FlashCore™

Portable mass data storage controller with 16-BitYfSRAM/Flash, ADC, 1/0s based on
a 40MHz 188 CPU, and RS-232 communication

Technical Manual

Trery

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //www.tern.com

COPYRIGHT

FlashCore, 586-Engine, A-Engine, i386-Engine, a@TA are trademarks of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanceddvba&vices, Inc.
Paradigm C/C++ is a trademark of Paradigm Systems.
Borland C/C++ is a trademark of Borland Internagion
Microsoft, MS-DOS,Windows95/98/2000/NT/ME/XP arademarks of Microsoft
Corporation.

Version 2.00

October 22, 2010

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1999-201(TERIQI

1950 3" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@0€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to jatlife and property
against incidental failure.

TERN reserves the right to make changes and improventerts products without
providing notice.

Temperature readings for controllers are baseth@ndsults of limited sample tests; they
are provided for design reference use only.

FlashCore™ Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

TheFlashCore™ provides a simple interface for 50-pin CompactFlasinds (ranging in size from 8MB -
1 GB Flash cards) which are used to provide noatilelstorage in a wide array of applications, ragg
from digital cameras to PDAs. 50-pin CompactFleatds can also interface with PCs via a standard
PCMCIA adapter, making these ideal storage solatfonapplications requiring mass data exchange. In
addition, the 50-pin CompactFlash cards cost kes 68-pin PCMCIA cards.

The FlashCore™from TERN is available in two different hardwamnéigurations:FC-0 without CPU
andFC which includes CPU.

TheFC-0 is designed as a CompactFlash card expansion baraf@ERN controllers (accessed and
controlled via the 20x2 pin J1 header). H@&O0 provides a 50-pin CF receptacle and a 20x2 pinetock
There is no CPU system on th€-0 . It allows you to add mass data storage to TEBMrollers such as
the586-Engine™, A-Engine™ andi386-Engine™

The FC is a complete standalone C/C++ programmable emidedaletroller including a 16-bit 188 CPU,
512KB ACTF Flash, 128KB, or 512KB SRAM, 512-byte HEOM, 2 channel RS-232 driver, 5V
regulator, with optional real-time clock, batteayd/or 11 channel 12-bit ADC.

By using theFlashCore (FC) users can easily add widely used CF standard dedasstorage cards to their
embedded application via RS232, TTL 12C, or pataleerface. TERN supports a complete C/C++
programmable software package (EV-P, or DV-P kitjol includes compiler, remote debugger, samples,
and libraries. TERN software supports Linear Bléadress mode, 16-bit FAT flash file system, RS-232,
TTL 12C or parallel communication. Users can watéle to the CompactFlash card or read a file fthm
CompactFlash card. Users can also transfer theofgePC via the PCMCIA port.

ACTF FLASH 188 SRAM
512K 80%86 512K
SDL P12 Compatible
EEPROM |« DMAQ) 7805 5V
512 BYTES |« > 16-Bit Timers(3) regulator
SDA P11 Ext. Interrupts(6)
32 1/0 li
. o B
RS-232 11 ch.
serial 12-bit ADC
ports
J1&J2 | CF standard storage carhs

Figure 1.1 Functional block diagram of the FlashCore

1-1

FlashCore™ Chapter 1: Introduction

Measuring 2.1 by 2.35 inches, théashCore offers a complete C/C++ programmable computeresyst
with a 16-bit high performance 188 CPU, and operaitith a 40 MHz system clock with zero-wait-stdte.
addition, a 512-byte serial EEPROM is included oa#d. Optional features include up to 512K battery-
backed SRAM, 11 channel 12-bit ADC, and an optioral-time clock which provides information on the
year, month, date, hour, minute, and second. HlashCore also includes an on-board 5-volt power
regulator and RS232 drivers.

Two DMA-driven serial ports from the 188 CPU supploigh-speed, reliable serial communication at a
rate of up to 115,200 baud while supporting 8abitl 9-bit communication.

There are three 16-bit programmable timers/courdes a watchdog timer. Two timers can be used to
count or time external events, at a rate of upOfgldz, or to generate non-repetitive or variableyekycle
waveforms as PWM outputs. Pulse Width Demodulafie®/D), a distinctive feature, can be used to
measure the width of a signal in both its high bowd phases. It can be used in many applications) ss
bar-code reading.

There are 32 user-programmable 1/O pins on thedB8, and six external interrupt inputs. A supemviso
chip with power failure detection, a watchdog tifrear LED, and expansion ports are on-board.

1.2 Features on the FlashCore

Standard Features
Dimensions: 2.1 x 2.35 inches
Easy to program in Paradigm C/C++
Power consumption: 160 mA at 5V
Power saving mode: 30mA at 5V
Power input: +9V to +12 V unregulated DC withlomard regulator
16-bit CPU, Intel 80x86 compatible
High performance, zero-wait-state operation
512KB ACTF Flash
5V regulator and RS-232 drivers
2 high-speed PWM outputs and Pulse Width Demodhrati
32 1/0 lines from 188 CPU, 512-byte serial EEPROM
6 external interrupt inputs, 3 16-bit timer/couster
2 serial ports support 8-bit or 9-bit asynchroncammunication
Supervisor chip (691) for power failure, reset armdchdog
50-pin Compact Flash socket for Compact Flash cairdize 8MB-1GB

Optional Featureg*surface-mounted components)

128KB, or 512KB SRAM*
Real-time clock RTC72423*, lithium coin battery*
11 channel, 10KHz, 12-bit ADC*

1.3 Physical Description

The physical layout of the FlashCore is shown guFé 1.2.

1-2

FlashCore™ Chapter 1: Introduction

]

Jsutri’:)j o0 u9
iE R us | | PAL |[°
GND © E °
P4 Qe L o
oo o
oo uz A o
oo AM186ES s o
H o
o
o
o

o
© 0000000000000 0O0 00

0000000

X

Figure 1.2 Physical layout of the FlashCore

1.4 FlashCore Programming Overview (not FC-0)

At the factory, an ACTF utility is loaded into tlhipper sector on the on-board flash. This ACTFtutis
protected and executes at every power up. Upon popehe ACTF will perform the process as desdtibe
by flow chart below. The remainder of this sectigill be divided into parts: Prepare for Debug Mode
(STEP 1), Debug Mode (STEP 1), Standalone Mode BSZ): and finally, Production (STEP 3). For your
convenience, the preparation for debug mode is dtrtbe factory, meaning you can begin at STEP 1:
Debug Mode.

[Power on or Rese }

SEND out MENU over SERO at 19200, N, 8, 1 to

STEP2 Jumper on ? Hyperterminal of Windows95/98/2000

J2.1=7J2.3

Text command or download new codes

.

Process Command }

See ACTI-kit and Functions for det:

Read EE for the jump address CS:IP [

[RUN the program starting at the CS:IF]

1.4.1Prepare for Debug Mode (STEP 1):

To run the FC in Step 1, the debug mode, a debugekenust be loaded into the on-board flash. T#is i
done at the factory for your convenience. This dekearnel must be running to communicate with the
Paradigm C/C++ programming environment. It residethe on-board flash at address OxE0000. To run
the debug kernel and prepare for debug mode diolbaving:

1-3

FlashCore™ Chapter 1: Introduction

1. Link the FlashCore to your PC and prepare a hypamital session. Configure the
terminal to 19,200 Baud, 8 bits, No parity, anddpsConnect to SERO of the FlashCore.

2. Power on the FlashCore without the STEP 2 installdte STEP 2 jumper is a red
jumper installed on the J2 header pins 1 and 3.
3. At power up, you should see the ACTF Utility menyaur hyper terminal:
ACTF/ACTR Copyright(c) 1996 STE CA USA. All rightsserved.
>C CFUNCTIONS
>D Download an Intel Extend Hex file into SR
>G Goto and Run
>H HELP
>M MENU
>U Upload a block of Binary data
The “G” command allows you to jump to a locatiardammediately begin execution. It
also sets the start-up jump address. Type “GEQOD@h <enter>. Your FlashCore will
jump to that location in the flash and begin ta the debug kernel. The on-board LED

will blink twice, then stay on. This indicates tlkdashCore is correctly running the
debug kernel.

4. Now install the STEP 2 jumper (red jumper instabbéd?2 pins 1 and 3).

Now at start up, the ACTF Utility will check if th8TEP 2 jumper is installed. If the
STEP 2 jumper is installed, the CPU will fetch #tert up jump address (which we set in
instruction 4 to point to the debug kernel, OXEQO@Dd jump to that address for
execution. Your FlashCore is now ready to commateiavith the Paradigm C/C++ for
Debug Mode. If the STEP 2 jumper is not detected, ACTF Ultility will send out it's
start up menu, and you will be back to instruction

If when you jump to the debug kernel (by typing ‘@®IB0”, then <enter> at the ACTF menu), if you dé no
see the on-board LED blink twice then stay on,déleug kernel has been erased. It must be loadéd taga
run STEP 1 and communicate with the Paradigm C/€aftware. See the section 1.5.1 for instructions on
how to load the debug kernel.

