
FlashCore-B(FB)™

Compact Flash Data Storage, 16-bit ADCs, DACs, RS232, TTL I/Os,
and ultra-low quiescent current regulator.

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

FlashCore-B, 586-Engine, A-Engine, i386-Engine, and ACTF are trademarks of
TERN, Inc.

Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Paradigm C/C++ is a trademark of Paradigm Systems.

 Microsoft, MS-DOS, Windows95/98/2000/XP are trademarks of Microsoft Corporation.
IBM and MicroDrive are trademarks of International Business Machines Corporation.

Version 2.0

October 25, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1999-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

FlashCore-B™ Chpater 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description
The FlashCore-B(FB)™ is a low power embedded controller based on a high performance 40 MHz 188
CPU, providing a simple interface for 50-pin CompactFlash Cards (ranging in size from 8MB – 1GB Flash
cards) which are used to provide non-volatile storage in a wide array of applications, ranging from digital
cameras to PDAs. 50-pin CompactFlash cards can also interface with PCs via a standard PCMCIA
adapter, making these ideal storage solutions for applications requiring mass data exchange. In addition,
the 50-pin CompactFlash cards cost less than 68-pin PCMCIA cards.

The FB is an ideal controller for low power battery applications. An optional 5V low-drop regulator
(TPS76550) accepts unregulated inputs as low as +5.1V and has a power-off mode which consumes as low
as 35µA, both of which can greatly increase the life of a battery.

The FB is a complete standalone C/C++ programmable embedded controller including a 188 CPU, 512KB
ACTF Flash, 128KB or 512KB SRAM, 512-byte EEPROM, 2 channel RS-232 driver, 5V regulator, with
optional real-time clock, battery, 8 channel 16-bit ADC, and/or 4 channel 12-bit DAC.

By using the FlashCore-B (FB), users can easily add widely used CF standard mass data storage cards to
their embedded application via RS232, TTL I2C, or parallel interface. TERN supports a complete C/C++
programmable software package (EV-P, or DV-P kit) which includes compiler, remote debugger, samples,
and libraries. TERN software supports Linear Block Address mode, 16-bit FAT flash file system, RS-232,
TTL I2C or parallel communication. Users can write a file to the CompactFlash card or read a file from the
CompactFlash card. Users can also transfer the file to a PC via the PCMCIA port.

188ES
CPU
80x86

Compatible

DMA(2)
16-Bit Timers(3)
Ext. Interrupts(6)

32 I/O lines
PWM/PWD

691

EEPROM
512 BYTES

 ACTF FLASH
512K

SRAM
512K

SDA P11

SDL P12

J1 & J2

76550 5V
regulator

RTC

CF standard storage cards

8 ch.
16-bit ADC

2 ch.
RS-232
serial
ports

4 ch.
12-bit DAC

Figure 1.1 Functional block diagram of the FlashCore-B

Measuring 2.1 by 2.35 inches, the FlashCore-B offers a complete C/C++ programmable computer system
with a 16-bit high performance CPU (188) and operates at 40 MHz (or 20 MHz) system clock with zero-
wait-state. In addition, a 512-byte serial EEPROM is included on-board. Optional features include up to
512K battery-backed SRAM, 8 channel 16-bit ADC, and an optional real-time clock which provides
information on the year, month, date, hour, minute, and second. The FlashCore-B also includes an on-
board 5-volt power regulator and RS232 drivers.

FlashCore-B™ Chpater 1: Introduction

1-2

 Two DMA-driven serial ports from the 188 CPU support high-speed, reliable serial communication at a
rate of up to 115,200/57,600 baud (40/20 MHz system clock) while supporting 8-bit and 9-bit
communication.

There are three 16-bit programmable timers/counters and a watchdog timer. Two timers can be used to
count or time external events, at a rate of up to 10/5 MHz (40/20MHz system clock), or to generate non-
repetitive or variable-duty-cycle waveforms as PWM outputs. Pulse Width Demodulation (PWD), a
distinctive feature, can be used to measure the width of a signal in both its high and low phases. It can be
used in many applications, such as bar-code reading.

There are 32 user-programmable I/O pins on the 188 CPU, and six external interrupt inputs. A supervisor
chip with power failure detection, a watchdog timer, an LED, and expansion ports are on-board.

1.2 Features on the FlashCore-B

Standard Features
* Dimensions: 2.1 x 2.35 x 0.7 inches
* Easy to program in Paradigm C/C++
* Power saving mode: 20 mA at 5V for 20 MHz
* Power-off mode: 35µA low-drop voltage
* Power input: +9V to +12 V unregulated DC with on-board linear regulator
 +5.1V to +9V unregulated DC with low-drop regulator*
* 16-bit CPU (188), Intel 80x86 compatible
* High performance, zero-wait-state operation at 40 MHz
* 512KB ACTF Flash, 128KB SRAM
* 2 channels of RS-232 drivers
* 2 high-speed PWM outputs and Pulse Width Demodulation
* 20+ TTL I/O lines from 188 CPU
* 512-byte serial EEPROM
* 6 external interrupt inputs, 3 16-bit timer/counters
* 2 serial ports support 8-bit or 9-bit asynchronous communication
* Supervisor chip (691) for power failure, reset and watchdog
* 50-pin Compact Flash socket for Compact Flash cards of size 8MB – 1GB

Optional Features (*surface-mounted components):

* 512KB SRAM*
* Real-time clock (DS1337)*, lithium coin battery*
* 8 channel, 20KHz, 16-bit ADC (ADS8344)*
* 4 channels, 12-bit DAC (DAC7612)*

1.3 Physical Description

The physical layout of the FlashCore-B is shown in Figure 1.2.

FlashCore-B™ Chpater 1: Introduction

1-3

U6
691

EE

U2

188 CPU

U5
Flash

RTC

U11
ADC

RS232

J2

SER0,1

Step 2
 Jumper

 GND
 P4

J1

U1

S
R
A
M

DAC

+12V
IN

DAC
Power Regulator:
linear or low-drop

J4

Figure 1.2 Physical layout of the FlashCore-B

1.4 FlashCore-B Programming Overview

At the factory, an ACTF utility is loaded into the upper sector on the on-board flash. This ACTF utility is
protected and executes at every power up. Upon power up, the ACTF will perform the process as described
by the flow chart below. The remainder of this section will be divided into parts: Prepare for Debug Mode
(STEP 1), Debug Mode (STEP 1), Standalone Mode (STEP 2), and finally, Production (STEP 3). For your
convenience, the preparation for debug mode is done at the factory, meaning you can begin at STEP 1:
Debug Mode.

 Power on or Reset

STEP2 Jumper on ?
J2.1 = J2.3?

Yes

Read EE for the jump address CS:IP

RUN the program starting at the CS:IP

No SEND out MENU over SER0 at 19200, N, 8, 1 to
Hyperterminal of Windows95/98/2000/XP

See ACTF-kit and Functions for detail

Text command or download new code

Process Commands

FlashCore-B™ Chpater 1: Introduction

1-4

1.4.1 Prepare for Debug Mode (STEP 1):

To run the FB in Step 1, the debug mode, a debug kernel must be loaded into the on-board flash. This is
done at the factory for your convenience. This debug kernel must be running to communicate with the
Paradigm C/C++ programming environment. It resides in the on-board flash at address 0xE0000. To run
the debug kernel and prepare for debug mode, do the following:

1. Link the FlashCore-B to your PC and prepare a hyper terminal session. Configure the
terminal to 19,200 Baud (9,600 Baud with 20MHz system clock), 8 bits, No parity, and 1
stop. Connect to SER0 of the FlashCore-B.

2. Power on the FlashCore-B without the STEP 2 installed. The STEP 2 jumper is a red
jumper installed on the J2 header pins 1 and 3.

3. At power up, you should see the ACTF Utility menu at your hyper terminal:

 ACTF/ACTR Copyright(c) 1996 STE CA USA. All rights reserved.

 >C C FUNCTIONS

 >D Download an Intel Extend Hex file into SRAM

 >G Goto and Run

 >H HELP

 >M MENU

 >U Upload a block of Binary data

 The “G” command allows you to jump to a location and immediately begin execution. It
 also sets the start-up jump address. Type “GE0000”, then <enter>. Your FlashCore-B
 will jump to that location in the flash and begin to run the debug kernel. The on-board
 LED will blink twice, then stay on. This indicates the FlashCore-B is correctly running
 the debug kernel.

4. Now install the STEP 2 jumper (red jumper installed at J2 pins 1 and 3).

5. Now at start up, the ACTF Utility will check if the STEP 2 jumper is installed. If the
STEP 2 jumper is installed, the CPU will fetch the start-up jump address (which we set
in instruction 4 to point to the debug kernel, 0xE0000) and jump to that address for
execution. Your FlashCore-B is now ready to communicate with the Paradigm C/C++
for Debug Mode. If the STEP 2 jumper is not detected, the ACTF Utility will send out
its start up menu, and you will be back to instruction 3.

When you jump to the debug kernel (by typing “GE0000”, then <enter> at the ACTF menu), if you do not
see the on-board LED blink twice then stay on, the debug kernel has been erased. It must be loaded again
to run STEP 1 and communicate with the Paradigm C/C++ software. See the section 1.5.1 for instructions
on how to load the debug kernel.

1.4.2 STEP 1: Debug Mode

After completing the pervious section, your FlashCore-B is ready to communicate with the Paradigm
C/C++ Environment and debug source code. Use samples provided in the c:\tern\186\samples\fb and
c:\tern\186\samples\flashcore directories to generate source code. Debug your code as needed. You can
then go to STEP 2: Standalone Mode.

FlashCore-B™ Chpater 1: Introduction

1-5

1.4.3 STEP 2: Standalone Mode

Now that you have debugged your source code, you are ready to test it in standalone mode. To run
standalone, do the following:

1. Remove the STEP 2 jumper. Prepare a hyper terminal session as described by section
1.4.1.

2. At power-on, you will see ACTF menu. (The key is that the STEP 2 jumper is not
installed, so the CPU does not fetch the jump address).

