

FlashCore™

Portable mass data storage controller with 16-bit CPU/SRAM/Flash, ADC, I/Os based on

a 40MHz 188 CPU, and RS-232 communication

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

FlashCore, 586-Engine, A-Engine, i386-Engine, and ACTF are trademarks of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.

Paradigm C/C++ is a trademark of Paradigm Systems.
Borland C/C++ is a trademark of Borland International.

Microsoft, MS-DOS,Windows95/98/2000/NT/ME/XP are trademarks of Microsoft
Corporation.

Version 2.00

October 22, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1999-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

FlashCore™ Chapter 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description
The FlashCore™ provides a simple interface for 50-pin CompactFlash Cards (ranging in size from 8MB -
1 GB Flash cards) which are used to provide non-volatile storage in a wide array of applications, ranging
from digital cameras to PDAs. 50-pin CompactFlash cards can also interface with PCs via a standard
PCMCIA adapter, making these ideal storage solutions for applications requiring mass data exchange. In
addition, the 50-pin CompactFlash cards cost less than 68-pin PCMCIA cards.

The FlashCore™ from TERN is available in two different hardware configurations: FC-0 without CPU
and FC which includes CPU.

The FC-0 is designed as a CompactFlash card expansion board for TERN controllers (accessed and
controlled via the 20x2 pin J1 header). The FC-0 provides a 50-pin CF receptacle and a 20x2 pin socket.
There is no CPU system on the FC-0 . It allows you to add mass data storage to TERN controllers such as
the 586-Engine™, A-Engine™, and i386-Engine™.

The FC is a complete standalone C/C++ programmable embedded controller including a 16-bit 188 CPU,
512KB ACTF Flash, 128KB, or 512KB SRAM, 512-byte EEPROM, 2 channel RS-232 driver, 5V
regulator, with optional real-time clock, battery, and/or 11 channel 12-bit ADC.

By using the FlashCore (FC), users can easily add widely used CF standard mass data storage cards to their
embedded application via RS232, TTL I2C, or parallel interface. TERN supports a complete C/C++
programmable software package (EV-P, or DV-P kit) which includes compiler, remote debugger, samples,
and libraries. TERN software supports Linear Block Address mode, 16-bit FAT flash file system, RS-232,
TTL I2C or parallel communication. Users can write a file to the CompactFlash card or read a file from the
CompactFlash card. Users can also transfer the file to a PC via the PCMCIA port.

188
CPU
80x86

Compatible

DMA(2)
16-Bit Timers(3)
Ext. Interrupts(6)

32 I/O lines
PWM/PWD

691

EEPROM
512 BYTES

 ACTF FLASH
512K

SRAM
512K

SDA P11

SDL P12

J1 & J2

7805 5V
regulator

RTC

CF standard storage cards

11 ch.
12-bit ADC

2 ch.
RS-232
serial
ports

Figure 1.1 Functional block diagram of the FlashCore

FlashCore™ Chapter 1: Introduction

1-2

Measuring 2.1 by 2.35 inches, the FlashCore offers a complete C/C++ programmable computer system
with a 16-bit high performance 188 CPU, and operates with a 40 MHz system clock with zero-wait-state. In
addition, a 512-byte serial EEPROM is included on-board. Optional features include up to 512K battery-
backed SRAM, 11 channel 12-bit ADC, and an optional real-time clock which provides information on the
year, month, date, hour, minute, and second. The FlashCore also includes an on-board 5-volt power
regulator and RS232 drivers.

 Two DMA-driven serial ports from the 188 CPU support high-speed, reliable serial communication at a
rate of up to 115,200 baud while supporting 8-bit and 9-bit communication.

There are three 16-bit programmable timers/counters and a watchdog timer. Two timers can be used to
count or time external events, at a rate of up to 10MHz, or to generate non-repetitive or variable-duty-cycle
waveforms as PWM outputs. Pulse Width Demodulation (PWD), a distinctive feature, can be used to
measure the width of a signal in both its high and low phases. It can be used in many applications, such as
bar-code reading.

There are 32 user-programmable I/O pins on the 188 CPU, and six external interrupt inputs. A supervisor
chip with power failure detection, a watchdog timer, an LED, and expansion ports are on-board.

1.2 Features on the FlashCore

Standard Features
Dimensions: 2.1 x 2.35 inches
Easy to program in Paradigm C/C++
Power consumption: 160 mA at 5V
Power saving mode: 30mA at 5V
Power input: +9V to +12 V unregulated DC with on-board regulator
16-bit CPU, Intel 80x86 compatible
High performance, zero-wait-state operation
512KB ACTF Flash
5V regulator and RS-232 drivers
2 high-speed PWM outputs and Pulse Width Demodulation
32 I/O lines from 188 CPU, 512-byte serial EEPROM
6 external interrupt inputs, 3 16-bit timer/counters
2 serial ports support 8-bit or 9-bit asynchronous communication
Supervisor chip (691) for power failure, reset and watchdog
50-pin Compact Flash socket for Compact Flash cards of size 8MB-1GB

Optional Features (*surface-mounted components):

128KB, or 512KB SRAM*
Real-time clock RTC72423*, lithium coin battery*
11 channel, 10KHz, 12-bit ADC*

1.3 Physical Description

The physical layout of the FlashCore is shown in Figure 1.2.

FlashCore™ Chapter 1: Introduction

1-3

U6
691

EE

U2
Am186ES

U1
RAM

U10
RTC

U11
ADC

U3
RS232

J2

SER0,1
J4 J5

Step 2
 Jumper

 GND
 P4

J1

U5
F
L
A
S
H

U9
PAL

+12V
IN

Figure 1.2 Physical layout of the FlashCore

1.4 FlashCore Programming Overview (not FC-0)

At the factory, an ACTF utility is loaded into the upper sector on the on-board flash. This ACTF utility is
protected and executes at every power up. Upon power up, the ACTF will perform the process as described
by flow chart below. The remainder of this section will be divided into parts: Prepare for Debug Mode
(STEP 1), Debug Mode (STEP 1), Standalone Mode (STEP 2), and finally, Production (STEP 3). For your
convenience, the preparation for debug mode is done at the factory, meaning you can begin at STEP 1:
Debug Mode.

 Power on or Reset

STEP2 Jumper on ?
J2.1 = J2.3?

Yes

Read EE for the jump address CS:IP

RUN the program starting at the CS:IP

No SEND out MENU over SER0 at 19200, N, 8, 1 to
Hyperterminal of Windows95/98/2000

See ACTF-kit and Functions for detail

Text command or download new codes

Process Commands

1.4.1 Prepare for Debug Mode (STEP 1):

To run the FC in Step 1, the debug mode, a debug kernel must be loaded into the on-board flash. This is
done at the factory for your convenience. This debug kernel must be running to communicate with the
Paradigm C/C++ programming environment. It resides in the on-board flash at address 0xE0000. To run
the debug kernel and prepare for debug mode do the following:

FlashCore™ Chapter 1: Introduction

1-4

1. Link the FlashCore to your PC and prepare a hyper terminal session. Configure the
terminal to 19,200 Baud, 8 bits, No parity, and 1 stop. Connect to SER0 of the FlashCore.

2. Power on the FlashCore without the STEP 2 installed. The STEP 2 jumper is a red
jumper installed on the J2 header pins 1 and 3.

3. At power up, you should see the ACTF Utility menu at your hyper terminal:

 ACTF/ACTR Copyright(c) 1996 STE CA USA. All rights reserved.

