

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.tern.com

H-Drive™

Host USB Drive, 100M BaseT Ethernet, RS232, CompactFlash, 24-bit ADC, DAC,

Solenoid Drivers, Relay, and support Graphic Color TFT

Technical Manual

COPYRIGHT

H-Drive, E-Engine, A-Engine86, A-Engine, A-Core86, A-Core, i386-Engine, MemCard-
A, MotionC, VE232, and ACTF are trademarks of TERN, Inc.

Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Borland C/C++ is a trademark of Borland International.

Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of
Microsoft Corporation.

Version 1.03

January 6, 2012

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1993-2012
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
 TERN reserves the right to make changes and improvements to its products
without providing notice.

H-Drive Chapter 1: Introduction

1-1

Chapter 1: Introduction
1.1 Functional Description
The HD™ is a high performance, low cost, C/C++ programmable controller based on a 40/80MHz 16-bit CPU. It
is intended for networking industrial process control, high-speed data acquisition, and especially ideal for OEM
applications.
An Fast Ethernet Module can be installed to provide 100M Base-T network connectivity. This Ethernet module
has a hardware LSI TCP/IP stack. It implements TCP/IP, UDP, ICMP and ARP in hardware, supporting internet
protocol DLC and MAC. It has 16KB internal transmit and receiving buffer. The host can access the buffer via
high speed DMA transfers. The hardware Ethernet module releases internet connectivity and protocol processing
from the host processor, which represents a huge improvement over software-based TCP/IP stacks. The resulting
system can easily handle transmissions in the 100KB/s+ range in real world applications with 4 independent stack
connections simultaneously. Software is available for connecting to Windows Internet Explorer.
A 5.7” TFT display can be installed, providing QVGA color graphics support to the HD™ .
As for data conversion, a sigma-delta 24-bit ADC(LTC2448) offers 8 ch. differential or 16 ch. single-ended input
channels. A peak single-channel output rate of 5 KHz can be achieved. A 16-bit DAC(LTC2600) provides 8
analog output voltages (0-5V). Also, a 12-bit 11-channel ADC (LTC2543) is available optionally.
The HD™ supports up to 2 GB mass storage CompactFlash cards with Windows compatible FAT file system
support, allowing user easily transfer large amounts of data to or from a PC.
Other features include a 16-bit ACTF Flash (256 KW) and battery-backed SRAM (256 KW). It also includes 3
timers, PWMs, PIOs, 512-byte serial EEPROM, 3 timer/counters, and a watchdog timer. The 16-bit counters can
be used to count or time external events, up to 10 MHz (on a 40MHz board), or to generate non-repetitive or
variable-duty-cycle waveforms as PWM outputs. A real time clock (DS1337, Dallas) is available.
Two RS232 ports are available from the CPU, and an additional 4 RS232 ports are provided by the QUART
TL16C754B. Two of these ports may be converted to RS485 optionally.
Seven high voltage sink drivers are installed, capable of sinking 350 mA at 50V per line, and they can directly
drive solenoids, relays, or lights. Two mechanical Reed relays provides reliable, fast switching contacts with a
specification of 200 V, maximum 1 Amp carry current, 0.5 Amp switching, and 100 million times operation.
The HD™ has on-board optional switching regulator with power-off mode, and may be powered with 9-24V DC
with this option.
Two Host USB ports may be installed as well. One is able to take input from a USB keyboard or mouse, while the
other can utilize a USB Flash Disk.

Features:
• 4.25 x 3.3”, 250 mA at 5V, DC Power 24V/12V/5V
• 40 MHz 16-bit CPU, program in C/C++
• 8 high voltage I/Os, 4 TTL I/Os and Reed Relay
• 6 RS232/485 serial ports, Real-time clock, PWM,Timers
• 16 ch. 24-bit ADC, 11 ch. 12-bit ADC, 8 ch. 16-bit DAC
• Hardware TCP/IP stack for 100M Base-T Ethernet
• CompactFlash card with FAT file system support
• Two Host USB ports for Flash Disk, USB mouse/keyboard
• QVGA 5.7” TFT color display interface

Chapter 1: Introduction H-Drive

1-2

1.2 Physical Description
The physical layout of the HD is shown below.

Figure 1.1 Physical layout of the H-Drive

H1: Serial Ports 0/1
(0 = Debug Port)

Step 2 Jumper

J4: 16-ch. 24-bit
ADC

J4: 8-ch. 16-bit
DAC

J4: 11-ch. 12-bit
ADC

LED RTC

Compact Flash
interface

H2: 4 RS232
ports (2 RS485

reconfig)
100M BaseT

Ethernet
USB Host ports

1 & 2

12V Power
Input

J6: 7 High
Voltage sinking

outputs

J6: Reed Relay

H-Drive Chapter 1: Introduction

1-3

Step 1 settings
In order to talk to HD with Paradign C++, the HD must meet these requirements:

1) EE40_115.HEX must be pre-loaded into Flash starting address 0xFA000.

2) The SRAM installed must be large enough to hold your program.
For a 32K SRAM, the physical address is 0x00000-0x07fff
For a 128K SRAM, the physical address is 0x00000-0x01ffff
For a 512K SRAM, the physical address is 0x00000-0x07ffff

3) The on-board EEPROM must have a jump address for the EE40_115.HEX with starting address of 0xFA000.

4) The STEP2 jumper must be installed on J2 pins 38-40.

For further information on programming the HD, refer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

Figure 1.2 Flow chart for ACTF operation

The “ACTF boot loader” resides in the top protected sector of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the DEBUG kernel (EE40_115.hex) is pre-loaded
in the Flash starting at 0xFA000, and the RED STEP2 jumper is installed, ready for
Paradigm C++ debugger. User does not need to download a DEBUG kernel to start with.

At power-on or RESET, the “ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the ACTF
menu will be sent out from serial port0 at 19200 baud for a HD.
If the STEP 2 jumper is installed, the “jump address” located in the on-board serial EEPROM will be read out and
then jump to that address. A DEBUG kernel “EE40_115.hex” for the HD can be downloaded, residing in
“0xFA000” of the 512KB on-board flash chip.

Power On or Reset

YES
Go to Application Code CS:IP

STEP 2

ACTF menu sent out through ser0
STEP 1

Step 2 jumper

NO

set?
CS:IP in EEPROM:

0x10=CS high byte
0x11=CS low byte
0x12=IP high byte
0x13=IP low byte

at 19200 baud

Chapter 1: Introduction H-Drive

1-4

1.3 H-Drive Programming Overview
Steps for product development:

 Preparation for Debugging(DONE in Factory !)
 • Connect HD to PC via RS-232 link, 19,200, 8, N, 1

• Power on HD without STEP 2 jumper installed
• ACTF menu should be sent to PC terminal
• Use “D” command to download “L_TDREM.HEX” in SRAM
• “G04000” to run “L_TDREM”
• Download “c:\tern\186\rom\ae86\EE40_115.HEX” to Flash
• “GFA000” to setup EEPROM and run remote debugger
• Install the STEP2 jumper (J2.38-40)
• Power-on or reset HD, Ready for Remote debugger

STEP 2: Standalone Field Test
”G08000” setup EEPROM Jump Address, points to

application code resides in battery backed SRAM
Install STEP2 jumper, then power on

Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.)

• Start Paradigm C++, run “led.ide” or “test.ide”
• Download code to target SRAM.
• Edit, compile, link, locate, download, and remote-debug

STEP 1: Debugging

STEP 3: DV-P Kit
• Generate application HEX file with DV-P and ACTF Kit
• ACTF “D” to download “L_29F400.HEX” into SRAM
• Download application HEX file into FLASH
• Modify EEPROM jump address to 0x80000
• Set STEP2 jumper

 Production

There is no ROM socket on the HD. The user’s application program must reside in SRAM for debugging in
STEP1, reside in battery-backed SRAM for the standalone field test in STEP2, and finally be programmed into
Flash for a complete product. For production, the user must produce an ACTF-downloadable HEX file for the
application, based on the DV-P+ACTF Kit. The “STEP2” jumper (J2 pins 38-40) must be installed for every
production-version board.