1.4.2STEP 1: Debug Mode

After completing the pervious section, your FlasheCis ready to communicate with the Paradigm C/C++
Environment and debug source code. Use samplesidebvin the c:\tern\186\samples\fc and
c:\tern\186\samples\flashcore directories to garesaurce code. Debug your code as needed. You can
then go to STEP 2: Standalone Mode.

1.4.3STEP 2: Standalone Mode

Now that you have debugged your source code, yeuready to test it in standalone mode. To run
standalone, do the following:

1. Remove the STEP 2 jumper. Prepare a hyper termsesdion as desribed by section
1.4.1.

1-4

FlashCore™

Chapter 1: Introduction

At power-on, you will see ACTF menu. (The key istththe STEP 2 jumper is not
installed, so the CPU does not fetch the jump adjre

You now want to jump to you program. In STEP 1 Beradigm C/C++ environment
downloads your program into the SRAM, starting @drass 0x08000. We now want to
use the same “G” command as before, but jump to poagram, not the debug kernel.
Type “G08000”, then <enter>. The CPU will then jutopyour program in the SRAM for
immediate execution. It will also set the starjuipp address to 0x08000.

Re-install the STEP 2 jumper (J2 pins 1land 3). Mbwvery power up, the ACTF utility
will see the STEP 2 jumper and fetch the jump askjrevhich now points to your
program in the SRAM. Your program will now execute standalone mode at every
power up.

When finished with STEP 2: Standalone Mode, yougmaback to STEP 1:Debug Mode
by repeating instructions 1 & 2. Then use “GE00af8&n <enter> to jump back to the
debug kernel. The FlashCore is now ready to comoatmiwith the Paradigm C/C++
Environment.

This cycle between STEP 1 and STEP 2 can be ddilgzomr program is complete.

1.4.4STEP 3: Production

This step only applies to those users who havehaised the full Development version of the
Paradigm C/C++ Environment.

When you have finished development of your prognamu, are ready to use your source
code to generate an Intel Extend HEX file, which tieen be burned into the on-board
flash for a production version of the FlashCore.

Inside Paradigm C/C++, change the config node afryarget from “186.cfg” to
“actf186.cfg”. This is done by right-mouse clicking the config node and selecting “Edit
Node Attributes”.

Open “actfl86.cfg” for editing. Follow the instrimts at the top of the config file. Save
and close.

Right-mouse click on the “axe” node of your targetl select “Target Expert”. Within the
Target Expert window, chang®DREMOTE/ROM to No Target/ROM.

Now right-mouse click on the “axe” node and sel&tild Node”. You have now
generated an Intel Extend Hex file. The name offiteewill have the same name as your
target, in the same working directory, but with tHéEX” file extension.

For example, if the name of my target is “My_Puaograxe”, then | will have created
“My_Program.hex” in the same directory.

Go to Section 1.5.2 of this manual and follow thstruction for burning HEX files into
the on-board flash.

1.5Burning HEX Files into the On-board Flash

This section will cover two processes:

(1) Burning the debug kernel into the flash to pregarelebug mode.

1-5

FlashCore™

Chapter 1: Introduction

(2) Burning your application HEX file into the flash éomplete a production version.

1.5.1 Burning the debug kernel into the flash

1. Power on the FlashCore without the STEP 2 jumpstailed. See the ACTF menu at
the hyper terminal.

2. Type “D”, then <enter> to alert the ACTF utilityahyou are ready to send a file into
the SRAM. You should see the following at your tirak

ACTF/ACTR Copyright(c) 1996 STE CA USA. All rightsserved.

>C
>D
>G
>H
>M
>U
D

C FUNCTIONS

Download an Intel Extend Hex file into SRA
Goto and Run

HELP

MENU

Upload a block of Binary data

Ready to recieve Intel Extend HEX file at 1920@da

3. At the hyper terminal menu, select Transfers, Seext File. Go to c:\tern\186\rom
and select “lo_ee512.hex”. This will download irttee SRAM starting at address
0x04000. As it downloads you will see the termiwaidow fill with UUUU...

4. When it finishes, you will see:

(U]V)v]V]viv]v]vlu]v]vIV]viviv]vIv]v]vi]viv]v]viv]viviv]vivIv]vie]vivI]vlu]0)VIV]V)V]IV]V)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uivlv]vlv]u]vlv]viviv]viv]u]vluIvivi]vlu]u)vlu]v)v]u]e)
(U]V)v]V]vlv]v]v]u]v]vIV]viviv]vIv]v]vIv]viv]v]viv]viviv]vivIv]vIe]vivI]vlv]e)VlV]V)V]V]V)
(V]V)v]V]vlv]v]v]u]v]vIV]viviv]vIv]v]vIv]viv]v]viv]viviv]vivIv]vIe]vivI]vlV]e)VIV]V)V]IV]V)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uivlv]viv]u]vlv]viviu]viv]u]vluvivie]vlu]u)vlu]v)v]u]v)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uivlv]viv]u]vlv]viviu]viv]u]vluvivi]vlu]u)vlu]v)v]V]e)
(U]V)v]V]viv]v]vlu]v]vIV]viviv]vIv]v]vIv]viv]v]viv]viviv]vivIv]vie]vivI]vlv]e)VIV]V)V]V]V)
(vjujvlv]vivivjvlv]uiviv]viviv]vlv]uiviv]viv]u]vlv]viviu]viv]u]vluvivi]vlu]u)vlu]v)v]V]e)
UUUUUUUUUUUUUUUUUEND of File Record

CHKSUM=0
CS:IP = 04000

USE Gxxxxx to RUN downloaded code atrting at Xxxxx

5. Use the “G” command to run. Type “G04000", then teen. It will then erase the
flash and prepare to burn a HEX file into the flash

6. When it has finished preparing the flash, you sélé:

ERASING AM29040 EE SECTOR 0-6 0x80000 to OXEFFFF !
ERASING FLASH EEPROM AM29F040 SECTOR 0
ERASING FLASH EEPROM AM29F040 SECTOR 1
ERASING FLASH EEPROM AM29F040 SECTOR 2
ERASING FLASH EEPROM AM29F040 SECTOR 3
ERASING FLASH EEPROM AM29F040 SECTOR 4
ERASING FLASH EEPROM AM29F040 SECTOR 5

1-6

FlashCore™ Chapter 1: Introduction

ERASING FLASH EEPROM AM29F040 SECTOR 6
AM29040 EE only takes INTEL EXTEND HEX file starés 0x80000 !
Ready to recieve Intel Extend HEX file at 1920@idba

7. At the terminal menu, select Transfers, then Seext File. Go to c:\tern\186\rom
and select “af_0_115.hex”. This is the debug kerhekill download into the flash
starting at address 0xE0000.

8. When it finishes, the ACTF utility will reset andty will see the ACTF menu. Type
“GE0000", to jump to and execute the debug kerfibk start up jump address will
also be set to OXE0000O.

9. Install the STEP 2 jumper. At power up, your FlasteCwill execute the debug
kernel and be ready to communicate with Paradig@+&/for STEP 1: Debug
Mode.

1.5.2 Burning your application HEX file into the flash

1. Follow instructions 1-6 of the above section, smttl.5.1. This will prepare the
Flash for a HEX file.

2. At the Hyper terminal menu, select Transfers, tBend Text File. Go to the working
directory of you project in Paradigm C/C++. Selgour Intel Extend HEX file
generated by the steps given in the last part cfiel.4

3. When it finishes downloading, the ACTF utility witset. Your application will have
downloaded into the flash starting at address 0&80(hot to be confused with
0x08000, the starting address of your program iESR: Standalone Mode in the
SRAM).

4. Now all that is needed is to set the jump addre€380000. Type “G80000", then
<enter>. Your application will then execute outtbe flash. The start up jump
address is now set to 0x80000.

5. Install the STEP 2 jumper.

At every power-up, the CPU will jump to 0x8000 farmediate execution of your
program. To get back to debug mode go to sectivri 1.

There is no ROM socket on the FC. The User’s apptio program must reside in SRAM for debugging
and reside in battery-backed SRAM for the standafaeid test.

The on-board Flash 29F040B has 256K words of 16dath. It is divided into 8 sectors of 64KB. Toe t
16KB sector is pre-loaded with ACTF boot strip, dhd sector starting OXEOQ00O is for loading theatm
debug kernel. When application is ready, “lo_eebd®. will erase debug kernel, leaving 7 sectors for
application use.

The top 16KB ACTF boot strip is protected.

The utility HEX file, “lo_ee512.HEX” will automatily download into SRAM starting at 0x04000 with
ACTF-PC HyperTerminal. Use the “D” command to dowad, and use the “G” command to run.

“lo_ee512.HEX" will erase the bottom seven sectamd load a “AF_0_115.HEX” or “AF_0_384.HEX"
into the Flash starting at OXxE000O, and load yguliaation HEX starting at 0x80000. Refer to the TAC
manual for information on how to change the dowdiog address of your application HEX.