3. You now want to jump to you program. In STEP 1 the Paradigm C/C++ environment
downloads your program into the SRAM, starting at address 0x08000. We now want to
use the same “G” command as before, but jump to your program, not the debug kernel.
Type “G08000”, then <enter>. The CPU will then jump to your program in the SRAM
for immediate execution. It will also set the start up jump address to 0x08000.

4. Re-install the STEP 2 jumper (J2 pins 1and 3). Now at every power up, the ACTF utility
will see the STEP 2 jumper and fetch the jump address, which now points to your
program in the SRAM. Your program will now execute in standalone mode at every
power up.

5. When finished with STEP 2: Standalone Mode, you can go back to STEP 1:Debug Mode
by repeating instructions 1 & 2. Then use “GE0000”, then <enter> to jump back to the
debug kernel. The FlashCore-B is now ready to communicate with the Paradigm C/C++
Environment.

6. This cycle between STEP 1 and STEP 2 can be done until your program is complete.

1.4.4 STEP 3: Production

 This step only applies to those users who have purchased the full Development version of the
Paradigm C/C++ Environment (DV-P).

1. When you have finished development of your program, your are ready to use your source
code to generate an Intel Extend HEX file, which can then be burned into the on-board
flash for a production version of the FlashCore-B.

2. Inside Paradigm C/C++, change the config node of your target from “186.cfg” to
“actf186.cfg”. This is done by right-mouse clicking on the config node and selecting
“Edit Node Attributes”.

3. Open “actf186.cfg” for editing (double-clicking the config node will open it in a text
editor). Follow the instructions at the top of the config file. Save and close.

4. Right-mouse click on the “axe” node of your target and select “Target Expert”. Within
the Target Expert window, change PDREMOTE/ROM to No Target/ROM.

5. Now right-mouse click on the “axe” node and select “Build Node”. You have now
generated an Intel Extend Hex file. The name of the file will have the same name as your
target, in the same working directory, but with the “.HEX” file extension.

 For example, if the name of my target is “My_Program.axe”, then I will have created
 “My_Program.hex” in the same directory.

FlashCore-B™ Chpater 1: Introduction

1-6

6. Go to Section 1.5.2 of this manual and follow the instruction for burning HEX files into
 the on-board flash.

1.5 Burning HEX Files into the On-board Flash

 This section will cover two processes:

(1) Burning the debug kernel into the flash to prepare for debug mode.

(2) Burning you application HEX file into the flash to complete a production version.

1.5.1 Burning the debug kernel into the flash

1. Power on the FlashCore-B without the STEP 2 jumper installed. See the ACTF
menu at the hyper terminal (Assuming FB linked to PC via serial cable and hyper
terminal session is ready).

2. Type “D”, then <enter> to alert the ACTF utility that you are ready to send a file
into the SRAM. You should see the following at your terminal:

 ACTF/ACTR Copyright(c) 1996 STE CA USA. All rights reserved.

 >C C FUNCTIONS

 >D Download an Intel Extend Hex file into SRAM

 >G Goto and Run

 >H HELP

 >M MENU

 >U Upload a block of Binary data

 D

 Ready to receive Intel Extend HEX file at 19200 baud

3. At the hyper terminal menu, select Transfers, Send Text File. Go to c:\tern\186\rom
and select “lo_ee512.hex”. This will download into the SRAM starting at address
0x04000. As it downloads you will see the terminal window fill with UUUU…

4. When it finishes, you will see:

 UUU
 UUU
 UUU
 UUU
 UUU
 UUU
 UUU
 UUU
 UUUUUUUUUUUUUUUUUEND of File Record

 CHKSUM=0

 CS:IP = 04000

 USE Gxxxxx to RUN downloaded code starting at xxxxx

5. Use the “G” command to run. Type “G04000”, then <enter>. It will then erase the
flash and prepare to burn a HEX file into the flash.

FlashCore-B™ Chpater 1: Introduction

1-7

6. When it has finished preparing the flash, you will see:

 ERASING AM29040 EE SECTOR 0-6 0x80000 to 0xEFFFF !

 ERASING FLASH EEPROM AM29F040 SECTOR 0

 ERASING FLASH EEPROM AM29F040 SECTOR 1

 ERASING FLASH EEPROM AM29F040 SECTOR 2

 ERASING FLASH EEPROM AM29F040 SECTOR 3

 ERASING FLASH EEPROM AM29F040 SECTOR 4

 ERASING FLASH EEPROM AM29F040 SECTOR 5

 ERASING FLASH EEPROM AM29F040 SECTOR 6

 AM29040 EE only takes INTEL EXTEND HEX file starts at 0x80000 !

 Ready to receive Intel Extend HEX file at 19200 baud

7. At the terminal menu, select Transfers, then Send Text File. Go to c:\tern\186\rom
and select “af_0_115.hex”. This is the debug kernel. It will download into the flash
starting at address 0xE0000.

8. When it finishes, the ACTF utility will reset and you will see the ACTF menu. Type
“GE0000”, to jump to and execute the debug kernel. The start up jump address will
also be set to 0xE0000.

9. Install the STEP 2 jumper. At power up, your FlashCore-B will execute the debug
kernel and be ready to communicate with Paradigm C/C++ for STEP 1: Debug
Mode.

1.5.2 Burning your application HEX file into the flash

1. Follow instructions 1-6 of the above section, section 1.5.1. This will prepare the
Flash for a HEX file.

2. At the Hyper terminal menu, select Transfers, then Send Text File. Go to the
working directory of you project in Paradigm C/C++. Select your Intel Extend HEX
file generated by the steps given in the last part of Section 1.4

3. When it finishes downloading, the ACTF utility will reset. Your application will
have downloaded into the flash starting at address 0x80000 (not to be confused with
0x08000, the starting address of your program in STEP 2: Standalone Mode in the
SRAM).

4. Now all that is needed is to set the jump address to 0x80000. Type “G80000”. Your
application will then execute out of the flash. The start up jump address is now set
to 0x80000.

5. Install the STEP 2 jumper.

6. At every power-up, the CPU will jump to 0x8000 for immediate execution of your
program. To get back to debug mode go to section 1.5.1.

There is no ROM socket on the FB. The User’s application program must reside in SRAM for debugging
and reside in battery-backed SRAM for the standalone field test.

The on-board Flash 29F040B has 256K words of 16-bits each. It is divided into 8 sectors of 64KB. The
top 16KB sector is pre-loaded with ACTF boot strip, and the sector starting 0xE0000 is for loading the

FlashCore-B™ Chpater 1: Introduction

1-8

remote debug kernel. When application is ready, “lo_ee512.hex” will erase debug kernel, leaving 7 sectors
for application use.

 The top 16KB ACTF boot strip is protected.

The utility HEX file, “lo_ee512.HEX” will automatically download into SRAM starting at 0x04000 with
ACTF-PC HyperTerminal. Use the “D” command to download, and use the “G” command to run.

“lo_ee512.HEX” will erase the bottom seven sectors and load a “AF_0_115.HEX” or “AF_0_384.HEX”
into the flash starting at 0xE0000, and load your application HEX starting at 0x80000. Refer to the ACTF
manual for information on how to change the downloading address of your application HEX.

0x80000

0x0000

512K
SRAM

0x1FFFF

128K
SRAM

ACTF

 debug
 kernel

0xFFFFF

0xE0000

The Flash
and the

SRAM are
mapped

into 1MB.
The SRAM
goes from
0x00000 to
0x80000,
and the

Flash goes
from

0x80000 to
0xFFFFF.

For production, the user must produce a ACTF-downloadable HEX file for the application, based on the
DV-P Kit. The application HEX file can be loaded into the on-board Flash starting address at 0x80000. To
properly generate your application HEX, you must change the config node of your target to “actf186.cfg”,
which is found in the /TERN/186/config directory. Then right mouse click on the “.axe” node of your
target and select “Target Expert”. This will allow you to change the “TargetConnection” from
PDREMOTE/ROM to NoTarget/ROM. Then “Build node” will generate your application “.HEX” file.

The on-board EE must be modified with a “G80000” command while in the ACTF-PC-HyperTerminal
Environment.

The “STEP2” jumper (J2 pins 1-3) must be installed for every production-version board.

In order to correctly download a program in STEP1 with Paradigm C/C++, the FB must meet these
requirements:

1) AF_0_115.HEX must be pre-loaded into Flash starting address 0xE0000(done at factory by default).

2) The SRAM installed must be large enough to hold your program.

For a 128K SRAM, the physical address is 0x00000-0x01ffff
For a 512K SRAM, the physical address is 0x00000-0x07ffff

FlashCore-B™ Chpater 1: Introduction

1-9

3) The on-board EE must have a correct jump address for the AF_0_115.HEX with starting address of
0xE0000.

4) The STEP2 jumper must be installed on J2 pins 1-3.

1.6 Minimum Requirements for FlashCore-B System Development

1.6.1 Minimum Hardware Requirements

* PC or PC-compatible computer with serial COMx port that supports 115,200 baud
* FlashCore-B controller with DEBUG kernel AF_0_115
* Serial cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector for controller)
* Center negative wall transformer (+9V 500 mA)

1.6.2 Minimum Software Requirements

* TERN EV-P/DV-P
* PC software environment: Windows95/98/2000/XP

The C/C++ Evaluation Kit (EV-P) and C/C++ Development Kit (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of the DV-P Kit. With the EV-P Kit, you can program and
debug the FlashCore-B in STEP 1 and STEP 2, but you cannot run STEP 3. In order to generate an
application HEX file for downloading to Flash, and complete the project, you will need the Development
Kit (DV-P).

FlashCore-B Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV-P/DV-P CD-ROM contains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

2.2.1 Connecting the FlashCore-B to the PC

The following picture (Figure 2.1) illustrates the connection between the FlashCore-B and the PC. The
FlashCore-B is linked to the PC via serial cable.

The AF_0_115.HEX debug kernel communicates through SER0 by default. Install the 5x2 IDC connector
to the SER0 header (J5). IMPORTANT: Note that the red side of the cable must point to pin 1 of the J5
header. Although pin 1 of J5 is for +12V In, it is still important for the red side of the cable to point to pin
1. The 5x2 IDC will just not have the connection at the red side of the connector. The DB9 connector
should be connected to one of your PC's COM Ports (COM1 or COM2).