H-Drive Chapter 2: Installation

2-1

Chapter 2: Installation
2.1 Software Installation
Please refer to the “tern_docs\Software_kit.pdf” Technical manual on TERN CD, for information on
installing software.

2.2 Hardware Installation

Hardware installation consists primarily of connecting the microcontroller to your PC.

2.2.1 Connecting the HD to the PC

The HD is linked to the PC via a serial cable (DB9-IDE) which is supplied with TERN EV-P / DV-P Kits.

The HD communicates through SER0 by default. Install the 5x2 IDE connector on the SER0 H1 pin
header. Note this header is shared with serial port 1, so only the odd side (H1.1,3,5,7,9) is used for
SER0, where H1.3=/TxD0, H1.5=/RxD0, and H1.9=GND. The DB9 connector should be connected to
one of your PC's COM Ports (COM1 or COM2).

See Figure 2.1 for specific cable installation on the HD.

Figure 2.1 Debug Cable and H1 Header fitting (Pin 1 of cable to Pin 1 of header)

Overview
 Connect PC-IDE serial cable:

For debugging (STEP 1), place IDE connector on SER0 with red
edge of cable on side of H1 pin 1 (See Fig. 2.1). This DEBUG
cable is a 10-pin IDE to DB9 cable, made by TERN.

 Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
using power jack adapter supplied with EV-P/DV-P Kit

Pin 1

Debug Cable (5x2)

Debug Port Ser0
(H1.1,3,5,7,9)

Serial Port 1
(H1.2,4,6,8,10)

Chapter 2: Installation H-Drive

2-2

2.2.2 Powering-on the HD

The following diagram (Fig 2.2) provides the location of the debug serial port and the power jack.
By factory default setting:
1) The RED STEP2 Jumper is installed. (Default setting in factory)
2) The DEBUG kernel is pre-loaded into the on-board flash starting at address of 0xFA000. (Default
setting in factory)
3) The EEPROM is set to jump address of 0xFA000. (Default setting in factory)

Connect +9-12V DC to the DC power terminal. The screw terminal at the corner of the board is positive
12V input and the other terminal is GND (see figure for details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be used to connect the output of the power jack adapter
and the HD. Note that the output of the power jack adapter is center negative.
The on-board LED should blink twice and remain on, indicating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for programming and debugging.

Figure 2.2 Locations of STEP2 Jumper, LED, Power input and DEBUG port

9-12V
Power plug

(center negative)

H1: Serial Port 0
(Debug Port) ;
Serial Port 1
under cable.

Step-2
Jumper

LED

H-Drive Chapter 3: Hardware

 3-1

Chapter 3: Hardware

3.1 Am186ES/R8820/IA186 - Introduction

The Am186ES is based on industry-standard x86 architecture. The Am186ES controllers uses 16-bit
external data bus, are higher-performance, more integrated versions of the 80C188 microprocessors which
uses 8-bit external data bus. In addition, the Am186ES has new peripherals. The on-chip system interface
logic can minimize total system cost. The Am186ES has two asynchronous serial ports, 32 PIOs, a
watchdog timer, additional interrupt pins, a pulse width demodulation option, DMA to and from serial
ports, a 16-bit reset configuration register, and enhanced chip-select functionality.

There are a total of three compatible CPU chips can be used in the HD:
R8820 from RDC is a drop-in replacement 5V, 40MHz chip for the AM186ES, AM186ES(AMD, 5V, 40
MHz), R8820(RDC, 5V, 40 MHz), and IA186ES(INNOVASIC, 5V, 40 MHz). The multiple sources of the
CPU can support longer life time of the HD product. The technical specifications and discussions in this
manual are based on AM186ES.

By default, the HD uses 5V 40 MHz R8820 and low power 55ns SRAM.
There are three pads on the PCB for battery. One pads is ground, and the other two pads allowing a 3V
backup lithium battery be installed in two different positions:

3.2 Am186ES – Features

3.2.1 Clock and crystal

Due to its integrated clock generation circuitry, the Am186ES microcontroller allows the use of a times-one
crystal frequency. The design achieves 40 MHz CPU operation, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4, default 40 MHz for HD.

CLKOUTA remains active during reset and bus hold conditions. The initial function ae_init(); disables
CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=J1 pin 4.

The R8820 uses a 40 MHz crystal.

Debug kernels for Paradigm C++ TERN Edition are available:

c:\tern\186\rom\ae86\EE40_115.hex

The EE40_115.hex will allow 40 MHz HD talk to Paradigm C++ TERN Edition at 115,200 baud.

By default, the EE40_115.hex is pre-programmed for the 40 MHz HD.

User can use software to setup the CPU speed:

 outport(0xfff8,0x0103); // PLLCON, 20MHz crystal, 0103=40 MHz, 0107=80MHz

Chapter 3: Hardware H-Drive

3-2

3.2.2 External Interrupts and Schmitt Trigger Input Buffer

There are eight external interrupts: INT0-INT6 and NMI.

INT0, J2 pin 8, used by QUART.
/INT1, J2 pin 6, free to use.
INT2, J2 pin 19, used by QUART
INT3, J2 pin 21, used by QUART
/INT4, J2 pin 33, used by 100M BaseT Ethernet
INT5=P12=DRQ0, used by LED/EE/HWD/RTC
INT6=P13=DRQ1, J2 pin 11, used by QUART
/NMI, J2 pin 7, used by MAX691 as PFO

Some of external interrupt inputs, /INT1, 4 and /NMI, are buffered by Schmitt-trigger inverters (U9,
74HC14), in order to increase noise immunity and transform slowly changing input signals to fast changing
and jitter-free signals. As a result of this buffering, these pins are capable of only acting as input.

These buffered external interrupt inputs require a falling edge (HIGH-to-LOW) to generate an interrupt.

The HD uses vector interrupt functions to respond to external interrupts. Refer to the Am186ES User’s
manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The Am186ES CPU has two asynchronous serial channels: SER0 and SER1. Both asynchronous serial
ports support the following:

• Full-duplex operation
• 7-bit, 8-bit, and 9-bit data transfers
• Odd, even, and no parity
• One stop bit
• Error detection
• Hardware flow control
• DMA transfers to and from serial ports
• Transmit and receive interrupts for each port
• Multidrop 9-bit protocol support
• Maximum baud rate of 1/16 of the CPU clock speed
• Independent baud rate generators

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the samples files s1_echo.c and s0_echo.c (\tern\186\samples\ae).

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to external pins:

Timer0 output = P10 = J2 pin 12
Timer0 input = P11 = U7 EE & U15 RTC pin 5
Timer1 output = P1 = J2 pin 29
Timer1 input = P0 = J2 pin 20

Timer0 input P11 is used and shared by on-board EE and RTC, not recommended for other external use.

The timer can be used to count or time external events, or can generate non-repetitive or variable-duty-cycle
waveforms.

H-Drive Chapter 3: Hardware

 3-3

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or time-
delay applications. It can also prescale timer 0 and timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz (on a 40MHz board), since each timer is
serviced once every fourth clock cycle. Timer output takes up to six clock cycles to respond to clock or
gate events. See the sample programs timer02.c and ae_cnt1.c in the tern\186\samples\ae
directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both Timer0
and Timer1 have secondary maximum count registers for variable duty cycle output. Using both the primary
and secondary maximum count registers lets the timer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the /INT2=J2
pin 19, assuming the QUART is not installed.

3.2.6 Power-save Mode

The HD can be used for low power consumption applications. The power-save mode of the Am186ES
reduces power consumption and heat dissipation, thereby extending battery life in portable systems. In
power-save mode, operation of the CPU and internal peripherals continues at a slower clock frequency.
When an interrupt occurs, it automatically returns to its normal operating frequency.