 >C C FUNCTIONS

 >D Download an Intel Extend Hex file into SRAM

 >G Goto and Run

 >H HELP

 >M MENU

 >U Upload a block of Binary data

 The “G” command allows you to jump to a location and immediately begin execution. It
 also sets the start-up jump address. Type “GE0000”, then <enter>. Your FlashCore will
 jump to that location in the flash and begin to run the debug kernel. The on-board LED
 will blink twice, then stay on. This indicates the FlashCore is correctly running the
 debug kernel.

4. Now install the STEP 2 jumper (red jumper installed at J2 pins 1 and 3).

5. Now at start up, the ACTF Utility will check if the STEP 2 jumper is installed. If the
STEP 2 jumper is installed, the CPU will fetch the start up jump address (which we set in
instruction 4 to point to the debug kernel, 0xE0000) and jump to that address for
execution. Your FlashCore is now ready to communicate with the Paradigm C/C++ for
Debug Mode. If the STEP 2 jumper is not detected, the ACTF Utility will send out it’s
start up menu, and you will be back to instruction 3.

If when you jump to the debug kernel (by typing “GE0000”, then <enter> at the ACTF menu), if you do not
see the on-board LED blink twice then stay on, the debug kernel has been erased. It must be loaded again to
run STEP 1 and communicate with the Paradigm C/C++ software. See the section 1.5.1 for instructions on
how to load the debug kernel.

1.4.2 STEP 1: Debug Mode

After completing the pervious section, your FlashCore is ready to communicate with the Paradigm C/C++
Environment and debug source code. Use samples provided in the c:\tern\186\samples\fc and
c:\tern\186\samples\flashcore directories to generate source code. Debug your code as needed. You can
then go to STEP 2: Standalone Mode.

1.4.3 STEP 2: Standalone Mode

Now that you have debugged your source code, you are ready to test it in standalone mode. To run
standalone, do the following:

1. Remove the STEP 2 jumper. Prepare a hyper terminal session as desribed by section
1.4.1.

FlashCore™ Chapter 1: Introduction

1-5

2. At power-on, you will see ACTF menu. (The key is that the STEP 2 jumper is not
installed, so the CPU does not fetch the jump address).

3. You now want to jump to you program. In STEP 1 the Paradigm C/C++ environment
downloads your program into the SRAM, starting at address 0x08000. We now want to
use the same “G” command as before, but jump to your program, not the debug kernel.
Type “G08000”, then <enter>. The CPU will then jump to your program in the SRAM for
immediate execution. It will also set the start up jump address to 0x08000.

4. Re-install the STEP 2 jumper (J2 pins 1and 3). Now at every power up, the ACTF utility
will see the STEP 2 jumper and fetch the jump address, which now points to your
program in the SRAM. Your program will now execute in standalone mode at every
power up.

5. When finished with STEP 2: Standalone Mode, you can go back to STEP 1:Debug Mode
by repeating instructions 1 & 2. Then use “GE0000”, then <enter> to jump back to the
debug kernel. The FlashCore is now ready to communicate with the Paradigm C/C++
Environment.

6. This cycle between STEP 1 and STEP 2 can be done until your program is complete.

1.4.4 STEP 3: Production

 This step only applies to those users who have purchased the full Development version of the
Paradigm C/C++ Environment.

1. When you have finished development of your program, you are ready to use your source
code to generate an Intel Extend HEX file, which can then be burned into the on-board
flash for a production version of the FlashCore.

2. Inside Paradigm C/C++, change the config node of your target from “186.cfg” to
“actf186.cfg”. This is done by right-mouse clicking on the config node and selecting “Edit
Node Attributes”.

3. Open “actf186.cfg” for editing. Follow the instructions at the top of the config file. Save
and close.

4. Right-mouse click on the “axe” node of your target and select “Target Expert”. Within the
Target Expert window, change PDREMOTE/ROM to No Target/ROM.

5. Now right-mouse click on the “axe” node and select “Build Node”. You have now
generated an Intel Extend Hex file. The name of the file will have the same name as your
target, in the same working directory, but with the “.HEX” file extension.

 For example, if the name of my target is “My_Program.axe”, then I will have created
 “My_Program.hex” in the same directory.

6. Go to Section 1.5.2 of this manual and follow the instruction for burning HEX files into
 the on-board flash.

1.5 Burning HEX Files into the On-board Flash

 This section will cover two processes:

(1) Burning the debug kernel into the flash to prepare for debug mode.

FlashCore™ Chapter 1: Introduction

1-6

(2) Burning your application HEX file into the flash to complete a production version.

1.5.1 Burning the debug kernel into the flash

1. Power on the FlashCore without the STEP 2 jumper installed. See the ACTF menu at
the hyper terminal.

2. Type “D”, then <enter> to alert the ACTF utility that you are ready to send a file into
the SRAM. You should see the following at your terminal:

 ACTF/ACTR Copyright(c) 1996 STE CA USA. All rights reserved.

 >C C FUNCTIONS

 >D Download an Intel Extend Hex file into SRAM

 >G Goto and Run

 >H HELP

 >M MENU

 >U Upload a block of Binary data

 D

 Ready to recieve Intel Extend HEX file at 19200 baud

3. At the hyper terminal menu, select Transfers, Send Text File. Go to c:\tern\186\rom
and select “lo_ee512.hex”. This will download into the SRAM starting at address
0x04000. As it downloads you will see the terminal window fill with UUUU…

4. When it finishes, you will see:

 UUU
 UUU
 UUU
 UUU
 UUU
 UUU
 UUU
 UUU
 UUUUUUUUUUUUUUUUUEND of File Record

 CHKSUM=0

 CS:IP = 04000

 USE Gxxxxx to RUN downloaded code atrting at xxxxx

5. Use the “G” command to run. Type “G04000”, then <enter>. It will then erase the
flash and prepare to burn a HEX file into the flash.

6. When it has finished preparing the flash, you will see:

 ERASING AM29040 EE SECTOR 0-6 0x80000 to 0xEFFFF !

 ERASING FLASH EEPROM AM29F040 SECTOR 0

 ERASING FLASH EEPROM AM29F040 SECTOR 1

 ERASING FLASH EEPROM AM29F040 SECTOR 2

 ERASING FLASH EEPROM AM29F040 SECTOR 3

 ERASING FLASH EEPROM AM29F040 SECTOR 4

 ERASING FLASH EEPROM AM29F040 SECTOR 5

FlashCore™ Chapter 1: Introduction

1-7

 ERASING FLASH EEPROM AM29F040 SECTOR 6

 AM29040 EE only takes INTEL EXTEND HEX file starts at 0x80000 !

 Ready to recieve Intel Extend HEX file at 19200 baud

7. At the terminal menu, select Transfers, then Send Text File. Go to c:\tern\186\rom
and select “af_0_115.hex”. This is the debug kernel. It will download into the flash
starting at address 0xE0000.

8. When it finishes, the ACTF utility will reset and you will see the ACTF menu. Type
“GE0000”, to jump to and execute the debug kernel. The start up jump address will
also be set to 0xE0000.

9. Install the STEP 2 jumper. At power up, your FlashCore will execute the debug
kernel and be ready to communicate with Paradigm C/C++ for STEP 1: Debug
Mode.

1.5.2 Burning your application HEX file into the flash

1. Follow instructions 1-6 of the above section, section 1.5.1. This will prepare the
Flash for a HEX file.

2. At the Hyper terminal menu, select Transfers, then Send Text File. Go to the working
directory of you project in Paradigm C/C++. Select your Intel Extend HEX file
generated by the steps given in the last part of Section 1.4

3. When it finishes downloading, the ACTF utility will reset. Your application will have
downloaded into the flash starting at address 0x80000 (not to be confused with
0x08000, the starting address of your program in STEP 2: Standalone Mode in the
SRAM).