For additional details on the PC-FB serial connection, see Appendix A of this manual, as well as the
FlashCore-B schematic at the end of this manual or on the TERN CD, under tern_docs\schs.

2.2.2 Connecting the FlashCore-B to Power

The J5 pin header is used for supplying power to the FlashCore-B. Pin 1 of the J5 header connects to +12V
and pin 2 of the J5 header connects to Ground. Install the output of the wall transformer to the power jack
adapter (included with the Evaluation Kit) and install the power jack adapter onto J5 pins 1 and 2. Be sure
to confirm polarity before applying power. Remember the output of the wall transformer is center-
negative. See the below picture for polarity on the FlashCore-B.

Overview (for FB)
 * Connect debug cable:

For debugging (Step One), place ICD connector on SER0 (J5) with
red edge of cable at pin 1

 * Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
(installs onto J5 pins 1 and 2)

FlashCore-B Chapter 2: Installation

2-2

Figure 2.1 Connecting the FlashCore-B to the PC

Power Input, +12V In
J5 Header, Pin 1

SER1

SER0 (Debug Port)
Connect to 5x2 IDC connector for

debugging.

FlashCore-B Chapter 3: Hardware

3-1

Chapter 3: Hardware

3.1 188 CPU – Introduction

The 188 CPU is based on the industry-standard x86 architecture. The 188 CPU controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the 188 CPU has new
peripherals. The on-chip system interface logic can minimize total system cost. The 188 CPU has two
asynchronous serial ports, 32 PIOs, a watchdog timer, additional interrupt pins, pulse width demodulation
capability, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced chip-select
functionality.

3.2 188 CPU – Features

3.2.1 Clock

Due to its integrated clock generation circuitry, the 188 CPU microcontroller allows the use of a times-one
crystal frequency. The design achieves 40/20 MHz CPU operation, while using a 40/20 MHz crystal.

3.2.2 External Interrupts

There are six external interrupts: INT0-INT4 and INT6. All six interrupts are active high, but since they
are not pulled down, it is recommended to add pull down resistors to any external interrupts used so as not
to have falsely generated interrupts. In addition, setting interrupt lines to edge-triggered instead of level-
sensitive also helps reduce occurrence of excess interrupts.

INT0, J2 pin 14
INT1, J2 pin 11
INT2, J2 pin 12
INT3, J2 pin 9
INT4 = P30, J2 pin 10
INT6 = P13, J2 pin 21

These external interrupt inputs require a raising edge (LOW-to-HIGH) to generate an interrupt.

The FlashCore-B uses vector interrupt functions to respond to external interrupts. Refer to the 188 CPU
User’s manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The 188 CPU has two asynchronous serial channels: SER0 and SER1. Each asynchronous serial port
supports the following:

* Full-duplex operation
* 7-bit, 8-bit and 9-bit data transfers
* Odd, even and no parity
* One stop bit
* Error detection
* Hardware flow control
* DMA transfers to and from serial ports
* Transmit and receive interrupts for each port
* Multidrop 9-bit protocol support
* Maximum baud rate of 1/16 of the CPU clock
* Independent baud rate generators

FlashCore-B Chapter 3: Hardware

3-2

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the samples files: s1_echo.c and s0_echo.c in the
tern\186\samples\ae directory.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to three external pins:

Timer0 output = P10 = J2 pin 22
Timer0 input = P11 = NOT ROUTED TO EXTERNAL PIN
Timer1 output = P1 = J2 pin 25
Timer1 input = P0 = J2 pin 19

These two timers can be used to count or time external events or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale Timer0 and Timer1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz, since each timer is serviced on every fourth
clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See sample
programs timer0.c and timer1.c in tern\186\samples\ae.

3.2.5 PWM outputs and PWD

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both
Timer0 and Timer1 have a secondary maximum count register for variable duty cycle output. Using both
the primary and secondary maximum count registers lets the timer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the INT2=J2
pin 12.

3.2.6 Power-save Mode

The FlashCore-B is an ideal core module for low power consumption applications. The power-save mode
of the 188 CPU reduces power consumption and heat dissipation, thereby extending battery life in portable
systems. In power-save mode, operation of the CPU and internal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatically returns to its normal operating frequency. When
using a 20 MHz system clock, the FB can drop to as low as 20mA in power-save mode.

3.3 188 CPU PIO lines

The 188 CPU has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal shared function is not needed. A PIO line can be

FlashCore-B Chapter 3: Hardware

3-3

configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-
drain output. A pins behavior, either pull-up or pull-down, is pre-determined and shown below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

PIO Function Power-On/Reset status FB Pin No. FlashCore-B Initial

P0 Timer1 in Input with pull-up J2 pin 19 Input with pull-up
P1 Timer1 out Input with pull-down J2 pin 25 CLK_1
P2 /PCS6/A2 Input with pull-up J1 pin 36 U9 DFF select
P3 /PCS5/A1 Input with pull-up J2 pin 13/J1.38 Input with pull-up
P4 DT/R Normal J2 pin 3 Input with pull-up

Used by Step 2
P5 /DEN/DS Normal J2 pin 8 Input with pull-up
P6 SRDY Normal J2 pin 6 Input with pull-down
P7 A17 Normal J3.3 A17
P8 A18 Normal None A18
P9 A19 Normal None Input with pull-up
P10 Timer0 out Input with pull-down J2 pin 22 Input with pull-down
P11 Timer0 in Input with pull-up None Input with pull-up
P12 DRQ0/INT5 Input with pull-up J9 pin 2 Output for

LED/EE/HWD
P13 DRQ1/INT6 Input with pull-up J2 pin 21 Input with pull-up
P14 /MCS0 Input with pull-up J2 pin 4 Input with pull-up
P15 /MCS1 Input with pull-up J2 pin 7 Input with pull-up
P16 /PCS0 Input with pull-up J1 pin 19 CLK for PAL
P17 /PCS1 Input with pull-up J2 pin 18 Open for user
P18 CTS1/PCS2 Input with pull-up J2 pin 15 Input with pull-up
P19 RTS1/PCS3 Input with pull-up J2 pin 16 Input with pull-up
P20 RTS0 Input with pull-up J2 pin 23 Input with pull-up
P21 CTS0 Input with pull-up J2 pin 26 Input with pull-up
P22 TxD0 Input with pull-up U3 pin 10 TxD0
P23 RxD0 Input with pull-up U3 pin 9 RxD0
P24 /MCS2 Input with pull-up J2 pin 17 Input with pull-up
P25 /MCS3 Input with pull-up J2 pin 20 Input with pull-up
P26 UZI Input with pull-up J2 pin 28 Open for user
P27 TxD1 Input with pull-up U3 pin 11 TxD1
P28 RxD1 Input with pull-up U3 pin 12 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 27 Input with pullup*
P30 INT4 Input with pull-up J2 pin 10 Input with pull-up

P31 INT2 Input with pull-up J2 pin 12 Input with pullup

* Note: P26, P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Three external interrupt lines are not shared with PIO pins:

INT0 = J2 pin 14
INT1 = J2 pin 11
INT3 = J2 pin 9

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION
registers. The settings are listed as follows:

FlashCore-B Chapter 3: Hardware

3-4

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-

down

FlashCore-B initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The C function in the library ae_lib can be used to initialize PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pins is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pins is in input mode,

Some of the I/O lines are used by the FlashCore-B system for on-board components (Table 3.2). We
suggest that you not use these lines unless you are sure that you are not interfering with the operation of
such components (i.e., if the component is not installed).

Signal Pin Function

P2 /PCS6 Chip select for U9 DFF
P4 /DT Step Two jumper
P9 A19 Data Out for ADS8244
P11 Timer0 input U7 24C04 EE & U10 DS1337 RTC.

EE & RTC outputs can be tri-state, while disabled.
P12 DRQ0/INT5 LED, U7 serial EE, U10 RTC, or Hit watchdog
P16 /PCS0 U16 decoder control line
P22 TxD0 Default SER0 debug
P23 RxD0 Default SER0 debug
P27 TxD1 Default SER1 Transmit data
P28 RxD1 Default SER1 Receive data

Table 3.2 I/O lines used for on-board components

FlashCore-B Chapter 3: Hardware

3-5

3.4 I/O Mapped Devices

3.4.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address.
The external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define
the I/O wait states from 0-15. The system clock is 25 ns (or 50 ns), giving a clock speed of 40 MHz (or 20
MHz). Details regarding this can be found in the Software chapter, and in the 188 CPU User’s Manual.
Slower components, such as most LCD interfaces, might find the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus speed of the system, some components need to be attached to
I/O pins directly.

For details regarding the chip select unit, please see Chapter 5 of the 188 CPU User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Usage Location

0x0000-0x00ff /PCS0 U16 decoder J1 pin 19
0x0100-0x01ff /PCS1 USER J2 pin 18=P17
0x0200-0x02ff /PCS2 USER J2 pin 15=CTS1
0x0300-0x03ff /PCS3 USER J2 pin 16=RTS1
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 USER J2 pin 13=P3
0x0600-0x06ff /PCS6 /CS for U9 DFF U10 pin 2=P2

3.4.2 Real-time Clock DS1337

If installed, a real-time clock DS1337 (Dallas Semiconductor, U10) can provide information on year,
month, date, hour, minute, second, and day. It has two time-of-day alarms or can generate a square-wave
output. It must be backed up with a lithium coin battery. The RTC is accessed via software drivers
rtc1337_init() or rtc1337_rd() (see Software chapter or data sheet in the tern_docs\parts directory for
additional information).

3.5 Other Devices

A number of other devices are also available on the FlashCore-B. Some of these are optional, and might
not be installed on the particular controller you are using. For a discussion regarding the software
interface for these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the FlashCore-B has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J9 of the FlashCore-B (see Figure 3.1). The
watchdog timer provides a means of verifying proper software execution. In the user's application
program, calls to the function hitwd() (a routine that toggles the P12=HWD pin of the MAX691) should be
arranged such that the HWD pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the
HWD pin is not accessed within this time-out period, the watchdog timer pulls the WDO pin low, which

FlashCore-B Chapter 3: Hardware

3-6

asserts /RESET. This automatic assertion of /RESET may recover the application program if something is
wrong. After the FlashCore-B is reset, WDO remains low until a transition occurs at the WDI pin of the
MAX691. When controllers are shipped from the factory the J9 jumper is off, which disables the watchdog
timer.

