O_APPEND : (open a file and prepares to apppositioning file pointer at the end of the pragja

where the flags are defined as:

#define O_RDONLY 0x1
#define O_VWRONLY 0x2
#defi ne O_APPEND 0x4

4-17

FlashCore-B Chapter 4: Software

The function returns a 'struct fs_descrip' handléhe open file, or NULL if it fails. It is importd to note
that if a file is successfully opened, it shouldays be closed using fs_FBlose() to free any memseg
for the file handle. The function call fs_FBlose()! also finalize any modifications to the file.

int fs_findfirst(char *pathname, struct fs_descrip *descrip)

Finds the *first* file entry (including directorieand 'labels' corresponding to the argument 'patieha
The handle for the file is returned in the 'descamument (you must allocate memory for it before
making the call). This file is not* actually open@@u don't need to fs_FBlose() it later, either).

This function returns one of the following:
fOK: a file was found.
fend: The end of the directory specifiedpathname' was reached, but no file found.

error code : Check this file and <filegeo.h> fooe-code descriptions.

For version 1.0, pathname MUST be "*.*". Any ottpthname will generate an error. In later versjon
other pathnames/wildcards may be supported. Swllao fs_findfirst("*.*",) returns the fitsfile
entry in the root directory.

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in file's directory. The details of the file are tien into the
same argument file descriptor. As before, theififtnot* actually opened.

Return values:
fOK: afile was found.
fEND: The end of the directory specified iatlpname' was reached, but no file found.

error code : Check this file and <filegeo.h> fotoe-code descriptions.

Use this function, in combination with fs_findfir$o iterate through the entries in a directory.

unsigned char fs fgetc(struct fs descrip *fs_descrip)

Get a single byte from the opened file pointedyteHe file descriptor.
RETURNS:

Normally, next byte of data.

0" : Default return value if a read froile fis not possible. In this case, check fs_desefipstatus to
determine the cause. Might be fEOF (end of fifd)LEGAL (illegal operation), or other error
code. (fOK indicates the read value was "\0").

4-18

FlashCore-B Chapter 4: Software

unsigned char fs fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointethydhe file descriptor.
RETURNS:

Normally, the character that was just writterhe file.

\O' : Default return value if a read froite fis not possible.
In this case, check fs_descrip->fitis$ to determine the cause.
Might be fEOF (end of file), fILLEGALillegal operation),

or other error code (full disk).

char fs fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened filedéscrip’, of up to n characters. Returns wheewdine
\n', or end of file is reached.

RETURNS:

The contents of fs_descrip->ff_status (fOK ifialcorrect).

char fs fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string the opened file pointed by fs_descrip.
RETURNS:
The number of characters successfully output.

This function automatically adds carriage returrb&fore newline \n', as in standard DOS practice

char fs_FBlose(struct fs descrip *fs_descrip)

Closes a file previously opened with fs_fopen, sgvény lingering changes, updating directory egtrie
and freeing memory associated with fs_descrip (e $0 only fs_FBlose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

Returns error code associated with file; the cmist®f fs_descrip are no longer valid after this
call, do not check its ff_status field.

4-19

FlashCore-B Chapter 4: Software

void fs_ StampTimeHM SM DY (struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'accessddification’, or 'creation' for a file pointed toy b
fs_descrip in the directory entry. Since not aliteyns have RTC, the user is expected to use thedifun
if they wish to use file timestamps. fs_fopen, fBldse, etc... will not. DOS usually stores timegbanmn
'‘packed' storage format (documentation availablmen

4-20

FlashCore-B Appendix A: RS-232 Link Troubleshhoting

Appendix A: TERN Controller — PC Link Troubleshooting

RS-232/DebugCable Supplied by TERN
with EV-P or DV-P Software Kits

Red Edge

/ of cable

PC Receive Data.
Connects to TERN
controller /TxD.
Floating at OV.