Chapter 3: Hardware H-Drive

3-4

3.3 Am186ES PIO lines

The Am186ES has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal shared function is not needed. A PIO line can be
configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-drain
output. A pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage, as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

PIO Function Power-On/Reset status HD Pin No. HD Initial

P0 Timer1 in Input with pull-up J2 pin 20;U27 HV1 Input with pull-up
P1 Timer1 out Input with pull-down J2 pin 29 Input with pull-down
P2 /PCS6/A2 Input with pull-up J2 pin 24;U27 HV4 Input with pull-up
P3 /PCS5/A1 Input with pull-up J2 pin 15; USB Input with pull-up
P4 DT/R Normal J2 pin 38 Input with pull-up Step 2
P5 /DEN/DS Normal J2 pin 30;U27 HV6 Input with pull-up
P6 SRDY Normal J2 pin 35 Input with pull-down
P7 A17 Normal N/A A17
P8 A18 Normal N/A A18
P9 A19 Normal J2 pin 10 A19
P10 Timer0 out Input with pull-down J2 pin 12 Input with pull-down
P11 Timer0 in Input with pull-up EE;RTC Input with pull-up
P12 DRQ0/INT5 Input with pull-up N/A Output for LED/EE/HWD
P13 DRQ1/INT6 Input with pull-up J2 pin 11; QUART Input with pull-up
P14 /MCS0 Input with pull-up J2 pin 37;JP1.5 (ET) Input with pull-up(ET)
P15 /MCS1 Input with pull-up J2 pin 23;U27 HV3 Input with pull-up
P16 /PCS0 Input with pull-up J1 pin 19 /PCS0
P17 /PCS1 Input with pull-up HC138 U4.4,5 /PCS1
P18 CTS1/PCS2 Input with pull-up J2 pin 22;U27 HV2 Input with pull-up
P19 RTS1/PCS3 Input with pull-up J2 pin 31;U27 HV7 Input with pull-up
P20 RTS0 Input with pull-up J2 pin 27;U27 HV5 Input with pull-up
P21 CTS0 Input with pull-up J2 pin 36;U27 HV8 Input with pull-up
P22 TxD0 Input with pull-up J2 pin 34 TxD0
P23 RxD0 Input with pull-up J2 pin 32 RxD0
P24 /MCS2 Input with pull-up J2 pin 17 Input with pull-up
P25 /MCS3 Input with pull-up J2 pin 18 Input with pull-up
P26 UZI Input with pull-up J2 pin 4; USB U5.9 Input with pull-up*
P27 TxD1 Input with pull-up J2 pin 28 TxD1
P28 RxD1 Input with pull-up J2 pin 26 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 3; USB U5.45 Input with pull-up*
P30 INT4 Input with pull-up J2 pin 33;JP1.2 (ET) Input with pull-up
P31 INT2 Input with pull-up J2 pin 19; QUART Input with pull-up

* Note: P26 and P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

H-Drive Chapter 3: Hardware

 3-5

Three external interrupt lines are not shared with PIO pins:

INT0 = J2 pin 8; QUART U8.8
INT1 = J2 pin 6
INT3 = J2 pin 21; QUART U8.48

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

HD initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The C function in the library ae_lib can be used to initialize PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0-3, sEL the table above.

Example: pio_init(12, 2); will set P12 as output

 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pin is in input mode,

Some of the I/O lines are used by the HD system for on-board components (Table 3.2). We suggest that
you not use these lines unless you are sure that you are not interfering with the operation of such
components (i.e., if the component is not installed).

You should also note that the external interrupt PIO pins INT1 and 4 are not available for use as output
because of the inverters attached. The input values of these PIO interrupt lines will also be inverted for the
same reason. As a result, calling pio_rd to read the value of P31 (INT2) will return 1 when pin 19 on
header J2 is pulled low, with the result reversed if the pin is pulled high.

Signal Pin Function

P0 Timer1 in; J2.20 U27 HV1, high voltage driver control
P2 /PCS6; J2.24 U27 HV4, high voltage driver control
P3 /PCS5; J2.15 U01.19, U02.4,5
P4 /DT; J2.38 STEP2 jumper
P5 /DEN; J2.30 U27 HV6, high voltage driver control
P11 Timer0 in Shared with RTC, EE data input
P13 /INT6; J2.11 QUART U8.54

Chapter 3: Hardware H-Drive

3-6

Signal Pin Function

P14 /MCS0; JP1.5 100M BaseT Ethernet
P15 /MCS1; J2.23 U27 HV3, high voltage driver control
P18 /CTS1; J2.22 U27 HV2, high voltage driver control
P19 /RTS1; J2.31 U27 HV7, high voltage driver control
P20 /RTS0; J2.27 U27 HV5, high voltage driver control
P21 /CTS0; J2.36 U27 HV8, high voltage driver control
P22 TxD0; J2.34 Default SER0 debug
P23 RxD0; J2.32 Default SER0 debug
P26 UZI; J2.4 USB U5.9
P27 TxD1; J2.28 Serial Port 1 Transmit
P28 RxD1; J2.26 Serial Port 1 Receive
P29 /CLKDIV2; J2.3 USB U5.45
P30 INT4; J2.33 Ethernet interrupt JP1.2
P31 INT2; J2.19 QUART U8.14

Table 3.2 I/O lines used for on-board components

3.4 I/O Mapped Devices

3.4.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port) or
outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define the
I/O wait states from 0 to 15. The system clock is 25 ns (or 50 ns), giving a clock speed of 40 MHz (or 20
MHz). Details regarding this can be found in the Software chapter, and in the Am186ES User’s Manual.
Slower components, such as most LCD interfaces, might find the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus speed of the system, some components need to be attached to
I/O pins directly.

For details regarding the chip select unit, please see Chapter 5 of the Am186ES User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Location Usage

0x0000-0x00ff /PCS0 J1 pin 19=P16 USER*
0x0100 /UR5 U4.15, U8.53 QUART UR5 select
0x0120 /UR4 U4.14, U8.49 QUART UR4 select
0x0140 /UR3 U4.13, U8.13 QUART UR3 select
0x0160 /UR2 U4.12, U8.9 QUART UR2 select
0x0180 TFT N/A End Command
0x0182 TFT N/A Command Packet Port
0x01A0 RDK U25 HC244 8-bit Data Read
0x01C0 /AD U11.36 ADC LTC2448 select
0x01C2 /DA U10.7 DAC LTC2600 select
0x01C4 SCK U10,U11,U16 DAC & ADC clock
0x01C6 SDI U10,U11,U16 DAC & ADC data in

H-Drive Chapter 3: Hardware

 3-7

0x01C8 L4 Relay RE2 pin 3 Relay Control
0x01CA L5 Relay RE1 pin 3 TFT
0x01CC L6 H4.7 TFT
0x01CE /AD1 U16.15 ADC P2543 select
0x0200-0x02ff /PCS2 J2 pin 22=CTS1 USER (control HV2 as I/O P18)
0x0300-0x03ff /PCS3 J2 pin 31=RTS1 USER (control HV7 as I/O P19)
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 J2 pin 15=P3 USB
0x0600-0x06ff /PCS6 J2 pin 24=P2 USER (control HV4 as I/O P2)

*PCS0 may be used for other TERN peripheral boards.

To illustrate how to interface the HD with external I/O boards, a simple decoding circuit for interfacing to
an 82C55 parallel I/O chip is shown in Figure 3.1.

/WR

/RD

/SEL20

A0
A1

D0-D7

/CS

/WR

/RD

82C55

RST P00-P07

P10-P17

P20-P27

1

/PCS0

A7

6VCC

4

3

2

5

A5

A6 /SEL20

/SELF0

/SELC0
/SELA0
/SEL80

/SEL60
/SEL40

14

13

12

11

10

9
7

NC15

74HC138

C

A

B

G2A

G2B
G1

Y2

Y3

Y4

Y5

Y6
Y7

Y1

Y0

Figure 3.1 Interface to external I/O devices

The function ae_init() by default initializes the /PCS0 line at base I/O address starting at 0x00. You
can read from the 82C55 with inportb(0x020) or write to the 82C55 with outportb(0x020,dat). The call to
inportb(0x020) will activate /PCS0, as well as putting the address 0x00 over the address bus. The decoder
will select the 82C55 based on address lines A5-7, and the data bus will be used to read the appropriate data
from the off-board component.