In addition, the 188 CPU has an internal watchdog timer. This is disabled by default with ae_init().

U6
691

EE

U2

188 CPU

U5
Flash

RTC

U11
ADC

RS232

U1

S
R
A
M

DAC

DAC
Power Regulator:
linear or low-drop

Watchdog
Jumper

J9

Figure 3.1 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock DS1337 are backed up. In
normal use, the lithium battery should last about 3-5 years without external power being supplied. When
the external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

3.5.2 16-bit ADC (ADS8344)

The ADS8344 is an 8 channel, 16-bit sampling analog-to-digital converter with a synchronous serial
interface. Input voltage range goes from 0V to Vref, where Vref can vary between 500mV and 5V. Three
control lines from the U9 DFF drive the ADS8344; /CS = /AD, CLK = CK, and DIN = DIN. DOUT is tied
to the 188 CPU’s A19, or P9.

It is necessary to initialize P9 (A19 = DOUT) as input, and P2 as normal (/PCS6) to drive the U9 DFF.
Refer to c:\tern\186\samples\fb\fb_ad.c for sample code.

The ADC digital data output communicates with a host through a serial tri-state output (DOUT). If
/AD=/CS is low, the ADS8344 will have output on DOUT. If /AD=/CS is high, the ADS8344 is disabled
and DOUT is free. The effective maximum sampling rate is 20KHz.

The ADS8344 can support 8 single-ended inputs or 4 differential inputs. By default TERN software
drivers use 8 single ended inputs. This mode can be changed via the control byte written to DIN (Refer to
tern\186\samples\fb\fb_ad.c for details).

The ADS8344 also implements an output called BSY. When /CS is high, the BSY signal is in high-
impedance. When /CS is low, BSY will be low while reading the control bits on DIN, and during
conversion. This line is not connected to any external pin.

FlashCore-B Chapter 3: Hardware

3-7

The ADS8344 can support analog input ranges of 0V to REF, where REF can be 500mV to +VCC. This
can increase precision if so required.

The CK signal to the ADC is toggled through an output pin from the on-board DFF, and serial access
allows a conversion rate of up to approximately 25 KHz.

In order to operate the ADS8344, five I/O lines are used, as listed below:

/CS Chip select = /AD (U9.11) , high to low transition enables DOUT, DIN and
CK.
Low to high transition disables DOUT, DIN and CK.

DIN U9 pin 9, serial data input
DOUT Serial data output. Tied to CPU line A19 = P9. Needs to be initialized as

input.
BSY Output signal. BSY is low when the ADS8344 is reading the DIN control

pins and during conversion. It is high impedance when /CS is high. This
line is not connected to any external pin on the FB.

CLK Clock = U9 pin 7
REF+ Upper reference voltage (normally VCC). J4 pin 12
COM Ground Reference. Set to GND by default on J4 header, pin 9.
VCC Power supply, +5 V input
GND Ground

All analog inputs are routed to the J4 pin header. In addition, both positive and negative reference lines are
routed to J4. For additional information, please refer to the FB schematic in the tern_docs\schs directory.

3.5.3 EEPROM

A serial EEPROM of 512 bytes (24C04) is installed in U7. The FlashCore-B uses the P12=SCL (serial
clock) and P11=SDA (serial data) to interface with the EEPROM. The EEPROM can be used to store
important data, such as a node address, calibration coefficients, and configuration codes. It has typically
1,000,000 erase/write cycles. The data retention is more than 40 years. EEPROM can be read and written
by simply calling functions ee_rd() and ee_wr().

3.5.4 DAC7612

The DAC7612 is a dual, 12-bit digital-to-analog converter with guaranteed 12-bit monotonicity
performance over the industrial temperature range. It requires a single +5V supply and contains an input
shift register, latch, 2.435V reference, a dual DAC, and high speed rail-to-rail amplifiers. For a full-scale
step, each output will settle to 1LSB within 7µs. Up to two DAC7612s can be installed on the FlashCore-
B to give a total of 4 analog outputs.

The DAC7612 uses a four wire serial interface to the CPU. The CPU on the FlashCore-B uses four outputs
from the U9 HC259 to drive the serial interface (Chip Select, Clock, Latch DACs, and Data In). The
FlashCore-B offers up to two DAC7612, providing a possible 4 12-bit serial DAC channels. The
DAC7612 outputs can support a capacitive load of 500pF.

Refer to data sheet in the tern_docs/parts directory of the TERN CD and to sample code in the
tern/186/samples/fb directory for additional information.

FlashCore-B Chapter 3: Hardware

3-8

3.6 Headers and Connectors

3.6.1 Expansion Headers

The FlashCore-B has one 15x2, one 20x2, and one 6x2 pin header for expansion. Most signals are directly
routed to the 188 CPU. These signals are 5V only, and any out-of-range voltages will most likely damage
the board.

Table 3.3 Signals for J1 (20x2), J2 (15x2), and J4 (6x2) expansion ports

Signal definitions for J1:

VCC +5V power supply
GND Ground
D0-D7 188 CPU 8-bit external data lines
A0-A7 188 CPU address lines
/WR 188 CPU pin 5
/RD 188 CPU pin 6
/RST,
RST

System Reset

VA–VD U13 & U14 DAC analog outputs.

Signal definitions for J2:

VCC +5V power supply, < 200 mA
GND Ground
Pxx 188 CPU PIO pins
/CTS0 188 CPU pin 23, Clear-to-Send signal for SER0
/CTS1 188 CPU pin 86, Clear-to-Send signal for SER1
/RTS0 188 CPU pin 26, Request-to-Send signal for SER0
/RTS1 188 CPU pin 85, Request-to-Send signal for SER1
INT0-4,
NMI

Interrupt inputs

VOFF System power down mode for low-drop regulator

Signal definitions for J4:

AD0-AD7 Inputs for ADC
COM Ground reference
REF Positive reference, 500mV to 5V

J5 Signal

+12VI 1 2 GND
/TXD0 3 4 /TXD1
/RXD0 5 6 /RXD1
 7 8
GND 9 10 GND

Figure 3.2 Signals for J5 (5x2)

3.6.2 Jumpers

The following is a list of jumpers and connectors on the FlashCore-B.

FlashCore-B Chapter 3: Hardware

3-9

Name Size Function Possible Configuration

J1 20x2 Main expansion port,
A0-A7, D0-D7, /WR,
/RD, VA-VD

J2 15x2 Main expansion port Step 2 Jumper => J2.1 = J2.3
J4 6x2 AD0-AD7
J5 5x2 SER0/SER1 connector,

+12V In
Pins 1,2 for +12V In
Pins 3,5,9 for SER0
Pins 4,6,10 for SER1

J9 2x1 Watchdog timer Enabled if Jumper is on
Disabled if jumper is off

U6
691

EE

U2

188 CPU

U5
Flash

RTC

U11
ADC

RS232

J2

SER0

Step 2
 Jumper

 GND
 P4

J1

U1

S
R
A
M

DAC

+12V
IN

DAC
Power Regulator:
linear or low-drop

J4
ADC Inputs,
COM, REF

GND

SER1

Figure 3.3 Locations of jumpers and connectors on the FlashCore-B (component view)

FlashCore-B Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
Appendix G, “Software Glossary” of the technical manual for the AE&AEP in \tern_docs\manuals\ from
the root directory of your CD.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

FlashCore-B Chapter 4: Software

4-2

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 AE.LIB
AE.LIB is a C library for basic FlashCore-B operations. It includes the following modules: AE.OBJ,
SER0.OBJ, SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and
include the corresponding header files. The following is a list of the header files:

Include-file name Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H Internal serial port 0
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

4.2 Functions in AE.OBJ

4.2.1 FlashCore-B Initialization

ae_init

This function should be called at the beginning of every program running on FlashCore-B core controllers.
It provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up

FlashCore-B Chapter 4: Software

4-3

expanded DOS I/O, and provides other processor-specific updates needed at the beginning of every
program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae_init are described below. For details regarding register use, you will want to refer to
the AMD Am188ES Microcontroller User’s manual.

• Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

− Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)

− 512K ROM Block size operation.

− Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you require increased performance (at a risk of stability
in noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)
reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

• Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

− Address space starts 0x00000, with a maximum of 512K RAM.

− 3 wait state operation. Reducing this value can improve performance.

− Disables PSRAM, and disables need for external ready.
outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

• Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

− MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

− Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

• Initialize PACS so that PCS0-PCS3 are configured so that:

− Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.

− The chip select lines starts at I/O address 0x0000, with each successive chip select line
addressed 0x100 higher in I/O space.

outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

• Configure the two PIO ports for default operation. All pins are set up as default input, except for
P12 (used for driving the LED), and peripheral function pins for SER0 and SER1, as well as chip
selects for the PPI.

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,
// P16=PCS0, P17=PCS1=PPI

outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

• Configure the PPI 82C55 to all inputs, except for lines I20-23 which are used as output for the
ADC. You can reset these to inputs if not being used for that function.

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high

The chip select lines are by default set to 15 wait state. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number down

FlashCore-B Chapter 4: Software

4-4

as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is decreased
too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sources on the FlashCore-B, consisting of maskable interrupt pins
(INT0-INT4, INT6). There are also an additional eight internal interrupt sources not connected to the
external pins, consisting of three timers, two DMA channels, both asynchronous serial ports, and the NMI
from the watchdog timer. For a detailed discussion involving the ICUs, the user should refer to Chapter 7
of the AMD Am188ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the 6 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service routine
that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors correctly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be handled
first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user chooses to
clear the in-service bit for the interrupt currently being handled, the interrupt service routine just needs to
issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will
act as the interrupt service routine. The overhead on the interrupt service routine is approximately 20 µs.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

FlashCore-B Chapter 4: Software

4-5

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

There are two ports of 16 I/O pins available on the FlashCore-B. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application
where you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one
of the four available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 11 of the AMD Am188ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur if
you instead modify the PIO registers directly with an outport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

• 0, High-impedance Input operation
• 1, Open-drain output operation
• 2, output
• 3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

FlashCore-B Chapter 4: Software

4-6

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore-B can be used for a variety of applications. All three timers run
at ¼ of the processor clock rate, which determines the maximum resolution that can be obtained. Be
aware that if you enter power save mode, that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution at
the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this down
even further. Sample files demonstrating this are timer02.c and timer12.c in the FlashCore-B sample file
directory.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
AM188ES User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

FlashCore-B Chapter 4: Software

4-7

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) is connected, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop
or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

There is a common data structure used to access and use both interfaces.

typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

FlashCore-B Chapter 4: Software

4-8

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

FlashCore-B Chapter 4: Software

4-9

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the debug kernel
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the Am188ES CPU: SER0 and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SER0 is used by the DEBUG ROM for application download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the following discussion; any of the interface functions which are
specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for use,
please realize that some pins might be shared with other peripheral functions. This means that in certain
limited cases, it might not be possible to use a certain serial port with other on-board controller functions.
For details, you should see both chapter 10 of the Am188ES Microprocessor User’s Manual and the
schematic of the FlashCore-B provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock; a 20 MHz system clock would have the baud rates
halved.