PC Transmit Data.
Connects to TERN

controller /RxD. e To PC DB9
Voltage = -10V T connector
GND

Troubleshooting TERN-PC Serial Link

1. Connect the DB9 of your serial cable to your PQisro COM port.
2. Use an oscilloscope or voltmeter to measure voltegein 5 of above diagram. It should be -10V. If
wrong voltage is present, investigate possiblelya€ COM port.
a) Also, try a different PC COM port.

3. If correct voltage is seen on pin 5, prepare a higreninal session on your PC. Use an oscillos¢ope
measure activity on pin 5. Type any key(s) on y@Gr The hyper terminal will send out characters in
ASCII format over pin 5 (PC transmit data). You slibbe able to see activity on pin 5, or in otherds,
the signal present on pin 5 should toggle betweldV+and -10V with a variable duty cycle, dependamg
the ASCII code for the character(s) being typeB@t

a) If Step 2 passes but Step 3 does not, there maysbéware conflict with the COM port you are
trying to use.

b) Try a different COM port.

c) Close any software that could be attempting to pggwur COM port.

d) If your PC has multiple COM ports, confirm that tigper terminal (and Paradigm C/C++) are
configured to same COM port that you have the keable connected to.

4. |If Steps 2 & 3 do not locate the problem, try amotAC and repeat Step 1 -3.

FlashCore-B Appendix B: Dimensional Plot

Appendix B: FlashCore-B Dimensional Plot

All units arein inches 21,24

ET] J
0.09, 2.25 —] Q

B
2
Flash 691

CPU 1.99, 2.27
AM188ES SRAM
EE
1.94, 0.22
DA
232 RTC
ADC)

0.18, 0.08 5 1
\\
\EI M @\ 1.99, 0.09

\ TPS N

\

0.38,0.23 1.15, 0.09

0.0, 0.0

FlashCore-B Appendix C: Kpad — FlashCore-B Interfae

Appendix C: Kpad — FlashCore-B

C. 1 Introduction

This Appendix discusses two different interfaceswieen the FlashCore-B and the Kpad. The first
interface is called the Kpad-Bus. Its name is datifrom the fact that the Kpad is driven by the
Address/Data Bus of the FlashCore-B. The secoraifatte is called the Kpad-lO. This version is dnive
by the CPU’s user-programmable TTL 1/Os. Both if#tees offer the same performance from the Kpad,
but use different software and flat cable to comrtee two modules. Each section will summarize the
physical connection for its respective interface.

C.2 Kpad-Bus Interface

The Kpad-Bus interface is extremely simply. Thissien uses the 20x2 J1 pin header of the FlashBore-
and the 20x2 J1 pin header of the Kpad.

C.2.1 Hardware requirements

Refer to the FlashCore-B and Kpad schematics inteh®_docs\schs directory for exact pin definitions
The physical connection is a one-to-one connectimegning J1.1 of the FB connects to J1.1 of thedKpa
J1.2 of the FB connects to J1.2 of the Kpad, anarsoA standard 40 wire flat cable and two 20x2
connectors should be used. Create the cable sb girrach connector is tied to the same wire. Theid
header on the Kpad can only be installed on theoboof the PCB. The J1 pin header on the Flash@ore-
MUST be installed type ‘B’. The FlashCore-B and Kman then be linked by installing the flat cabithw
Pin 1 of each controller aligned.

The picture below shows the Kpad-Bus interface. 8aroode is included on the TERN installation CD in
the tern\186\samples\kpad directory, “kpad_bus.c”.

Appendix C: Kpad — FlashCore-B Interface FlashCoreB

C.2 Kpad-IO Interface

This interface requires modification to the flablaas well as the FB itself. More details will pr@vided
in this section to ensure a proper connection.

C.2.1 Signal Definitions

J2 Header: FlashCore-B

GND 1 2 VCC

P4 3 4 P14 Signal Definitions for FlashCo-B
5 6 P6 J2 header.

P15 7 8 P5

Pins Highlighted Red need to be

cut when using a 10x2 connector.
INT1 11 12 INT2

P3 13 14 INTO Pins Highlighted in Green indicate the

/CTS1 15 16 /RTS1 pins to install the 10x2 connector onto.