4. Now all that is needed is to set the jump address to 0x80000. Type “G80000”, then
<enter>. Your application will then execute out of the flash. The start up jump
address is now set to 0x80000.

5. Install the STEP 2 jumper.

6. At every power-up, the CPU will jump to 0x8000 for immediate execution of your
program. To get back to debug mode go to section 1.5.1.

There is no ROM socket on the FC. The User’s application program must reside in SRAM for debugging
and reside in battery-backed SRAM for the standalone field test.

The on-board Flash 29F040B has 256K words of 16-bits each. It is divided into 8 sectors of 64KB. The top
16KB sector is pre-loaded with ACTF boot strip, and the sector starting 0xE0000 is for loading the remote
debug kernel. When application is ready, “lo_ee512.hex” will erase debug kernel, leaving 7 sectors for
application use.

 The top 16KB ACTF boot strip is protected.

The utility HEX file, “lo_ee512.HEX” will automatically download into SRAM starting at 0x04000 with
ACTF-PC HyperTerminal. Use the “D” command to download, and use the “G” command to run.

“lo_ee512.HEX” will erase the bottom seven sectors and load a “AF_0_115.HEX” or “AF_0_384.HEX”
into the Flash starting at 0xE0000, and load your application HEX starting at 0x80000. Refer to the ACTF
manual for information on how to change the downloading address of your application HEX.

FlashCore™ Chapter 1: Introduction

1-8

 0xFFFFF ACTF
Utility

0xFC000

Debug
Kernel

af_0_115 0xE0000

0x80000

0x00000

0x20000 SRAM

Flash

Starting address of
application (STEP 3)

0x08000

Starting address of code
for standalone field test

(STEP 2)

For production, the user must produce a ACTF-downloadable HEX file for the application, based on the
DV-P and ACTF Kit. The application HEX file can be loaded into the on-board Flash starting address at
0x80000. To properly generate your application HEX, you must change the config node of your target to
“actf186.cfg”, which is found in the /TERN/186/config directory. Then right mouse click on the “.axe”
node of your target and select “Target Expert”. This will allow you to change the “TargetConnection” from
PDREMOTE/ROM to NoTarget/ROM. Then “Build node” will generate your application “.HEX” file.

The on-board EE must be modified with a “G80000” command while in the ACTF-PC-HyperTerminal
Environment.

The “STEP2” jumper (J2 pins 1-3) must be installed for every production-version board.

In order to correctly download a program in STEP1 with Paradigm C/C++, the FC must meet these
requirements:

1) AF_0_115.HEX must be pre-loaded into Flash starting address 0xE0000(done at factory by default).

2) The SRAM installed must be large enough to hold your program.

For a 128K SRAM, the physical address is 0x00000-0x01ffff
For a 512K SRAM, the physical address is 0x00000-0x07ffff

3) The on-board EE must have a correct jump address for the AF_0_115.HEX with starting address of
0xE0000.

4) The STEP2 jumper must be installed on J2 pins 1-3.

FlashCore™ Chapter 1: Introduction

1-9

1.6 Minimum Requirements for FlashCore System Development

1.6.1 Minimum Hardware Requirements

PC or PC-compatible computer with serial COMx port that supports 115,200 baud
FlashCore controller with DEBUG kernel AF_0_115
PC-V25 serial cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector for controller)
center negative wall transformer (+9V 500 mA)

1.6.2 Minimum Software Requirements

TERN EV-P/DV-P
PC software environment: Windows95/98/2000/NT/ME/XP

The C/C++ Evaluation Kit (EV-P) and C/C++ Development Kit (DV-P) are available from TERN. The EV-
P Kit is a limited-functionality version of the DV-P Kit. With the EV-P Kit, you can program and debug the
FlashCore in STEP 1 and STEP 2, but you cannot run STEP 3. In order to generate an application HEX file
for downloading to Flash, and complete the project, you will need the Development Kit (DV-P).

FlashCore Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/C++ Development Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV-P/DV-P CD-ROM contains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

2.2.1 Connecting the FlashCore to the PC

FOR FLASHCORE:

The following picture (Figure 2.1) illustrates the connection between the FlashCore and the PC. The
FlashCore is linked to the PC via serial cable.

The AF_0_115.HEX debug kernel communicates through SER0 by default. Install the 5x2 IDC connector to
the SER0 header (J5). IMPORTANT: Note that the red side of the cable must point to pin 1 of the J5
header. Although pin 1 of J5 is for +12V In, it is still important for the red side of the cable to point to pin
1. The 5x2 IDC will just not have the connection at the red side of the connector. The DB9 connector
should be connected to one of your PC's COM Ports (COM1 or COM2).

Overview (for FC)
Connect debug cable:

For debugging (Step One), place ICD connector on SER0 (J5) with
red edge of cable at pin 1

Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
(installs onto J5 pins 1 and 2)

Overview (for FC-0)
Connect FC-0 to host TERN controller (A-Engine, i386-Engine, 586-
 Engine,…) via 20x2 J1 pin header. Make sure that J1 pin 1 of
 FC-0 matches J1 pin 1 of host.

Refer to manual of host controller for appropriate connections for
 power and RS-232 communication.

FlashCore Chapter 2: Installation

2-2

5 Volt Regulator

Step 2
Jumper

Serial Debug Cable
installed on SER0 with

red side at pin 1

Power
jack

adapter

Wall
transformer

plug

Figure 2.1 Connecting the FlashCore to the PC

FOR FLASHCORE-0:

Figure 2.2 gives an example picture of the FlashCore-0 that has been mounted onto a host controller.
Again, this is done via the 20x2 pin header J1. It is important to note the J1 pin 1 of the FC-0 and J1 pin 1
of the host must align.

FlashCore Chapter 2: Installation

2-3

 J1 pin 1 of FC-0 aligned
with J1 pin 1 of host

20x2 pin
header

Figure 2.2 Connecting the FlashCore-0 to host controller via 20x2 pin J1

2.2.2 Powering-on the FlashCore

Connect the wall transformer +9V DC output to the FlashCore power jack adapter which then connects to
the FlashCore via J5 pin 1(+12V In) and J5 pin 2 (GND). See Figure 2.1.

For the FC-0, the host controller will supply power to the FC-0. Refer the manual of your host controller for
correct power connections.

FlashCore Chapter 3: Hardware

3-1

Chapter 3: Hardware

3.1 188 CPU - Introduction

The 188 CPU is based on industry-standard x86 architecture. The 188 CPU controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the 188 CPU has new
peripherals. The on-chip system interface logic can minimize total system cost. The 188 CPU has two
asynchronous serial ports, 32 PIOs, a watchdog timer, additional interrupt pins, a pulse width demodulation
option, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced chip-select
functionality.

3.2 188 CPU – Features

3.2.1 Clock

Due to its integrated clock generation circuitry, the 188 CPU microcontroller allows the use of a times-one
crystal frequency. The design achieves 40 MHz CPU operation, while using a 40 MHz crystal.

3.2.2 External Interrupts

There are six external interrupts: INT0-INT4 and INT6. All six interrupts are active high, but since they are
not pulled down, it is recommended to add pull down resistors to any external interrupts used so as not to
have falsely generated interrupts

INT0, J2 pin 14
INT1, J2 pin 11
INT2, J2 pin 12
INT3, J2 pin 9
INT4 = P30, J2 pin 10
INT6 = P13, J2 pin 21

These external interrupt inputs require a raising edge (LOW-to-HIGH) to generate an interrupt.