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

FlashCore-B Chapter 4: Software

4-10

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMA1 operation. In terms of receiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise,
it will continue to take out the data from the out buffer, and transmit. After you call putser1() and
transmit functions, you are free to do other tasks with no additional software overhead on the transmitting
operation. It will automatically send out all the data you specify. After all data has been sent, it will clear
the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?.’ The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\186\samples\ae.

Software Interface

Before using the serial ports, they must be initialized.

FlashCore-B Chapter 4: Software

4-11

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within
the output buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call
one of the following functions, however, the driver interrupt for the appropriate serial-port will be
disabled, which means that no values will be transmitted. This allows you to control when you wish the

FlashCore-B Chapter 4: Software

4-12

transmission of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous
to manipulate the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware

FlashCore-B Chapter 4: Software

4-13

flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the Am188ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the Am188ES Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the User’s manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board provides easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step 2, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

FlashCore-B Chapter 4: Software

4-14

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.5 FILESYS.LIB

FILESYS.LIB is C library that includes fileio.obj and filegeo.obj that supports data transfers to and from
Compact Flash cards installed on the FlashCore-B or the FB-0.

4.5.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any other disk operations. It should also be called if a new card is
installed.

This function will return 0 if a card with FAT filesystem is located and initialized. Any other returns
indicate the card was ‘busy’ (not found), or if disk geometry is not correct. If 0 is not return, check
<filegeo.h> for error-code description.

4.5.2 File System Access and Modification

A fs_descrip structure is used as a file handle to an open file. The structure might change over time, and
you should be careful in accessing any fields directly. This structure is used in many of the function calls
that define file management on the FlashCore-B or FB-0.

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen(); this must later be freed by a corresponding call to
fs_FBlose(), even if an error occured at some point with the file.

2) a call to fs_findfirst(), passing in a fs_descrip variable you've created (in any way). The file isn't
actually open, and you are responsible for freeing the variable.

The structure is defined below:

*** *****************/

struct fs_descrip {

 unsigned int ff_dirpos; // The number of the directory entry for this file.

 unsigned int ff_start, // The starting cluster.

 ff_current; // The cluster currently being written to.

 char ff_attrib; // Attribute byte, see FA_xxx above.

 char ff_mode; // Either fREAD or fWRITE or FBLOSED.

FlashCore-B Chapter 4: Software

4-15

 unsigned int ff_ctime, ff_cdate; // File created time and date.

 unsigned int ff_mtime, ff_mdate; // File modified time and date.

 unsigned int ff_adate; // File accessed date, no time stored.

 unsigned long ff_fsize, // File size in bytes.

 ff_position; // The 'read' pointer.

 int ff_status; // For passing error information.

 char ff_name[FNLEN+1]; // File name, with \0.

 unsigned char *ff_buf; // Cluster buffer, sectors must be read and written

 // from disk in entirety, so this area buffers them. Created on the heap!

};

*** ***************/

struct fs_descrip *fs_fopen(const char *filename, int flags)

Opens and prepares a file for operation. The arguments are as follows:

 The flag should be one of the following values:

 O_RDONLY : (open file for read only, fails if file doesn't exist),

 O_WRONLY : (open/creates a file, fails if file exists),

 O_APPEND : (open a file and prepares to append, positioning file pointer at the end of the program)

where the flags are defined as:
#define O_RDONLY 0x1
#define O_WRONLY 0x2
#define O_APPEND 0x4

The function returns a 'struct fs_descrip' handle to the open file, or NULL if it fails. It is important to note
that if a file is successfully opened, it should always be closed using fs_FBlose() to free any memory used
for the file handle. The function call fs_FBlose() will also finalize any modifications to the file.

int fs_findfirst(char *pathname, struct fs_descrip *descrip)

Finds the *first* file entry (including directories and 'labels' corresponding to the argument 'pathname'.
The handle for the file is returned in the 'descrip' argument (you must allocate memory for it before
making the call). This file is not* actually opened (you don't need to fs_FBlose() it later, either).

This function returns one of the following:

 fOK: a file was found.

FlashCore-B Chapter 4: Software

4-16

 fend: The end of the directory specified in 'pathname' was reached, but no file found.

 error code : Check this file and <filegeo.h> for error-code descriptions.

For version 1.0, pathname MUST be "*.*". Any other pathname will generate an error. In later versions,
other pathnames/wildcards may be supported. So, a call to fs_findfirst("*.*",) returns the first file
entry in the root directory.

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in the file's directory. The details of the file are written into the
same argument file descriptor. As before, the file is *not* actually opened.

Return values:

 fOK: a file was found.

 fEND: The end of the directory specified in 'pathname' was reached, but no file found.

 error code : Check this file and <filegeo.h> for error-code descriptions.

Use this function, in combination with fs_findfirst, to iterate through the entries in a directory.

unsigned char fs_fgetc(struct fs_descrip *fs_descrip)

Get a single byte from the opened file pointed to by the file descriptor.

RETURNS:

 Normally, next byte of data.

 '\0' : Default return value if a read from file is not possible. In this case, check fs_descrip->ff_status to
 determine the cause. Might be fEOF (end of file), fILLEGAL (illegal operation), or other error
 code. (fOK indicates the read value was '\0').

unsigned char fs_fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointed to by the file descriptor.

RETURNS:

 Normally, the character that was just written to the file.

 '\0' : Default return value if a read from file is not possible.

 In this case, check fs_descrip->ff_status to determine the cause.

 Might be fEOF (end of file), fILLEGAL (illegal operation),

FlashCore-B Chapter 4: Software

4-17

 or other error code (full disk).

char fs_fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened file 'fs_descrip', of up to n characters. Returns when a newline
'\n', or end of file is reached.

RETURNS:

 The contents of fs_descrip->ff_status (fOK if all is correct).

char fs_fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string to the opened file pointed by fs_descrip.

RETURNS:

 The number of characters successfully output.

This function automatically adds carriage return '\r' before newline '\n', as in standard DOS practice.

char fs_FBlose(struct fs_descrip *fs_descrip)

Closes a file previously opened with fs_fopen, saving any lingering changes, updating directory entries,
and freeing memory associated with fs_descrip (be sure to only fs_FBlose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

 Returns error code associated with file; the contents of fs_descrip are no longer valid after this
 call, do not check its ff_status field.

void fs_StampTimeHMSMDY(struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'access', 'modification', or 'creation' for a file pointed to by
fs_descrip in the directory entry. Since not all systems have RTC, the user is expected to use this function
if they wish to use file timestamps. fs_fopen, fs_FBlose, etc... will not. DOS usually stores timestamps in
'packed' storage format (documentation available online).

FlashCore-B Chapter 4: Software

4-1

Chapter 4: Software

Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
Appendix G, “Software Glossary” of the technical manual for the AE&AEP in \tern_docs\manuals\ from
the root directory of your CD.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset

FlashCore-B Chapter 4: Software

4-2

Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 AE.LIB
AE.LIB is a C library for basic FlashCore-B operations. It includes the following modules: AE.OBJ,
SER0.OBJ, SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and
include the corresponding header files. Although AE.LIB includes drivers for things like ADC, DAC, and
RTC, these drivers were originally written for the A-Engine, the first TERN controller based on the 188
CPU, and are not the same for the FlashCore-B. Discussion on the drivers for the FB’s ADC, DAC, and
RTC will be included in this chapter. Yet AE.LIB still provides the FB user with drivers for SER0, SER1,
EEPROM, timers/counters, and watchdog. Software drivers for the FlashCore-B ADC, DAC, and RTC are
found in the sample code provided in the tern\186\samples\fb directory. The following is a list of the
header files included in AE.LIB (only topics highlighted in BOLD apply to the FB):

Include-file name Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H Internal serial port 0
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

FlashCore-B Chapter 4: Software

4-3

4.2 Functions in AE.OBJ

4.2.1 FlashCore-B Initialization

ae_init

This function should be called at the beginning of every program running on FlashCore-B core controllers.
It provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up
expanded DOS I/O, and provides other processor-specific updates needed at the beginning of every
program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae_init are described below. For details regarding register use, you will want to refer to
the AMD Am188ES Microcontroller User’s manual.

* Initialize the upper chip select to support the default ROM. The CPU registers are configured
such that:

* Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)

* 512K ROM Block size operation.

* Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you require increased performance (at a risk of stability in noisy
environments). For details, see the UMCS (Upper Memory Chip Select Register) reference in the
processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

* Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

* Address space starts 0x00000, with a maximum of 512K RAM.

* 3 wait state operation. Reducing this value can improve performance.

* Disables PSRAM, and disables need for external ready.
outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

* Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

*MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

* Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

* Initialize PACS so that PCS0-PCS3 are configured so that:

* Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.

* The chip select lines starts at I/O address 0x0000, with each successive chip select line addressed
0x100 higher in I/O space.

outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

* Configure the two PIO ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SER0 and SER1, as well as chip selects
for the PPI (PPI does not apply to FB).
outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,

// P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

FlashCore-B Chapter 4: Software

4-4

This last section does not apply to the FB, as it is not installed with the 82C55 PPI chip.

