FlashCoreN™

Portable mass data storage controller with 16-Bit/(SRAM/Flash,
16-bit ADC, DAC, 10 UARTS, I/Os, and RS-232 commaation

Technical Manual

Trery

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

FlashCore-N, 586-Engine, A-Engine, i386-Engine, AQIF are trademarks of
TERN, Inc.
AmM188ES and Am186ES are trademarks of AdvanceddMiavices, Inc.
Paradigm C/C++ is a trademark of Paradigm Systems.
Microsoft, MS-DOS, Windows95/98/2000/XP are trademaf Microsoft Corporation.
IBM and MicroDrive are trademarks of InternatioBalsiness Machines Corporation.

Version 2.0
October 21, 2010

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1999-201C TERIQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are

integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitEimages arising from
the use ofTERN products. It is the Buyer's responsibility to jadtlife and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@ndsults of limited sample tests; they
are provided for design reference use only.

FlashCore-N™ Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

TheFlashCore-N™ provides a simple interface for 50-pin CompactFiasinds (ranging in size from 8-
1GB Flash cards) which are used to provide nontielstorage in a wide array of applications, raggi
from digital cameras to PDAs. The 50-pin CompaagRkicards can also interface with PCs via a stdndar
PCMCIA adapter, making these ideal storage solatfonapplications requiring mass data exchange.

TheFN is a complete standalone C/C++ programmable emiskeciatroller including a 40MHz 186 CPU,
256KW ACTF Flash, 64KW, or 256KW SRAM, 512-byte HEPM, 6 channels of RS-232
communication, and 5V regulator, with optional resade clock, battery, 4 channel 12-bit DAC, andor
channel 16-bit ADC.

By using theFlashCore-N (FN), users can easily add widely used CF standard datasstorage cards to
their embedded application via RS232, TTL 12C, argtlel interface. TERN supports a complete C/C++
programmable software package (EV-P, or DV-P kijol includes compiler, remote debugger, samples,
and libraries. TERN software supports Linear Bléadress mode, 16-bit FAT flash file system, RS-232,
TTL I12C, and parallel communication. Users can avitfile to the CompactFlash card or read a fivenfr
the CompactFlash card. Users can also transfdiléite a PC via the PCMCIA port.

ACTF FLASH SRAM 2 channel
512K 186 512K 12-bit DAC
CPU
691 cO?r?XaSt?ble 2 channel
SE i Quad || Quad | |15 it pac
RTC DMA(2) UART UART
16-Bit Timers(3)
BXt. Interrupts(6) || g RS-232 Drivers
32 1/0 lines 1 channel
2 ch. > PWM/PWD RS-485
RS-232| " 8 channel or
serial 16-bit ADC RS-422
ports
| CF standard storage carbs

Figure 1.1 Functional block diagram of the FlashCore-N

Measuring 3.6 by 2.9 inches, théashCore-N offers a complete C/C++ programmable computeresyst
with a 16-bit high performance CPU (186) and opesatt 40 MHz system clock with zero-wait-state. In
addition, a 512-byte serial EEPROM is included om#l. Optional features include up to 256KW battery
backed SRAM, 8 channel 16-bit ADC, and an optigeal-time clock which provides information on the
year, month, date, hour, minute, and second as agetivo time of day alarms. ThdashCore-N also
includes an on-board 5-volt power regulator and 323&ivers.

Two DMA-driven serial ports from the 186 CPU supploigh-speed, reliable serial communication at a
rate of up to 115,200 baud (40MHz system clock)lesupporting 8-bit and 9-bit communication.

There are three 16-bit programmable timers/courdes a watchdog timer. Two timers can be used to
count or time external events, at a rate of up @QoMHz (40MHz system clock), or to generate non-

1-1

FlashCore-N™ Chapter 1: Introduction

repetitive or variable-duty-cycle waveforms as PWiMtputs. Pulse Width Demodulation (PWD), a
distinctive feature, can be used to measure théhvatla signal in both its high and low phase<alh be
used in many applications, such as bar-code reading

There are 32 user-programmable 1/O pins on thedB®, and six external interrupt inputs. A supemviso
chip with power failure detection, a watchdog tifrear LED, and expansion ports are on-board.

Also standard on the FlashCore-N are two Quad UARiMNg the user a potential of up to 10 seriattpo
One of the Quad UARTSs is configured with RS-23%eir$, while the second Quad UART only supports
TTL level communication. Each UART features 64-blytnsmit and receive FIFOs for reduced CPU load
and communications up to 2 Mbps. TERN softwarealii@s support handshaking and flow control. If
handshaking is not required, UART control lines barused as TTL I/Os.

1.2 Features on the FlashCore-N

Standard Features

* Dimensions: 3.6 x 2.9 inches
Easy to program in Paradigm C/C++
Power consumption: 150mA at 5V for 40 MHz
Power saving mode: 20 mA at 5V for 40 MHz
Power input: +9V to +12 V unregulated DC with-boardinear regulator

+9V to +24V unregulated DC with optéd on-boardwitching regulator*

16-bit 40MHz 186 CPU , Intel 80x86 compatible
High performance, zero-wait-state operation atvildz
256KW ACTF Flash
64KW SRAM
Two Quad UARTS, 2 CPU UARTSs with 6 configuredR&-232 drivers, while 4 remain TTL
level only
2 high-speed PWM outputs and Pulse Width Demdauia
32 1/0 lines from 186 CPU, 512-byte serial EEPROM
6 external interrupt inputs, 3 16-bit timer/coerg
Supervisor chip (691) for power failure, resetlamtchdog

EE I * ok F X

* X * *

Optional Featureg*surface-mounted components)

* 256KW SRAM*

50-pin Compact Flash socket for Compact Flasksap to 1GB with file system support*
Real-time clock DS1337*, lithium coin battery*

8 channel, 25KHz, 16-bit ADC*

4 channels, 12-bit DAC (Two 2 channel devices)*

Switching Regulator*

One channel RS-485 or RS-422*

L I S

1.3 Physical Description

The physical layout of the FlashCore-N is showRigure 1.2.

1-2

FlashCore-N™ Chapter 1: Introduction

H2 13x2 pin heade
Serial Ports 1-5

J4 Header 8x2

H1 5x2 pin Analog 1/0
header RS-232 Compact Flash
SERO (debug Drivers Interface

Dual Quac
UARTSs

J2 Header 20x2
CPU 1/0Os
UART control lines

Voltage Regulator:
Linear or Switching

Power Inpu
Terminal

Watchdog

H3 Header 15x2
Jumpe

Serial Ports 6-9

Figure 1.2 Physical layout of the FlashCore-N

1.4 FlashCore-N Programming Overview

At the factory, an ACTF utility is loaded into tlupper sector of the on-board flash. This ACTF tytiis

protected and executes at every power up. Upon popehe ACTF will perform the process as desdribe

by the flow chart below. The remainder of thisteetwill be divided into parts: Prepare for Debdgde

(STEP 1), Debug Mode (STEP 1), Standalone Mode BSZ) and finally, Production (STEP 3). For your
convenience, the preparation for debug mode is @brtbe factory, meaning you can begin at STEP 1:

Debug Mode.

[Power on or Reset]

SEND out MENU over SERO at 19200, N, 8, 1 to

STEP2 Jumper on ? Hyperterminal of Windows95/98/2000/XP

J2.38 = J2.40?

Text command or download new codes

See ACTF-kit and Functions for detail

Read EE for the jump address CS:IP [

[RUN the program starting at the CS:IP]

Process Commands]

1-3

FlashCore-N™ Chapter 1: Introduction

1.4.1Prepare for Debug Mode (STEP 1):

To run the FN in Step 1, the debug mode, a debugekenust be loaded into the on-board flash. T#is i
done at the factory for your convenience. This dekernel must be running to communicate with the
Paradigm C/C++ programming environment. It residethe on-board flash at address 0xFA000. To run
the debug kernel and prepare for debug mode, diotlogving:

1. Link the FlashCore-N to your PC and prepare a hypeninal session. Configure the
terminal to 19,200 Baud, 8 bits, No parity, andtdps Connect to SERO (H1) of the
FlashCore-N.

2. Power on the FlashCore-Nithout the STEP 2 installed. The STEP 2 jumper is a red
jumper installed on the J2 header pins 38 and 40.

3. At power up, you should see the ACTF Utility metyaur hyper terminal:
ACTF/ACTR Copyright(c) 1996 STE CA USA. All rightsserved.
>C C FUNCTIONS
>D Download an Intel Extend Hex file into SR
>G Goto and Run
>H HELP
>M MENU
>U Upload a block of Binary data

The “G” command allows you to jump to a locatiorddammediately begin execution. It
also sets the start-up jump address. Type “GFAQG®n <enter>. Your FlashCore-N
will jJump to that location in the flash and bedorun the debug kernel. The on-board
LED will blink twice, then stay on. This indicatéise FlashCore-N is correctly running
the debug kernel.

4. Now install the STEP 2 jumper (red jumper instabbéd?2 pins 38 and 40).

5. Now at start up, the ACTF Utility will check if thETEP 2 jumper is installed. If the
STEP 2 jumper is installed, the CPU will fetch #tert up jump address (which we set in
instruction 4 to point to the debug kernel, OXFAP@hd jump to that address for
execution. Your FlashCore-N is now ready to comicate with the Paradigm C/C++ for
Debug Mode. If the STEP 2 jumper is not detected, ACTF Utility will send out it's
start up menu, and you will be back to instruction

When you jump to the debug kernel (by typing “GFAQChen <enter> at the ACTF menu), if you do not
see the on-board LED blink twice then stay on,déleug kernel has been erased. It must be loadéd taga
run STEP 1 and communicate with the Paradigm C/€aftware. See the section 1.5.1 for instructions on
how to load the debug kernel.

1.4.2STEP 1: Debug Mode

After completing the pervious section, your FlashéEN is ready to communicate with the Paradigm
C/C++ Environment and debug source code. Use sanplevided in the c:\tern\186\samples\FN and
c:\tern\186\samples\flashcore directories to geresaurce code. Debug your code as needed. You can
then go to STEP 2: Standalone Mode.