The FlashCore uses vector interrupt functions to respond to external interrupts. Refer to the 188 CPU
User’s manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The 188 CPU has two asynchronous serial channels: SER0 and SER1. Each asynchronous serial port
supports the following:

Full-duplex operation
7-bit, 8-bit and 9-bit data transfers
Odd, even and no parity
One stop bit
Error detection
Hardware flow control
DMA transfers to and from serial ports
Transmit and receive interrupts for each port
Multidrop 9-bit protocol support
Maximum baud rate of 1/16 of the CPU clock
Independent baud rate generators

FlashCore Chapter 3: Hardware

3-2

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the samples files: s1_echo.c and s0_echo.c in the
tern\186\samples\ae directory.

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to three external pins:

Timer0 output = P10 = J2 pin 22
Timer0 input = P11 = NOT ROUTED TO EXTERNAL PIN
Timer1 output = P1 = J2 pin 25
Timer1 input = P0 = J2 pin 19

These two timers can be used to count or time external events, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or time-
delay applications. It can also prescale Timer0 and Timer1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz, since each timer is serviced on every fourth
clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See sample
programs timer0.c and timer1.c in 186\samples\ae.

3.2.5 PWM outputs and PWD

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both Timer0
and Timer1 have a secondary maximum count register for variable duty cycle output. Using both the
primary and secondary maximum count registers lets the timer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the INT2=J2
pin 12.

3.2.6 Power-save Mode

The FlashCore is an ideal core module for low power consumption applications. The power-save mode of
the 188 CPU reduces power consumption and heat dissipation, thereby extending battery life in portable
systems. In power-save mode, operation of the CPU and internal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatically returns to its normal operating frequency.

3.3 188 CPU PIO lines

The 188 CPU has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal shared function is not needed. A PIO line can be

FlashCore Chapter 3: Hardware

3-3

configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-drain
output. A pins behavior, either pull-up or pull-down, is pre-determined and shown below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

PIO Function Power-On/Reset status FC Pin No. FlashCore Initial

P0 Timer1 in Input with pull-up J2 pin 19 Input with pull-up
P1 Timer1 out Input with pull-down J2 pin 25 CLK_1
P2 /PCS6/A2 Input with pull-up J1 pin 36 RTC select
P3 /PCS5/A1 Input with pull-up J2 pin 13/J1.38 Used by RTC
P4 DT/R Normal J2 pin 3 Input with pull-up

Used by Step 2
P5 /DEN/DS Normal J2 pin 8 Input with pull-up
P6 SRDY Normal J2 pin 6 Input with pull-down
P7 A17 Normal J3.3 A17
P8 A18 Normal None A18
P9 A19 Normal J2 pin 24 Input with pull-up
P10 Timer0 out Input with pull-down J2 pin 22 Input with pull-down
P11 Timer0 in Input with pull-up None Input with pull-up
P12 DRQ0/INT5 Input with pull-up J9 pin 2 Output for

LED/EE/HWD
P13 DRQ1/INT6 Input with pull-up J2 pin 21 Input with pull-up
P14 /MCS0 Input with pull-up J2 pin 4 Input with pull-up
P15 /MCS1 Input with pull-up J2 pin 7 Input with pull-up
P16 /PCS0 Input with pull-up U9 pin 1 CLK for PAL
P17 /PCS1 Input with pull-up J2 pin 18 Open for user
P18 CTS1/PCS2 Input with pull-up J2 pin 15 Input with pull-up
P19 RTS1/PCS3 Input with pull-up J2 pin 16 Input with pull-up
P20 RTS0 Input with pull-up J2 pin 23 Input with pull-up
P21 CTS0 Input with pull-up J2 pin 26 Input with pull-up
P22 TxD0 Input with pull-up U3 pin 10 TxD0
P23 RxD0 Input with pull-up U3 pin 9 RxD0
P24 /MCS2 Input with pull-up J2 pin 17 Input with pull-up
P25 /MCS3 Input with pull-up J2 pin 20 Input with pull-up
P26 UZI Input with pull-up J2 pin 27 Open for user
P27 TxD1 Input with pull-up U3 pin 11 TxD1
P28 RxD1 Input with pull-up U3 pin 12 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 28 Input with pullup*
P30 INT4 Input with pull-up J2 pin 10 Input with pull-up

P31 INT2 Input with pull-up J2 pin 12 Input with pullup

* Note: P26, P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Three external interrupt lines are not shared with PIO pins:

INT0 = J2 pin 14
INT1 = J2 pin 11
INT3 = J2 pin 9

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION
registers. The settings are listed as follows:

FlashCore Chapter 3: Hardware

3-4

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

FlashCore initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The C function in the library ae_lib can be used to initialize PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pins is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pins is in input mode,

Some of the I/O lines are used by the FlashCore system for on-board components (Table 3.2). We suggest
that you not use these lines unless you are sure that you are not interfering with the operation of such
components (i.e., if the component is not installed).

Signal Pin Function

P2 /PCS6 U4 RTC72423 chip select at base I/O address 0x0600
P4 /DT Step Two jumper
P11 Timer0 input U7 24C04 EE data input

The EE data output can be tri-state, while disabled
P12 DRQ0/INT5 Output for LED or U7 serial EE clock or Hit watchdog
P16 /PCS0 U9 PAL clock at base I/O address 0x0000
P22 TxD0 Default SER0 debug
P23 RxD0 Default SER0 debug

Table 3.2 I/O lines used for on-board components

3.4 I/O Mapped Devices

3.4.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port) or
outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000 to 0xffff.

FlashCore Chapter 3: Hardware

3-5

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define the
I/O wait states from 0-15. The system clock is 25 ns, giving a clock speed of 40 MHz. Details regarding this
can be found in the Software chapter, and in the 188 CPU User’s Manual. Slower components, such as
most LCD interfaces, might find the maximum programmable wait state of 15 cycles still insufficient. Due
to the high bus speed of the system, some components need to be attached to I/O pins directly.

For details regarding the chip select unit, please see Chapter 5 of the 188 CPU User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Usage Location

0x0000-0x00ff /PCS0 PAL U9 pin 1
0x0100-0x01ff /PCS1 USER J2 pin 18=P17
0x0200-0x02ff /PCS2 USER J2 pin 15=CTS1
0x0300-0x03ff /PCS3 USER J2 pin 16=RTS1
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 USER J2 pin 16=P3
0x0600-0x06ff /PCS6 RTC 72423 U10 pin 2=P2

3.4.2 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON, U4) is mapped in the I/O address space 0x0600. It must
be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or rtc_rd()
(see Software chapter for details).

3.5 Other Devices

A number of other devices are also available on the FlashCore. Some of these are optional, and might not be
installed on the particular controller you are using. For a discussion regarding the software interface for
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the FlashCore has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J9 of the FlashCore (see Figure 3.1). The watchdog
timer provides a means of verifying proper software execution. In the user's application program, calls to
the function hitwd() (a routine that toggles the P12=HWD pin of the MAX691) should be arranged such
that the HWD pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is
not accessed within this time-out period, the watchdog timer pulls the WDO pin low, which asserts
/RESET. This automatic assertion of /RESET may recover the application program if something is wrong.
After the FlashCore is reset, WDO remains low until a transition occurs at the WDI pin of the MAX691.
When controllers are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

In addition, the 188 CPU has an internal watchdog timer. This is disabled by default with ae_init().

FlashCore Chapter 3: Hardware

3-6

U6
691

EE

U2
Am188ES

U1
RAM

ADC

U3
RS232

Watchdog
J9

Jumper set =
watchdog enable

U5
F
L
A
S
H

Figure 3.1 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last about 3-5 years without external power being supplied. When
the external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

3.5.2 12-bit ADC (LTC2543)

The TLC2543 is a 12-bit, switched-capacitor, successive-approximation, 11 channel, serial interface,
analog-to-digital converter. Three PAL output lines are used to handle the ADC, with /CS=/AD; CLK=CK;
and DIN=DIN.