* Configure the PPI 82C55 to all inputs, except for lines I20-23 which are used as output for the ADC.
You can reset these to inputs if not being used for that function.
outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high

The chip select lines are by default set to 15 wait state. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number down
as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is decreased
too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sources on the FlashCore-B, consisting of maskable interrupt pins
(INT0-INT4, INT6). There are also an additional eight internal interrupt sources not connected to the
external pins, consisting of three timers, two DMA channels, both asynchronous serial ports, and the NMI
from the watchdog timer. For a detailed discussion involving the ICUs, the user should refer to Chapter 7
of the AMD Am188ES Microcontroller User’s Manual.

It is important to refer to your controller’s schematic (found in tern_docs\schs, or at the end of this
technical manual) to determine which interrupts might already be in use by on-board components (and
should therefore not be used by user application). Table 3.2 of Chapter 3 also gives a summary of which
interrupts and PIOs are reserved by certain hardware on-board.

TERN provides functions to enable/disable all of the 6 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service routine
that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors correctly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be handled
first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user chooses to
clear the in-service bit for the interrupt currently being handled, the interrupt service routine just needs to
issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

FlashCore-B Chapter 4: Software

4-5

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will
act as the interrupt service routine. The overhead on the interrupt service routine is approximately 20 µs.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

There are two ports of 16 I/O pins available on the FlashCore-B. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application
where you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one
of the four available modes. Before selecting pins for this purpose, make sure that the peripheral mode
operation of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes (Table 3.2 helps clarify
which PIO are not available). These are all described in some detail in the Hardware chapter of this
technical manual. Your controller’s schematic is also an excellent source for determining a PIO line’s
availability (tern_docs\schs on your TERN CD). For a detailed discussion toward the I/O ports, please
refer to Chapter 11 of the AMD Am188ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur if
you instead modify the PIO registers directly with an outport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode

FlashCore-B Chapter 4: Software

4-6

Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

* 0, normal operation
* 1, input with pullup/pulldown
* 2, output
* 3, input without pullup/pulldown

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore-B can be used for a variety of applications. All three timers run
at ¼ of the processor clock rate, which determines the maximum resolution that can be obtained. Be
aware that if you enter power save mode, that means the timers will operate at a reduced speed as well.
System clock for the FB is 40MHz. The FB’s CPU uses a times-one operating frequency, making the CPU
clock 40MHz as well. If the timers/counters are serviced every four CPU clocks, the maximum rate at
which the timers can operate is 10MHz.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution at
the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this down
even further. Sample files demonstrating this are timer02.c and timer12.c in the FlashCore-B sample file
directory.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
AM188ES User’s Manual.

void t0_init

FlashCore-B Chapter 4: Software

4-7

void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers. The chapter on timers in the AMD AM188ES user’s manual
can help with determining the correct value to write to the timer control register.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) is connected, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop
or stalled interrupt service routine, a hardware reset will occur. Using the watchdog timer can be an
excellent way to recover program execution if a crash occurs due to hot-swapping compact flash cards.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

FlashCore-B Chapter 4: Software

4-8

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the debug kernel
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the 188 CPU: SER0 and SER1. Both ports have baud rates
based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SER0 is used by the DEBUG ROM for application download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the following discussion; any of the interface functions which are
specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for use,
please realize that some pins might be shared with other peripheral functions. This means that in certain
limited cases, it might not be possible to use a certain serial port with other on-board controller functions.
For details, you should see both chapter 10 of the Am188ES Microprocessor User’s Manual and the
schematic of the FlashCore-B provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock;

Function Argument Baud Rate

1 110

2 150

3 300

FlashCore-B Chapter 4: Software

4-9

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMA1 operation. In terms of receiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use

FlashCore-B Chapter 4: Software

4-10

serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise,
it will continue to take out the data from the out buffer, and transmit. After you call putser1() and
transmit functions, you are free to do other tasks with no additional software overhead on the transmitting
operation. It will automatically send out all the data you specify. After all data has been sent, it will clear
the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?.’ The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\186\samples\ae.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;

FlashCore-B Chapter 4: Software

4-11

 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within
the output buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call
one of the following functions, however, the driver interrupt for the appropriate serial-port will be
disabled, which means that no values will be transmitted. This allows you to control when you wish the
transmission of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous
to manipulate the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte ‘outch’ into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

FlashCore-B Chapter 4: Software

4-12

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the Am188ES User’s Manual as well as the FB schematic in the tern_docs\schs directory.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

FlashCore-B Chapter 4: Software

4-13

The asynchronous serial I/O ports available on the Am188ES Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the User’s manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board provides easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step 2, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.5 Other FB Funtions

Funtions included below are not included in any library. Their delcartion and definitions have been
included in the sample code in the tern\186\samples\fb directory. To utilize these functions and have
access to the hardware they support, the user must copy the function definitions into their application code.

4.5.1 RTC

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions. The RTC on the FB differs
from the RTC on most other TERN controllers. The TIM structure as defined below remains the same, but
the software drivers differ by a small amount. It is also important to note that the drivers for the FB RTC
are not part of any library, including ae.lib. These drivers are declared and defined in the sample code
FB_rtc.c in the tern\186\samples\FB directory. The user must copy the definitions into their source code.

There is a common data structure used to access and use both interfaces.

FlashCore-B Chapter 4: Software

4-14

typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc1337_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

int rtc1337_rds
Arguments: char * realTime
Return value: unsigned char error_code

This function places the current value of the real time clock into the character string realTime. It is similar
to the above function, yet makes it simpler to then use the result of the function call for other purposes by
placing the result into a character string, not the TIM structure.

Void rtc1337_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 15, 2002, Friday, 13:55:30, the
byte array would be initialized to:

unsigned char t[14] = { 5, 0, 2, 0, 6, 1, 5, 1, 3, 5, 5, 3, 0 };

4.5.2 ADC

FlashCore-B Chapter 4: Software

4-15

unsigned int fb_ad16(unsigned char k)
Arguments: unsigned char k
Return value: unsigned int data

This function passes a control byte k to the ADS8344. The byte k determines the which channels and
mode are being selected. Modes can include single-ended or differential inputs. The return value data is
the 16-bit result of the previous conversion.

Control bytes are as follows (these are also defined in the ADS8344 data sheets in the tern_docs\parts
directory): By default, the internal clock is selected.

 For single ended inputs:

 k = 0x86 AD0
 k = 0xc6 AD1
 k = 0x96 AD2
 k = 0xd6 AD3
 k = 0xa6 AD4
 k = 0xe6 AD5
 k = 0xb6 AD6
 k = 0xf6 AD7

 For differential inputs:

 k = 0x82 AD0 = IN+, AD1 = IN-
 k = 0x92 AD2 = IN+, AD3 = IN-
 k = 0xa2 AD4 = IN+, AD5 = IN-
 k = 0xb2 AD6 = IN+, AD7 = IN-

 // Same as above just change in polarity
 k = 0xc2 AD1 = IN+, AD0 = IN-
 k = 0xd2 AD3 = IN+, AD2 = IN-
 k = 0xe2 AD5 = IN+, AD4 = IN-
 k = 0xf2 AD7 = IN+, AD6 = IN-

4.5.3 DAC

The FB can support two 2-channel 12-bit DACs. Each has 12-bits of resolution, yielding a 0-4.095 volt
output range, making 1LSB equal to 1 millivolt. There is one software driver for each 2-channel DAC. The
user must format the passed argument to determine which channel the output will be written to, see below
for details. As mentioned in the hardware chapter, the settling time is 7µs, and each channel can sink or
source 7mA.

void fb_da1(int dat); // drives DAC at U13, Outputs = VA & VB
void fb_da2(int dat); // drives DAC at U14, Outputs = VC & VD

FlashCore-B Chapter 4: Software

4-16

Arguments: int dat
Return value: void

This function passes a 12-bit value to output on one of the four analog outputs on the FB. FB_da1
corresponds to VA & VB while FB_da2 corresponds to VC & VD. The argument passed to the function
must be formatted to determine which channel to output.

Of the 16-bit int passed, the lower 12 bits represent the voltage to be driven on the output. Bits 15 and 14
should be zero, bit 13 should be one, and bit 12 should be a zero for channel A and one for channel B.

 Example of how to format:

 dat = (output_voltage) & 0x0FFF; // AND with 0x0FFF for lower 12 bits

 dat = dat | 0x2000; // OR with 0x2000 for channel A
 dat = dat | 0x3000; // OR with 0x3000 for channel B

Refer to FB_da.c in the tern\186\samples\FB directory for sample code and function definitions.

4.6 FILESYS.LIB

FILESYS.LIB is C library that includes fileio.obj and filegeo.obj that supports data transfers to and from
Compact Flash cards installed on the FlashCore-B or the FB-0.

4.6.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any other disk operations. It should also be called if a new card is
installed.

This function will return 0 if a card with FAT filesystem is located and initialized. Any other returns
indicate the card was ‘busy’ (not found), or if disk geometry is not correct. If 0 is not return, check
<filegeo.h> for error-code description.

4.6.2 File System Access and Modification

A fs_descrip structure is used as a file handle to an open file. The structure might change over time, and
you should be careful in accessing any fields directly. This structure is used in many of the function calls
that define file management on the FlashCore-B or FB-0.

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen(); this must later be freed by a corresponding call to
fs_FBlose(), even if an error occured at some point with the file.

FlashCore-B Chapter 4: Software

4-17

2) a call to fs_findfirst(), passing in a fs_descrip variable you've created (in any way). The file isn't
actually open, and you are responsible for freeing the variable.

The structure is defined below:

*** *****************/

struct fs_descrip {

 unsigned int ff_dirpos; // The number of the directory entry for this file.

 unsigned int ff_start, // The starting cluster.

 ff_current; // The cluster currently being written to.

 char ff_attrib; // Attribute byte, see FA_xxx above.

 char ff_mode; // Either fREAD or fWRITE or FBLOSED.

 unsigned int ff_ctime, ff_cdate; // File created time and date.

 unsigned int ff_mtime, ff_mdate; // File modified time and date.

 unsigned int ff_adate; // File accessed date, no time stored.

 unsigned long ff_fsize, // File size in bytes.

 ff_position; // The 'read' pointer.

 int ff_status; // For passing error information.

 char ff_name[FBLEN+1]; // File name, with \0.

 unsigned char *ff_buf; // Cluster buffer, sectors must be read and written

 // from disk in entirety, so this area buffers them. Created on the heap!