1-4

FlashCore-N™ Chapter 1: Introduction

1.4.3STEP 2: Standalone Mode

Now that you have debugged your source code, yeuready to test it in standalone mode. To run
standalone, do the following:

1. Remove the STEP 2 jumper. Prepare a hyper termsesdion as desribed by section
1.4.1.

2. At power-on, you will see ACTF menu. (The key isttthe STEP 2 jumper is not
installed, so the CPU does not fetch the jump afjre

3. **You now want to jump to you program. In STEPthe Paradigm C/C++ environment
downloads your program into the SRAM, starting ddrass 0x08000. We now want to
use the same “G” command as before, but jump te poagram, not the debug kernel.
Type “G08000”, then <enter>. The CPU will then jutopyour program in the SRAM for
immediate execution. It will also set the starfjump address to 0x08000.

4. ***Re-install the STEP 2 jumper (J2 pins 38and 40pw at every power up, the ACTF
utility will see the STEP 2 jumper and fetch thenjuaddress, which now points to your
program in the SRAM. Your program will now execlte standalone mode at every
power up.

5. When finished with STEP 2: Standalone Mode, yougaback to STEP 1:Debug Mode
by repeating instructions 1 & 2 of this sectioneftuse “GFA000”, then <enter> to jump
back to the debug kernel. The FlashCore-N is noadyeto communicate with the
Paradigm C/C++ Environment.

6. This cycle between STEP 1 and STEP 2 can be ddilg/omr program is complete.

** These instructions assume your controller heen equipped with the back-up battery. This
battery will hold your code in the SRAM even withiaapplied power. If your TERN controller
does not have a back-up battery, you may NOT paleamn your board after downloading your
code to the SRAM. To run standalone you must lsetjamp address at the ACTF Utility, and
assert /RST to cycle power, do not power downeR#&§ the FN schematic at the end of this
manual for additional details on the FN’'s /RSTefin***

1.4.4STEP 3: Production

This step only applies to those users who havehaised the full Development version of the
Paradigm C/C++ Environment.

1. When you have finished development of your progngmoy are ready to use your source
code to generate an Intel Extend HEX file, which tieen be burned into the on-board
flash for a production version of the FlashCore-N.

2. Inside Paradigm C/C++, change the config node airym@rget from “186.cfg” to
“actf186.cfg”. This is done by right-mouse clicking the config node and selecting “Edit
Node Attributes”.

3. Open “actfl86.cfg” for editing. Follow the instrimts at the top of the config file. Save
and close.

4. Right-mouse click on the “axe” node of your target select “Target Expert”. Within the
Target Expert window, chang®DREMOTE/ROM to No Target/ROM.

1-5

FlashCore-N™ Chapter 1: Introduction

5. Now right-mouse click on the “axe” node and sel#uild Node”. You have now
generated an Intel Extend Hex file. The name offiteewill have the same name as your
target, in the same working directory, but with tHéEX” file extension.

For example, if the name of my target is “My_Paograxe”, then | will have created
“My_Program.hex” in the same directory.

6. Go to Section 1.5.2 of this manual and follow thstruction for burning HEX files into
the on-board flash.

1.5Burning HEX Files into the On-board Flash

This section will cover two processes:
(1) Burning the debug kernel into the flash to pregarelebug mode.

(2) Burning you application HEX file into the flash tomplete a production version.

1.5.1 Burning the debug kernel into the flash

1. Power on the FlashCore-iWithout the STEP 2 jumper installed. See the ACTF
menu at the hyper terminal.

2. Type “D”, then <enter> to alert the ACTF utilityahyou are ready to send a file into
the SRAM. You should see the following at your tevath
ACTF/ACTR Copyright(c) 1996 STE CA USA. All righteserved.
>C C FUNCTIONS
>D Download an Intel Extend Hex file into SRA
>G Goto and Run
>H HELP
>M MENU
>U Upload a block of Binary data
D
Ready to recieve Intel Extend HEX file at 1920Qidba

3. At the hyper terminal menu, selectransfers, Send Text File Go to
c:\tern\186\rom\ae86 and select “I_tdrem.hex”. Ti# download into the SRAM
starting at address 0x04000. As it downloads yduseie the terminal window fill
with UUUU...

4. When it finishes, you will see:

(vjujvlv]vivivjviv]uiviv]viviviviv]uivlv]viv]u]vlv]viviu]viv]u]vluvivie]vlu]u)vlu]v)v]lu]e)
(vjujvlv]vivivjviv]uiviv]viviv]vlv]uivlv]viv]u]vlv]viviv]viv]u]vluivivi]vlu]u)vlu]v)v]u]e)
(U]V)v]V]vlv]v]v]u]v]vIV]viviv]vIv]v]vIv]viv]v]viv]viviv]vivIv]vie]vivI]vlv]e)vlV]V)V]V]V)
(vjujvlv]vivivjvlv]uiviv]vivivivlv]uiviv]viv]u]vlv]viviu]viv]u]vluivivie]vlu]u)vlu]v)v]u]e)
(vjujvlv]vivivjvlv]uiviv]vivivivlv]uiviv]viv]u]vlv]viviu]viv]u]vluivivie]vlu]u)vlu]v)v]u]e)
(U]V)v]V]vlv]v]vlu]v]vIV]viviv]vIv]v]vi]viv]v]viv]viviv]vivIv]vie]vivI]vlu]e)vIV]V)V]V]V)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uiviv]viv]u]vlv]viviu]viv]u]vluvivie]vlu]u)vlu]v)v]u]e)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uivlv]vivu]vlv]viviu]viv]u]vluvivI]vlu]u)vlu]v)v]u]e)
UUUUUUUUUUUUUUUUUEND of File Record

1-6

FlashCore-N™

Chapter 1: Introduction

CHKSUM=0
CS:IP = 04000

Use the “G” command to run. Type “G04000", themtee>. It will then erase
the flash and prepare to burn a HEX file intofihsh.

When it has finished preparing the flash, you séé:
ERASING AM29F400 SECTOR 9 OxFA000 to OxFBFFF !
SECTOR 9
Ready to recieve TDREM???.HEX file at 19200 baud

At the terminal menu, select Transfers, then Senedxt TFile. Go to
c:\tern\186\rom\ae86 and select “ae86_115.hex"s Thithe debug kernel. It will
download into the flash starting at address OxFA000

When it finishes, the ACTF utility will reset andy will see the ACTF menu. Type
“GFA000”, to jump to and execute the debug keriéle start up jump address will
also be set to 0xFAO0QO.

Install the STEP 2 jumper. At power up, your Flagré&EN will execute the debug
kernel and be ready to communicate with Paradig@+&/for STEP 1: Debug
Mode.

1.5.2 Burning your application HEX file into the flash

1.
2.

Follow instructions 1-2 of the above section, sattl.5.1.

Go to Transfers, Send Text File. Go to c:\tern\i@6\ae86 and select
“l_29f400.hex”. When it has finished downloaditigpe “G04000”, then <enter> to
prepare the flash. The files “I_tdrem.hex” and29f400.hex” are similar in that they
both download into the SRAM (at address 0x04000) @repare part of the flash for
a HEX file. Yet, they differ in which part of théagh they prepare. “|_tdrem.hex”
prepares only a single upper sector for the snaddud kernel, while “I_29f400.hex”
prepares all but the upper two sectors (0x80000xF9BFF) for your user
application.

When it finishes preparing the flash, you will b@mpted to send you application.
Go to Transfers, Send Text File and select youliegtfpn HEX file created by
Section 1.4.4. Your application will download inthe flash starting at address
0x80000 (not to be confused with 0x08000, the isigwaddress of your program in
STEP 2: Standalone Mode in the SRAM). After it $imes, the ACTF utility will
reset.

Now all that is needed is to set the jump addre$x80000. Type “G80000”. Your
application will then execute out of the flash. Ttart up jump address is now set to
0x80000.

Install the STEP 2 jumper.

At every power-up, the CPU will jump to 0x8000 farmediate execution of your
program. To get back to debug mode go to sectivri 1.

There is no ROM socket on the FN. The User’s appiba program must reside in SRAM for debugging
and reside in battery-backed SRAM for the standafaeld test.

1-7

FlashCore-N™ Chapter 1: Introduction

The on-board Flash 29F400 has 256K words of 16dath. It is divided into 8 sectors of 64KB. Thp to
16KB sector is pre-loaded with ACTF boot strip, ahd sector starting O0xFAQOO is for loading the oén
debug kernel. When application is ready, “I_tdresr’twill prepare the flash for application use.

The top 16KB ACTF boot strip is protected.

The utility HEX file, “|_tdrem.HEX” will automatichy download into SRAM starting at 0x04000 with
ACTF-PC HyperTerminal. Use the “D” command to dowad, and use the “G” command to run.

“|_tdrem.HEX” will erase the bottom seven sectarsl load “ae86_115.hex” into the Flash starting at
O0xFAO000. Refer to the ACTF manual for informatiom lsow to change the downloading address of your
application HEX.

OXFFFFF

ACTF

The Flash
and the
SRAM arg

mapped
into 1m8.| || debug

The SRAM || kernel || OXFAOOO
goes from
0x00000 tp
0x80000,

and the
Flash goe

from

0x80000 tp
OXFFFFF

L2

0x80000

OX1FFFF 512K

SRAM
128K I
SRAM

0x0000

For production, the user must produce a ACTF-doadiddle HEX file for the application, based on the
DV-P and ACTF Kit. The application HEX file can leaded into the on-board Flash starting address at
0x80000. To properly generate your application HEXll must change the config node of your target to
“actf186.cfg”, which is found in the /TERN/186/camfdirectory. Then right mouse click on the “.axe”
node of your target and select “Target Expert”.shill allow you to change the “TargetConnectiordrh
PDREMOTE/ROM to NoTarget/ROM. Then “Build node” igienerate your application “.HEX" file.

The on-board EE must be modified with a “G80000meaeand while in the ACTF-PC-HyperTerminal
Environment.

The “STEP2” jumper (J2 pins 38-40) must be insthfter every production-version board.