The ADC digital data output communicates with a host through a serial tri-state output (DOUT). If
/AD=/CS is low, the TLC2543 will have output on DOUT. If /AD=/CS is high, the TLC2543 is disabled
and DOUT is free. The TLC2543 has an on-chip 14-channel multiplexer that can select any one of 11
inputs or any one of three internal self-test voltages. The sample-and-hold function is automatic. At the end
of conversion, the end-of-conversion (EOC) output is not connected, although it goes high to indicate that
conversion is complete.

TLC2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error
conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50 ohms and capable of slewing the analog input voltage into a 60 pf capacitor.

A reference voltage less than VCC (+5V) can be provided for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +5V can be used for this purpose, and can be connected to
the REF pin (J1.3)

The CK signal to the ADC is toggled through an output pin from the on-board PAL, and serial access
allows a conversion rate of up to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines are used, as listed below:

/CS Chip select = /AD (U9.13) , high to low transition enables DOUT, DIN and
CK.
Low to high transition disables DOUT, DIN and CK.

FlashCore Chapter 3: Hardware

3-7

DIN PAL pin 17, serial data input
DOUT PAL pin 16, serial data output
EOC Not Connected, End of Conversion, high indicates conversion complete and

data is ready
CLK clock = PAL pin 18
REF+ Upper reference voltage (normally VCC)
REF- Lower reference voltage (normally GND)
VCC Power supply, +5 V input
GND Ground

The analog inputs AD0 and AD1 are available at J4. AD2-AD10 and REF are available at J1. Refer to
Figure 3.3 for detailed picture.

3.5.3 EEPROM

A serial EEPROM of 512 bytes (24C04) is installed in U7. The FlashCore uses the P12=SCL (serial clock)
and P11=SDA (serial data) to interface with the EEPROM. The EEPROM can be used to store important
data, such as a node address, calibration coefficients, and configuration codes. It has typically 1,000,000
erase/write cycles. The data retention is more than 40 years. EEPROM can be read and written by simply
calling functions ee_rd() and ee_wr().

3.6 Headers and Connectors

3.6.1 Expansion Headers

The FlashCore has one 15x2 and one 20x2 pin header for expansion. Most signals are directly routed to the
188 CPU processor. These signals are 5V only, and any out-of-range voltages will most likely damage the
board.

Table 3.3 Signals for J1 (20x2) and J2 (15x2) expansion ports

FlashCore Chapter 3: Hardware

3-8

Signal definitions for J1:

VCC +5V power supply
GND Ground
D0-D7 188 CPU 8-bit external data lines
A0-A7 188 CPU address lines
/WR 188 CPU pin 5
/RD 188 CPU pin 6
REF ADC reference voltage
AD2-10 ADC input pins

Signal definitions for J2:

VCC +5V power supply, < 200 mA
GND ground
Pxx 188 CPU PIO pins
/CTS0 188 CPU pin 100, Clear-to-Send signal for SER0
/CTS1 188 CPU pin 63, Clear-to-Send signal for SER1
/RTS0 188 CPU pin 3, Request-to-Send signal for SER0
/RTS1 188 CPU pin 62, Request-to-Send signal for SER1
INT0-4 Interrupt inputs

Signal definitions for J4:

AD0, AD1 Inputs for ADC

J5 Signal

+12VI 1 2 GND
/TXD0 3 4 /TXD1
/RXD0 5 6 /RXD1
 7 8
GND 9 10 GND

Figure 3.2 Signals for J5 (5x2)

3.6.2 Jumpers

The following is a list of jumpers and connectors on the FlashCore.

Name Size Function Possible Configuration

J1 20x2 Main expansion port,
A0-A7, D0-D7, /WR,
/RD, AD2-AD10

J2 15x2 Main expansion port Step 2 Jumper -> J2.1 = J2.3
J4 2x1 AD0 and AD1
J5 5x2 SER0/SER1 connector,

+12V In
Pins 1,2 for +12V In
Pins 3,5,9 for SER0
Pins 4,6,10 for SER1

J9 2x1 Watchdog timer Enabled if Jumper is on
Disabled if jumper is off

FlashCore Chapter 3: Hardware

3-9

U6
691 EE

U2
Am188ES

U1
RAM

J4

ADC

U3
RS232

Watchdog
J9

Jumper set =
watchdog enable

U5
F
L
A
S
H

J5

+12V In

SER0
/TxD

J2

J1

SER1
/TxD

Figure 3.3 Locations of jumpers and connectors on the FlashCore (component view)

3.7 FC-0 Hardware

The FC-0 includes a 50-pin CF receptacle, 20x2 expansion header (J1), and a PAL.

The 50-pin CF receptacle provides a simple interface for 50-pin CompactFlash (CF) Cards. These CF cards,
range in size from 8MB-1GB Flash cards.

The 20x2 pin header supplies the an 8-bit address bus and 8-bit data bus for expansion onto other TERN
controllers. The pin configuration is as follows:

VCC 1 2 GND
 3 4
 5 6
 7 8 D0
 9 10 D1
 11 12 D2
 13 14 D3
/RST 15 16 D4
RST 17 18 D5
P16 19 20 D6
 21 22 D7
 23 24 GND
 25 26 A7
 27 28 A6
/WR 29 30 A5
/RD 31 32 A4
 33 34 A3
 35 36 A2
 37 38 A1
 39 40 A0

FlashCore Chapter 3: Hardware

3-10

 J1 pin 1
solder

 side view

FC-0 MOUNTED VIA J1
TO HOST 586-ENGINE™

J1 pin 2
solder

 side view

Figure 3.4 Orientation of J1 header from solder side view

 J1 pin 1 component side view

J1 pin 2
component
side view

Figure 3.5 Orientation of J1 header from component side view

In order to select the FC-0, the following equation must be asserted:

/FC (chip select) = /P16 * A7 * A6 * A5 * /A4 * /A3 * /A2 * /A1 * /A0.

This can be accomplished using any I/O lines available on the driving system, but the address and data bus
are still needed. For ease of use, TERN recommends that only TERN engine cards are used to drive the FC-
0.

FlashCore Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
Appendix G, “Software Glossary” of the technical manual for the AE&AEP in \tern_docs\manuals\ from the
root directory of your CD.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory will
be used to activate appropriate chip-select lines and the corresponding hardware component responsible for
handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

FlashCore Chapter 4: Software

4-2

These functions retrieve the data for a specified address in memory space. Once again, the segment address
is shifted left by four bits and added to the offset to find the 20-bit address. This address is then output over
the address bus, and the hardware component mapped to that address should return either an 8-bit or 16-bit
value over the data bus. If there is no component mapped to that address, this function will return random
garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often when
working with processor registers that are mapped into I/O space and must be accessed using either one of
these functions. This is also the function used in most cases when dealing with user-configured peripheral
components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most hardware
options added to TERN controllers are mapped into I/O space, since memory space is valuable and is
reserved for uses related to the code and data. Using I/O mappings, the address is output over the address
bus, and the returned 16 or 8-bit value is the return value.

For further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 AE.LIB
AE.LIB is a C library for basic FlashCore operations. It includes the following modules: AE.OBJ,
SER0.OBJ, SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and
include the corresponding header files. The following is a list of the header files:

Include-file name Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H Internal serial port 0
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

4.2 Functions in AE.OBJ

4.2.1 FlashCore Initialization

ae_init

This function should be called at the beginning of every program running on FlashCore core controllers. It
provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded
DOS I/O, and provides other processor-specific updates needed at the beginning of every program.