};

*** ***************/

struct fs_descrip *fs_fopen(const char *filename, int flags)

Opens and prepares a file for operation. The arguments are as follows:

 The flag should be one of the following values:

 O_RDONLY : (open file for read only, fails if file doesn't exist),

 O_WRONLY : (open/creates a file, fails if file exists),

 O_APPEND : (open a file and prepares to append, positioning file pointer at the end of the program)

where the flags are defined as:
#define O_RDONLY 0x1
#define O_WRONLY 0x2
#define O_APPEND 0x4

FlashCore-B Chapter 4: Software

4-18

The function returns a 'struct fs_descrip' handle to the open file, or NULL if it fails. It is important to note
that if a file is successfully opened, it should always be closed using fs_FBlose() to free any memory used
for the file handle. The function call fs_FBlose() will also finalize any modifications to the file.

int fs_findfirst(char *pathname, struct fs_descrip *descrip)

Finds the *first* file entry (including directories and 'labels' corresponding to the argument 'pathname'.
The handle for the file is returned in the 'descrip' argument (you must allocate memory for it before
making the call). This file is not* actually opened (you don't need to fs_FBlose() it later, either).

This function returns one of the following:

 fOK: a file was found.

 fend: The end of the directory specified in 'pathname' was reached, but no file found.

 error code : Check this file and <filegeo.h> for error-code descriptions.

For version 1.0, pathname MUST be "*.*". Any other pathname will generate an error. In later versions,
other pathnames/wildcards may be supported. So, a call to fs_findfirst("*.*",) returns the first file
entry in the root directory.

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in the file's directory. The details of the file are written into the
same argument file descriptor. As before, the file is *not* actually opened.

Return values:

 fOK: a file was found.

 fEND: The end of the directory specified in 'pathname' was reached, but no file found.

 error code : Check this file and <filegeo.h> for error-code descriptions.

Use this function, in combination with fs_findfirst, to iterate through the entries in a directory.

unsigned char fs_fgetc(struct fs_descrip *fs_descrip)

Get a single byte from the opened file pointed to by the file descriptor.

RETURNS:

 Normally, next byte of data.

 '\0' : Default return value if a read from file is not possible. In this case, check fs_descrip->ff_status to
 determine the cause. Might be fEOF (end of file), fILLEGAL (illegal operation), or other error
 code. (fOK indicates the read value was '\0').

FlashCore-B Chapter 4: Software

4-19

unsigned char fs_fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointed to by the file descriptor.

RETURNS:

 Normally, the character that was just written to the file.

 '\0' : Default return value if a read from file is not possible.

 In this case, check fs_descrip->ff_status to determine the cause.

 Might be fEOF (end of file), fILLEGAL (illegal operation),

 or other error code (full disk).

char fs_fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened file 'fs_descrip', of up to n characters. Returns when a newline
'\n', or end of file is reached.

RETURNS:

 The contents of fs_descrip->ff_status (fOK if all is correct).

char fs_fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string to the opened file pointed by fs_descrip.

RETURNS:

 The number of characters successfully output.

This function automatically adds carriage return '\r' before newline '\n', as in standard DOS practice.

char fs_FBlose(struct fs_descrip *fs_descrip)

Closes a file previously opened with fs_fopen, saving any lingering changes, updating directory entries,
and freeing memory associated with fs_descrip (be sure to only fs_FBlose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

 Returns error code associated with file; the contents of fs_descrip are no longer valid after this
 call, do not check its ff_status field.

FlashCore-B Chapter 4: Software

4-20

void fs_StampTimeHMSMDY(struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'access', 'modification', or 'creation' for a file pointed to by
fs_descrip in the directory entry. Since not all systems have RTC, the user is expected to use this function
if they wish to use file timestamps. fs_fopen, fs_FBlose, etc... will not. DOS usually stores timestamps in
'packed' storage format (documentation available online).

FlashCore-B Appendix A: RS-232 Link Troubleshhoting

i

Appendix A: TERN Controller – PC Link Troubleshoot ing

Troubleshooting TERN-PC Serial Link

1. Connect the DB9 of your serial cable to your PC’s open COM port.
2. Use an oscilloscope or voltmeter to measure voltage on pin 5 of above diagram. It should be -10V. If

wrong voltage is present, investigate possible fautly PC COM port.
a) Also, try a different PC COM port.

3. If correct voltage is seen on pin 5, prepare a hyper terminal session on your PC. Use an oscilloscope to
measure activity on pin 5. Type any key(s) on your PC. The hyper terminal will send out characters in
ASCII format over pin 5 (PC transmit data). You should be able to see activity on pin 5, or in other words,
the signal present on pin 5 should toggle between +10V and -10V with a variable duty cycle, depending on
the ASCII code for the character(s) being typed at PC.

a) If Step 2 passes but Step 3 does not, there may be a software conflict with the COM port you are
trying to use.

b) Try a different COM port.
c) Close any software that could be attempting to occupy your COM port.
d) If your PC has multiple COM ports, confirm that the hyper terminal (and Paradigm C/C++) are

configured to same COM port that you have the serial cable connected to.

4. If Steps 2 & 3 do not locate the problem, try another PC and repeat Step 1 -3.

To PC DB9
connector

1

3 4

5 6

7 8

9 10

PC Receive Data.
Connects to TERN
controller /TxD.
Floating at 0V.

PC Transmit Data.
Connects to TERN
controller /RxD.
Voltage = -10V

GND

Red Edge
of cable

RS-232/Debug Cable Supplied by TERN
with EV-P or DV-P Software Kits

2

FlashCore-B Appendix B: Dimensional Plot

i

Appendix B: FlashCore-B Dimensional Plot

J2

J1

ADC

J9

EE

RTC

DA

SRAM

0.09, 2.25

2.1, 2.4

1.99, 2.27

1.99, 0.09

0.38, 0.23

0.18, 0.08

0.0, 0.0

CPU
AM188ES

Flash 691

232

TPS
J4

J5

J3

1.94, 0.22

1.15, 0.09

All units are in inches

FlashCore-B Appendix C: Kpad – FlashCore-B Interface

1

Appendix C: Kpad – FlashCore-B
C. 1 Introduction
This Appendix discusses two different interfaces between the FlashCore-B and the Kpad. The first
interface is called the Kpad-Bus. Its name is derived from the fact that the Kpad is driven by the
Address/Data Bus of the FlashCore-B. The second interface is called the Kpad-IO. This version is driven
by the CPU’s user-programmable TTL I/Os. Both interfaces offer the same performance from the Kpad,
but use different software and flat cable to connect the two modules. Each section will summarize the
physical connection for its respective interface.

C.2 Kpad-Bus Interface
The Kpad-Bus interface is extremely simply. This version uses the 20x2 J1 pin header of the FlashCore-B
and the 20x2 J1 pin header of the Kpad.

C.2.1 Hardware requirements
Refer to the FlashCore-B and Kpad schematics in the tern_docs\schs directory for exact pin definitions.
The physical connection is a one-to-one connection, meaning J1.1 of the FB connects to J1.1 of the Kpad,
J1.2 of the FB connects to J1.2 of the Kpad, and so on. A standard 40 wire flat cable and two 20x2
connectors should be used. Create the cable so pin 1 of each connector is tied to the same wire. The J1 pin
header on the Kpad can only be installed on the bottom of the PCB. The J1 pin header on the FlashCore-B
MUST be installed type ‘B’. The FlashCore-B and Kpad can then be linked by installing the flat cable with
Pin 1 of each controller aligned.

The picture below shows the Kpad-Bus interface. Sample code is included on the TERN installation CD in
the tern\186\samples\kpad directory, “kpad_bus.c”.

Appendix C: Kpad – FlashCore-B Interface FlashCore-B

2

C.2 Kpad-IO Interface
This interface requires modification to the flat cable as well as the FB itself. More details will be provided
in this section to ensure a proper connection.

C.2.1 Signal Definitions

 J2 Header: FlashCore-B

GND 1 2 VCC
P4 3 4 P14
 5 6 P6
P15 7 8 P5
INT3 9 10 P30
INT1 11 12 INT2
P3 13 14 INT0
/CTS1 15 16 /RTS1
P24 17 18 P17
P0 19 20 P25
P13 21 22 P10
/RTS0 23 24
P1 25 26 /CTS0
P29 27 28 P26
GND 29 30

Signal Definitions for FlashCore-B
J2 header.

Pins Highlighted Red need to be
cut when using a 10x2 connector.

Pins Highlighted in Green indicate the
pins to install the 10x2 connector onto.

Also, an external wire must be soldered

to bring VCC from J2.2 to J2.30

In addition, an external wire must be
soldered to bring J2 pin 8 to J2 pin 24. This

brings P5 to pin 24.

FlashCore-B

Pin Name

Function

VCC Kpad supply voltage, +5V

GND Ground

P26, P29, P1,
P21(/CTS0),
P20(/RTS0),
P5, P13,
P10

Keypad Scan: Inputs to FlashCore-B

P0, P25, P24,
P17

Outputs from Am188ES. Drive D7-D4
on LCD controller.