P24 17 18 P17 Al . i - o
S0, an external wire must be soldere

29 1) A) to bring VCC from J2.2 to J2.30

P13 21 22 P10

/IRTSO 23 24 In addition, an external wire must be

P1 25 26 /ICTSO soldered to bring J2 pin 8 to J2 pin 24. This

P29 27 28 P26 brings P5 to pin 24.

GND 29 30

FlashCore-B Function

Pin Name

VCC Kpad supply voltage, +5V

GND Ground

P26, P29, P1, Keypad Scan: Inputs to FlashCore-B
P21(/CTSO0),

P20(/RTSO0),

P5, P13,

P10

PO, P25, P24, Outputs from Am188ES. Drive D7-D4
P17 on LCD controller.

P18 (/CTS1) Drives E (enable) line to LCD

P19 (/RTS1) Drives RS line to LCD. Shared with
122 for Keypad scan

P3 Output. Keypad scan.
/IRD Input to PAL

FlashCore-B Appendix C: Kpad — FlashCore-B Interfae

H5 Header: Kpad

107 1 2 106
\Y/ele; 3 4 GND
105 5 6 104
103 7 8 102
101 9 10 100
127 11 12 126
125 13 14 124
123 15 16 122
121 17 18
19 20
Kpad Pin Function
Name
VCC Kpad supply voltage +5V
GND Ground
107 — 100 Keypad scan. Tied to Pull-up resistars
127 — 124 Data lines of LCD controller D7 — D4
123 LCD controller Enable
122 LCD controller, mode select
Low: Command
High: Data
Keypad Scan
121 Keypad Scan

Kpad pin layout and description for IO version

C.2.2 Connections, Pin Mapping

When driving the Kpad with the FlashCore-B as dégd by this appendix, two modifications must be
made to the FlashCore-B. If your Kpad and Flash@®reere ordered together, the necessary
modifications have already been made before shipnTdris applies only if you have ordered the Kpad
after your FlashCore-B. In order to drive the Kpadequires a +5V power supply which can be taken
directly from the J2 header on the FlashCore-B.eXternal wire must be soldered to the FlashCore-B
which ties J2.2 = J2.30. This will bring VCC to gih 30 and then be routed to the Kpad. J2 pin 30 by
hardware definition is an open pin, so there wéllfo compatibility problems. The following tableosvs

the exact connections between the FlashCore anlghd. In addition, P5 (J2 pin 8) must be connected
via external wire to J2 pin 24. The FlashCore-B tiapen pin at J2 pin 24, and must therefore borro
P5 (J2 pin 8) to complete the interface.

Appendix C: Kpad — FlashCore-B Interface

FlashCoreB

Pin Mapping: FlashCore-B < Kpad

Kpad

Signal Name

107

106
VCC
GND
105

104

103

102

101

100

127 = D7
126 = D6
125 = D5
124 = D4
123=E
122 = RS
121 = Row 1

No
Connection

H5Pin# J2Pin#

1 27
2 28
3 30
4 29
5 25
6 26
7 23
8 24
9 21
10 22
11 19
12 20
13 17
14 18
15 15
16 16
17 13
18 14

C.2.3 Flat Cable Specifications

This section will define how a flat cable should frepared to interface the Kpad based on the sample
code for the FlashCore-B, tern\186\samples\kpad. Tthis interface is based upon the pin mappingrmgiv

in the previous section. The following diagram isimply an aide to help visualize how the cabld wil
connect the Kpad and the FlashCore-B. It is theegfmportant to remember the above table takesifyrio

in terms of the final connections.

FlashCore

Signal Name

P29

P26

VCC(after modificatior
GND

P1

P21

P20

P5 (after modification)
P13

P10

PO

P25

P24

P17

P18

P19

P3

No Connection

(Don't care)

FlashCore-B Appendix C: Kpad — FlashCore-B Interfae

Header H5 — Kpad Because of the Compact
The H5 pin header will be Flash Interface on the FC,
installed on the underside of the pin header on J2 will
the Kpad, opposite of the LC always be type “T", or
Thus the flat cable will install component side. This only
on the under side as well. allows one orientation to

install a flat cable

G

Kpad N e e 1

LCD facing up,

, |
yetcable installs | pjj 1 !
on bottom side. N !