FlashCore Chapter 4: Software

4-3

There are certain default pin modes and interrupt settings you might wish to change. With that in mind, the
basic effects of ae_init are described below. For details regarding register use, you will want to refer to the
AMD Am188ES Microcontroller User’s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such that:

Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)

512K ROM Block size operation.

Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you require increased performance (at a risk of stability in noisy
environments). For details, see the UMCS (Upper Memory Chip Select Register) reference in the
processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.

 3 wait state operation. Reducing this value can improve performance.

Disables PSRAM, and disables need for external ready.
outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

Initialize PACS so that PCS0-PCS3 are configured so that:

Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.

The chip select lines starts at I/O address 0x0000, with each successive chip select line addressed
0x100 higher in I/O space.

outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

Configure the two PIO ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SER0 and SER1, as well as chip selects for
the PPI.
outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,

// P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

Configure the PPI 82C55 to all inputs, except for lines I20-23 which are used as output for the ADC.
You can reset these to inputs if not being used for that function.
outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high

FlashCore Chapter 4: Software

4-4

The chip select lines are by default set to 15 wait state. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number down
as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is decreased
too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sources on the FlashCore, consisting of maskable interrupt pins
(INT0-INT4, INT6). There are also an additional eight internal interrupt sources not connected to the
external pins, consisting of three timers, two DMA channels, both asynchronous serial ports, and the NMI
from the watchdog timer. For a detailed discussion involving the ICUs, the user should refer to Chapter 7
of the AMD Am188ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the 6 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service routine
that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors correctly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled must
be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt priority
was placed in Fully Nested mode. This means the current highest priority interrupt will be handled first, and
a higher priority interrupt will interrupt any current interrupt handlers. So, if the user chooses to clear the
in-service bit for the interrupt currently being handled, the interrupt service routine just needs to issue the
nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will act
as the interrupt service routine. The overhead on the interrupt service routine is approximately 20 µs.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

FlashCore Chapter 4: Software

4-5

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

There are two ports of 16 I/O pins available on the FlashCore. Hardware details regarding these PIO lines
can be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application where
you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode operation
of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 11 of the AMD Am188ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur if
you instead modify the PIO registers directly with an outport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

0, High-impedance Input operation
1, Open-drain output operation
2, output
3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

FlashCore Chapter 4: Software

4-6

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the FlashCore can be used for a variety of applications. All three timers run at
¼ of the processor clock rate, which determines the maximum resolution that can be obtained. Be aware
that if you enter power save mode, that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty cycle.
These timers contain two max counters, where the output is high until the counter counts up to maxcount A
before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution at
the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this down
even further. Sample files demonstrating this are timer02.c and timer12.c in the FlashCore sample file
directory.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
AM188ES User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be specified
using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON mode registers
for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) is connected, the function hitwd() must be called every 1.6

FlashCore Chapter 4: Software

4-7

seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop or
stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

There is a common data structure used to access and use both interfaces.

typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

FlashCore Chapter 4: Software

4-8

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use hardware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the debug kernel
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0.

FlashCore Chapter 4: Software

4-9

Two asynchronous serial ports are integrated in the 188 CPU: SER0 and SER1. Both ports have baud rates
based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SER0 is used by the DEBUG ROM for application download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the following discussion; any of the interface functions which are
specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for use,
please realize that some pins might be shared with other peripheral functions. This means that in certain
limited cases, it might not be possible to use a certain serial port with other on-board controller functions.
For details, you should see both chapter 10 of the Am188ES Microprocessor User’s Manual and the
schematic of the FlashCore provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These baud
rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock;

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the receiving
serial data stream into the memory by DMA1 operation. In terms of receiving, there is no software overhead
or interrupt latency for user application programs even at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user only has to check the buffer status with serhit1() and
take out the data from the buffer with getser1(), if any. The input buffer is used as a circular ring buffer,
as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

FlashCore Chapter 4: Software

4-10

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user does
not take out the data from the ring buffer with getser1() before the ring buffer is full, new data will
overwrite the old data without warning or control. Thus it is important to provide a sufficiently large buffer
if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4 KB buffer
will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If there
is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise, it will
continue to take out the data from the out buffer, and transmit. After you call putser1() and transmit
functions, you are free to do other tasks with no additional software overhead on the transmitting operation.
It will automatically send out all the data you specify. After all data has been sent, it will clear the busy flag
and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?.’ The translated HEX file is then transmitted out
of SER0. This sample program can be found in tern\186\samples\ae.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

FlashCore Chapter 4: Software

4-11

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or ser0
can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as defined
in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value shown
in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within the
output buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one
of the following functions, however, the driver interrupt for the appropriate serial-port will be disabled,
which means that no values will be transmitted. This allows you to control when you wish the transmission
of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

FlashCore Chapter 4: Software

4-12

This function places one byte outch into the transmit buffer for the appropriate serial port. The return value
returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns one
in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are working
with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once again
be aware that the peripheral pin function you are using might not be selected as needed. For details, please
refer to the Am188ES User’s Manual.

char sn_cts(void)

FlashCore Chapter 4: Software

4-13

Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the 188 Processor have many other features that might be
useful for your application. If you are truly interested in having more control, please read Chapter 10 of the
User’s manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board provides easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step 2, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

FlashCore Chapter 4: Software

4-14

4.5 FILESYS.LIB

FILESYS.LIB is C library that includes fileio.obj and filegeo.obj that supports data transfers to and from
Compact Flash cards installed on the FlashCore or the FC-0.

4.5.1 File System Initialization

int fs_initPCFlash(void);

This function should be called before any other disk operations. It should also be called if a new card is
installed.

This function will return 0 if a card with FAT filesystem is located and initialized. Any other returns
indicate the card was ‘busy’ (not found), or if disk geometry is not correct. If 0 is not return, check
<filegeo.h> for error-code description.

4.5.2 File System Access and Modification

A fs_descrip structure is used as a file handle to an open file. The structure might change over time, and
you should be careful in accessing any fields directly. This structure is used in many of the function calls
that define file management on the FlashCore or FC-0.

A fs_descrip variable might be created in two ways:

1) created on the heap via a call to fs_fopen(); this must later be freed by a corresponding call to
fs_fclose(), even if an error occured at some point with the file.

2) a call to fs_findfirst(), passing in a fs_descrip variable you've created (in any way). The file isn't
actually open, and you are responsible for freeing the variable.

The structure is defined below:

*** *****************/

struct fs_descrip {

 unsigned int ff_dirpos; // The number of the directory entry for this file.

 unsigned int ff_start, // The starting cluster.

 ff_current; // The cluster currently being written to.

 char ff_attrib; // Attribute byte, see FA_xxx above.

 char ff_mode; // Either fREAD or fWRITE or fCLOSED.

 unsigned int ff_ctime, ff_cdate; // File created time and date.

 unsigned int ff_mtime, ff_mdate; // File modified time and date.

 unsigned int ff_adate; // File accessed date, no time stored.

 unsigned long ff_fsize, // File size in bytes.

 ff_position; // The 'read' pointer.

 int ff_status; // For passing error information.

FlashCore Chapter 4: Software

4-15

 char ff_name[FNLEN+1]; // File name, with \0.

 unsigned char *ff_buf; // Cluster buffer, sectors must be read and written

 // from disk in entirety, so this area buffers them. Created on the heap!