3.5 Other Devices

A number of other devices are also available on the HD. Some of these are optional, and might not be
installed on the particular controller you are using. For a discussion regarding the software interface for
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the HD has several functions: watchdog
timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure warning. These
will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J5 of the HD. The watchdog timer provides a
means of verifying proper software execution. In the user's application program, calls to the function
hitwd() (a routine that toggles the P12=HWD pin of the MAX691) should be arranged such that the HWD

Chapter 3: Hardware H-Drive

3-8

pin is accessed at least once every 1.6 seconds. If the J5 jumper is on and the HWD pin is not accessed
within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the application program if something is wrong. After the HD is
reset, the WDO remains low until a transition occurs at the WDI pin of the MAX691. When controllers are
shipped from the factory the J5 jumper is off, which disables the watchdog timer.

The Am186ES has an internal watchdog timer. This is disabled by default with ae_init().

J5 – Watchdog Header

Power-failure Warning

The supervisor supports power-failure warning and backup battery protection. When power failure is
sensed by the PFI= pin 9 of the MAX691 (lower than 1.3 V), the PFO is low. The PFI pin 9 of 691 is
directly shorted to VCC by default. In order to use PFI externally, cut the trace and bring the PFI signal out.
You may design an NMI service routine to take protect actions before the +5V drops and processor dies.
The following circuit shows how you might use the power-failure detection logic within your application.

47K

2K

PFI, pin 9 of MAX691
(1.3 V min)

(8.35 V min)9-14 V

C?

VCC = +5V

Using the supervisor chip for power failure detection

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock DS1337 are backed up. In
normal use, the lithium battery should last about 3-5 years without external power being supplied. When the
external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

3.5.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytes (24C04), or 2K bytes (24C16) can be installed in U7.
The HD uses the P12=SCL (serial clock) and P11=SDA (serial data) to interface with the EEPROM. The
EEPROM can be used to store important data such as a node address, calibration coefficients, and
configuration codes. It typically has 1,000,000 erase/write cycles. The data retention is more than 40 years.
EEPROM can be read and written by simply calling the functions ee_rd() and ee_wr().

The EEPROM and the RTC (U15) share the same data input signal line, P11. A range of lower addresses in
the EEPROM is reserved for TERN use. Details regarding which addresses are reserved, and for what
purpose, can be found in Appendix B of this manual.

H-Drive Chapter 3: Hardware

 3-9

3.5.3 Realtime Clock (DS1337)

The DS1337 serial real-time clock is a low-power clock/calendar with two programmable time-of-day
alarms and a programmable square-wave output. Address and data are transferred serially via a 2-wire,
bidirectional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year
information. The data at the end of the month is automatically adjusted for months with fewer than 31 days,
including corrections for leap year. The clock operates in either 24-hour or 12-hour format with AM/PM
indicator.

The RTC is accessed via software drivers rtc1_init() and rtc1_rds(). Refer to sample code in the
\tern\186\samples\fn directory for fn_rtc.c. The sample code is in the Flashcore-N directory, but applies to
the HD. The RTC is located at U15 and uses a 32KHz crystal. The data sheet can be found in the
tern_docs\parts directory and is named ds1337.pdf.

It is also possible to configure the real-time clock to raise an output line attached to an external interrupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or the
VOFF signal can be used to turn on/off the controller using the switching power supply, LM2575.

3.5.4 Reed Relay

One usable Reed Relay can be installed on the HD. The relay offers high speed switching compared to
electromechanical relays, a specification of 200 V, maximum 1 Amp carry current, 0.5 Amp switching, and
100 million times operation. The relay is driven by L4 (0x01C8) and has contacts routed to J6 pins 11 & 12
See tern\186\samples\hd\ relay.c and \tern_docs\parts\relay9007.pdf for details.

3.5.5 High-Voltage, High-Current Drivers

ULN2003A has high voltage, high current Darlington transistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substrate. All channels feature open-collector outputs for sinking
350 mA at 50V, and integral protection diodes for driving inductive loads. Peak inrush currents of up to 600
mA sinking are allowed. By default, U27 provides high-voltage sinking outputs. A high-voltage sourcing
output chip (UDS2982) may be installed instead, but the user will have to provide external high voltage
(+V=H6.4) for the VS pin (H6.3), and short K (H6.2) to GND (H6.1). See section 3.6.4 for a summary of
these settings.

Figure 3.2 High Voltage Driver w/ J6 header sinking output pins

These outputs may be paralleled to achieve high-load capability, although each driver has a maximum
continuous collector current rating of 350 mA at 50V. The maximum power dissipation allowed is 2.20 W
per chip at 25 degrees C (°C). The common substrate VS is routed to H6 pin 3. All current sinking in must
return to GND, so a jumper must be installed from H6.1 (GND) to H6.3 (VS). A heavy gauge (20) wire
must be used to connect a GND terminal to an external common ground return. K connects to the protection
diodes in the ULN2003A chips and should be tied to highest voltage in the external load system.
ULN2003A is a sinking driver. An example of typical application wiring is shown below.

H6.1 (GND)
=

H6.3 (VS)

H6 pin 1

Chapter 3: Hardware H-Drive

3-10

K +12V

H6.2

+12V

GND/SUB

GND/SUB

Power Supply

Solenoid

O1

ULN2003 TinyDrive

Figure 3.3 Drive inductive load with high voltage/current drivers.

3.5.6 USB

The HD integrates a high-performance USB stack chip to provide an easy to program USB interface. The
onboard hardware fully handles USB stack processing, and provides for high-speed bi-directional 8-bit
parallel communication. The hardware interface includes 384 bytes of FIFO transmit buffer, and 128 bytes
of FIFO for the receiving buffer, making this an ideal low-overhead solution for all embedded applications.
No USB specific firmware programming is required on the controller side. The USB interface is seen as a
transparent Parallel FIFO buffer tasked with transferring data back and forth with the remote host. The
only control signals needed are “ready to transmit” and “data received” signals, readily available to your
C/C++ application running on the TERN controller.

Royalty-free software drivers are provided for most Windows environments (XP, 2000, NT, 98). These
field proven USB software drivers eliminates the requirement for Windows USB driver development. Two
types of USB software drivers are available: VCP and D2xx. The VCP (Virtual Com Port) driver supports
up to 300 K bytes per second transfer rate, and allowing the device to be accessed transparently on the PC
side through traditional COM port software. The D2xx (USB direct driver and DLL) drivers can support up
to 1M bytes per second. Additional utilities available from third-party sources allow the USB interface to
be programmed with unique service and product ID numbers, allowing the unit to be transparently
integrated into OEM applications.

Two Host USB ports are provided on the HD. Port 1 (upper) can interface to a USB keyboard/mouse. Port
2 (lower) supports a USB Flash Disk. Simple commands can handle FAT file system applications. No USB
specific firmware programming is required on the controller side. This is already taken care of in factory.
Signal AC6 is jumpered to GND (H5.1=H5.2), while AC5 is pulled up to support Parallel FIFO operation.
For more detailed information regarding this pre-loaded firmware, see DS_VNC1L_FW_VDAP.pdf in the
Tern_docs\parts\USB directory (on any TERN CD).

Figure 3.4 shows the locations of USB port 1 and 2 on the HD, as well as the necessary power jumper on
H3 (providing 5V to VUSB).