1-7

FlashCore™ Chapter 1: Introduction

ACTE | OXFFFFF
Utility
0XFC000

Debug
Flash Kernel

af_0_115 | oyE0000

Starting address of

M 0x80000 application (STEP 3)
SRAM 0x20000
Starting address of cot
for standalone field test
4—
0x08000 (STEP 2)
0x00000

v

For production, the user must produce a ACTF-doadiddle HEX file for the application, based on the
DV-P and ACTF Kit. The application HEX file can leaded into the on-board Flash starting address at
0x80000. To properly generate your application HEXll must change the config node of your target to
“actf186.cfg”, which is found in the /TERN/186/camfdirectory. Then right mouse click on the “.axe”
node of your target and select “Target Expert”.sThill allow you to change the “TargetConnectiorgrh
PDREMOTE/ROM to NoTarget/ROM. Then “Build node” gienerate your application “.HEX" file.

The on-board EE must be modified with a “G80000Mmeaeand while in the ACTF-PC-HyperTerminal
Environment.

The “STEP2” jumper (J2 pins 1-3) must be instafl@devery production-version board.

In order to correctly download a program in STEPithwParadigm C/C++, the FC must meet these
requirements:

1) AF_0_115.HEX must be pre-loaded into Flash istgu@iddress OXEO0OO(done at factory by default).

2) The SRAM installed must be large enough to lyolgr program.

For a 128K SRAM, the physical address is 0x00000€fk
For a 512K SRAM, the physical address is 0x0000D#¢

3) The on-board EE must have a correct jump addmsthe AF_0_115.HEX with starting address of
OxE0000.

4) The STEP2 jumper must be installed on J2 pis 1-

1-8

FlashCore™ Chapter 1: Introduction

1.6 Minimum Requirements for FlashCore System Developms

1.6.1Minimum Hardware Requirements

PC or PC-compatible computer with serial COMx pbat supports 115,200 baud

FlashCore controller with DEBUG kerngF_0 115

PC-V25 serial cable (RS232; DB9 connector for PQVMQ@rt and IDC 2x5 connector for controller)
center negative wall transformer (+9V 500 mA)

1.6.2Minimum Software Requirements

TERN EV-P/DV-P

PC software environment: Windows95/98/2000/NT/ME/XP
The C/C++ Evaluation Kit (EV-P) and C/C++ DevelopmKit (DV-P) are available from TERN. The EV-
P Kit is a limited-functionality version of the DR-Kit. With the EV-P Kit, you can program and delthg
FlashCore in STEP 1 and STEP 2, but you cannoSiUEP 3. In order to generate an application HEX fil
for downloading to Flash, and complete the projgat, will need the Development Kit (DV-P).

1-9

FlashCore Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/@evelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN EV-P/DV-P CD-ROM ptains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

Overview (for FC)

Connect debug cable:
For debugging (Step One), place ICD connector oR(BE5) with
red edge of cable at pin 1

Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
(installs onto J5 pins 1 and 2)

Overview (for FC-0)

Connect FC-0 to host TERN controll&-Engine, i386-Engine, 586-
Engine,...Via 20x2 J1 pin header. Make sure that J1 pin 1 of
FC-0 matches J1 pin 1 of host.

Refer to manual of host controller for appropried@nections for
power and RS-232 communication.

2.2.1 Connecting the FlashCoreto the PC

FOR FLASHCORE:

The following picture (Figure 2.1) illustrates tlwennection between the FlashCore and the PC. The
FlashCore is linked to the PC via serial cable.

TheAF_0_115.HEXdebug kernel communicates through SERO by defasitall the 5x2 IDC connector to
the SERO header (J5).IMPORTANT: Note that theed side of the cable must point to pin 1 of the J5
header. Although pin 1 of J5 is for +12V In, itsidll important for thered side of the cable to point to pin
1. The 5x2 IDC will just not have the connectiontreg red side of the connectdrhe DB9 connector
should be connected to one of your PC's COM P@@M1 or COM2).

2-1

FlashCore Chapter 2: Installation

SV FFFIFFFEEERELL) L

Serial Debug Cable
installed on SERO wif
red side at pin

Figure 2.1 Connecting the FlashCore to the PC

FOR FLASHCORE-0:
Figure 2.2 gives an example picture of the Flasb@othat has been mounted onto a host controller.

Again, this is done via the 20x2 pin header Ji iportant to note the J1 pin 1 of the FC-0 ahgid 1
of the host must align.

2-2

FlashCore Chapter 2: Installation

J1 pin 1 of FC-0 aligne(d
with J1 pin 1 of hot

20x2 pin
header

Figure 2.2 Connecting the FlashCore-0 to host controller via 20x2 pin J1

2.2.2 Powering-on the FlashCore

Connect the wall transformer +9V DC output to ttesRCore power jack adapter which then connects to
the FlashCore via J5 pin 1(+12V In) and J5 pin RID3. See Figure 2.1.

For the FC-0, the host controller will supply powethe FC-0. Refer the manual of your host colgrdbr
correct power connections.

2-3

FlashCore Chapter 3: Hardware

Chapter 3. Hardware

3.1188 CPU - Introduction

The 188 CPU is based on industry-standard x86 texthie. The 188 CPU controllers are higher-
performance, more integrated versions of the 80GhR8oprocessors. In addition, the 188 CPU has new
peripherals. The on-chip system interface logic o@nimize total system cost. The 188 CPU has two
asynchronous serial ports, 32 P10s, a watchdog tiatzlitional interrupt pins, a pulse width demediain
option, DMA to and from serial ports, a 16-bit resenfiguration register, and enhanced chip-select
functionality.

3.2188 CPU — Features

3.2.1 Clock

Due to its integrated clock generation circuithyg 188 CPU microcontroller allows the use of a firoae
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

3.2.2 External Interrupts

There are six external interrupts: INTO-INT4 and'BN All six interrupts are active high, but sirtbey are
not pulled down, it is recommended to add pull doesistors to any external interrupts used so &sono
have falsely generated interrupts

INTO, J2 pin 14

INT1, J2 pin 11

INT2, J2 pin 12

INT3, J2 pin 9

INT4 = P30, J2 pin 10
INT6 = P13, J2 pin 21

These external interrupt inputs require a raisithgee(LOW-to-HIGH) to generate an interrupt.

The FlashCore uses vector interrupt functions 8paad to external interrupts. Refer to the 188 CPU
User’'s manual for information about interrupt vesto

3.2.3 Asynchronous Serial Ports

The 188 CPU has two asynchronous serial chann&R0Sand SER1. Each asynchronous serial port
supports the following:

Full-duplex operation

7-bit, 8-bit and 9-bit data transfers

Odd, even and no parity

One stop bit

Error detection

Hardware flow control

DMA transfers to and from serial ports
Transmit and receive interrupts for each port
Multidrop 9-bit protocol support

Maximum baud rate of 1/16 of the CPU clock
Independent baud rate generators

3-1

FlashCore Chapter 3: Hardware

The software drivers for each serial port implemanting-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sasnfiles: s1_echo.c ands0O_echo.c in the
t ern\ 186\ sanpl es\ae directory.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaibphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to three exterinat p

Timer0 output = P10 = J2 pin 22

TimerO input = P11 = NOT ROUTED TO EXTERNAL PIN

Timerl output = P1 = J2 pin 25

Timerl input = PO = J2 pin 19
These two timers can be used to count or time extezvents, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale Timerd Eimerl or be used as a DMA request source.

The maximum rate at which each timer can operai® i8IHz, since each timer is serviced on everytfour
clock cycle. Timer output takes up to six cloclcleg to respond to clock or gate events. See sampl
programs timer0.c and timerl.ciB6 sanpl es\ ae.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eitergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have a secondary maximum count regfstevariable duty cycle output. Using both the
primary and secondary maximum count registershetsimer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurethe signal’s high and low phases on the INT2=J2
pin 12.

3.2.6 Power-save Mode

The FlashCore is an ideal core module for low pog@mrsumption applications. The power-save mode of
the 188 CPU reduces power consumption and hedpdlies, thereby extending battery life in portable
systems. In power-save mode, operation of the CRUimternal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automdiiaaiturns to its normal operating frequency.

3.3188 CPU PIO lines

The 188 CPU has 32 pins available as user-programentD lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO line ban

3-2

FlashCore

Chapter 3: Hardware

configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojleain

output.

A pins behavior, either pull-up or putivdh, is pre-determined and shown below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy

TERN libraries reconfigures some of these pins esdad for specific on-board usage as well.

configurations, as well as the processor-intermaipbheral usage configurations, are listed belowable

3.1.
PIO Function
PO Timerl in
P1 Timerl out
P2 /PCS6/A2
P3 /PCS5/A1
P4 DT/R
P5 /DEN/DS
P6 SRDY
P7 Al7
P8 Al8
P9 Al9
P10 Timer0 out
P11 Timer0 in
P12 DRQO/INT5
P13 DRQ1/INT6
P14 /MCSO
P15 /MCS1
P16 /PCSO
P17 /PCS1
P18 CTS1/PCS2
P19 RTS1/PCS3
P20 RTSO
P21 CTSO
P22 TxDO
P23 RxDO
P24 IMCS2
P25 /MCS3
P26 uzl
P27 TxD1
P28 RxD1
P29 /CLKDIV2
P30 INT4
P31 INT2

Power-On/Reset status

Input with pull-up
Input with pull-down
Input with pull-up
Input with pull-up
Normal

Normal

Normal

Normal

Normal

Normal

Input with pull-down
Input with pull-up
Input with pull-up

Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up
Input with pull-up

FC Pin No.