Pin 20
jre Pin 20 J2

~

/ FlashCore-B

Pin 1 Component Side
Connector to install
on this side of PCI

Notice the crossing of
the first four lines.

Instructions for flat cable assembly:

(1)
(2)
©)
4
5)
(6)
(7)
(8)

Use a 20 wire flat cable

Use two 10x2 connectors.

Peel back the first and second pair of wires asvarabove.

Cross first four wires as shown above and secuoedne connector. This will mount onto the Kpad.

Secure FlashCore-B side connector with no modificato the wires.

Cut pins J2.9 and J2.10 (highlighted in red abéwelllow for install of 10x2 connector onto Flash€&® J2 header
Install FlashCore-B side connector flush to botmid2 header (highlighted in green above)

Solder wire from J2.2 to J2.30 and from J2.8 t@42n the FB (shown in purple above).

IMPORTANT: Refer to tables in this appendix to fion the correct pin-to-pin configuration.

Us w
Do 13 4 10 A1l 1 32 ap 1 26
D Q57 A A A N g 2] S\P CD1 P57
Q A9 ALO D3 D11 2l- J1
0 1lg FET2 AB—31 43 MO0]2 Dlize vee
A2 7 K AT3 ooy B Do voeog 1 2 G\D
A>3 B 5N AL 28 5 30 VA 3
2 ™ Ala D6 D6 D14 |29 VA3 5 o4
0L ALT 37 o7d 31 VB 5 5
Io3 S81A17 D5 D7 61p7 D153l VB 5 5 56
P2 14y 5 @ [LL1/AD W Dol 26 D2 I CF Tle1ces 32 Ve 73 278 o
| RST 189 > TDA vee TE] 55 DB € 8 33~ VDO il
CLR &7 vecC D3 ALO/ VS1 25—
ALB O 54 _G\D TRD_© 34 1 2
AL8 GND JCE /RD 24
74FC259 A610| A18 D o3 0] hSF 1R0I3s 3
74HC259S AL5 11 22 D1 1 (36 /RST 15
511115 b1 A8 I VE S5
AL212]| 1> o [21 00 aD 12| %8 CIE7 RST 17 O o 18 5
CE2=VRAM A7 13 20 A0 CC13 (38 Ple 19 2
S A A7~ D [29 A0 VCC VCC 25 o059
A6 AL A6 Jcs[39 S
G 8 A 5 (40~ vBAT 23 2 €27 G
As ng[IEAZ A5 VS2 49— 52 &% Ay
; A A3 S1as RST[AL 25 5 o265
A181 32 VRAM A3 22 27 28 A6
Al8 VDD A3 /W [22- 27 5 o
A167| 218 YD [31ATs 29F040 A2 18 s T 323 /VWRT29 30 A5
AL43 30_VRAM AL_19 (44" TRD 31 2 932
Ad 4] A4 CE2 15 A0 20| AL /REG 75— 3 A3
Al2 R W5 J3 HDRS3 A0 BV2 |2 5 = =
A5 51a7° a13 [28 Al3 211 by pvi |48 35 36 A2
A6 6 27 A8 Us DL 22 47 37 38 AL
A6 A8 DL D82l o o
A7 T hS 8 26 A9 23132 Bras 392 8 AD
Alzel RS o5 Al 1 VBAT 1|5 por |16 RST D 242 DOIao- vee
A0 24 TRD VRAM Ri7 2 5 TRST 5 [50_G\D HDRD40
A3 /OE VO / RST —25J co2 GAD