H-Drive Chapter 3: Hardware

 3-11

Figure 3.4 USB Ports 1 & 2; Ethernet Module

3.5.7 100 MHz BaseT Ethernet

An WizNet™ Fast Ethernet Module can be installed to provide 100M Base-T network connectivity. This
Ethernet module has a hardware LSI TCP/IP stack. It implements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAC. It has 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memory. The host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releases internet connectivity and protocol processing from the
host processor. It supports 4 independent stack connections simultaneously at a 4Mbps protocol processing
speed. An RJ45 8-pin connector is on-board for connecting to 10/100 Base-T Ethernet network. A software
library is available for Ethernet connectivity.
Figure 3.4 (above) shows the location of the Ethernet module. See samples httpd_fs.c and tcp_echo.c in
\tern\186\samples\i2chip directory for software details. These samples are also prebuilt into the i2chip.ide
project, available in this same directory. Use the TERN_EE definition in Local Options>Defines for
software compatibility.

3.5.8 QUAD UART

The QUAD UART TL16C754B uses 3.6864 MHz crystal and provides 4 UART serial ports. By default,
ports 2,3,4, and 5 are routed through RS232 drivers for 232-level communication. Ports 4 and 5, however,
may use RS485 optionally. All four ports are accessed via header H2.

See sample u_echo.c in the \tern\186\samples\hd directory for RS232 echo and RS485 transmit code.

3.5.9 CompactFlash Interface

By utilizing the compact flash interface on the HD, users can easily add widely used 50-pin CF standard
mass data storage cards to their embedded application via RS232, TTL I2C, or parallel interface. TERN
software supports Linear Block Address mode, 16-bit FAT flash file system, RS-232, TTL I2C or parallel

USB Port 1
(Keyboard,

mouse)

USB Port 2
(USB Flash

Disk)

100M Ethernet
Module

H3.1 (VCC)
=

H3.2 (VUSB)

Chapter 3: Hardware H-Drive

3-12

communication. Users can write files to the CompactFlash card or read files from the CompactFlash card.
Users can also transfer files to a PC via the CF reader port.

CF cards can also be used as a means to store images and data to be displayed onto the LCD. This allows
users to have access to unlimited images to be used in an application in conjunction with the LCD. As
dicussed above, the AM186ES suuports DMA to allow images/data to be transferred directly to the image
buffer for increased speed.

Sample code and function prototypes are available to assist in creating applications which use the file
system to access the CF. Refer to the target \tern\186\samples\hd\fs_cmds1.axe. This sample uses the
source code \tern\186\samples\flashcore\fs_cmds1.c. Also, for a complete listing of file system function
prototypes and data types, refer to the header files “fileio.h” and “filegeo.h” found the \tern\186\include
directory.

3.5.10 12-bit, 11-channel ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, successive-approximation, 11 channels, serial interface,
analog-to-digital converter. Three control lines are used to handle the ADC, with /CS=/AD1; CLK=SCK;
and DIN=SDI.

The ADC digital data output communicates with a host through a serial tri-state output (DOUT). If
/AD1=/CS is low, the TLC2543 will have output on DOUT. If /AD1=/CS is high, the TLC2543 is disabled
and DOUT is free. The TLC2543 has an on-chip 14-channel multiplexer that can select any one of 11
inputs or any one of three internal self-test voltages. The sample-and-hold function is automatic. At the end
of conversion, the end-of-conversion (EOC) output goes high to indicate the conversion is complete,
although it is not connected externally.

TLC2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error
conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50Ω and capable of slewing the analog input voltage into a 60 pf capacitor.

A reference voltage of 5V must be connected. The hardware shares the same line for the reference voltage
as for the incoming power. A REF02 precision 5V chip may be installed to provide this voltage, or signal
R50 can be jumpered on J4.23 to VCC (J4.24).

The CLK signal to the ADC is toggled through an I/O pin, and serial access allows a conversion rate of up
to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines are used, as listed below:

/CS Chip select = /AD1, high to low transition enables DOUT, DIN and CLK.
Low to high transition disables DOUT, DIN and CLK.

DIN SDI, serial data input
DOUT DOUT, 3-state serial data output.
EOC HC244V U25.6; End of Conversion, high indicates conversion complete and

data is ready
CLK I/O clock = SCK
REF+ Upper reference voltage (R50=VCC or use REF02 5V reference chip)
REF- Lower reference voltage (PCB GND)
VCC Power supply, +5 V input (from R50=VCC or use REF02 5V chip)
GND Ground

The analog inputs C0-C10 are available at J4 pins 29 & 31-40. Reference and power R50 is available on J4
pin 24.

H-Drive Chapter 3: Hardware

 3-13

3.5.11 16-bit, 8-channel DAC(LTC2600)

The LTC2600 is an eight channel 16-bit digital-to-analog converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amplifier capable of driving up to 15mA. It uses a 3-wire SPI
compatable serial interface and has an output range of 0-REF volts, making 1 LSB equal to REF/65535 V.
The reference voltage input is by default shorted to 5V (either from the REF02 precision 5V chip, or a
manual jumper to VCC on J4.23=J4.24). The DAC outputs are routed to the J4 pins 19-22 & 25-28.

The DAC is installed on the HD at location U10 and uses /DA as the chip select. The synchronous serial
interface is used to send data to the device. Refer to the sample code, \tern\186\samples\hd\hd_da.c for an
example on driving the DAC. The sample is also included in the pre-built sample project
\tern\186\samples\hd\h_drive.ide. Refer to the DAC data sheet for additional specifications;
\tern_docs\parts\ltc2600.pdf.

Figure 3.5 8-channel 16-bit DAC LT2600

3.5.12 24-bit, 16-channel ADC(LTC2448)

A 24-bit LTC2448 sigma-delta ADC can be installed. The LTC2448 chip offers 8 ch. differential or 16 ch.
single-ended input channels. Variable speed/resolution settings can be configured. A peak single-channel
output rate of 5 KHz can be achieved.

The LTC2448 switches the analog input to a 2 pf capacitor at 1.8MHz with an equivalent input resistance of
110K ohm. The ADC works well directly with strain gages, current shunts, RTDs, resistive sensors, and 4-
20mA current loop sensors. The ADC can also work well directly with thermocouples in the differential
mode. By default, a precision reference with a internal temperature sensor (REF02, 5V) is installed,
providing local temperature measurement for thermocouple applications. This reference will grant a 0-2.5V
input range per channel. A 2.5V reference (with 0-1.25V input) may be installed as well only if there is no
TLC2543 and DAC2600 installed, as those require a 5V reference shared by the LTC2448.

Inputs are routed directly to header J4 pins 3-18 (See Figure 3.6). It should be noted that J4 pin 17
corresponds to input B00, which is tied to the temperature pin on REF02 chip. This input cannot be used
regularly if the temperature pin is still connected, because it will already provide a digital conversion (of the
temperature input).

Figure 3.6 16-channel pin layout of U11 24-bit ADC

The software source sample code on TERN CD, c:\tern\186\samples\hd\hd_ad24.c, allows user to modify
the input reading resolution. For digital inputs, only one byte reading is needed. Also see Chapter 4 for
software channel / hardware pin details.

Pin Header J4
16-channel input
to 24-bit ADC J4 pin 17

ADC temperature
input (no other inputs
allowed) J4 pin 1

DAC LT2600

Outputs:
J4.19-22
J4.25-28

Chapter 3: Hardware H-Drive

3-14

3.5.13 TFT Support

A Color QVGA TFT (320x240 pixels, 5.7”) display can be installed. Aluminum Bezel and plastic
enclosures for the 5.7” display are available. This TFT is installed below the HD, using header H4 (under
the CompactFlash interface), as seen in Figure 3.7. See sample \tern\186\samples\hd\tft_top.c for details.

Figure 3.7 TFT Display (left) ; TFT to HD connection (right)

3.5.14 Power Supplies

The HD can be powered by 2 ways:

1) Regulated external 5V DC power via J2.39=VCC and J2.40=GND, or J1.1=VCC and J1.2=GND..