J2 pin 19

J2 pin 25

J1 pin 36

J2 pin 13/J1.38
J2 pin 3

J2 pin 8

J2 pin 6

J3.3

None

J2 pin 24
J2 pin 22
None

J9 pin 2

J2 pin 21
J2 pin 4
J2 pin 7
U9 pin 1
J2 pin 18
J2 pin 15
J2 pin 16
J2 pin 23
J2 pin 26
U3 pin 10
U3 pin 9
J2 pin 17
J2 pin 20
J2 pin 27
U3 pin 11
U3 pin 12
J2 pin 28
J2 pin 10
J2 pin 12

FlashCore Initial

Input kipull-up
CLK_ 1
RTC select
UbgdRTC
Input with
Used by Step 2
Input with pull-up
Input with pull-down
Al17
A18
Input with pull-up
Inpuith pull-down
Input withlpup
Output fo
LED/EE/HWD
Inputtivipull-up
Input withllpup
Input withllpup
CLK for PAL
Open forruse
Inputwvgpull-up
Inputhwpull-up
Input withllpup
Input withllpup
TxDO
RxDO
Input withlbup
Input withlbup
Open for user
TxD1
RxD1
Input witpullup*
Input withlpup

pull-u

Input withljpup

* Note: P26, P29 must NOT be forced low during peae or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Three external interrupt lines are not shared RItA pins:

INTO = J2 pin 14
INT1 =J2 pin 11
INT3=J2pin9

The 32 PIO lines, P0-P31, are configurable via t8ebit registers, PIOMODE and PIODIRECTION

registers. The settings are listed as follows:

3-3

These

FlashCore Chapter 3: Hardware

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

FlashCore initialization on PIO pins in ae_inig)listed below:

outport(0xff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1
outport(0xff76,0x0000); /l PIOM1

outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PC8A€
outport(0xff70,0x1000); // PIOMO, P12=LED

The C function in the library ae_lib can be usethitialize P10 pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgling pins is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pins is in input mode,
Some of the 1/O lines are used by the FlashCorisyfor on-board components (Table 3.2). We sugges

that you not use these lines unless you are sateytiu are not interfering with the operation o€tflsu
components (i.e., if the component is not installed

Signal Pin Function
P2 /PCS6 U4 RTC72423 chip select at base 1/0 asl@e3600
P4 /DT Step Two jumper

P11 Timer0 input U7 24C04 EE data input
The EE data output can be tri-state, while disabled
P12 DRQO/INT5 Output for LED or U7 serial EE clookHit watchdog

P16 /PCSO0 U9 PAL clock at base 1/0 address 0x0000
P22 TxDO Default SERO debug
P23 RxDO Default SERO debug

Table 3.2 I/O lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0O Space

External I/O devices can use 1/0 mapping for accées can access such I/O devices with inportbjpart
outportb(port,dat). These functions will transfeledoyte or word of data to the specified I/O adsirdfie
external I/O space is 64K, ranging from 0x0000x&fD

3-4

FlashCore Chapter 3: Hardware

The default I/O access time is 15 wait states. Yy use the function void io_wait(char wait) toidefthe

I/0 wait states from 0-15. The system clock is 85giving a clock speed of 40 MHz. Details regagdims

can be found in the Software chapter, and in tH& @BU User's Manual. Slower components, such as
most LCD interfaces, might find the maximum prognaaible wait state of 15 cycles still insufficieribue

to the high bus speed of the system, some comp®nert to be attached to 1/O pins directly.

For details regarding the chip select unit, pleseseChapter 5 of the 188 CPU User’s Manual.

The table below shows more information about I/(ppiag.

I/O space Select Usage Location
0x0000-0x00ff /PCSO PAL U9 pin 1
0x0100-0x01ff /PCS1 USER J2 pin 18=P17
0x0200-0x02ff /PCS2 USER J2 pin 15=CTS1
0x0300-0x03ff /PCS3 USER J2 pin 16=RTS1
0x0400-0x04ff /PCS4 Reserved

0x0500-0x05ff /PCS5 USER J2 pin 16=P3
0x0600-0x06ff /PCS6 RTC 72423 U10 pin 2=P2

3.4.2 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON,) i#mapped in the 1/0 address space 0x0600. It mus
be backed up with a lithium coin battery. The RiEGccessed via software drivers rtc_init() or mtg)
(see Software chapter for details).

3.50ther Devices

A number of other devices are also available orFtaehCore. Some of these are optional, and migghive
installed on the particular controller you are gsinFor a discussion regarding the software interfior
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the FlashCore has several functions:
watchdog timer, battery backup, power-on-reset ydef@ower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a junged9 of the FlashCore (see Figure 3.1). Thehdatg
timer provides a means of verifying proper softwaxecution. In the user's application programisdal
the function hitwd() (a routine that toggles the2BPHWD pin of the MAX691) should be arranged such
that the HWD pin is accessed at least once evérgdconds. If the J9 jumper is on and the HWDipin
not accessed within this time-out period, the wadch timer pulls the WDO pin low, which asserts
/RESET. This automatic assertion of /RESET may vecthe application program if something is wrong.
After the FlashCore is reset, WDO remains low uatitansition occurs at the WDI pin of the MAX691.
When controllers are shipped from the factory $gudnper is off, which disables the watchdog timer.

In addition, the 188 CPU has an internal watchdwoert This is disabled by default with ae_init().

3-5

FlashCore Chapter 3: Hardware

Ul
RAM

5o
oo

oo oo

o0

oo us °e

e o F o o

oo k o0

e e

oo u2 s ee

oo AM188ES H °e

e oo Watchdog

oo -39

o 11 Jumper set =

oo watchdog enable

o0

00 ©®0 000
9000 000

Y =
s u3 . Ue
ol |Rrs232
o

Figure 3.1 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atiné real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last ab®® years without external power being suppligthen
the external power is on, the battery-switch-oweruit will select the VCC to connect to the VRAM.

3.5.2 12-bit ADC (LTC2543)

The TLC2543 is a 12-bit, switched-capacitor, susisesapproximation, 11 channel, serial interface,
analog-to-digital converter. Three PAL output lirsee used to handle the ADC, with /CS=/AD; CLK=CK;
and DIN=DIN.

The ADC digital data output communicates with athttsough a serial tri-state output (DOUT). If
/AD=/CS is low, the TLC2543 will have output on DOUIf /AD=/CS is high, the TLC2543 is disabled
and DOUT is free. The TLC2543 has an on-chip 14wkl multiplexer that can select any one of 11
inputs or any one of three internal self-test \gat& The sample-and-hold function is automatichatend

of conversion, the end-of-conversion (EOC) outgubot connected, although it goes high to inditiads
conversion is complete.

TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingyda
isolation of analog circuitry from logic and supptpise. A switched-capacitor design allows low-erro
conversion over the full operating temperature earigne analog input signal source impedance shuaild
less than 50 ohms and capable of slewing the afgbag voltage into a 60 pf capacitor.

A reference voltage less than VCC (+5V) can be iplexy for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +&N loe used for this purpose, and can be connezted t
the REF pin (J1.3)

The CK signal to the ADC is toggled through an atitpin from the on-board PAL, and serial access
allows a conversion rate of up to approximatel\KHz.

In order to operate the TLC2543, five I/O lines ased, as listed below:

ICS Chip select = /AD (U9.13) , high to low traiwit enables DOUT, DIN and
CK.

Low to high transition disables DOUT, DIN and CK.

3-6

FlashCore Chapter 3: Hardware

DIN PAL pin 17, serial data input
DOUT PAL pin 16, serial data output
EOC Not Connected, End of Conversion, high indeateversion complete ang

data is ready
CLK clock = PAL pin 18
REF+ Upper reference voltage (normally VCC)
REF- Lower reference voltage (normally GND)
VCC Power supply, +5 V input
GND Ground

The analog inputs ADO and AD1 are available atAl42-AD10 and REF are available at J1. Refer to
Figure 3.3 for detailed picture.

3.5.3 EEPROM

A serial EEPROM of 512 bytes (24C04) is installedUi7. The FlashCore uses the P12=SCL (serial tlock
and P11=SDA (serial data) to interface with the RE®. The EEPROM can be used to store important
data, such as a node address, calibration coefficiand configuration codes. It has typically0D,@00
erase/write cycles. The data retention is mora #tayears. EEPROM can be read and written by gimpl
calling functions ee_rd() and ee_wr().