In order to correctly download a program in STEPithwraradigm C/C++, the FN must meet these
requirements:

1) “ae86_115.hex” must be pre-loaded into Flashistaaddress OxFAOO0O (done at factory by default).

2) The SRAM installed must be large enough to lyolgr program.

For a 128K SRAM, the physical address is 0x0000DEk
For a 512K SRAM, the physical address is 0x0000D#¢

1-8

FlashCore-N™ Chapter 1: Introduction

3) The on-board EE must have a correct jump addesthe “ae86_115.hex” with starting address of
O0xFAO000.

4) The STEP2 jumper must be installed on J2 pird4(B8

1.6 Minimum Requirements for FlashCore-N System Develament

1.6.1Minimum Hardware Requirements

PC or PC-compatible computer with serial COMbxtthat supports 115,200 baud
FlashCore-N controller with DEBUG kerna#86_115.hex

Serial cable (RS232; DB9 connector for PC COdft@nd IDC 2x5 connector for controller)
Center negative wall transformer (+9V 500 mA)

* Ok X X

1.6.2Minimum Software Requirements

* TERN EV-P/DV-P

* PC software environment: Windows95/98/2000/XP
The C/C++ Evaluation Kit (EV-P) and C/C++ Developm«it (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of tHaV-P Kit. With the EV-P Kit, you can program andoag
the FlashCore-N in STEP 1 and STEP 2, but you danumoSTEP 3. In order to generate an application
HEX file for downloading to Flash, and complete fheject, you will need the Development Kit (DV-P)
and the ACTF Kit.

1-9

FlashCore-N Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/©evelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN EV-P/DV-P CD-ROM gtains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

Overview

* Connect debug cable:
For debugging (Step One), place ICD connector odRGBE1) with
red edge of cable at pin 1.

* Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
adapter which installs in two pin screw terminal, T

2.2.1 Connecting the FlashCore-N to the PC

The following picture (Figure 2.1) illustrates tbennection between the FlashCore-N and the PC. The
FlashCore-N is linked to the PC via serial/debugea

TheaeB86_115.hex debug kernel communicates through SERO by defasiall the 5x2 IDC connector to
the SERO header (HI)M PORTANT: Note that theed side of the cable must point to pin 1 of the H1
header. The DB9 connector should be connectede¢@byour PC's COM Ports (COM1 or COM2).

2-1

FlashCore-N Chapter 2: Installation

Output from Wall Power Jack Power Input to FN. Ground Pin.
Transformer, +9V Adapter Two pin screw terminal, T1

tH
s

s
£liz

Serial/Debug Cable.
Installs on SERO (H1).
Red Edge of cable points

to pinl of H1.

Red Edge of cable
Points to H1 pin 1

Figure 2.1 Connecting the FlashCore-N to the PC

2.2.2 Powering-on the FlashCore-N

Connect the wall transformer +9V DC output to tesRCore-N power jack adapter which then connects t
the FlashCore-N via T1 pin 1(+12V In) and T1 pi(GND). See Figure 2.1 above.

Important: The output of the wall transformer isiteg-negative. Be sure to verify correct polarityen
powering on your FN.

FlashCore-N Chapter 3: Hardware

Chapter 3. Hardware

3.1186 CPU — Introduction

The 186 CPU is based on industry-standard x86 taathre. The 186 CPU controllers are higher-
performance, more integrated versions of the 80@4i88oprocessors. In addition, the 186 CPU has new
peripherals. The on-chip system interface logic marimize total system cost. The 186 CPU has two
asynchronous serial ports, 32 P10s, a watchdog tiagglitional interrupt pins, a pulse width demeadiiain
option, DMA to and from serial ports, a 16-bit resenfiguration register, and enhanced chip-select
functionality.

3.2186 CPU — Features

3.2.1 Clock

Due to its integrated clock generation circuithg .86 CPU microcontroller allows the use of a sroae
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

3.2.2 External Interrupts

There are six external interrupts: INTO-INT4 and'BN By default all interrupts are rising edge geged
at the CPU, yet be aware of some interrupts budfegeSchmitt-trigger inverters (U9). INTO — INT4 yna
be reset to level-sensitive, while INT6 may onlyrising edge-sensitive.

Three interrupts are then free for user applicatiir 1, /INT4, and INT6. Notice /INT1 and /INT4 ar
active low because they are buffered by the Schirrgtyer inverters (U9). INT6 is routed directly ttoe
CPU, so it remains rising edge sensitive. /INTd ANT4 have been installed with on-board pull-up
resistors. INT6 has no pull-down resistor so iteisommended to install a pull-down if INT6 is negdy
the user application. The interrupt signals arelalvke as defined below:

/INT1, J2 pin 6
/INT4 = P30, J2 pin 33
INT6 = P13, J2 pin 11

Remember that all interrupts by default are edgsitee, but be cautious of which interrupts may be
buffered by inverters to determine rising-edgeadlirfg-edge sensitivity.

The FlashCore-N uses vector interrupt functionegpond to external interrupts. Refer to the 186/ CP
User’s manual for information about interrupt vesto

3.2.3 Asynchronous Serial Ports

The 186 CPU has two asynchronous serial channeRO%nd SER1. Each asynchronous serial port
supports the following:

* Full-duplex operation

7-bit, 8-bit and 9-bit data transfers
Odd, even and no parity

One stop bit

Error detection

Hardware flow control

DMA transfers to and from serial ports

L I

3-1

FlashCore-N Chapter 3: Hardware

Transmit and receive interrupts for each port

Multidrop 9-bit protocol support

Maximum baud rate of 1/16 of the CPU clock

Independent baud rate generators

The software drivers for each serial port implenering-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sasifpés:s1_echo. ¢ andsO_echo.c in the

t ern\ 186\ sanpl es\ae directory.

* Ok kX

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaibphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to three exterinat p

Timer0 output = P10 = J2 pin 12

Timer0 input = P11 = NOT ROUTED TO EXTERNAL PIN

Timerl output = P1 = J2 pin 29

Timerl input = PO = J2 pin 20
These two timers can be used to count or time ext&vents or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. it ba used as an internal timer for real-time codintime-
delay applications. It can also prescale Timerd Eimerl or be used as a DMA request source.

The maximum rate at which each timer can operat@ IHz, since each timer is serviced on everytfour
clock cycle. Timer output takes up to six clockleg to respond to clock or gate events. See sampl
programs timer0.c and timerl.c in ther n\ 186\ sanpl es\ ae directory.

3.2.5 PWM outputs

The Timer0 and Timerl outputs can also be useénergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clochesto respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have a secondary maximum count redistesariable duty cycle output. Using both the
primary and secondary maximum count registerghetsimer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

3.2.6 Power-save Mode

The FlashCore-N is an ideal core module for low @ogonsumption applications. The power-save mode
of the 186 CPU reduces power consumption and hesipdtion, thereby extending battery life in pbita
systems. In power-save mode, operation of the QRlJrgernal peripherals continues at a slower clock
frequency, thus reducing heat and power consumpfiiren an interrupt occurs, it automatically retutm
its normal operating frequency.

3-2

FlashCore-N Chapter 3: Hardware

3.3186 CPU PIO lines

The 186 CPU has 32 pins available as user-progréeny® lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmad shared function is not needed. A PIO linelsan
configured to operate as an input or output, withvithout a weak pull-up or pull-down, or as an ppe
drain output. A pins behavior, either pull-uppal-down, is pre-determined and shown below.

After power-on/reset, P1O pins default to varionsfigurations. The initialization routine provideg
TERN libraries reconfigures some of these pinsesxiad for specific on-board usage as well. These

configurations, as well as the processor-interealpheral usage configurations, are listed belowahle

3.1.
PIO Function Power-On/Reset status FN Pin No. FlashCore-N Initial
PO Timerl in Input with pull-up J2 pin 20 Input kvipull-up
P1 Timerl out Input with pull-down J2 pin 29 CLK 1
P2 /PCS6/A2 Input with pull-up Ul0 pin 4 Decoddese
P3 /PCS5/A1 Input with pull-up J2 pin 10 Input withll-up
P4 DT/R Normal J2 pin 38 Input with pull-up
Used by Step 2
P5 /IDEN/DS Normal J2 pin 30 Input with pull-up
P6 SRDY Normal J2 pin 35 Input with pull-down
P7 Al17 Normal None Al17
P8 A18 Normal None A18
P9 Al19 Normal uUi5, Ul17 pin 2 Input with pull-up
P10 TimerO out Input with pull-down J2 pin 12 Inpuith pull-down
P11 TimerOin Input with pull-up U7, U8 pin 5 Inpaith pull-up
P12 DRQO/INT5 Input with pull-up J9 pin 2 Output fo
LED/EE/HWD
P13 DRQL/INT6 Input with pull-up J2 pin 11 Inputtivipull-up
P14 /MCSO Input with pull-up J2 pin 37 Input withlbup
P15 /MCS1 Input with pull-up U15, U17 pin 4 Inpuitivpull-up
P16 /PCSO Input with pull-up J1 pin 19 Normal
P17 /PCS1 Input with pull-up None CS for CF
P18 CTS1/PCS2 Input with pull-up J2 pin 22 Inputwvgpull-up
P19 RTS1/PCS3 Input with pull-up J2 pin 31 Inputhwgull-up
P20 RTSO Input with pull-up U15 pin3 Input with pup
P21 CTSO Input with pull-up Ul7 pin 3 Input withllbup
P22 TxDO Input with pull-up J2 pin 34 TxDO
P23 RxDO Input with pull-up J2 pin 32 RxDO
P24 /MCS2 Input with pull-up J2 pin 17 Input withlbup
P25 /MCS3 Input with pull-up J2 pin 18 Input withlbup
P26 Uzl Input with pull-up J2 pin4d Open for user
P27 TxD1 Input with pull-up J2 pin 28 TxD1
P28 RxD1 Input with pull-up J2 pin 26 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 3 Input witbullup*
P30 INT4 Input with pull-up J2.33 = /INT4.Input with pull-up
Buffered by
inverter.
P31 INT2 Input with pull-up RTC Alarm, Input with pullup
U8 pin7

* Note: P6, P26 and P29 must NOT be forced lowrdugower-on or reset.