2) Unregulated 9V to 12V DC power via two pin screw ternimals(T1) while a 5V linear regulator(LM7805,
U00) is installed. There is a polarity protection diode installed for the screw terminal input DC power. The
LM7805 is rated for 1A current, and can take as high as 35V. However, due to the linear regulation, all the
input voltage has to drop to 5V, if the voltage drop with the current (200 mA) is generating a lot of heat.

NOTE: A 9V to 24V input switching regulator is optional and can be installed in place of the default linear
regulator.

The HD also requires regulated 3.3V DC power for the Ethernet, which is already taken care of on the 3.3V
(U14) regulator.

T1.1: DC 9-12V

Linear Regulator
Input: 9-12V DC
Ouput: 5V DC

T1.2: GND

H-Drive Chapter 3: Hardware

 3-15

3.6 Headers and Connectors

3.6.1 Expansion Headers J1 and J2

There are two 20x2 0.1 spacing headers for expansion. Most signals are directly routed to the Am186ES
processor. These signals are 5V only, and any out-of-range voltages will most likely damage the board.

3.6.2 Connector J4 - ADC inputs, DAC outputs

There are 16 24-bit ADC inputs on J4.3-18, 8 16-bit DAC outputs on J4.19-22 & J4.25-28, and 11 12-bit
ADC inputs on J4.29 & J4.31-40. Signal R50 (J4.23) must only be set manually if there is no REF02 chip.

16-channel 24-bit
ADC input

8-channel 16-bit
DAC ouput

11-channel 12-bit
ADC input

Precision 5V chip.
Output=R50 (J4.23)

5V=R50

V+ (9V) from
RS232 input

Chapter 3: Hardware H-Drive

3-16

3.6.3 Connector H2 – QUART Ports

Four QUART serial ports are routed to the H2 header. Ports 2 through 5 are all installed as RS232 by
default. Ports 4 and 5 are optionally capable of using RS485 drivers.

3.6.4 H-Drive Jumper Connections

Several jumper settings are available on the HD. Below is a summary of these settings.

Connector Pin ID’s Usage

J2 J2.38=P4 ; J2.40=GND Step 2 Jumper
J5 J5.1=WDI ; J5.2=P12 Watchdog Jumper
J7 J7.1=VOFF ; J7.2=GND VOFF jumper (switching regulator)
H3 H3.1=VCC ; H3.2=VUSB USB Power jumper
H5 H5.1=AC6 ; H5.2=GND USB Parallel FIFO setting
H6 H6.1=GND ; H6.2=K

H6.3=VS ; H6.4=+V
U27 High-Voltage driver settings.

Sinking output (ULN2003): H6.1=H6.3.
Sourcing output (UDS2982): H6.1=H6.2 & H6.3=H6.4 (Must

provide external sourcing voltage to +V)

UART Serial Port 2
Transmit (/TX2) &
Receive (/RX2)

UART Serial Port 3
Transmit (/TX3) &
Receive (/RX3)

UART Serial Port 4
Transmit (/TX4) &
Receive (/RX4)

UART Serial Port 5
Transmit (/TX5) &
Receive (/RX5)

RS232
RS485

UART Serial Port 5
485- (low)
485+ (high)

UART Serial Port 4
485- (low)
485+ (high)

H-Drive Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix C.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

 Chapter 4: Software H-Drive

4-2

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this
technical manual.

4.1 AE.LIB
AE.LIB is a C library for basic HD operations. It includes the following modules: AE.OBJ, SER0.OBJ,
SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and include the
corresponding header files. The following is a list of the header files:

Include-file name Description
AE.H timer/counter, Watchdog
SER0.H Internal serial port 0
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

H-Drive Chapter 4: Software

4-3

4.2 Functions in AE.OBJ

4.2.1 H-Drive Initialization

ae_init
This function should be called at the beginning of every program running on HD controllers. It provides
default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded DOS
I/O, and provides other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae_init are described below. For details regarding register use, you will want to refer
to the AMD Am186ES Microcontroller User’s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)
512K ROM Block size operation.
Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can

actually be set to zero wait state if you require increased performance (at a risk of stability in
noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)
reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:
Address space starts 0x00000, with a maximum of 512K RAM.
Three wait state operation. Reducing this value can improve performance.
Disables PSRAM, and disables need for external ready.

outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:
MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this

chip select line is used for the I/O window.
Sets up PCS5-6 lines as chip-select lines, with three wait state operation.

outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

Initialize PACS so that PCS0-PCS3 are configured so that:
Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.
The chip select lines starts at I/O address 0x0000, with each successive chip select line addressed

0x100 higher in I/O space.
outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

Configure the two PIO ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SER0 and SER1.

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,
// P16=PCS0, P17=PCS1=PPI

outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The chip select lines are by default set to 15 wait states. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number
down as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is
decreased too dramatically. A function is provided for this purpose.

 Chapter 4: Software H-Drive

4-4

void io_wait
Arguments: char wait
Return value: none.
This function sets the current wait state depending on the argument wait.
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization
There are up to eight external interrupt sources on the HD, consisting of seven maskable interrupt pins
(INT6-INT0) and one non-maskable interrupt (NMI). There are also an additional eight internal
interrupt sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD Am186ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the eight external interrupts. The user can call any of
the interrupt init functions listed below for this purpose. The first argument indicates whether the
particular interrupt should be enabled, and the second is a function pointer to an appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 s.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR
will return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());

H-Drive Chapter 4: Software

4-5

void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

Two ports of 16 I/O pins each are available on the HD. Hardware details regarding these PIO lines can be
found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will need to initialize these pins in one of the four
available modes. Before selecting pins for this purpose, make sure that the peripheral mode operation of
the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 11 of the AMD Am186ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.
The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 s. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly with an outport instruction Performance in this case will
be around 1-2 s to toggle any pin.
The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

 0 = Normal operation
 1 = Input with pullup/down
 2 = Output
 3 = Input without pullup/down

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

 Chapter 4: Software H-Drive

4-6

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the HD can be used for a variety of applications. All three timers run at 1/4
of the processor clock rate (10MHz based on 40MHz system clock, or one timer clock per 100ns), which
determines the maximum resolution that can be obtained. Be aware that if you enter power save mode,
that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD Am186ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high. It is important to note the the interrupt latency generated by
the ISRs that handle a signal transition will define the time resolution the user will be able to achieve.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this
down even further. The sample files timer02.c and timer12.c, located in tern\186\samples\ae,
demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
Am186ES User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none
Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.
Timer2 behaves like the other timers, except it only has one max counter available.

H-Drive Chapter 4: Software

4-7

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691
The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J5) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock
The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a roll-over in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

There is a common data structure used to access and use both interfaces.
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc1_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns 0 on success and returns 1 in case of error,
such as the clock failing to respond.

 Chapter 4: Software H-Drive

4-8

Void rtc1_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the
byte array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

while(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

H-Drive Chapter 4: Software

4-9

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ
The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.
The internal asynchronous serial ports are functionally identical. SER0 is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0.
Two asynchronous serial ports are integrated in the Am186ES CPU: SER0 and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SER0 is used by the DEBUG ROM for application download/debugging in Step One and Step
Two. We will use SER1 as the example in the following discussion; any of the interface functions which
are specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for
use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 10 of the Am186ES Microprocessor User’s Manual
and the schematic of the HD provided on the CD in the tern_docs\schs directory.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock.

Function Argument Baud Rate

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19,200 (default)
10 38,400
11 57,600
12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMA1 operation. In terms of receiving, there is no

 Chapter 4: Software H-Drive

4-10

software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit1() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the Am186ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4
KB buffer will be able to store data for approximately four seconds without overwrite.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putser1() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\186\samples\ae.

H-Drive Chapter 4: Software

4-11

Software Interface
Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, and no parity communication.