3.6 Headers and Connectors

3.6.1 Expansion Headers

The FlashCore has one 15x2 and one 20x2 pin héadexpansion. Most signals are directly routethi®
188 CPU processor. These signals are 5V only, agdat-of-range voltages will most likely damage th
board.

Table 3.3 Signals for J1 (20x2) and J2 (15x2) expansion ports

3-7

FlashCore

Chapter 3: Hardware

Signal definitions for J1:

VCC +5V power supply

GND Ground

DO-D7 188 CPU 8-bit external data lines
AQ0-A7 188 CPU address lines

/IWR 188 CPU pin 5

/RD 188 CPU pin 6

REF ADC reference voltage

AD2-10 ADC input pins

Signal definitions for J2:

VCC
GND
Pxx
/ICTSO
ICTS1
/IRTSO
/IRTS1
INTO-4

+5V power supply, < 200 mA

ground

188 CPU PIO pins

188 CPU pin 100, Clear-to-Send signal for BER
188 CPU pin 63, Clear-to-Send signal for SER1
188 CPU pin 3, Request-to-Send signal forGER
188 CPU pin 62, Request-to-Send signal f®RBE

Interrupt inputs

Signal definitions for J4:

| ADO, AD1 | Inputs for ADC

Figure 3.2 Signals for

3.6.2 Jumpers

J5 Signal
+12VI 1 2 GND
/TXDO 3 4 /TXD1
/IRXDO 5 6 /RXD1
7 8
GND 9 10 GND
J5 (5x2)

The following is a list of jumpers and connectonrstie FlashCore.

Name | Size Function Possible Configuration
J1 20x2 | Main expansion port,
A0-A7, DO-D7, IWR,
/RD, AD2-AD10
J2 15x2 | Main expansion port Step 2 Jumper -> J22.3
J4 2x1 ADO and AD1
J5 5x2 SERO/SERL1 connector, | Pins 1,2 for +12V In
+12V In Pins 3,5,9 for SERO
Pins 4,6,10 for SER1
J9 2x1 Watchdog timer Enabled if Jumper is on
Disabled if jumper is off

3-8

FlashCore Chapter 3: Hardware

J2

oo
\ [V o0

o RAM .
° e us o0
s

F oo

s oo
oo L °e
) A oo
oo u2 s
s Am188ES H e
°° .. Watchdog
o0 © e J9
°e Bl Jumper set =
o° watchdog enable
Q@ o

SER1

ITXD O U6
U3
\ RS232 691
N N
e

+12Vn

000 ©0 0

© 000 ©0 0

o

L

—

[
5

SERO (-]
/TXD

Figure 3.3 Locations of jumpers and connectors on the FlashCore (component view)

3.7 FC-0 Hardware

The FC-0 includes a 50-pin CF receptacle, 20x2 msipa header (J1), and a PAL.

The 50-pin CF receptacle provides a simple interfac 50-pin CompactFlash (CF) Cards. These CFsgard
range in size from 8MB-1GB Flash cards.

The 20x2 pin header supplies the an 8-bit addrassahd 8-bit data bus for expansion onto other TERN
controllers. The pin configuration is as follows:

IRST 15 16 D4
RST 17 18 D5
P16 19 20 D6

/WR 29 30 A5
/IRD 31 32 Ad

3-9

FlashCore Chapter 3: Hardware

FC-OMOUNTED VIA J1 Jlpinl J1 pin 2
TO HOST586-ENGINE™ solder solder
side vie side view

Figure 3.4 Orientation of J1 header from solder side view

EYFFFFFFFERE R D) 2]

J1 pin 2
component
side view

J1 pin 1 component side vi+w

Figure 3.5 Orientation of J1 header from component side view

In order to select the FC-0, the following equatioust be asserted:
/FC (chip select) = /P16 * A7 * A6 * A5 * /A4 * /B * /A2 * /A1 * |AO.

This can be accomplished using any I/O lines abkElan the driving system, but the address and llaga
are still needed. For ease of use, TERN recommiisal®nly TERN engine cards are used to drive tbe F

0.

3-10

FlashCore Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
Appendix G, “Software Glossary” of the technicalmaal for the AE&AEP in \tern_docs\manuals\ from the
root directory of your CD.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a siejdbw cost solution to application engineers, some
guidelines must be followed. If they are not feled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgmering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azsept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an 1/0 address space and a memory address
space. /O address space ranges foaf000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I1/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments. unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3dgenent
argument is left shifted by four and added todfieet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsjp place for this particular range of memoily w
be used to activate appropriate chip-select lingsthe corresponding hardware component resporfsiblg
handling this data.

o

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

4-1

FlashCore Chapter 4: Software

These functions retrieve the data for a specifédtess in memory space. Once againsggment address
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is théput over
the address bus, and the hardware component méppeat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retandom
garbage values every time you try to peek into dloalress.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tbeta into the appropriataddressin /O space. It is used most often wh
working with processor registers that are mapp&li® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perad
components.

(D
=}

When dealing with processor registers, be sureédle correct function. Useatport if you are dealing
with a 16-bit register.

inport/inportb
Arguments. unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frommpoments in 1/0 space. You will find that most haade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and dating U® mappings, the address is output over thkress
bus, and the returned 16 or 8-bit value is thernetalue.

For further discussion of /0 and memory mappimpysase refer to the Hardware chapter of this testhni
manual.

41AE.LIB

AE.LIB is a C library for basic FlashCore operasorit includes the following modules: AE.OBJ,
SER0.0OBJ, SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You medihk AE.LIB in your applications and
include the corresponding header files. The follayis a list of the header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1.H Internal serial port 1

AEEE.H on-board EEPROM

4.2 Functionsin AE.OBJ

4.2.1 FlashCore I nitialization

ae init

This function should be called at the beginningedéry program running on FlashCore core controlldrs
provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS 1/0, and provides other processor-specific tgglaeeded at the beginning of every program.

4-2

FlashCore Chapter 4: Software

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects of ae_init are described below. dedails regarding register use, you will want tferd¢o the
AMD Am188ES Microcontroller User’'s manual.

Initialize the upper chip select to support thead#fROM. The CPU registers are configured suelt th
Address space for the ROM is from 0x80000-0xffftf (hap MemCard I/O window)
512K ROM Block size operation.

Three wait state operation (allowing it to suppgrtto 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you requiréased performance (at a risk of stability irsyoi
environments). For details, see the UMCS (Uppembty Chip Select Register) reference in the
processor User's manual.

out port (Oxffa0, Ox80bf); // UMCS, 512K ROM 0x80000-Oxfffff

Initialize LCS (ower Chip Select) for use with the SRAM. It is configured so that:
Address space starts 0x00000, with a maximum oKERAM.
3 wait state operation. Reducing this value cgprove performance.

Disables PSRAM, and disables need for externalread
out port (0Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so thid CS0 andPCS0-PCS6 (except for PCS4) are configured so:

M CS0 is mapped also to a 256K window at 0x80000. ddueith MemCard, this
chip select line is used for the I/O window.

Sets ugPCS5-6 lines as chip-select lines, with three wait staggeration.

out port (Oxffa8, OxalObf); // s8, 3 wait states
out port (Oxffa6, O0x81ff); // CSOMSKH

Initialize PACS so thaPCS0-PCS3 are configured so that:
Sets ugPCS0-3 lines as chip-select lines, with fifteen wait staperation.

The chip select lines starts at I/0 address 0x0@f8,each successive chip select line addressed
0x100 higher in 1/O space.
out port (0xffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

Configure the two PIO ports for default operatidXll pins are set up as default input, except fo2 P
(used for driving the LED), and peripheral funatjgpins for SERO and SER1, as well as chip selects f
the PPIL.

out port (Oxff 78, 0xe73c); /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/1 P16=PCSO, P17=PCS1=PPI

out por t (0xff 76, 0x0000) ; /1 PIOWVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, A19, A18, Al7, P2=PCS6=RTC
/1

out port (Oxff 70, 0x1000) ; Pl OMD, P12=LED

Configure the PPI 82C55 to all inputs, except fioes 120-23 which are used as output for the ADC.
You can reset these to inputs if not being usedhatr function.

out port b(0x0103, 0x9a) ; /1l all pins are input, 120-23 output

out port b(0x0100, 0) ;

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

4-3

FlashCore Chapter 4: Software

The chip select lines are by default set to 15 staite. This makes it possible to interface witnyn
slower external peripheral components. If you negiaster I/O access, you can modify this numimavrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for thpsirpose.

void io_wait
Arguments. char wait
Return value: none.

This function sets the current wait state dependim¢he argument wait.

wai t=0, wait states 0, I/O enable for 100 ns
wait=1, wait states 1, 1/ 0O enable for 100+25 ns

wait=2, wait states = 2, |/O enable for 100+50 ns
wai t=3, wait states = 3, |1/0O enable for 100+75 ns
wai t=4, wait states = 5, |/O enable for 100+125 ns
wait=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |/ O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sources han ElashCore, consisting of maskable interrupt pins
(INTO-INT4, INT6). There are also an additionaglei internal interrupt sources not connected to the
external pins, consisting of three timers, two Dii#annels, both asynchronous serial ports, and Me N
from the watchdog timer. For a detailed discussimolving the ICUs, the user should refer to Cleapt

of the AMD Am188ES Microcontroller User’'s Manual.