};

*** ***************/

struct fs_descrip *fs_fopen(const char *filename, int flags)

Opens and prepares a file for operation. The arguments are as follows:

 The flag should be one of the following values:

 O_RDONLY : (open file for read only, fails if file doesn't exist),

 O_WRONLY : (open/creates a file, fails if file exists),

 O_APPEND : (open a file and prepares to append, positioning file pointer at the end of the program)

where the flags are defined as:
#define O_RDONLY 0x1
#define O_WRONLY 0x2
#define O_APPEND 0x4

The function returns a 'struct fs_descrip' handle to the open file, or NULL if it fails. It is important to note
that if a file is successfully opened, it should always be closed using fs_fclose() to free any memory used
for the file handle. The function call fs_fclose() will also finalize any modifications to the file.

int fs_findfirst(char *pathname, struct fs_descrip *descrip)

Finds the *first* file entry (including directories and 'labels' corresponding to the argument 'pathname'.
The handle for the file is returned in the 'descrip' argument (you must allocate memory for it before
making the call). This file is not* actually opened (you don't need to fs_fclose() it later, either).

This function returns one of the following:

 fOK: a file was found.

 fend: The end of the directory specified in 'pathname' was reached, but no file found.

 error code : Check this file and <filegeo.h> for error-code descriptions.

For version 1.0, pathname MUST be "*.*". Any other pathname will generate an error. In later versions,
other pathnames/wildcards may be supported. So, a call to fs_findfirst("*.*",) returns the first file
entry in the root directory.

FlashCore Chapter 4: Software

4-16

int fs_findnext(struct fs_descrip *fs_descrip);

Given a file descriptor, find the next entry in the file's directory. The details of the file are written into the
same argument file descriptor. As before, the file is *not* actually opened.

Return values:

 fOK: a file was found.

 fEND: The end of the directory specified in 'pathname' was reached, but no file found.

 error code : Check this file and <filegeo.h> for error-code descriptions.

Use this function, in combination with fs_findfirst, to iterate through the entries in a directory.

unsigned char fs_fgetc(struct fs_descrip *fs_descrip)

Get a single byte from the opened file pointed to by the file descriptor.

RETURNS:

 Normally, next byte of data.

 '\0' : Default return value if a read from file is not possible. In this case, check fs_descrip->ff_status to
 determine the cause. Might be fEOF (end of file), fILLEGAL (illegal operation), or other error
 code. (fOK indicates the read value was '\0').

unsigned char fs_fputc(const unsigned char s, struct fs_descrip *fs_descrip)

Writes a single byte to the opened file pointed to by the file descriptor.

RETURNS:

 Normally, the character that was just written to the file.

 '\0' : Default return value if a read from file is not possible.

 In this case, check fs_descrip->ff_status to determine the cause.

 Might be fEOF (end of file), fILLEGAL (illegal operation),

 or other error code (full disk).

char fs_fgets(char *s, int n, struct fs_descrip *fs_descrip);

Gets a string of characters from the opened file 'fs_descrip', of up to n characters. Returns when a newline
'\n', or end of file is reached.

RETURNS:

FlashCore Chapter 4: Software

4-17

 The contents of fs_descrip->ff_status (fOK if all is correct).

char fs_fprintf(struct fs_descrip *fs_descrip,const char *format,...)

Similar to 'printf', writing a formatted string to the opened file pointed by fs_descrip.

RETURNS:

 The number of characters successfully output.

This function automatically adds carriage return '\r' before newline '\n', as in standard DOS practice.

char fs_fclose(struct fs_descrip *fs_descrip)

Closes a file previously opened with fs_fopen, saving any lingering changes, updating directory entries,
and freeing memory associated with fs_descrip (be sure to only fs_fclose file handles created with
fs_fopen, and not something like fs_findnext).

RETURNS:

 Returns error code associated with file; the contents of fs_descrip are no longer valid after this
 call, do not check its ff_status field.

void fs_StampTimeHMSMDY(struct fs_descrip *fs_descrip,char TDtype, unsigned int hour,
unsigned int min,unsigned int sec, unsigned int month, unsigned int day, unsigned int year);

Changes the time stamp for either file 'access', 'modification', or 'creation' for a file pointed to by
fs_descrip in the directory entry. Since not all systems have RTC, the user is expected to use this function
if they wish to use file timestamps. fs_fopen, fs_fclose, etc... will not. DOS usually stores timestamps in
'packed' storage format (documentation available online).

FlashCore Appendix A: Kpad – FlashCore Interface

1

Appendix A: Kpad – FlashCore Interface
A.1 Signal Definitions

 J2 Header: FlashCore

GND 1 2 VCC
P4 3 4 P14
 5 6 P6
P15 7 8 P5
INT3 9 10 P30
INT1 11 12 INT2
P3 13 14 INT0
/CTS1 15 16 /RTS1
P24 17 18 P17
P0 19 20 P25
P13 21 22 P10
/RTS0 23 24 A19
P1 25 26 /CTS0
P26 27 28 P29
GND 29 30

Signal Definitions for FlashCore
J2 header.

Pins Highlighted Red need to be
cut when using a 10x2 connector.

Pins Highlighted in Green indicate the
pins to install the 10x2 connector onto.

Also, an external wire must be soldered

to bring VCC from J2.2 to J2.30

FlashCore

Pin Name

Function

VCC Kpad supply voltage, +5V

GND Ground

P26, P29, P1,
P21(/CTS0),
P20(/RTS0),
P9(A19), P13,
P10

Keypad Scan: Inputs to FlashCore

P0, P25, P24,
P17

Outputs from Am188ES. Drive D7-D4
on LCD controller.

P18 (/CTS1) Drives E (enable) line to LCD

P19 (/RTS1) Drives RS line to LCD. Shared with
I22 for Keypad scan

P3 Output. Keypad scan.
/RD Input to PAL

Appendix A: Kpad – FlashCore Interface FlashCore

2

 H5 Header: Kpad
I07 1 2 I06
VCC 3 4 GND

I05 5 6 I04

I03 7 8 I02

I01 9 10 I00

I27 11 12 I26

I25 13 14 I24

I23 15 16 I22

I21 17 18

 19 20

Kpad Pin
Name

Function

VCC Kpad supply voltage +5V
GND Ground
I07 – I00 Keypad scan. Tied to Pull-up resistors
I27 – I24 Data lines of LCD controller D7 – D4
I23 LCD controller Enable
I22 LCD controller, mode select

 Low: Command
 High: Data

Keypad Scan

I21 Keypad Scan

Kpad pin layout and description for IO version

A.2 Connections, Pin Mapping

When driving the Kpad with the FlashCore as described by this appendix, one modification must be made
to the FlashCore. If your Kpad and FlashCore were ordered together, the necessary modification was
already been made before shipment. This applies only if you have ordered the Kpad-FC after your
FlashCore. In order to drive the Kpad, it requires a +5V power supply which can be taken directly from the
J2 header on the FlashCore. An external wire must be soldered to the FlashCore which ties J2.2 = J2.30.
This will bring VCC to J2 pin 30 and then be routed to the Kpad. J2 pin 30 by hardware definition is an
open pin, so there will be no compatability problems. The following table shows the exact connections
between the FlashCore and the Kpad.

FlashCore Appendix A: Kpad – FlashCore Interface

3

 Pin Mapping: FlashCore ���� Kpad

 Kpad
Signal Name

H5 Pin # J2 Pin # FlashCore
Signal Name

 I07 1 27 P26

I06 2 28 P29

VCC 3 30 VCC

GND 4 29 GND

I05 5 25 P1

I04 6 26 P21

I03 7 23 P20

I02 8 24 P9

I01 9 21 P13

I00 10 22 P10

I27 = D7 11 19 P0

I26 = D6 12 20 P25

I25 = D5 13 17 P24

I24 = D4 14 18 P17

I23 = E 15 15 P18

I22 = RS 16 16 P19

I21 = Row 1 17 13 P3

No
Connection

18 14 No
Connection

A.3 Flat Cable Specifications

This section will define how a flat cable should be prepared to interface the Kpad based on the sample code
for the FlashCore, tern\186\samples\kpad_fc.c. This interface is based upon the pin mapping given in the
previous section. The following diagram is a simply an aide to help visualize how the cable will connect the
Kpad and the FlashCore. It is therefore important to remember the above table takes priority in terms of the
final connections.