Table 3.1 I/0 pin default configuration after power-on or reset

3-3

FlashCore-N Chapter 3: Hardware

The 32 PIO lines, P0-P31, are configurable via 1&ebit registers, PIOMODE and PIODIRECTION
registers. The settings are listed as follows:

MODE PIOMODE reg. PIODIRECTIONreg. PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

FlashCore-N initialization on PIO pins in ae_inig)listed below:

outport(0xff78,0xe73c); /l PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1
outport(0xff76,0x0000); /l PIOM1

outport(0xff72,0xec7b); /l PDIRO, P12,A19,A18,A17,P2=PCEG€
outport(0xff70,0x1000); /l PIOMO, P12=LED

The C function in the library ae_lib can be usedthitialize P10 pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgiog pins is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresiag pins is in input mode,
Some of the 1/O lines are used by the FlashCorgstém for on-board components (Table 3.2). We

suggest that you not use these lines unless yosuaeethat you are not interfering with the operatf
such components (i.e., if the component is notltest).

Signal Pin Function

P2 /PCS6 U10 decoder chip select

P4 /DT Step Two jumper

P9 A19 CK for U15 and U17 DAC7612 and U14 ADS8344

P11 Timer0 input U7 24C04 EE data input
The EE data output can be tri-state, while disabled
P12 DRQO/INT5 Output for LED or U7 serial EE clookHit watchdog

P15 /MCS1 /CS for U15 and U17 DAC7612
P16 /PCSO Expansion Chip Select

P17 /PCS1 Chip Select for CF interface
P20 /RTSO Latch Data for U15 DAC7612
P21 /CTSO Latch Data for U17 DAC7612
P22 TxDO Default SERO debug

P23 RxDO Default SERO debug

P31 INT2 RTC DS1337 Alarm Output

Table 3.2 1/0 lines used for on-board components

3-4

FlashCore-N Chapter 3: Hardware

3.41/0 Mapped Devices

3.4.11/0O Space

External I/O devices can use 1/0O mapping for accéss can access such I/O devices with inportbjpmrt
outportb(port,dat). These functions will transfeedyte or word of data to the specified I/O adslréfe
external I/O space is 64K, ranging from 0x0000xtfD

The default 1/0 access time is 15 wait states. iy use the function void io_wait(char wait) toidefthe
I/0 wait states from 0-15. The system clock is 25 giving a clock speed of 40 MHz. Details regagdi
this can be found in the Software chapter, antiénli86 CPU User’'s Manual. Slower components, asch
most LCD interfaces, might find the maximum prognaable wait state of 15 cycles still insufficieridue

to the high bus speed of the system, some comp®nert to be attached to 1/O pins directly.

For details regarding the chip select unit, pleseseChapter 5 of the 186 CPU User’s Manual.

The table below shows more information about I/(ppiag.

I/O space Select Usage Location
0x0000-0x00ff /PCSO USER J1.19
0x0100-0x01ff /PCS1 CF Interface U11.7, U11.32
0x0200-0x02ff /PCS2 USER J2 pin 22=CTS1
0x0300-0x03ff /PCS3 USER J2 pin 31=RTS]
0x0400-0x04ff /PCS4 Reserved

0x0500-0x05ff /PCS5 USER J2 pin 15=P3
0x0600-0x06ff /PCS6 U10 decoder U10.4

3.4.2 Real-time Clock DS1337

The DS1337 serial real-time clock is a low-powercklcalendar with two programmable time-of-day
alarms and a programmable square-wave output. Addned data are transferred serially via a 2-wire,
bidirectional bus. The clock/calendar provides sesp minutes, hours, day, date, month, and year
information. The data at the end of the month tematically adjusted for months with fewer thandzlys,
including corrections for leap year. The clock @tes in either 24-hour or 12-hour format with AM/PM
indicator.

The RTC is accessed via software driveed_init() andrtcl rds(), which have been specifically written
for the FN. RTC software drivers for other TERNtrollers will not work correctly Refer to sample
code in the tern\186\samples\fn directory for fo.at

It is also possible to configure the real-time &lée raise an output line attached to an extemtakiupt, at
1/64 second, 1 second, 1 minute, or 1 hour interv@ihis can be used in a time-driven applicatiorihe
VOFF signal can be used to turn on/off the controllEng an external switching power supply.

3.50ther Devices

A number of other devices are also available orFtashCore-N. Some of these are optional, and nnight
be installed on the particular controller you aseng. For a discussion regarding the softwarefete for
these components, please see the Software chapter.

3-5

FlashCore-N Chapter 3: Hardware

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withnstalled, the FlashCore-N has several functions
watchdog timer, battery backup, power-on-resetydgawer-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a jungred9 of the FlashCore-N (see Figure 3.1). The
watchdog timer provides a means of verifying progtware execution. In the user's applicatiorgpam,
calls to the function hitwd() (a routine that toggthe P12=HWD pin of the MAX691) should be arrahge
such that the HWD pin is accessed at least onay év& seconds. If the J9 jumper is on and the HWD
is not accessed within this time-out period, théctvdog timer pulls the WDO pin low, which asserts
/RESET. This automatic assertion of /RESET maywecthe application program if something is wrong.
After the FlashCore-N is reset, WDO remains lowluntransition occurs at the WDI pin of the MAXG691
When controllers are shipped from the factory @gudnper is off, which disables the watchdog timer.

In addition, the 186 CPU has an internal watchdwoert This is disabled by default with ae_init().

Location of
Watchdog
Jumper, J9

Figure 3.1 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data storélile SRAM and RTC. The battery-switch-over citcui
of the MAX691/LTC691 compares VCC to VBAT (+3 VHitim battery positive pin), and connects
whichever is higher to the VRAM (power for SRAM aR@C). Thus, the SRAM and the real-time clock
DS1337 are backed up. In normal use, the lithiatteby should last about 3-5 years without external
power being supplied. When the external power jslmbattery-switch-over circuit will select th€€€ to
connect to the VRAM.

3.5.2 12-hit ADC (ADS8344)

The ADS8344 is an 8 channel, 16-bit sampling ansdedigital converter with a synchronous serial
interface. Input voltage range goes from 0V to Vvdiere Vref can vary between 500mV and 5V. Four

3-6

FlashCore-N Chapter 3: Hardware

handshaking lines from SERS5 are used as generaltd/@rive the ADS8344; /CS = DTR5, DIN = /RT5,
BSY = CD5, and DOUT = RI5. The CLK input to the AB&14 is driven by the CPU’s P9 (A19).

The ADC digital data output communicates with athbough a serial tri-state output (DOUT). If
DTR5=/CS is low, the ADS8344 will have output on DD If DTR5=/CS is high, the ADS8344 is
disabled and DOUT is free. The effective maximumsling rate is 20KHz.

The ADS8344 can support 8 single-ended inputsdiffdrential inputs. By default TERN software dnige
use 8 single ended inputs. This mode can be changele control byte written to DIN (Refer to
tern\186\samples\fn\fn_ad.c for details).

The ADS8344 also implements an output called BSYieW/CS is high, the BSY signal is in high-
impedance. When /CS is low, BSY will be low whitading the control bits on DIN, and during
conversion. This line is connected to CD5 of theQusad UART.

The ADS8344 can support analog input ranges ofOREF, where REF can be 500mV to +VCC. This
can increase precision if so required.

In order to operate the ADS8344, five 1/O lines ased, as listed below:

/ICS Chip select = DTRS5, high to low transition eleatDOUT, DIN and CK.
Low to high transition disables DOUT, DIN and CK.
DIN /RT5, serial data input

DOUT Serial data output. Tied to U4 Quad UART IRI5.

BSY Output signal. BSY is low when the ADS8344dading the DIN control
pins and during conversion. It is high impedancenvCS is high. This line
is connected to U4 UART CD5.

CLK Clock = A19 (P9)

REF+ Upper reference voltage (normally VCC). J4Xin

COM Ground Reference. Set to GND by default onelder, pin 9.

VCC Power supply, +5 V input

GND Ground

All analog inputs are routed to the J4 pin healeaddition, both positive and negative referericed are

routed to J4. Refer to c:\tern\186\samples\fn\fhc &or sample code. For additional informatioregsle

refer to theFN schematic in théern_docs\schglirectory, or the ADS8344 data sheet in the
tern_docs\partsdirectory.

3.5.3 DAC7612

The DAC7612 is a dual, 12-bit digital-to-analog eerter with guaranteed 12-bit monotonicity
performance over the industrial temperature raligequires a single +5V supply and contains aminp
shift register, latch, 2.435V reference, a dual DAGd high speed rail-to-rail amplifiers. For d-kdale
step, each output will settle to 1LSB withips7

The DAC7612 uses a four wire serial interface ®o@rU. The CPU on the FlashCore-N uses three PIO
lines to drive the serial interface (Chip Seledgdk, and Latch Data) and one I/O line from the WART

to drive Data In. The FlashCore-N offers up to ®AC7612, providing a possible 4 12-bit serial DAC
channels. The DAC7612 outputs can support a ciypatdad of 500pF.

Refer to data sheet in the tern_docs/parts dingatbthe TERN CD and to sample code in the
tern/186/samples/fn directory for additional infation.

3-7

FlashCore-N Chapter 3: Hardware

3.5.4 EEPROM

A serial EEPROM of 512 bytes (24C04) is installedli7. The FlashCore-N uses the P12=SCL (serial
clock) and P11=SDA (serial data) to interface wlith EEPROM. The EEPROM can be used to store
important data, such as a node address, calibratiefficients, and configuration codes. It hasdsily
1,000,000 erase/write cycles. The data reteniondre than 40 years. EEPROM can be read and nvritte
by simply calling functions ee_rd() and ee_wr()e $ime chapter on software for details on softwaieeds
and tern\186\samples\ae\ae_ee.c for a sample.