TERN provides functions to enable/disable all af th external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isi@itn pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBERN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dked must
be cleared. This can be done using the Nonspde@iccommand. At initialization time, interruptigrity
was placed in Fully Nested mode. This means theentihighest priority interrupt will be handledsfirand
a higher priority interrupt will interrupt any cemt interrupt handlers. So, if the user chooseaddar the
in-service bit for the interrupt currently beingniiéed, the interrupt service routine just needssae the
nonspecific EOl command to clear the current higpésrity IR.

To send the nonspecific EOl command, you need it@ Wre EOI register word with 0x8000.
out port (Oxff22, 0x8000);

void intx_init
Arguments. unsigned char i, void interrupt far (* intx_isr) ())
Return value: none

These functions can be used to initialize any dribeexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwaapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€de second argument is a function pointer whighaet
as the interrupt service routine. The overheatherinterrupt service routine is approximately &0

By default, the interrupts are all disabled aftgtialization. To disable them again, you can eggbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiR
return on interrupt.

FlashCore Chapter 4: Software

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 /O Initialization

There are two ports of 16 I/O pins available on FleshCore. Hardware details regarding these Ri€sli
can be found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatimere
you choose to use the PIO pins as input/output,withprobably need to initialize these pins in aofethe
four available modes. Before selecting pins fas purpose, make sure that the peripheral modeatiper
of the pin is not needed for a different use wittia same application.

You should also confirm the PIO usage that is desdrabove within ae_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not availabledar y
application. There are several PIO lines that aexldor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this mézd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am18&Eser’'s Manual.

Please see the sample program ae_pio.ceinn\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-apnfe
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingeBding on the pin
being used, it might require from 5-10 us. The imaxn efficiency you can get from the PIO pins oci€ur
you instead modify the PIO registers directly vétioutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for P1O port 0, andfBaffor PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
0, High-impedance Input operation

1, Open-drain output operation

2, output

3, peripheral mode

unsigned int pio_rd:

Arguments: char port

Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesabrent 1/0 value for the P1O pins in the seleqted.

4-5

FlashCore Chapter 4: Software

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) tcstilected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore candukfos a variety of applications. All three timeun at
%, of the processor clock rate, which determinesnthgimum resolution that can be obtained. Be aware
that if you enter power save mode, that meandrtiers will operate at a reduced speed as well.

These timers are controlled and configured throaghode register which is specified using the saftwa
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the PhitDn the SYSCON register. Before doing thisuyo
will want to specify your interrupt service routdjewvhich are used whenever the incoming digitahalig
switches from high to low, and low to high.

The timers can be used to time execution of yoar defined code by reading the timer values bedok
after execution of any piece of code. For a sarfiedemonstrating this application, see the saiibd
timer.c in the directory tern\186\samples\ae.

Two of the timers, TimerO and Timerl can be useda@ulse-width modulation with a variable duty leyc
These timers contain two max counters, where thgubis high until the counter counts up to maxdoiin
before switching and counting up to maxcount B.

It is also possible to use the output of Timerdte-scale one of the other timers, since 16-bilwti®on at
the maximum clock rate specified gives you only 280 Only by using Timer2 can you slow this down
even further. Sample files demonstrating this tarer02.c and timerl2.c in the FlashCore sampke fil
directory.

The specific behavior that you might want to impéeris described in detail in chapter 8 of the AMD
AM188ES User’s Manual.

void t0_init

void t1_init

Arguments:. int tm, int ta, int tb, void interrupt far(*t_ig)
Return values: none

Both of these timers have two maximum counters (MMOUNTA/B) available. These can all be specified
using ta and tb. The argument tm is the valueytbatwish placed into the TOCON/T1CON mode regsster
for configuring the two timers.

The interrupt service routine t_isr specified herealled whenever the full count is reached, vather
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments. int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except iy drals one max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timer (J9)adsrected, the function hitwd() must be called evify

4-6

FlashCore Chapter 4: Software

seconds of program execution. If this is not ei@tibecause of a run-time error, such as an ieflaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to théue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

There is a common data structure used to accesssanobth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten mnute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char year1l; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}TIM

intrtc rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrci, as
the clock failing to respond.

Void rtc_init
Arguments. char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tevdekday, year10, year1, month10, monthl, dayl10, dayl, hour10,
hour1, minutel0, minutel, second10, secondl, 0 }.

FlashCore Chapter 4: Software

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t868 byte
array would be initialized to:

unsi gned char t[{14] ={ 5, 9, 8 0, 6, 0, 5 1, 3, 5 5, 3, 0},;

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delay0
Arguments. unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspee
well as interrupt latency. The code is functiopadientical to:

VWhile(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments. unsigned int

Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentapon the processor speed.

unsigned int crcl6
Arguments. unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaeay ofcount size pointed to byptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedofor
any reason. Depending on the current hardwaregroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are praedyin the header file ser0.h and serl.h in thectbry
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funatigindentical. SERO is used by the debug kernel
provided as part of the TERN EV-P/DV-P softwares kdr communication with the PC. As a result, you
will not be able to debug code directly written farial port 0.

4-8

FlashCore Chapter 4: Software

Two asynchronous serial ports are integrated inl8&CPU: SERO and SER1. Both ports have baud rate
based on the 40 MHz clock, and can operate at &@maxof 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggtiion download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the followdtigcussion; any of the interface functions which a
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial portdse,
please realize that some pins might be shared atliter peripheral functions. This means that irager
limited cases, it might not be possible to use réage serial port with other on-board controllenétions.
For details, you should see both chapter 10 of Ael88ES Microprocessor User's Manual and the
schematic of the FlashCore provided at the endisfrhanual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Iofléhe processor frequency.

The following table shows the function argumentatthxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systerk;cloc

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1 i nit (), SER1 is configured as a full-duplex serial paortl & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAL operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status witer hit 1() and
take out the data from the buffer wiglet ser 1() , if any. The input buffer is used as a circulagrbuffer,

as shown in Figure 4.1. However, the transmit ap@ras interrupt-driven.

FlashCore Chapter 4: Software

ibuf in_tail in_head ibuf+isiz

oo v
[L[]

1 |

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), andushrate (baud) are specified by the user withi ni t ()

with a default mode of 8-bit, 1 stop bit, no parifter s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRegister
(SPOCT/SP1CT) if necessary, as described in chdafterf the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andhp@sffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4b<Ber
will be able to store data for approximately foacands.

However, it is always important to take out datayetom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and retbhmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates data is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_talil
pointer will automatically increment after eveget ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @l cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsimg buffer,s1_out buf, at any time using this
method. The transmit ring buffer address (obuf) hoffer length (osiz) are also specified at theetiod
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeufIf there
is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out buffex] transmit. After you capput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.
It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘.’ charadte‘?.” The translated HEX file is then transiait out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be initad.

There is a data structure containing importanas@ort state information that is passed as argtiteetihe
TERN library interface functions. The COM strue@whould normally be manipulated only by TERN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufind associated pointer values, you can watch the
transmission process.

4-10

FlashCore Chapter 4: Software

The two serial ports have similar software integfac Any interface that makes reference to eitbharser0
can be replaced with s1 or serl, for example. Eadhal port should use its own COM structure, efined
in ae.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */

unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crcnt; /* lnput <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /1 transmit nacro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsigned int in_segm /* input buffer segment */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */

} Com

sn_init
Arguments. unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value shoyn
in Table 4.1. Argumenit®uf andisiz specify the input-data buffer, aebuf andosiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stoiy no parity communication.

There are a couple different functions used fangmaission of data. You can actually place dataiwithe
output buffer manually, incrementing the head aildbiuffer pointers appropriately. If you do natllcone
of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedisEtlows you to control when you wish the transios
of data within the outbound buffer to begin. Otite interrupts are enabled, it is dangerous to pudatie
the values of the outbound buffer, as well as @laes of the buffer pointer.

putsern
Arguments. unsigned char outch, COM *c
Return value: int return_value

4-11

FlashCore Chapter 4: Software

This function places one byte outch into the trahburfer for the appropriate serial port. The retvalue
returns one in case of success, and zero in aey o#ise.

putsersn
Arguments. char* str, COM *c
Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound buffer. serhitn() should be calletblee
trying to retrieve data.

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments the_tail pointer. Once again, this
function assumes thatrhitn has been called, and that there is a charactesmirgsthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callggabser, and will block untillen bytes are retrieved. The retwaue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null characterstia byte
array, and the returnadlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission ativing of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv

flow control in the form of CTS (Clear-To-Send) aRd@'S (Ready-To-Send) is not implemented. There

are, however, functions available that allow yowheck and set the value of these I/O pins appatepfor
whatever form of flow control you wish to implemerBefore using these functions, you should on@érag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to the Am188ES User's Manual.

char sn_cts(void) |

4-12

FlashCore Chapter 4: Software

Retrieves value oETS pin.

void sn_rts(char b)
Sets the value ®RTStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset efau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délwenhardware as well as disabling the interrupt.
clean_sern

Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #&itl header buffer pointers.