Appendix A: Kpad – FlashCore Interface FlashCore

4

 H5

 J2

Because of the Compact
Flash Interface on the FC,
the pin header on J2 will
always be type “T”, or

component side. This only
allows one orientation to

install a flat cable.

FlashCore
Component Side

Connector to install
on this side of PCB.

Header H5 – Kpad
The H5 pin header will be

installed on the underside of the
Kpad, opposite of the LCD.

Thus the flat cable will install
on the under side as well.

Kpad
LCD facing up,
yet cable installs
on bottom side.

Pin 20

Pin 1 Pin 1

Notice the crossing of
the first four lines.

Instructions for flat cable assembly:
(1) Use a 20 wire flat cable
(2) Use two 10x2 connectors.
(3) Peel back the first and second pair of wires as shown above.
(4) Cross first four wires as shown above and secure into one connector. This will mount onto the Kpad.
(5) Secure FlashCore side connector with no modification to the wires.
(6) Cut pins J2.9 and J2.10 (highlighted in red above) to allow for install of 10x2 connector onto FlashCore’s J2 header
(7) Install FlashCore side connector flush to bottom of J2 header (highlighted in green above)
(8) Solder wire from J2.2 to J2.30 on FlashCore (shown in purple above)

 IMPORTANT: Refer to tables in this appendix to confirm the correct pin-to-pin configuration.

Pin 20

FlashCore Appendix B: FlashCore Layout

1

Appendix B: FlashCore Dimensional
Layout

All units are in inches

J2

J1

J5

ADC
J9 EE

691 232

RTC

5V

CPU
AM188ES

SRAM
Fl

as
h

PAL

J4

0.09, 2.25 2.12, 2.35

1.99, 2.23

1.94, 0.18

0.12, 0.7

0.09, 0.08

 0, 0

Date: June 11, 2001 Sheet 1 of 1

Size Document Number REV

B F-Core.SCH

Title

FlashCore for CompactFlash Cards

STE

D1
D0

VCC
VCC GND 1 2

 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

HDRD40

AD4
AD5AD6

AD7
AD8

REF

GND 1

D3 2

D4 3

D5 4

D6 5

D7 6

/CE1 7

A10 8

/OE 9

A9 10

A8 11

A7 12

VCC 13

A6 14

A5 15

A4 16

A3 17

A2 18

A1 19

A0 20

D0 21

D1 22

D2 23

WP 24

CD2 25

CD1 26

D11 27

D12 28

D13 29

D14 30

D15 31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE 36

RDY 37

VCC 38

/CS 39

VS2 40

RST 41

/WT 42

/IP 43

/REG 44

BV2 45

BV1 46

D8 47

D9 48

D10 49

GND 50

U4

CF
CF

CompactFlash 50 pin CF+ RECEPTACLE

CE2=VRAM 32KB SRAM
CE2=A17 128/512 KB SRAM

A18 1

A16 2

A14 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2 15

GND 16

VDD 32

A15 31

CE2 30

R/W 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE1 22

D7 21

D6 20

D5 19

D4 18

D3 17

U1

RAM271024
MEM32S

A11 1

A9 2

A8 3

A13 4

A14 5

A17 6

/WR 7

VCC 8

A18 9

A16 10

A15 11

A12 12

A7 13

A6 14

A5 15

A4 16

/OE 32

A10 31

/CE 30

D7 29

D6 28

D5 27

D4 26

D3 25

GND 24

D2 23

D1 22

D0 21

A0 20

A1 19

A2 18

A3 17

U5

29F040
29F040

A17VRAM
1 2 3

J3 HDRS3

CE2
D7
D6
D5
D4
D3
D2

A3
A4
A5
A6
A7

/RST

GND

RST

/WR
/RD

P16

AD2
AD3

AD9
AD10

VCC
GND VCC
P4 1 2

3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30

J2

HDRD30
HDRD30

A0
A1
A2

P6
P14

A0

A1

A2

VRAM

/RST
D0

D1

STD 1

/CS 2

NC 3

ALE 4

A0 5

NC 6

A1 7

NC 8

A2 9

A3 10

/RD
 11

G 12

VCC 24

X2 23

X1 22

NC 21

CS1 20

D0 19

NC 18

NC 17

D1 16

D2 15

D3
14

/WR 13

U10

72423
72423S

VOFF

VCC

P2

VBAT RSTVB 1

VO 2

VCC
 3

GND 4

BON 5

/LL 6

OSI 7

OSS
 8

RST 16

/RST 15

WDO
14

CEI 13

CEO 12

WDI 11

PFO 10

PFI
 9

U6

MAX691
MAX691S

VRAM
VCC
GND

/RST

WDI
/RAM

WDO
/LCS

VCC
NMI

P12 1 2
J9

GND
/RD

C
K

1

I
1

2

I
2

3

I3 4

I4 5

I5 6

I6
 7

I7 8
I
8

9

G

1
0

5
V

2
0

O
7

1
9

O6 18

O5 17

O4 16

O3
15

O2 14
O
1

1
3

O
0

1
2

O
E

1
1

U9

16V8P
PAL16V8P

A3 D2
D3
/WR

AD0 1

AD1 2

AD2
 3

AD3 4

AD4 5

AD5 6

AD6 7

AD7
 8

AD8 9

GND 10

VCC 20

EOC 19

CLK
18

DIN 17

DOUT 16

CS 15

REF+ 14

REF-
13

AD10 12

AD9 11

U11

LTC2543
P2543

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

VCC

DIN

/AD

GND
REF

CK

DOUT

GND

P1

P5

P24
P25
P17

P3 INT0
INT1
INT3

INT2

P0
P13 P10

/CTS1 /RTS1

P15

/CTS0
/RTS0

P29P26

A19

P30

/TXD0
/RXD0 /RXD1

/TXD1
+12VI GND 1 2

 3 4
 5 6
 7 8
 9 10

J5

HDRD10
HDRD10

VCC
C1+

AD9
AD10

C1+ C1+ 1

V+ 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I 13

R1O 12

T1I 11

T2I 10

R2O 9

U3

MAX232D

AD8
GND

VCC

P11
P12
GND

GND
GND
GND
GND A0 1

A1
 2

A2 3

VSS 4

VCC 8

WP
 7

SCL 6

SDA 5

U7

24C04S
24C04S

X2 X1

+12V+12VI
L2

LED
LED

XTAL1

40 MHZ

VCC R4

10K

+12VI

VCC R2

10K

P11P6

REFVCC

/TXD0
/RXD0

C1-
C2+
C2-

V+

V-

GND

TXD0
RXD0

TXD1
RXD1
/RXD1
/TXD1

C1-

C2-

C2+

GND

V+

C3

C6

C7

GND GND
VOFF

 1 2
J4

AD0AD1

VCC
P12VC

R1

680

L1

LED
LED

V-

GND

VCC

I 1

G

2

VCC 3

U8
LM7805

C9
10UF35V

C8

+12V

C1

CAPNP

C2

CAPNP

C10
CAPNP

C11
CAPNP

C12
CAPNP

VBAT- 1 + 2

+ 3

B1

BTH1

C4
10PF

C5
10PF