3.6 Headers and Connectors

3.6.1 Expansion Headers

The FlashCore-N has two 20x2 pin headers for expanslost signals are directly routed to the 186JCP
processor. These signals are 5V only, and any fergrme voltages will most likely damage the board.

Table 3.3 Signals for J1 (20x2) and J2 (20x2) expansion ports

Signal definitions for J1:

VCC +5V power supply
GND Ground

DO0-D15 186 CPU 16-hit external data lineg
AO0-A7 186 CPU address lines
/WR 186 CPU pin 5

/IRD 186 CPU pin 6

CLK CPU clock output

/IRST, System reset.
RST
/IRT9 Request to Send for SER9

ICT9 Clear to Send for SER9
RX9 Receive Data for SER9, TTL level
TX9 Transmit Data for SER9, TTL leve

Signal definitions for J2:

VCC +5V power supply, < 200 mA

GND Ground

Pxx 186 CPU PIO pins

/ICTSO 186 CPU pin 100, Clear-to-Send signal for 8ER
/ICTS1 186 CPU pin 63, Clear-to-Send signal for SER1
/IRTSO 186 CPU pin 3, Request-to-Send signal forGER
/IRTS1 186 CPU pin 62, Request-to-Send signal f(RBE

INTX Interrupt inputs
UART Handshaking I/O from U4 UARTs
1/0

Signal definitions for J4:

ADO - AD10 Inputs for ADC

COM Negative Reference for ADC|
REF Positive Reference for ADC
VA -VD DAC Analog Outputs

3-8

FlashCore-N Chapter 3: Hardware

VCC
GND

Signal definitions for H2:

/TxD1 Transmit data, RS-232 level

/RxD1 Receive data, RS-232 level

RxD1+ SER1 Transmit and Receive for optional RS-422
RxD1- driver

TxD1+

TxD1-

IRX2-5 Receive data for SER 2-5, RS-232 level

/TX2-5 Transmit data for SER 2-5, RS-232 level

CT2-4 Clear-to-Send, SER 2-4, RS-232 level

RT2-4 Request-to-Send, SER 2-4, RS-232 level

Signal definitions for H3:

/TxD1 Transmit data, RS-232 level
/IRxD1 Receive data, RS-232 level

RIx Handshaking lines for SER 6-9. Can be used as
CDx general TTL /0.

DTRxX

DSRx

RX6-8 Receive data for SER 6-8, TTL level
TX6-8 Transmit data for SER 6-8, TTL level
ICT2-4 Clear-to-Send, SER 6-8, TTL level
/RT6-8 Request-to-Send, SER 6-8, TTL level

3.6.2 Jumpers

The following is a list of jumpers and connectonstibe FlashCore-N. Refer to Figure 1.2 in Chaptef 1
this manual for a visual diagram of headers anggnmnon the FN.

Name | Size Function Possible Configuration

J1 20x2 | Main expansion port,
A0-A7, DO-D15, /WR,
/RD, P16, SER9

J2 20x2 | Main expansion portR | Step 2 Jumper -> J2.38 = J2.40
handshaking from SER2-D

J4 8x2 ADO-AD10, REF, COM, | Positive and Negative References:
VA-VD REF = VCC, COM = GND.

J9 2x1 Watchdog timer Enabled if Jumper is on

Disabled if jumper is off

3-9

FlashCore-N Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@evelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototypad sample files demonstrating their use, pledese t@
Appendix G, “Software Glossary” of the technicalmaal for the AE&AEP in \tern_docs\manuals\ from the
root directory of your CD.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not felked, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢dbugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissisf an I/O address space and a memory address
space. /O address space ranges foaf000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I1/0O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments. unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3dgenent
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

o

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsjp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

peek/peekb
Arguments. unsigned int segment, unsigned int offset

4-1

FlashCore-N Chapter 4: Software

Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédtess in memory space. Once againsggment address
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is théput over
the address bus, and the hardware component méppeat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retandom
garbage values every time you try to peek into dlclaress.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tteta into the appropriataddressin I/O space. It is used most often wh
working with processor registers that are mappali® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perid
components.

(D
=}

When dealing with processor registers, be sureédle correct function. Useatport if you are dealing
with a 16-bit register.

inport/inportb
Arguments. unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and dating U® mappings, the address is output over thkress
bus, and the returned 16 or 8-bit value is thernetalue.

For further discussion of /0 and memory mappipysase refer to the Hardware chapter of this testhni
manual.

41AE.LIB

AE.LIB is a C library for basic FlashCore-N opeoais. It includes the following modules: AE.OBJ,
SER0.0OBJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You medihk AE.LIB in your applications and
include the corresponding header files. AlthoughlAR includes drivers for things like ADC, DAC, and
RTC, these drivers were originally written for tAeEngine, the first TERN controller based on the3 18
CPU, and are not the same for the FlashCore-N.us$sen on the drivers for the FN's ADC, DAC, and
RTC will be included in this chapter. Yet AE.LIBilsprovides the FN user with drivers for SERO, SER
EEPROM, timers/counters, and watchdog. Softwareedsifor the FlashCore-N ADC, DAC, and RTC are
found in the sample code provided in tieen\186\samples\fn directory. The following is a list of the
header files included in AE.LIB (only topics higitited inBOL D apply to the FN):

Include-filename | Description

AE.H PPI,timer/counter, ADC, DAC, RTC,Watchdog,
SERO.H Internal serial port O

SER1.H Internal serial port 1

AEEE.H on-board EEPROM

4-2

FlashCore-N Chapter 4: Software

4.2 Functionsin AE.OBJ

4.2.1 FlashCore-N Initialization

ae_init

This function should be called at the beginningwdry program running on FlashCore-N core contrelle

It provides default initialization and configuraticof the various 1/0O pins, interrupt vectors, sats
expanded DOS 1/0, and provides other processoifgpepdates needed at the beginning of every
program.

There are certain default pin modes and interrefiing)s you might wish to change. With that in chithe
basic effects of ae_init are described below. dedails regarding register use, you will want tferd¢o the
AMD Am188ES Microcontroller User’s manual.

* |nitialize the upper chip select to support tlefadilt ROM. The CPU registers are configured such
that:
* Address space for the ROM is from 0x80000-0xfttti map MemCard I/O window)
* 512K ROM Block size operation.
* Three wait state operation (allowing it to suppap to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you requieréased performance (at a risk of stability irsyoi

environments). For details, see the UMCS (Uppembty Chip Select Register) reference in the
processor User’'s manual.

out port (Oxffa0, Ox80bf); // UMCS, 512K ROM 0x80000-Oxfffff

* |nitialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:
* Address space starts 0x00000, with a maximuml@kK5RAM.
* 3 wait state operation. Reducing this value icaprove performance.

* Disables PSRAM, and disables need for exterredye
out port (0Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

* Initialize MMCS and MPCS so théil CSO andPCS0-PCS6 (except for PCS4) are configured so:

*MCS0 is mapped also to a 256K window at 0x80000. éduith MemCard, this
chip select line is used for the I/0O window.
* Sets upPCS5-6 lines as chip-select lines, with three wait stgieration.

out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH

* Initialize PACS so thaPCS0-PCS3 are configured so that:
* Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.

* The chip select lines starts at I/0 address 080800th each successive chip select line addressed
0x100 higher in 1/O space.

out port (0Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

* Configure the two PIO ports for default operatioll pins are set up as default input, exceptHa
(used for driving the LED), and peripheral funatjgpins for SERO and SER1, as well as chip selects f
the PPI PPI doesnot apply to FN).

out port (Oxff 78, 0xe73c) ; /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/] P16=PCSO, P17=PCS1=PPI

out port (Oxff 76, 0x0000) ; /1 Pl OVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, Al19, A18, A17, P2=PCS6=RTC
/1

out por t (Oxf f 70, 0x1000) ; Pl OMD, P12=LED

Thislast section does not apply to the FN, asit isnot installed with the 82C55 PPI chip.

4-3

FlashCore-N Chapter 4: Software

* Configure the PPI 82C55 to all inputs, exceptlines 120-23 which are used as output for the ADC.
You can reset these to inputs if not being usedhatr function.

out port b(0x0103, 0x9a) ; /1 all pins are input, 120-23 output

out port b(0x0100, 0);

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

The chip select lines are by default set to 15 wtaite. This makes it possible to interface witdnyn
slower external peripheral components. If you negiaster I/O access, you can modify this numimavrd
as needed. Some TERN components, such as thélReai€lock, might fail if the wait state is decreds
too dramatically. A function is provided for tipsirpose.

void io_wait
Arguments. char wait
Return value: none.

This function sets the current wait state dependim¢ghe argument wait.

wai t=0, wait states 0, I/O enable for 100 ns

wai t=1, wait states = 1, 1/O enable for 100+25 ns
wai t=2, wait states = 2, 1/0O enable for 100+50 ns
wait=3, wait states = 3, |/O enable for 100+75 ns
wait=4, wait states = 5, |/O enable for 100+125 ns
wait=5, wait states = 7, |I/O enable for 100+175 ns
wai t=6, wait states = 9, |/O enable for 100+225 ns
wai t=7, wait states = 15, |/ O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sourceshenRlashCore-N, consisting of maskable interrups pi
(INTO-INT4, INT6). There are also an additionaglai internal interrupt sources not connected to the
external pins, consisting of three timers, two Dii#annels, both asynchronous serial ports, and Me N
from the watchdog timer. For a detailed discussimolving the ICUs, the user should refer to Cleapt

of the AMD Am188ES Microcontroller User's Manual.

It is important to refer to your controller's schatic (found in tern_docs\schs) to determine which
interrupts might already be in use by on-board comepts (and should therefore not be used by user
application).

TERN provides functions to enable/disable all af th external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isieitn pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBERN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dkead must
be cleared. This can be done using the Nonspde@iccommand. At initialization time, interruptigrity
was placed in Fully Nested mode. This means theentihighest priority interrupt will be handledsfirand
a higher priority interrupt will interrupt any cemt interrupt handlers. So, if the user chooseaddar the
in-service bit for the interrupt currently beingniiéed, the interrupt service routine just needssoe the
nonspecific EOl command to clear the current higpésrity IR.