ALI0 1> alo [23 ALO Vi V. 31 vec wo a3
A211 22/ RAM G\D__4 3/LCs CF CAPNP
AL /CEL G\D CEl
A317| A El iy 5] N0 B[TRAM CF
3 2 —% T W J2 vee
O EH o D6 —So o P . ve
DL D5 —osi PFO ab {1 2ph—
5 B 9 VCC P4 P14
2 D2 D4 [go—=t 0SS PFI = 3 4 =
6o D8 M __ 45 6pb—-n
VAXGOT u13 ul4 Pi5 - =N
RANE 71024 MAX691S DN 1[5 val8 Ve DIN 1[5 val.8 VA N3 44 8B —P30
NEMB2S K 2 7 Ve K2 7 oC NTL 2
K 5V K 5V 1112 L
XTALL b 3| X Y[an T3] K SV an B3 1315 0
NT
o 1022 x2 |:| xi 10 . e TDA 4] &2 S[5_wb T0 4|2 S5 e [CTST {12 1o RTSL
a1 s voc L 16MHZ L ci+ 1 69 DACT6T DACT6T Po 91718 P—pr5
20 vee -8 vee c1+ voc |28 19 20
G\D 2 7 _G\D Vi 2 5 G\D P13 P10
AL P V¥ G\D P13 __ 21 22 p—
GND__3 6 P12 cl-__3 [TXDL TRTSO
D4 22 SA 5 P11 o+ 4| & 1O 3R P1 92324 P—) 150
vss SpA =Pl Cr 2icr R 3R Els—d 25 26 p—45TS0
240045 VoC R2 V6|2 RO x G, 437 28 P—vorr
240043 P11 TTX00 7| Yoo 151 [I0TX ULl
TRXD0 8 9 RXDO ADO 1 20 voe FDRD3
10K R2I R2O ADL 7| AD0 VOC o2
R11 ADL CLK
+12V VAXZ32D Al 3 8 7AD
VN u10 A 4| A2 CSPITHN
iM AD3 DI N
X 11 x1 v -8V 51 Ay mov |16 BSY J5
re | X621 % Ve T RT ADs 6| D¢ BSY 15 ATo +12V1 1 2 &
VoFE—3] X2 BP 5P ci+ A 7] A DUz T3 O S 7o
% 5 Pl ule -] RBVCC A 8 [3 JGN\D R0 5 2 S5 TRXDL
M ; G SDA 1 15 3 & 5 AD7 CN\D -5 7
24 10A vo biSo LOM__9 1 'com vee —L S o8
DS133 ﬁg g B Y1 :1431 %+ CAPNP c1n 220 VCC 10: SHD REF 1 REF G\D 9 10 _G\D
X3 c YEpi -] CAPNP ADS8344 HDRD10
X6 X5 V4 VRAM PTT— s €—7 HDRD10
X6 | |pX5 v4 b
D oK A7 6|y Ve PID c2-| CAPNP VCC vee
32K Pi6, 4 P79/ cr
CAPNP = 28 P Vi clie c11
p— /] CAPNP CAPNP a4
74FCI38 c7 A0 1 2 ADL
74HC138S G\D] CAPNP A 30 A
J9 52 5
cs8 Wi 1 2 P12 A6 7 2 8 _AD?
uis uL7 V- CAPNP oM 0 2 ST ab
1 8 \VCC 1 8 VCC veo 112 &1 ReF
—IInc sV —Ine sV
2lpc av [2l pc av [
ap 315 VI anp 3] B SV I VCC R4 VCC RL L1 HDRD12
VOFF_4] £n o [54+12v VOFE 4] i\° ov [51+12v P6 Lc NA P12 HDRD12
TP5765 TP5765 10K 680 LED
TPS765 TPS765 voe B1 LED
us]2
LM7805 if.
L2 Voo c10 3] vear
+12vt R +12v 1|, oo l3 10UF35V
? G BTAL
cl4 @
10UF35V 10UF35V c1 2 STE/ TERN
+ +
<] anp|? HR R Title
CAPNP CAPNP FLASHCORE- B
Si ze |[Docunment Numnber
B FB- MAN. SCH
Dat e: Decenber 4, 2002][Sheet 1 of