P18 (/CTS1) Drives E (enable) line to LCD

P19 (/RTS1) Drives RS line to LCD. Shared with
I22 for Keypad scan

P3 Output. Keypad scan.
/RD Input to PAL

FlashCore-B Appendix C: Kpad – FlashCore-B Interface

3

 H5 Header: Kpad
I07 1 2 I06
VCC 3 4 GND

I05 5 6 I04

I03 7 8 I02

I01 9 10 I00

I27 11 12 I26

I25 13 14 I24

I23 15 16 I22

I21 17 18

 19 20

Kpad Pin
Name

Function

VCC Kpad supply voltage +5V
GND Ground
I07 – I00 Keypad scan. Tied to Pull-up resistors
I27 – I24 Data lines of LCD controller D7 – D4
I23 LCD controller Enable
I22 LCD controller, mode select

 Low: Command
 High: Data

Keypad Scan

I21 Keypad Scan

Kpad pin layout and description for IO version

C.2.2 Connections, Pin Mapping

When driving the Kpad with the FlashCore-B as described by this appendix, two modifications must be
made to the FlashCore-B. If your Kpad and FlashCore-B were ordered together, the necessary
modifications have already been made before shipment. This applies only if you have ordered the Kpad
after your FlashCore-B. In order to drive the Kpad, it requires a +5V power supply which can be taken
directly from the J2 header on the FlashCore-B. An external wire must be soldered to the FlashCore-B
which ties J2.2 = J2.30. This will bring VCC to J2 pin 30 and then be routed to the Kpad. J2 pin 30 by
hardware definition is an open pin, so there will be no compatibility problems. The following table shows
the exact connections between the FlashCore and the Kpad. In addition, P5 (J2 pin 8) must be connected
via external wire to J2 pin 24. The FlashCore-B has on open pin at J2 pin 24, and must therefore borrow
P5 (J2 pin 8) to complete the interface.

Appendix C: Kpad – FlashCore-B Interface FlashCore-B

4

 Pin Mapping: FlashCore-B ���� Kpad

 Kpad
Signal Name

H5 Pin # J2 Pin # FlashCore
Signal Name

 I07 1 27 P29

I06 2 28 P26

VCC 3 30 VCC (after modification)

GND 4 29 GND

I05 5 25 P1

I04 6 26 P21

I03 7 23 P20

I02 8 24 P5 (after modification)

I01 9 21 P13

I00 10 22 P10

I27 = D7 11 19 P0

I26 = D6 12 20 P25

I25 = D5 13 17 P24

I24 = D4 14 18 P17

I23 = E 15 15 P18

I22 = RS 16 16 P19

I21 = Row 1 17 13 P3

No
Connection

18 14 No Connection
(Don’t care)

C.2.3 Flat Cable Specifications

This section will define how a flat cable should be prepared to interface the Kpad based on the sample
code for the FlashCore-B, tern\186\samples\kpad_fb.c. This interface is based upon the pin mapping given
in the previous section. The following diagram is a simply an aide to help visualize how the cable will
connect the Kpad and the FlashCore-B. It is therefore important to remember the above table takes priority
in terms of the final connections.

FlashCore-B Appendix C: Kpad – FlashCore-B Interface

5

 H5

 J2

Because of the Compact
Flash Interface on the FC,
the pin header on J2 will
always be type “T”, or

component side. This only
allows one orientation to

install a flat cable.

FlashCore-B
Component Side

Connector to install
on this side of PCB.

Header H5 – Kpad
The H5 pin header will be

installed on the underside of
the Kpad, opposite of the LCD.
Thus the flat cable will install

on the under side as well.

Kpad
LCD facing up,
yet cable installs
on bottom side.

Pin 20

Pin 1 Pin 1

Notice the crossing of
the first four lines.

Instructions for flat cable assembly:
(1) Use a 20 wire flat cable
(2) Use two 10x2 connectors.
(3) Peel back the first and second pair of wires as shown above.
(4) Cross first four wires as shown above and secure into one connector. This will mount onto the Kpad.
(5) Secure FlashCore-B side connector with no modification to the wires.
(6) Cut pins J2.9 and J2.10 (highlighted in red above) to allow for install of 10x2 connector onto FlashCore-B J2 header
(7) Install FlashCore-B side connector flush to bottom of J2 header (highlighted in green above)
(8) Solder wire from J2.2 to J2.30 and from J2.8 to J2.24 on the FB (shown in purple above).

 IMPORTANT: Refer to tables in this appendix to confirm the correct pin-to-pin configuration.

Pin 20

Date: December 4, 2002 Sheet 1 of 1

Size Document Number REV

B FB-MAN.SCH

Title

FLASHCORE-B

STE/TERN

GND
VCC

VCC 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

HDRD40

VA

GND

D4

D6

D3

D5

GND 1

D3
 2

D4 3

D5 4

D6 5

D7 6

/CE1 7

A10 8

/OE 9

A9 10

A8 11

A7 12

VCC 13

A6 14

A5 15

A4 16

A3 17

A2 18

A1 19

A0 20

D0 21

D1 22

D2 23

WP 24

CD2 25

CD1 26

D11
27

D12 28

D13 29

D14 30

D15 31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE 36

RDY 37

VCC 38

/CS 39

VS2 40

RST 41

/WT 42

/IP 43

/REG 44

BV2 45

BV1 46

D8 47

D9 48

D10 49

GND 50

U4

CF
CF

D6
D7

A10
A11

A8
A13
A14

A9
A11 1

A9
 2

A8 3

A13 4

A14 5

A17 6

/WR 7

VCC 8

A18 9

A16 10

A15 11

A12 12

A7 13

A6 14

A5 15

A4 16

/OE 32

A10
31

/CE 30

D7 29

D6 28

D5 27

D4 26

D3 25

GND 24

D2 23

D1 22

D0 21

A0 20

A1 19

A2 18

A3 17

U5

29F040

DIN
CK

T0
T1
T2

D0

A0
A1
A2

D 13 Q0 4

Q1
 5

S0 1 Q2 6

S1 2 Q3 7

S2 3 Q4 9

Q5 10

G 14 Q6 11

CLR 15 Q7 12

U9

74HC259
74HC259S

A18 A18 1

A16 2

A14 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2
 15

GND 16

VDD 32

A15 31

CE2 30

R/W 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE1 22

D7 21

D6 20

D5 19

D4
18

D3 17

U1

RAM271024
MEM32S

CE2=VRAM

/RST
P2

VRAM

/AD
LD

/DA VCC

A16

A12
A7
A6
A5
A4

A18

A15

A17

D3
D4
D5

A3
A2
A1
A0
D0
D1
D2
GND

A3

VCC
GND
GND

D7

GND

GND
GND
GND

GND

/RD

/CF

/RST
RST
P16

VBAT

VC
VD

VB

D7
D6
D5
D4
D3
D2
D1
D0

A6
A7

GND

A0
A1
A2
A3
A4
A5/WR

/RD

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30

J2

HDRD30

GND
C13
CAPNP

VCC

A1

D0

D2

A2

A0

D1

GND
/RST
RST

/RAM

WDO
/LCS

WDI

A17 VRAM
VBAT

VCC
GND

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS
 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI
 9

U6

MAX691
MAX691S

D6
D7

A10

A11

A8
A13

A15

/RAM

VRAM/RD
1 2 3

J3 HDRS3

A9

VRAM

VRAM

A16

A12
A7
A6
A5
A4

A0
A1
A2

D0

A14

A3

D1
D2

GND
GND
GND A0 1

A1 2

A2
 3

VSS 4

VCC 8

WP 7

SCL
 6

SDA 5

U7

24C04S
24C04S

D3
D4
D5

X2
C5

10PF

VCC

P12
GND

X1
XTAL1

16MHZ
C4
10PF

C1+

C1-
V+

C1+ 1

V+ 2

C1-
 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I
 8

VCC 16

GND 15

T1O
14

R1I 13

R1O 12

T1I 11

T2I 10

R2O
 9

U3

MAX232D

VCC
NMI

VCC

GND
/TXD1

CK
LD

DIN

/DA
GND
VCC

VD

VCDI 1

CK 2

LD
 3

CS 4

VA 8

5V 7

G
 6

VB 5

U13

DAC7612

VB

VA

GND
VCCCK

T1

DIN

T0

DI 1

CK 2

LD
 3

CS 4

VA 8

5V 7

G
 6

VB 5

U14

DAC7612

GND
P4

P24

P3
INT1
INT3

P0
P13

/CTS1

P15

/RTS0

NMI

VCC
VCC

P6
P5

P14

P25
P17

INT0
INT2

P10

/RTS1

P30

/TXD1
GND

VOFF

/CTS0
P26

GND

P1

/TXD0
+12VI 1 2

 3 4
 5 6
 7 8
 9 10

J5

HDRD10
HDRD10

P29

AD0
AD1
AD2
AD3
AD4
AD5
AD6

/AD
DIN

AD0
 1

AD1 2

AD2 3

AD3 4

AD4 5

AD5
 6

AD6 7

AD7 8

COM 9

SHD 10

VCC
20

CLK 19

CS 18

DIN 17

BSY 16

DOU
15

GND 14

GND 13

VCC 12

REF 11

U11

ADS8344

CK
VCC

BSY
A19

TXD0
RXD0

TXD1
RXD1
/RXD1

C1+

P11 /TXD0
/RXD0

C2+
C2-
V-VCC R2

10K

P11

V4X1 1

X2
 2

A 3

G 4

V3 8

B
 7

SCL 6

SDA 5

U10

DS1337

P12
RT

GND

X5
X6

VOFF

R11

1M

R6

1M

+12V

X6 X5
X3

32K
CAPNP

V4 VRAM
R5

10K

P11

P16
A7

A6
A5
A4

/CF

A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U16

74HC138
74HC138S

C1-

C2-

C2+

GND

V+

C3
CAPNP

C6
CAPNP

C7
CAPNP

VCC

C16
CAPNP

C11
CAPNP

VCC

VCC
REF

R3

220
C12
CAPNP

AD7
COM

GND

REFVCC
VCC

/RXD0

GND

AD0
AD2

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12

J4

HDRD12
HDRD12

/RXD1

GND

AD1
AD3

AD7
AD5

REF
GND

AD6
AD4

COM
VCC

WDI P12

VCC
P12LC

R1

680

 1 2
J9

L1

LED
LED

- 1
+ 2

+ 3

B1

BTH1

V-

VCC
P6

R4

10K

C8
CAPNP

VCC

C10
10UF35V

+12V

VCCNC 1

PG 2

GND 3

EN 4

5V 8

5V 7

9V 6

9V 5

U17

TPS765
TPS765

I 1

G

2

VCC 3

U8
LM7805

NC 1

PG 2

GND 3

EN 4

5V 8

5V 7

9V 6

9V 5

U15

TPS765
TPS765

+12V

VCC

GND
VOFF

GND
VOFF

+12VI
L2

GND

+12V

C14
10UF35V

VCC

C9
10UF35V

VBAT

C1

CAPNP

C2

CAPNP