The asynchronous serial 1/0 ports available onli@ Processor have many other features that might b
useful for your application. If you are truly inésted in having more control, please read Chdyitexf the
User’'s manual for a detailed discussion of othatues available to you.

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-Bgaovides easy storage of non-volatile program
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use sptifi for this purpose.

Addresses 0x00 to Ox1f on the EEPROM is reservedystem use, including configuration information
about the controller itself, jump address for Stepnd other data that is of a more permanent eatur

The rest of the EEPROM memory space, 0x20 to Oidl Hyailable for your application use.

ee wr
Arguments:. int addr, unsigned char dat
Return value: int status

This function is used to write the passedah to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:. int addr

Return value: int data

This function returns one byte of data from thec#fjel address.

4-13

FlashCore Chapter 4: Software

45 FILESYSLIB

FILESYS.LIB is C library that includes fileio.objd filegeo.obj that supports data transfers to famh
Compact Flash cards installed on the FlashCorbeoFC-0.

4.5.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any othek diperations. It should also be called if a newddar
installed.

This function will return O if a card with FAT fiystem is located and initialized. Any other return
indicate the card was ‘busy’ (not found), or if kligeometry is not correct. If 0 is not return, dhec
<filegeo.h> for error-code description.

4.5.2 File System Access and Modification

A fs_descrip structure is used as a file handlant@pen file. The structure might change over tiamal
you should be careful in accessing any fields diye@his structure is used in many of the functiails
that define file management on the FlashCore 0OFC-

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen()s thust later be freed by a corresponding call to
fs_fclose(), even if an error occured at some pwitt the file.

2) a call to fs_findfirst(), passing in a fs_depcrariable you've created (in any way). The fda't
actually open, and you are responsible for freéiegvariable.

The structure is defined below:

aaaaaaaaaaaaaaa * *****************/

struct fs_descrip {

unsigned int ff_dirpos; // The number of theedtory entry for this file.
unsigned int ff_start, // The starting cluster

ff_current; // The clasturrently being written to.
char ff_attrib; /I Attribute byte, see FAxxabove.
char ff_mode; /I Either fREAD or fWRITE or fCLE&D.
unsigned int ff_ctime, ff_cdate; /I Fdeeated time and date.
unsigned int ff_mtime, ff_mdate; /I Fiteodified time and date.
unsigned int ff_adate; /I File accessat dno time stored.
unsigned long ff_fsize, /I File size indy.

ff_position; // The 'read' pointer.

int ff_status; /I For passing error information.

4-14

FlashCore Chapter 4: Software

char ff_name[FNLEN+1]; // File name, with \0.
unsigned char *ff_buf; // Cluster buffer, sestonust be read and written
/I from disk in entirety, so this area buffererih Created on the heap!

h

* * *k*k * *kkkkkkkkkkkkhkk /

struct fs_descrip *fs_fopen(const char *filename, int flags)

Opens and prepares a file for operation. The argtsrare as follows:

The flag should be one of the following values:
O_RDONLY : (open file for read only, failsfife doesn't exist),
O_WRONLY : (open/creates a file, fails if fibxists),
O_APPEND : (open a file and prepares to apppositioning file pointer at the end of the pragja

where the flags are defined as:

#define O_RDONLY 0x1
#defi ne O_VWRONLY 0x2
#defi ne O_APPEND 0x4

The function returns a 'struct fs_descrip' handléhe open file, or NULL if it fails. It is importd to note
that if a file is successfully opened, it shouldi@s be closed using fs_fclose() to free any memsed
for the file handle. The function call fs_fclosa(jl also finalize any modifications to the file.

int fs findfirst(char * pathname, struct fs_descrip *descrip)

Finds the *first* file entry (including directorieand 'labels' corresponding to the argument 'patieha
The handle for the file is returned in the 'descamument (you must allocate memory for it before
making the call). This file is not* actually open@@u don't need to fs_fclose() it later, either).

This function returns one of the following:
fOK: afile was found.
fend: The end of the directory specifiedoathname' was reached, but no file found.

error code : Check this file and <filegeo.h> fotoe-code descriptions.

For version 1.0, pathname MUST be "*.*". Any otlgathname will generate an error. In later versjon
other pathnames/wildcards may be supported. Swllao fs_findfirst("*.*",) returns the fitsfile
entry in the root directory.

4-15

FlashCore Chapter 4: Software

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in fiile's directory. The details of the file are ten into the
same argument file descriptor. As before, theififtnot* actually opened.

Return values:
fOK: afile was found.
fEND: The end of the directory specified iatlpname' was reached, but no file found.

error code : Check this file and <filegeo.h> fotoe-code descriptions.

Use this function, in combination with fs_findfir$o iterate through the entries in a directory.

unsigned char fs fgetc(struct fs descrip *fs_descrip)

Get a single byte from the opened file pointedytahe file descriptor.
RETURNS:

Normally, next byte of data.

\O' : Default return value if a read froite fis not possible. In this case, check fs_desefipstatus to
determine the cause. Might be fEOF (end of fifl).EGAL (illegal operation), or other error
code. (fOK indicates the read value was "\0").

unsigned char fs_fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointetydhe file descriptor.
RETURNS:

Normally, the character that was just writtene file.

\O' : Default return value if a read froite fis not possible.
In this case, check fs_descrip->fitis$ to determine the cause.
Might be fEOF (end of file), fILLEGALillegal operation),

or other error code (full disk).

char fs fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened fledéscrip’, of up to n characters. Returns wheewdine
\n', or end of file is reached.

RETURNS:

4-16

FlashCore Chapter 4: Software

The contents of fs_descrip->ff_status (fOK ifialcorrect).

char fs fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string the opened file pointed by fs_descrip.
RETURNS:
The number of characters successfully output.

This function automatically adds carriage returrb&fore newline \n', as in standard DOS practice

char fs fclose(struct fs_descrip *fs_descrip)

Closes a file previously opened with fs_fopen, sgvény lingering changes, updating directory egtrie
and freeing memory associated with fs_descrip (e $0 only fs_fclose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

Returns error code associated with file; the cmist®f fs_descrip are no longer valid after this
call, do not check its ff_status field.

void fs_ StampTimeHM SM DY (struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'accessddification’, or 'creation' for a file pointed toy b
fs_descrip in the directory entry. Since not aliteyns have RTC, the user is expected to use thedidun
if they wish to use file timestamps. fs_fopen, &o$e, etc... will not. DOS usually stores timegtann
'‘packed’ storage format (documentation availablmen

4-17

FlashCore

Appendix A: Kpad — FlashCore Interface

Appendix A: Kpad — FlashCore Interface

A.1 Signal Definitions

J2 Header: FlashCore

GND
P4

P15

INT1
P3
/ICTS1
P24
PO
P13
/IRTSO
P1
P26
GND

1 2 VCC
3 4 P14 Signal Definitions for FlashCore
5 6 P6 J2 header.
/ 8 P5 Pins Highlighted Red need to be
cut when using a 10x2 connector.
11 12 INT2
13 14 INTO Pins Highlighted in Green indicate the
15 16 /RTS1 pins to install the 10x2 connector onto.
L 18 P Al t | wi th Idered
s0, an external wire must be soldere
19 20 P25 P
21 29 P10 to bring VCC from J2.2 to J2.30
23 24 A19
25 26 /CTSO
27 28 P29
29 30
FlashCore Function
Pin Name
VCC Kpad supply voltage, +5V
GND Ground
P26, P29, P1, Keypad Scan: Inputs to FlashCore
P21(/CTS0),
P20(/RTS0),
P9(A19), P13,
P10
PO, P25, P24, Outputs from Am188ES. Drive D7-D4
P17 on LCD controller.

P18 (/CTS1)
P19 (/RTS1)

P3
/RD

Drives E (enable) line to LCD

Drives RS line to LCD. Shared with

122 for Keypad scan

Output. Keypad scan.
Input to PAL

Appendix A: Kpad — FlashCore Interface FlashCore

H5 Header: Kpad

107 1 2 106
vce 3 4 GND
105 5 6 104
103 7 8 102
101 9 10 100
127 11 12 126
125 13 14 124
123 15 16 122
121 17 18
19 20
Kpad Pin Function
Name
VCC Kpad supply voltage +5V
GND Ground
107 — 100 Keypad scan. Tied to Pull-up resistors
127 — 124 Data lines of LCD controller D7 — D4
123 LCD controller Enable
122 LCD controller, mode select
Low: Command
High: Data
Keypad Scan
121 Keypad Scan

Kpad pin layout and description for IO version

A.2 Connections, Pin Mapping

When driving the Kpad with the FlashCore as describy this appendix, one modification must be made
to the FlashCore. If your Kpad and FlashCore wedemd together, the necessary modification was
already been made before shipment. This applieg dnyou have ordered the Kpad-FC after your
FlashCore. In order to drive the Kpad, it requeies5V power supply which can be taken directly frina

J2 header on the FlashCore. An external wire mestdidered to the FlashCore which ties J2.2 = J2.30
This will bring VCC to J2 pin 30 and then be routecthe Kpad. J2 pin 30 by hardware definitiontis a
open pin, so there will be no compatability probdemThe following table shows the exact connections
between the FlashCore and the Kpad.