 Chapter 4: Software H-Drive

4-12

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value
This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value
This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the
byte array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

H-Drive Chapter 4: Software

4-13

Miscellaneous Serial Communication Functions
One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the Am186ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications
After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none
This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the Am186ES Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the AM186ES manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ
The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

 Chapter 4: Software H-Drive

4-14

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.5 Analog-to-Digital Conversion
Two ADC chip can be installed on the HD.

4.5.1 TLC2543 (12-bit 11 channels)

The ADC unit provides 11 channels of analog inputs based on the reference voltage supplied to R50
(J4.23). For details regarding the hardware configuration, see the Hardware chapter.

For a sample file demonstrating the use of the ADC, please see hd_ad12.c in tern\186\samples\hd.

int hd_ad12 (\tern\samples\hd\hd_ad12.c)
Arguments: unsigned char c
Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel AD0, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

hd_ad12(0); // Read from channel 0
chn_0_data = hd_ad12(0); // Start the next conversion, retrieve value.

4.5.2 LT2448 (24-bit 16 channels)

Delta-Sigma ADC LTC2448
The LTC2448 ADC (U11) provides 16 channels of 0-2.5V analog single-ended (24 differential) inputs.
The following functions will drive the 24-bit ADC. The order of functions given here should be followed
in actual implementation.

 void ad24_setup(unsigned char chip, unsigned int control_byte);

 void ad24 _rd(unsigned char* raw);

H-Drive Chapter 4: Software

4-15

The control byte, control_byte, drives the LTC2448 in 16 channel single-ended mode with value 0xb000.

In code, the control byte is calculated this way:

 ch_sel=0; //select channel

 control_byte=control_byte+speed[10]; //add speed desired to 0xb000

 control_byte=control_byte+(ch_sel<<8); //add channel selection w/ 8 bit left shift

NOTE: “ch_sel” and the desired channel signal do not match up. Instead use the following scheme to
select the desired signal on the board:

 ch_sel On U11
chip

Header
J4 pin

0 B00 (TMP) 17
1 B02 16
2 B04 14
3 B06 12
4 B08 11
5 B10 8
6 B12 6
7 B14 4
8 B01 18
9 B03 15

10 B05 13
11 B07 10
12 B09 9
13 B11 7
14 B13 5
15 B15 3

The LTC2448 also supports 8 channel differential mode. This can be achieved by changing the control
byte passed to the ‘ad24_setup’ routine to 0xa0000 (speed and channel selection is added on the same way
as in single-ended mode). See the LTC2448 data sheet for details on how to define the control byte,
‘LTC2448.pdf’ in the tern_docs\parts directory.

For a sample file demonstrating the use of the ADC, please see hd_ad24.c in tern\186\samples\hd.

This sample is also included in the h_drive.ide test project in the tern\186\samples\hd directory.

4.6 Digital-to-Analog Conversion
The LT2600 provides 8 channels of 16-bit digital to analog conversion. For software purposes, we must
initialize the clock (SCK), data-in (SDI), and chip select (/DA):

 outportb(SCK, 1); // set all control pins high

 outportb(DA, 1); // DAC LTC2600 /CS

 outportb(SDI, 1);

void da_16 (\tern\samples\hd\hd_da16.c)
Arguments: unsigned char mod, unsigned int dac
Return values: none

 Chapter 4: Software H-Drive

4-16

The argument mod selects the channel to write to. A value of 0x3[Y], where [Y]=0-7, corresponds to
channels V1-V8 respectively. Alternatively, 0x3f corresponds to all channels.

The argument dac is ranged from 0 to 0xffff, on a 5-volt scale.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

hd_ad12(0); // Read from channel 0
chn_0_data = hd_ad12(0); // Start the next conversion, retrieve value.

For sample DAC code, see hd_da16.c in the \tern\186\samples\hd directory.

4.7 QUART TL16C754B
The four UART ports from the QUART TL16C754B require separate driver code outside of ae.lib. The
file quart.c in the \tern\186\samples\hd directory provides this code. A prebuilt project h_drive.ide in
the same directory includes u_echo.c, which is a sample of QUART software usage.
There is no library as of yet to enclose these drivers, so this file must be included in any project node using
the QUART chip.

4.8 USB
The VNC1L chip using the Vinculum VDAP firmware is configured to provide 2 host USB ports. Port 1
is used to interfacing to a USB Keyboard or mouse, while Port 2 is used for USB Flash Disk interface.

The document concerning all details of this firmware is in the \tern_docs\parts\USB directory on the
TERN CD, under the title DS_VNC1L_FW_VDAP.pdf.

Pages 10-13 of this document list out the entire firmware command set when communicating with the
VNC1L, as well as the responses expected from the chip. In the \tern\186\samples\hd directory,
hd_ser1.c can be used to talk to the VNC1L through a hyperterminal over serial port 1.

There are key bits to examine when transmiting/receiving data from the VNC1L. Register RDK at
address 0x1A0 contains an 8-bit status on various lines. A summary of corresponding lines to bits is listed
below:

 Bit ID Function

7 /TXE
Low = ok to write command to WRU(0x560)

High = do not write

6 ACK
DATAACK# = High for command mode

 Low for data mode

5 /RXF
Low = one byte ready to be read from RDU (0x5E0)

High = do not read
4 EOC End of Conversion for ADC TLC2543 (not for USB)
3 n/a n/a
2 DOUT Data Out for ADC TLC2543 (not for USB)
1 SDO Data Out for ADC LT2448 (not for USB)
0 BSY BUSY for ADC LT2448 (not for USB)

H-Drive Chapter 4: Software

4-17

Table 4.2 RDK (0x1A0) Bit Definition

As can be seen in the table above, commands may be written to WRU (0x560), and responses from the
chip may be read from RDU (0x5E0).

Other samples include keyboard.c (USB Keyboard sample) and usb_disk.c (USB Flash disk sample).
Both of which are located in \tern\186\samples\hd.

HD Appendix A: HD Layout

 A-1

Appendix A: HD Layout
The HD measures 4.25 x 3.3 inches.

0.0, 0.0

0.10, 0.10
0.60, 0.10 2.908, 0.092 4.15, 0.10

4.10, 1.15
4.15, 3.20

4.25, 3.30

H4

3.80, 2.958 1.708, 3.133 0.733, 3.142

0.
09

2,
 2

.0
08

0.10, 3.20

0.
60

8,
 1

.0
58

0.

18
3,

 0
.3

50

HD Appendix B: Serial EEPROM Map

 1

Appendix B: Serial EEPROM Map
Part of the on-board serial EEPROM locations are used by system software. Application programs must not
use these locations.

0x00 Node Address, for networking
0x01 Board Type 00 VE
 10 CE
 01 BB
 02 PD
 03 SW
 04 TD
 05 MC
0x02
0x03
0x04 SER0_receive, used by ser0.c
0x05 SER0_transmit, used by ser0.c
0x06 SER1_receive, used by ser1.c
0x07 SER1_transmit, used by ser1.c

0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™

0x18 MM page register 0
0x19 MM page register 1
0x1a MM page register 2
0x1b MM page register 3

HD Appendix C: Software Glossary

C-1

Appendix C: Software Glossary
The following is a glossary of library functions for HD.

void ae_init(void) ae.h

 Initializes the AM188ES processor. The following is the source code for ae_init()
 outport(0xffa0,0xc0bf); // UMCS, 256K ROM, 3 wait states, disable AD15-0

outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states
outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS I/O
outport(0xffa6,0x81ff); // MMCS, base 0x80000
outport(0xffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high
clka_en(0);
enable();

Reference: led.c

void ae_reset(void) ae.h

 Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m – Delay in approximate ms

Reference: led.c

void led(int i) ae.h

Toggles P12 used for led.

Var: i - Led on or off

Reference: led.c

Appendix C: Software Glossary HD

C-2

void delay0(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m – Delay using simple for loop up to t.

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i – 1 enables power save only. Does not disable.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: i – 1 enables clock output, 0 disables (saves current when
disabled).