To send the nonspecific EOl command, you need it@ Wre EOI register word with 0x8000.
out port (Oxff22, 0x8000);

void intx_init
Arguments. unsigned char i, void interrupt far (* intx_isr) ())
Return value: none

FlashCore-N Chapter 4: Software

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwzapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€He second argument is a function pointer whitghaet
as the interrupt service routine. The overheatherinterrupt service routine is approximately &0

By default, the interrupts are all disabled aftgtialization. To disable them again, you can edgbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiR
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
ar

void nm _init(void interrupt f (* nm _isr)());

4.2.3 /O Initialization

There are two ports of 16 1/O pins available on ft@shCore-N. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatimere
you choose to use the PIO pins as input/output,withprobably need to initialize these pins in aofethe
four available modes. Before selecting pins fas purpose, make sure that the peripheral modeatper
of the pin is not needed for a different use wittia same application.

You should also confirm the PIO usage that is desdrabove within ae_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexldor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this mézdd manual. Your controller's schematic is also a
excellent source for determining a PIO line’s aafaility (tern_docs\schs on your TERN CD). For a
detailed discussion toward the 1/O ports, pleater te Chapter 11 of the AMD Am188ES User's Manual.

Please see the sample program ae_pio.teinn\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample fileanast applications do find it necessary to re-apnfe
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingebBding on the pin
being used, it might require from 5-10 us. The imaxn efficiency you can get from the PIO pins ocifur
you instead modify the PIO registers directly vétioutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for P1O port 0, andfBaffor PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

4-5

FlashCore-N Chapter 4: Software

normal operation

input with pullup/pulldown
output

input without pullup/pulldown

* % ok *
wh ko

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P1O status

Each bit of the returned 16-bit value indicatesdtigent 1/0 value for the P1O pins in the selegted.
void pio_wr:

Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) test#Hected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore-N carsbé for a variety of applications. All three ¢irs run

at ¥4 of the processor clock rate, which determihesnaximum resolution that can be obtained. Baraw
that if you enter power save mode, that meansithers will operate at a reduced speed as well.eByst
clock for the FN is 40MHz. The FN’'s CPU uses a sm@e operating frequency, making the CPU clock
40MHz as well. If the timers/counters are serviesdry four CPU clocks, the maximum rate at whiah th
timers can operate is 10MHz.

These timers are controlled and configured thromghode register which is specified using the saftwa
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’'s Manual.

Pulse width demodulation is done by setting the PkitODn the SYSCON register. Before doing thisyuyo
will want to specify your interrupt service routmewnhich are used whenever the incoming digitahalig
switches from high to low, and low to high.

The timers can be used to time execution of yoaer defined code by reading the timer values bedoc
after execution of any piece of code. For a sarfidedemonstrating this application, see the sanfid
timer.c in the directory tern\186\samples\ae.

Two of the timers, TimerO and Timerl can be useda@ulse-width modulation with a variable duty leyc
These timers contain two max counters, where theubis high until the counter counts up to maxdoin
before switching and counting up to maxcount B.

It is also possible to use the output of Timerdte-scale one of the other timers, since 16-bilwtion at
the maximum clock rate specified gives you only 250 Only by using Timer2 can you slow this down
even further. Sample files demonstrating thistamer02.c and timerl12.c in the FlashCore-N samibde f
directory.

The specific behavior that you might want to impéeris described in detail in chapter 8 of the AMD
AM188ES User’'s Manual.

void t0_init

void t1_init

Arguments:. int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Both of these timers have two maximum counters (MXUNTA/B) available. These can all be specified
using ta and tb. The argument tm is the valueybatwish placed into the TOCON/T1CON mode regsster

FlashCore-N Chapter 4: Software

for configuring the two timers. The chapter on timan the AMD AM188ES user’s manual can help with
determining the correct value to write to the tiroentrol register.

The interrupt service routine t_isr specified herealled whenever the full count is reached, vather
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments. int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except iy drdls one max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timer (J9)adsreected, the function hitwd() must be called eviefy
seconds of program execution. If this is not exettbecause of a run-time error, such as an iefioitp or
stalled interrupt service routine, a hardware resktoccur. Using the watchdog timer can be anedent
way to recover program execution if a crash ocduesto hot-swapping compact flash cards.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to théue ofledd.

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applieatibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delayO
Arguments. unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspee
well as interrupt latency. The code is functiopadientical to:

VWhile(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments. unsigned int
Return value: none

FlashCore-N Chapter 4: Software

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentdapon the processor speed.

unsigned int crcl6
Arguments. unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing coctenf
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgedyin the header file ser0.h and serl.h in thectbry
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funatigmdentical. SERO is used by the debug kernel
provided as part of the TERN EV-P/DV-P softwares kdr communication with the PC. As a result, you
will not be able to debug code directly written $arial port 0.

Two asynchronous serial ports are integrated in8&@CPU: SERO and SER1. Both ports have baud rate
based on the 40 MHz clock, and can operate at énmaxof 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggion download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the followdtigcussion; any of the interface functions which a
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial port dse,
please realize that some pins might be shared atliter peripheral functions. This means that irager
limited cases, it might not be possible to use réaoe serial port with other on-board controllenétions.
For details, you should see both chapter 10 of Ah&l88ES Microprocessor User's Manual and the
schematic of the FlashCore-N provided at the erttisfmanual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Joflhe processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systerk;cloc

Function Argument | Baud Rate
110

150

300

600

1200
2400
4800

N o o0~ WN P

4-8

FlashCore-N Chapter 4: Software

8 9600
19,200 (default)
10 38,400
11 57,600
12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1_i ni t (), SERL1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAL operatio terms of receiving, there is no software bead
or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status witer hit 1() and
take out the data from the buffer wiglet ser 1() , if any. The input buffer is used as a circulagrbuffer,
as shown in Figure 4.1. However, the transmit djm@ras interrupt-driven.

ibuf in_tail in_head ibuf+isiz

v v
[L[]

1 |

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), andushrate (baud) are specified by the user withi ni t ()

with a default mode of 8-bit, 1 stop bit, no parifffter s1_init() you can set up a hew mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRedgister
(SPOCT/SP1CT) if necessary, as described in chdfterf the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andipessffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or controlhus it is important to provide a sufficientlyde buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4b<Ber
will be able to store data for approximately foacands.

However, it is always important to take out datayetom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhit1() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates data is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_talil
pointer will automatically increment after eveget ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalyphardware reset &l_cl ose() can stop this
receiving operation.

4-9

FlashCore-N Chapter 4: Software

For transmission, you can ugait ser1() to send out a byte, or ugaut sersl1() to transmit a
character string. You can put data into the trahsing buffer,s1_out _buf, at any time using this
method. The transmit ring buffer address (obuf) hoffer length (osiz) are also specified at theetiod
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeufIf there
is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othase, it will
continue to take out the data from the out buffer] transmit. After you cajpput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.
It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘' charadte?.” The translated HEX file is then transted out
of SERO. This sample program can be foundenn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be inzéd.

There is a data structure containing importanas@ort state information that is passed as argtitoethe
TERN library interface functions. The COM strugwhould normally be manipulated only by TERN
libraries. It is provided to make debugging of #®rial communication ports more practical. Siiice
allows you to monitor the current value of the bufnd associated pointer values, you can watch the
transmission process.

The two serial ports have similar software inteefc Any interface that makes reference to eitbarser0
can be replaced with sl or serl, for example. Badhal port should use its own COM structure, efined
in ae.h.

typedef struct {

unsi gned char ready; /* TRUE when ready */
unsi gned char baud;

unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* 1 nput buffer HEAD ptr */

int in_size; /[* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_nt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail;
int out_head;
int out_size;

“/* Qutput buffer TAIL ptr */
/* Qutput buffer HEAD ptr */
/[* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */

unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /'l transmit macro service operation

unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */

unsigned int in_offs; /* input buffer offset */

unsi gned int out_segm /* output buffer segnent */

unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */
} COM

4-10

FlashCore-N Chapter 4: Software

sn_init
Arguments. unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value shoyn
in Table 4.1. Argumentiduf andisiz specify the input-data buffer, aebuf andosiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 staih no parity communication.

There are a couple different functions used fandmaission of data. You can actually place dathiwithe
output buffer manually, incrementing the head aildbuffer pointers appropriately. If you do natllcone
of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedis Hilows you to control when you wish the transios
of data within the outbound buffer to begin. Ottlee interrupts are enabled, it is dangerous to pogatie
the values of the outbound buffer, as well as tidaes of the buffer pointer.

putsern
Arguments. unsigned char outch, COM *c
Return value: int return_value

This function places one byte ‘outch’ into the st buffer for the appropriate serial port. Théure
value returns one in case of success, and zemyinther case.

putsersn
Arguments. char* str, COM *c
Return value: int return_value

This function places a null-terminated charactengtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming datavittie inbound buffer. serhitn() should be calletbie
trying to retrieve data.

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufée this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments the_tail pointer. Once again, this
function assumes thagr hitn has been called, and that there is a charactezmirgsthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

4-11

FlashCore-N Chapter 4: Software

This function fills the character buffetr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret¢ASCII: 0x0d) is retrieved.

This function makes repeated callgybser, and will block untillen bytes are retrieved. The retwaue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null characterstia byte
array, and the returnadlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinij you are working
with byte arrays, the single-byte versions of thesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission ativing of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form of CTS (Clear-To-Send) aRd@'S (Ready-To-Send) is not implemented. There
are, however, functions available that allow yowheck and set the value of these I/O pins appatepfor
whatever form of flow control you wish to implemerBefore using these functions, you should onaérag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to the AM188ES User’s Manual as well as tResEhematic in the tern_docs\schs directory.

char sn_cts(void)
Retrieves value oETS pin.

void sn_rts(char b)
Sets the value ®®TStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Wefau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délmenhardware as well as disabling the interrupt.
clean_sern

Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #&itl header buffer pointers.

The asynchronous serial 1/0O ports available onAmd88ES Processor have many other features thait mig
be useful for your application. If you are truhtérested in having more control, please read @ndyft of
the User’s manual for a detailed discussion of ofib@tures available to you.