FlashCore Appendix A: Kpad — FlashCore Interface

Pin Mapping: FlashCore < Kpad

Kpad H5Pin# J2Pin# FlashCore
Signal Name Signal Name
107 1 27 P26
106 2 28 P29
VCC 3 30 VCC
GND 4 29 GND
105 5 25 P1
104 6 26 P21
103 7 23 P20
102 8 24 P9
101 9 21 P13
100 10 22 P10
127 = D7 11 19 PO
126 = D6 12 20 P25
125 = D5 13 17 P24
124 = D4 14 18 P17
123=E 15 15 P18
122 = RS 16 16 P19
121 = Row 1 17 13 P3
No 18 14 No
Connection Connection

A.3 Flat Cable Specifications

This section will define how a flat cable shouldgrepared to interface the Kpad based on the saronple
for the FlashCore, tern\186\samples\kpad_fc.c. Ttiexface is based upon the pin mapping giverh@ t
previous section. The following diagram is a simplyaide to help visualize how the cable will castribe
Kpad and the FlashCore. It is therefore importanemember the above table takes priority in tesfriee
final connections.

Appendix A: Kpad — FlashCore Interface

FlashCore

Header H5 — Kpad
The H5 pin header will be

installed on the underside of

Kpad, opposite of the LCD.

Thus the flat cable will install

on the under side as well.

©0
©0
©©e

©e
©@e

©e
©e
[OX°]

(X}
i

~\H5

~
N

Kpad -
LCD facing up,
yet cable installs
on bottom side.

~

Pin 20
L~

™

Pin 1

Notice the crossing of
the first four lines.

Instructions for flat cable assembly:
(1) Use a 20 wire flat cable
(2) Use two 10x2 connectors.
(3) Peel back the first and second pair of wires asstabove.
(4) Cross first four wires as shown above and sectioeocine connector. This will mount onto the Kpad.
(5) Secure FlashCore side connector with no modifioaiiothe wires.
(6) Cut pins J2.9 and J2.10 (highlighted in red abtoe)low for install of 10x2 connector onto Flashi€s J2 header

(7) Install FlashCore side connector flush to bottonrd2header (highlighted in green above)

(8) Solder wire from J2.2 to J2.30 on FlashCore (shiowpurple above)

IMPORTANT: Refer to tables in this appendix to fiom the correct pin-to-pin configuration.

Because of the Compact
Flash Interface on the FC,
the pin header on J2 will
always be type “T", or
component side. This only
allows one orientation to
install a flat cable

Pin 20

Pin 1

FlashCore
Component Side
Connector to install
on this side of PCl

FlashCore

Appendix B: FlashCore L ayout

Appendix B: FlashCore Dimensional

L ayout

0.09, 2.25

2.12,2.35

d®

J2
SRAM

CPU
AM188ES

PAL

1.99, 2.23

Flash

RTC

0.12,0.7 < 2
L 232

0.09, 0.08
’ e 6 6 6 6
_9 \]5;99

691

1.94,0.18

0,0

All unitsarein inches

T e [L e e o

Lo L Lo DN N NINNNf G| Lof Lo
~[00| ©O|O| - B2 (6] [e)] EN| oo [Te) (@] [0 | N}

CE2=VRAM 32KB SRAM
CE2=A17 128/ 512 KB SRAM

J3 HDRS3
vi 1 ZT%\?
CE2

uL
U
et S
Ao~ alo [S1- —Lme oo
A8 I CE39- —Z{ a6 Al5
Al3 D7 |22 —S1as 2
A4 Ds[25- —2A2 RW
AL7 D5 [2L- —2 a7 a3
IVR D2 [2&- —S1he A8
voC D8 (22— —— A9
AL8 GND M AlL
Al6 D2 |23 a1
22 —10]
Al5 D1 [22 T0laz a0
Al2 D02 IIla /ca
A7 AO —fg ?z 20 5
A6 AL L3100 D6
A5 Az 2B Lol D5
Ad A3 Ll D4
Z9F040 — 18P D8
29F040 RANE71024
MENB2S
Us
VBAT 1 6 RST
VRAM 2| Ve, RST 5 Ret
VO / RST
Ve 3
VCC WO 4
QD 4| 46 YOIT3 T cs
5 2 TRAM
— 21BN CEO
—S1/0 wo L 1
— Ll o8l PFOLQ NM_
8 9 VCC
—81css pri
VAXGOT
MAX691S
U7
i po vee -8 vec
D 2| A vl B 5)
aDb__3 5 Piz
G 7] A2 S —5 1T
vss spa|[= Pil
240045
240045
L2
+12VI ’)')' +12V
LED
LED
XTALL

10PF x2 x1 10PF
o[e
T
Bl
2
o
+L3

BTH1L

u10
VOEE 1[o1p voo 24 VRAM
P22 23
2lics x| 33
—31NC X1
vec—a| N XLoT
A0 5 20 _/ RST
A0 CSL
6 9 00
Al 7 NC Do 8
5 Al M:—7—
A2~ N NCIT6 D1
A3 10| 3 D 15 2
[RD 111,05p @ D3
GND 12| P 28 VR
2 P12 72423
72423s
2|1
3‘2109 u
11 C50
_ 41 21KV 18
5 17
—2112 6 [+
6 16
—S1is o5
7 15
—=|% B
— 1 o0& —
8GEO 1
16V8P
111{1|1
(;les PAL16V8P
VCC R4 VCC R2
P6 P11
10K 10K
+12VI VCC REF

1 1 1
;; Camne ;; Camne ;; Camnp

C1 C2
iy Hig
CAPNP CAPNP

vee J1
Conpact Fl ash soufi n CF+ RECEPTACLE Mx?_lo o—2 G\ND.
REF- 3 3 g 4 ADd
1 26 AD6__ 5 6 AD5
2 &P P AT 73 S8 o0
—21 D3 D11 54—
_ 3l b4 D12 28 Al 9 0 L
i.m |m3§L 1 2
5l e pia B0 ADIO 13 5 & 14 DG
_l_Mfufzég_ RST 7
— W B TS &
—21/ce /rRD 22 A3 21 o It
0] o /vR |32 AD2_23 24_GND
1 ha 7wve 36 - 52 Co_ﬂ A7
17 37 7o 28 Al
131 §5 POl IWvR—29°3 8 A5
—3 Vec voe e Ro IO ©32
=241 A6 /CSE2- =0 O— =
_161 A4 RoT 4L 3 5 3 A2
171 A3 w42 3 5 3 Al
181> /1 p 43 39 5 o4 AQ
% AL 1REG % HDRD40
<% A0 BV2 52—
21 46
—<21D0 BVI Fgo—
22 47
—221D1 D8 gk
2315 BlEs
24 W pro 29 J2 vce
254 co2 @D 29— D 1 2 fo?
3 4
o 6
CcF pis — 95 8P
s 97 8B —pa
ANIS 49 10 L
ULl Voo S 1112 5
o= 13 14
A0 1 [voc 1209 CTST {12 16 RTS1
T 19— P24 P1
ADL ECC 17 18
3 8 oK PO P25
Al 2| A2 CKI7 DN P13 1929 P10
A 5 DOUT TR0 9 P—aly
Al ADd DO PIsTA PL__g2324P—crso
AD5 cs AD 25 26
6 1 AD6 REF+ HeE gZ\IGD 27 28 P29
A 51 AD7 REF- 52500 29 30 p—
GD_10| AD8 ADLO 77 FDRD3
G\D A9 HDRD30
[TC2543
P2543
J5
+12v1 1 2 aD
us vce 1 TXD0 3 4/ TXD1
cl+ 1 69Q Cl+ TRX0 5 2 6 /RXD1
it Ll ci+ vec B L2200 5 Oo—a—err
Vr 2 5 G\ & 1 7 8 VOLF
3| & 9B TTXDL ab 92 70 ab
2+ 41 &y mir B2 [RXDL CL-
- 5| 57 polI2 RXDI G2+ HDRD10
AV Y Ryl I 5 o= R HDRD10
7—;&%; 120 T2| (13 TIX 2T
Rl R2O =
NVAX232D V+
— J4
cr ADL 1 o o 2 ADO
G\ND
cs [
us =
LM7805
Vi
+12V 1 3
- ! v VCC RL L1
G o2 Ve AR P12
10UF35V
> 680 LED
<} G\D LED
STE
Title
Fl ashCore for ConpactFl ash Cards
Si ze |[Docunment Numnber
B F- Cor e. SCH
Dat e: June 11, 2001 [Sheet 1 of