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-Bgaovides easy storage of non-volatile program
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe

4-12

FlashCore-N Chapter 4: Software

changed often. Access to the EEPROM is quite stmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addresses 0x00 to Ox1f on the EEPROM is reservedystem use, including configuration information
about the controller itself, jump address for Xepnd other data that is of a more permanent@&atur

The rest of the EEPROM memory space, 0x20 to Oidl#yailable for your application use.

ee wr
Arguments:. int addr, unsigned char dat
Return value: int status

This function is used to write the passedlat to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:. int addr

Return value: int data

This function returns one byte of data from thec#fjeel address.

4.5 Other FN Funtions

Funtions included below are not included in anydilp. Their delcartion and definitions have beesiuded
in the sample code in the tern\186\samples\fn ttirgc To utilize these functions and have accesth¢o
hardware they support, the user must copy the ifmdefinitions into their application code.

451RTC

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingiterdace functions. The RTC on the FN differanfro
the RTC on most other TERN controllers. The TINusture as defined below remains the same, but the
software drivers differ by a small amount. It is@important to note that the drivers for the FNCORare

not part of any library, including ae.lib. Thesévdrs are declared and defined in the sample codecic

in the tern\186\samples\fn directory. The user muogly the definitions into their source code.

There is a common data structure used to accesssanabth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten mnute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.

4-13

FlashCore-N Chapter 4: Software

unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

intrtcl rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrdn, as
the clock failing to respond.

int rtcl rds
Arguments:. char * realTime
Return value: unsigned char error_code

This function places the current value of the timaé clock into the character stringal Time. It is similar
to the above function, yet makes it simpler to thea the result of the function call for other msgs by
placing the result into a character string, notThd structure.

Void rtcl init
Arguments. char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tevdekday, year 10, year 1, month10, monthl, dayl10, dayl, hour10,
hour1, minutelO, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 15, 2002, Friday, 13:65tBe byte
array would be initialized to:

unsigned char t[14] = { 5, 0, 2, O, 6, 1, 5, 1, 3, 5, 5 3, 0};

4.5.2 ADC

unsigned int fn_ad16(unsigned char k)
Arguments. unsigned char k
Return value: unsigned int data

This function passes a control by¢o the ADS8344. The bytedetermines the which channels and mo
are being selected. Modes can include single-endddferential inputs. The return valdeta is the 16-
bit result of the previous conversion.

4-14

FlashCore-N Chapter 4: Software

Control bytes are as follows (these are also définehe ADS8344 data sheets in the tern_docs\parts
directory): By default, the internal clock is sebet.

For single ended inputs:

k = 0x86 ADO
k = Oxc6 AD1
k = 0x96 AD2
k = 0xd6 AD3
k = Oxab AD4
k = Oxe6 AD5
k = Oxb6 ADG6
k = 0xf6 AD7

For differential inputs:

k = 0x82 ADO = IN+, AD1 = IN-
k = 0x92 AD2 = IN+, AD3 = IN-
k = Oxa2 AD4 = IN+, AD5 = IN-
k = Oxb2 ADG6 = IN+, AD7 = IN-
/I Same as above just change in polarity
k = Oxc2 AD1 = IN+, ADO = IN-
k = Oxd2 AD3 = IN+, AD2 = IN-
k = Oxe2 ADS5 = IN+, AD4 = IN-
k = Oxf2 AD7 = IN+, AD6 = IN-

453 DAC

The FN can support two 2-channel 12-bit DACs. Ehak 12-bits of resolution, yielding a 0-4.095 volt
output range, making 1LSB equal to 1 millivolt. Téés one software driver for each 2-channel DABGe T
user must format the passed argument to determiehvehannel the output will be written to, seeobel
for details. As mentioned in the hardware chaptes, settling time is /s, and each channel can sink or
source 7mA.

void fn_dal(int dat); /l drives DAC at U15, Outputs = VA & VB
void fn_da2(int dat); // drives DAC at U17, Outputs = VC & VD

Arguments: int dat
Return value: void

This function passes a 12-bit value to output om afithe four analog outputs on the FN. Fn_dal
corresponds to VA & VB while fn_da2 correspond®/t® & VD. The argument passed to the function
must be formatted to determine which channel tpuwtut

4-15

FlashCore-N Chapter 4: Software

Of the 16-bitint passed, the lower 12 bits represent the voltage tdriven on the output. Bits 15 and 14
should be zero, bit 13 should be one, and bit b2lshbe a zero for channel A and one for channel B.

Example of how to format:

dat = (output_voltage) & OXOFFF; /I AND with @FF for lower 12 bits
dat = dat | 0x2000; /I OR with 0x2000 for cheinfa
dat = dat | 0x3000; /I OR with 0x3000 for chelr

Refer to fn_da.c in the tern\186\samples\fn dingcfor sample code and function definitions.

46 FILESYSLIB

FILESYS.LIB is C library that includes fileio.objd filegeo.obj that supports data transfers to famch
Compact Flash cards installed on the FlashCore4NeoFN-0.

4.6.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any othek diperations. It should also be called if a newddar
installed.

This function will return O if a card with FAT fiystem is located and initialized. Any other return
indicate the card was ‘busy’ (not found), or if kdigeometry is not correct. If 0 is not return, dhec
<filegeo.h> for error-code description.

4.6.2 File System Access and Modification

A fs_descrip structure is used as a file handlant@pen file. The structure might change over tiamal
you should be careful in accessing any fields diye@his structure is used in many of the functiails
that define file management on the FlashCore-NNOF

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen(s thust later be freed by a corresponding call to
fs_FNlose(), even if an error occured at some pwitit the file.

2) a call to fs_findfirst(), passing in a fs_depcriariable you've created (in any way). The fda't
actually open, and you are responsible for freéiegvariable.

The structure is defined below:

aaaaaaaaaaaaaaa * *****************/

struct fs_descrip {

4-16

FlashCore-N Chapter 4: Software

unsigned int ff_dirpos; // The number of theedtory entry for this file.
unsigned int ff_start, // The starting cluster

ff_current; // The clasturrently being written to.
char ff_attrib; /I Attribute byte, see FAxxabove.
char ff_mode; /I Either fREAD or fWRITE or FNLES.
unsigned int ff_ctime, ff_cdate; /I Fdeeated time and date.
unsigned int ff_mtime, ff_mdate; /I Fiteodified time and date.
unsigned int ff_adate; /I File accessaiddno time stored.
unsigned long ff_fsize, /I File size indy.

ff_position; // The 'read' pointer.
int ff_status; /I For passing error information.
char ff_name[FNLEN+1]; // File name, with \0.
unsigned char *ff_buf; // Cluster buffer, sestonust be read and written

/I from disk in entirety, so this area buffereith Created on the heap!

aaaaaaaaaaaaaaa * ***************/

struct fs_descrip *fs_fopen(const char *filename, int flags)

Opens and prepares a file for operation. The argtsrare as follows:

The flag should be one of the following values:
O_RDONLY : (open file for read only, failsfife doesn't exist),
O_WRONLY : (open/creates a file, fails if fibxists),
O_APPEND : (open a file and prepares to apppositioning file pointer at the end of the pragja

where the flags are defined as:

#tdef i ne O _RDONLY 0x1
#def i ne O WRONLY 0x2
#def i ne O_APPEND 0x4

The function returns a 'struct fs_descrip' handléhe open file, or NULL if it fails. It is importd to note
that if a file is successfully opened, it shouldi@s be closed using fs_FNlose() to free any memseg
for the file handle. The function call fs_FNlos&()l also finalize any modifications to the file.

int fs findfirst(char * pathname, struct fs_descrip *descrip)

4-17

FlashCore-N Chapter 4: Software

Finds the *first* file entry (including directorieand 'labels' corresponding to the argument 'patieha
The handle for the file is returned in the 'descamument (you must allocate memory for it before
making the call). This file is not* actually open@eu don't need to fs_FNlose() it later, either).

This function returns one of the following:
fOK: a file was found.
fend: The end of the directory specifiedpiathname' was reached, but no file found.

error code : Check this file and <filegeo.h> foioe-code descriptions.

For version 1.0, pathname MUST be "*.*". Any ottpthname will generate an error. In later versjon
other pathnames/wildcards may be supported. Swllao fs_findfirst("*.*",) returns the fitsfile
entry in the root directory.

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in file's directory. The details of the file are then into the
same argument file descriptor. As before, theififtnot* actually opened.

Return values:
fOK: afile was found.
fEND: The end of the directory specified iatipname' was reached, but no file found.

error code : Check this file and <filegeo.h> fooe-code descriptions.

Use this function, in combination with fs_findfir$o iterate through the entries in a directory.

unsigned char fs fgetc(struct fs descrip *fs_descrip)

Get a single byte from the opened file pointedyteHe file descriptor.
RETURNS:

Normally, next byte of data.

\O' : Default return value if a read froile fis not possible. In this case, check fs_desefipstatus to
determine the cause. Might be fEOF (end of fifd)LEGAL (illegal operation), or other error
code. (fOK indicates the read value was "\0").

unsigned char fs_fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointethydhe file descriptor.

4-18

FlashCore-N Chapter 4: Software

RETURNS:

Normally, the character that was just writterhe file.

\O' : Default return value if a read froite fis not possible.
In this case, check fs_descrip->fitis$ to determine the cause.
Might be fEOF (end of file), fILLEGALillegal operation),

or other error code (full disk).

char fs fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened filedéscrip’, of up to n characters. Returns wheewdine
\n', or end of file is reached.

RETURNS:

The contents of fs_descrip->ff_status (fOK ifialcorrect).

char fs fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string the opened file pointed by fs_descrip.
RETURNS:
The number of characters successfully output.

This function automatically adds carriage returrb&fore newline \n', as in standard DOS practice

char fs_FNIlose(struct fs_descrip *fs_descrip)

Closes a file previously opened with fs_fopen, sgvény lingering changes, updating directory egtrie
and freeing memory associated with fs_descrip (e $0 only fs_FNlose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

Returns error code associated with file; the cmist®f fs_descrip are no longer valid after this
call, do not check its ff_status field.

void fs_ StampTimeHM SM DY (struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'accessddification’, or 'creation' for a file pointed toy b
fs_descrip in the directory entry. Since not aliteyns have RTC, the user is expected to use thedidun
if they wish to use file timestamps. fs_fopen, fdldse, etc... will not. DOS usually stores timegbanm
'‘packed’ storage format (documentation availablmen

4-19

FlashCore-N Chapter 4: Software

4-20

FlashCore-N Appendix A: RS-232 Link Troubleshhoting

Appendix A: TERN Controller — PC Link Troubleshooting

RS-232/DebugCable Supplied by TERN
with EV-P or DV-P Software Kits

Red Edge

/ of cable

PC Receive Data.
Connects to TERN
controller /TxD.
Floating at OV.

PC Transmit Data.
Connects to TER

controller /RxD. To PC DB9
Voltage = -10V connector
GND

Troubleshooting TERN-PC Serial Link

1. Connect the DB9 of your serial cable to your P@emCOM port.
2. Use an oscilloscope or voltmeter to measure voltagein 5 of above diagram. It should be -10V. tbng
voltage is present, investigate possible fautlydQRoM port.
a) Also, try a different PC COM port.

3. If correct voltage is seen on pin 5, prepare a higreninal session on your PC. Use an oscillostope
measure activity on pin 5. Type any key(s) on y@Gr The hyper terminal will send out characters in
ASCII format over pin 5 (PC transmit data). You sladobe able to see activity on pin 5, or in otherds,
the signal present on pin 5 should toggle betweldV+and -10V with a variable duty cycle, dependimg
the ASCII code for the character(s) being typeB@t

a) If Step 2 passes but Step 3 does not, there maysbéware conflict with the COM port you are
trying to use.

b) Try a different COM port.

c) Close any software that could be attempting to pggwur COM port.

d) If your PC has multiple COM ports, confirm that tgper terminal (and Paradigm C/C++) are
configured to same COM port that you have the kealble connected to.

4. |If Steps 2 & 3 do not locate the problem, try aeotAC and repeat Step 1 -3.

FlashCore-N Appendix B: FlashCore-N Dimensional L ayout

Appendix B: FlashCore-N Dimensional L ayout

All dimensionsin inches and accurate to 0.001 inches.

\
52500 L H | HO

3.375, 2.508

P I I I I I I m ﬂ ADC

oo =2

e e —

e e —

e e

oo Ul

e Flash g

e e %

oo u3 m
0.175, 0.608 :g RLAJi/I I:

B

-

0.117, 0.458 — -
OO [& 5/)
) ecm—)
[0.0] 2 [3225.02%]
0,0 | [0.1250092 | [2108,0200] [2.258,0.125]

[

&% %5%9889%§8898é£ SREB |6

>
e w] NG)
pife

INININININ

000 O [N Lol | U1 O | 0of O O =[N Wl
o)

D

~[oof | WM

g
Enlo! N o

<

w|N|-|o

8RS

o

| N 0o 0] ol ol ol wo | wol wof ol ¢

WORNW

2
g

~

SIB

NN
ol |~[oo

ao0n

R
o2

©|o|-|nfw

e

2
w|w|G

Cr+ 1
V+ 2
Cr- 3
C8+ 4
C8- 5
V- 6
TTIXDL 7
RXD1 8
C5+ 1
V+ 2
C6+ 4
V-

[TX4
[RX4 8
Co+ 1
V+ 2
AL1 C9- 3
X1 Cl0+ 4
G4 TCIo- _§
V- 6
RT4 7
CcT4 8

P2

O[O |F{N|w| [0
~~~|~

~| O U AW ([N

gop_\y\r aolo
WIN|-

N| 37| W3 B

i o

a1|o[~]eof ool [N¢

C|C|C

~ |~

714 20| 0|0 310

18BRRIRRE

©|o|r|vfw]|s |0

i

c

i{ I [ [ Y [ ]

el

8o

o o|o|N|o|u] ~w|NfH

R&

418

N Ao Nof o] Mo wof o | 4] vl eof wof wo [eof w ¢
U1[ O] [ 00| O O[N] €

N[ NN}
W[ N[
(0]

q

80

RIBE[FSEBE

2B
2

[

©o|of=|N|w|s oo

e

a

12

(N W|
o o o I v

| —|~— |~

Q)
o]

1N5817.
.

5| RL
M

VOEF

Ve

2
CD5 DSR?
B R5 7Cl2 4
DIRZ 5
Nbrizjewn Voo
voe [2-vee RT2
YEC T REF
/ URZ_ T
ADS8344 T™>2_ 109
TVR
+12V 61
[URB 13
/ RT3 15
G\D 16
DIR3 17
+12V [CT3 18
DSR3 199
o
c27

voc R Rep

IRt (A

VCC VCC VCC VCC

_[cig[cig[cio[c15 X3 |
2 VBAT ;; ;; ;; g; R6

— Yok

C12

(212} RN/ [ee]

u12 vee Cl+ vee Ji G\D 1 26
9 &1 G\D_4 39 vec  vec 1 032 P27 D11
v  T-ale o) sl Eg S S&srria sRo 33 8 3 28 Di2
& 9DMawR - R2 363 835 m - R9 538 4 2 3
&, forsep + TXD0 34 3 S35 /INT4 X973 & 5 3 4
o Mollzrcr "G RXDO 32 31 /RTs1 /C9 9 3 § D76 31 _DL5
&2 RIOT TR a3 S 11 P17 7 32 PL7
Yo 13l [0 co- TXOL 2 o7z mi5iz 2 AL 8 (33
B o ;o i e RXDL 2 OS5 erp /RSTIE 2 TRD 9 34_vce
Ci1 DSR5 2 953 biro 7 AL0 10 35 Voo
NAX232D ICTsl 22 & 21 /Ci5  Pleio 20 D6 A9 11 36 /WR
u13 vce ca- 30 ° S 15 o 10 S5 or A8 12 37
i Voo 169 Cax 17 P24 323 2 S5 ab VCC 13 38_VCC
5 GND  Ci4 T S5 c»m 55 O o5 A7 A7 14 39
Vi G\D S 25 & 139
& 9% I TX3 SI3osrd D122y 28 A A6 15 (20~
Sr mr Az RE o P10 12 O & 11 P13 TVR29 5 ST30 A A5 16 21
Sr RUMoRE v 3103 ST o R4 RD31TQ S22 AT 17 3
S RIOMT X3 3] | S 1133 0 ST33A3 A3 18
Yo Bl [ZoTx2 T STE N D03 g ST A A2 19
o o9 RX2.  G\D P26 S 373 S35 AL AL 20
) GND, S 1o D839 40 _AD DO 21
VAXZ32D DL 22
V- {7 HDRD40 ~ J2 HDRD40 D223
24
25
HL —259
u16 Voo uis 1 2
v RXDL 1 =0 voo 3l A
ROV Crxm1- G 2] ROVeS TR0 53 876
(R Bremmi+ G 3] /R 73 S8
D G\D 41 b eD e 9 5 510 s
[TCAss [TCAss RX6 [
6 3
7 CT6
D2 [RT6 _J 3
DL TX7 g
Do DIR? o
3. 6864MHZ D7 DSR/7 i3
XTAL2 GND Yol R 15
10PF x3 xa_ 1OPF RX RX9 R 1
_|__| c7 R 6 R 9 DSR8 16
£ 21 8
S 23
€09 25 9
6l6 6 glelelele  us 2 3
2|1 81‘9 olg|7l6 5‘L4L32 1 R 27 S
29
NN NCRRGDDDDDDDD| VRRCNN
60 1 60 FDRD3
CCne -89 _ 1 NCCDI XN76543210NCXI DCCNC |89
onC [59psrs 7] NG R T EODB pens b9 Dsre 74
e psercrs DSRE 3] Nora s Crep pe8/CIo AN 1o 2 A
STep e _oTRs 7Cre 2y 25RA CISD P57 Drro Az 32 2_Al
56 _GND BTR6 5 56 _GND ADd 5 2 5 A
G\D DTRA G\D AR5 S 6
55 7RIS VoC 5 7 RTO AD6 7 8 A
RTSD = vee RTSD p22 o o8
P54 " o9 = 0 g
NTD 53—/ Urs RTSA INTD 53~/ uro Voo 11 2 R
SDPsr x5 /URe o] | NTA CSD Ps>—Tx9 VB 13 VA
TXD ST 7RD T o] &SA 16C754 TXDIETTRD VD 15
| RPS5 T4 TR T A | OR D55 T8
TXC |79 5 | ow TXC 5 HDRD16
Ras 7 URA X7 av) C5C Ao T URe
NTC 48— LUR7 134 cop | NTC 48
RTSC pal LRI P RTSC paL o
VeC RTSB VCC
OTee H45 DIRa GND 167 o oves b5 15 2
CTsC p34 LCT4 DIR? 173 prrs crsc 1IXDL S &
23 DSR4 [CT7 18 2 TRXDL 5 6 _TXD
DSRC 1S 18 crse RT DSRC 25 0
NC |5— 5cd DSRB XX o
NC @ 20 RS RRRGR ap~ T
BN —=~ NCnND AAAXXS DDNX TR ©
cc 21012TYYDC IO O
" 3. 6864MZ X% cra 15 2 ©
316 XTAL4 TR3 17
10PF TREI7T3
10PF X7 X8 ci3 10 2
o C U TRE 21 2
R4 Cr2 23 2
L2 28 5
RX4 @1;; C30 ab 25 3 g
HDRD26
vee Lc A* P12
LED
32K XTALS TERN STE
8 VD Wi 1 2 P12 X6 8 V4 g
8 |:| x1vs -8 va Title
6 voer 1 I3 2 VOEE X2 BP5pip FLASHCORE- N
5 H%RE% (Aagg_A 5 P11 |(Si ze|Docunent Numnber
10K e B FN- man. SCH
Dat e: 12, 2005 [Sheet