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 Mode – above mode select

Reference: ae_pio.c

HD Appendix C: Software Glossary

C-3

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 dat – 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16 bit PIO port.

Var: port – 0: PIO 0 - 15
 1: PIO 16 – 31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid – I/O address
 value – 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid – I/O address
 value – 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an I/O address portid. Returns 16-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

Appendix C: Software Glossary HD

C-4

int inportb(int portid) dos.h

Reads from an I/O address portid. Returns 8-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr – EEPROM data address
 dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr – EEPROM data address

Reference: ae_ee.c

HD Appendix C: Software Glossary

C-5

void io_wait(char wait) ae.h

Setup I/O wait states for I/O instructions.

Var: wait – wait duration {0…7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtc1_init(unsigned char * time) fn.h

Sets real time clock date, year and time.

Var: time – time and date string
 String sequence is the following:

time[0] = weekday
time[1] = year10
time[2] = year1
time[3] = mon10
time[4] = mon1
time[5] = day10
time[6] = day1
time[7] = hour10
time[8] = hour1
time[9] = min10
time[10] = min1
time[11] = sec10
time[12] = sec1

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtc1_rd(TIM *r) fn.h

Reads from the real time clock.

Var: *r – Struct type TIM for all of the RTC data

typedef struct{
 unsigned char sec1, sec10, min1, min10, hour1, hour10;
 unsigned char day1, day10, mon1, mon10, year1, year10;
 unsigned char wk;

} TIM;

Reference: rtc.c

Appendix C: Software Glossary HD

C-6

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void t0_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm – Timer mode. See pg. 8-3 and 8-5 of the AMD CPU Manual

ta – Count time a (1/4 clock speed).
tb – Count time b for timer 0 and 1 only (1/4 clock).

Time a and b establish timer duty cycle (PWM). See
hardware chapter.

 t#_isr – pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer02.c, timer2.c, timer0.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void int1_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMI (Non-Maskable Interrupt).

Var: i – 1: enable, 0: disable.

 int#_isr – pointer to interrupt service.
Reference: intx.c

void s0_init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h

 unsigned char* obuf, int osiz, COM *c) (void);
void s1_init(unsigned char b, unsigned char* ibuf, int isiz, ser1.h

 unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b – baud rate. Table below for 40MHz and 20MHz Clocks.
 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)
1 110 55
2 150 110
3 300 150
4 600 300
5 1200 600

HD Appendix C: Software Glossary

C-7

6 2400 1200
7 4800 2400
8 9600 4800
9 19200 9600
10 38400 19200
11 57600 38400
12 115200 57600
13 23400 115200
14 460800 23400
15 921600 460800

Reference: s0_echo.c, s1_echo.c, s1_0.c

Serial port 0, 1 initialization.

Var: m1 = SCC691 MR1

m2 = SCC691 MR2
b – baud rate. Table below for 8MHz Clock.

 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

m1 bit Definition
7 (RxRTS) receiver request-to-send control, 0=no, 1=yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIFO FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Block
4-3 (Parity Mode), 00=with, 01=Force, 10=No, 11=Special
2 (Parity Type), 0=Even, 1=Odd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8

m2 bit Definition
7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=Remote

loop
5 (TxRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bit), 0111=1, 1111=2

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putser0(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); ser1.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch – character to output
 c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsers0(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); ser1.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Appendix C: Software Glossary HD

C-8

Var: str – pointer to output character string
 c – pointer to serial port structure

Reference: ser1_sin.c

int serhit0(COM *c); ser0.h
int serhit1(COM *c); ser1.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else
0.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

unsigned char getser0(COM *c); ser0.h
unsigned char getser1(COM *c); ser1.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsers0(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); ser1.h

Retrieves a fixed length character string from the input buffer. If the buffer contains less
characters than the length requested, str will contain only the remaining characters from the
buffer. Appends a ‘\0’ character to the end of str. Returns the retrieved string length.

Var: c – pointer to serial port structure

len – desired string length
str – pointer to output character string

Reference: ser1.h, ser0.h for source code.

Date: November 20, 2007 Sheet 1 of 1

Size Document Number REV

B HD-MAN.SCH

Title

HOST USB DRIVE

TERN/STE

D5
D4
D3
D2
D1
D0

/RST

GND

RST

D15

VCC

GND
CLK

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1VCC
GND

RXD0

TXD1
RXD1

TXD0

P15

VCC

 1 2
 3 4
 5 6
 7 8
 9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J2HDRD40

/RTS0

/CTS0

/RTS1

P14

P5

P4

P1

P6
/INT4

P2

B12
B14

B10

B01
B02
B04
B06
B07

GND

/INTB

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J4

B13
B15

B11

B03
B00

B09
B08
B05

GND

/LCD

D6
D4
D2
D0

/WR

VLCD
GND

A1

D7
D5
D3
D1

/RD

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20

H4 HDRD20

L6

VLCDA15
 1

A14 2

A13 3

A12 4

A11 5

A10
 6

A9 7

A8 8

NC 9

NC 10

/WR 11

/RST 12

NC 13

NC 14

RY 15

NC 16

A17 17

A7 18

A6 19

A5 20

A4 21

A3 22

A2 23

A1 24

A16
48

/BY 47

GND 46

D15 45

D7 44

D14
43

D6 42

D13 41

D5 40

D12 39

D4 38

VCC 37

D11 36

D3 35

D10 34

D2 33

D9 32

D1 31

D8 30

D0 29

/OE 28

GND 27

/CE 26

A0 25

U1 29F800

P6

P11

GND
 1

D3 2

D4 3

D5 4

D6 5

D7
 6

/CE1 7

A10 8

/OE 9

A9 10

A8 11

A7 12

VCC 13

A6 14

A5 15

A4 16

A3 17

A2 18

A1 19

A0 20

D0 21

D1 22

D2 23

WP 24

CD2 25

CD1
26

D11 27

D12 28

D13 29

D14 30

D15
31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE 36

RDY 37

VCC 38

/CS 39

VS2 40

RST 41

/WT 42

/IP 43

/REG 44

BV2 45

BV1 46

D8 47

D9 48

D10 49

GND 50

U17 CFB

R6

R3

AC6 1 2
H5

GND
V33

ACK

AC7
AC6

G 1

VCC 2

AVC 3

XIN 4

XO 5

AG 6

PLL 7

TST 8

RST 9

PRG 10

BD0 11

BD1 12

A
C
7

4
8

A
C
6

4
7

A
C
5

4
6

A
C
4

4
5

A
C
3

4
4

A
C
2

4
3

A
C
1

4
2

A
C
0

4
1

V
C
I
O

4
0

G
N
D

3
9

A
D
7

3
8

A
D
6

3
7

AD5 36

AD4 35

AD3 34

AD2 33

AD1 32

AD0 31

VCIO 30

USB2M 29

USB2P 28

GND 27

USB1M 26

USB1P 25B
D
2

1
3

B
D
3

1
4

B
D
4

1
5

B
D
5

1
6

V
C
I
O

1
7

B
D
6

1
8

B
D
7

1
9

B
C
0

2
0

B
C
1

2
1

B
C
2

2
2

B
C
3

2
3

G
N
D

2
4

U5

USB_H

P29

/TXE
/RXF

/RDU
WRU

D6B
D7B

VCC

VCC

X2 X1
XTAL2

16MHZ
C7

V33 VCC
C24 C25

V33 R8

R7

R4

C6

V33
GND

GND

X3
X4

PLL

C15C14

PRG
P26
GND

VCC VCC

V33

V33

VUSB

R1
100K

C8

10PF

GND

DP1
DM1

DP2
DM2
V33

USB1+USB1-
C33

27PF

C34

27PF

D0B
D1B
D2B
D3B
D4B
D5B

 1 2
J5

USB2+
USB2-

USB CONNECTOR

VUSB 5V 5

M1 6

P1 7

G 8

5V 1

M2 2

P2 3

G 4

J3

USB_A

TOP-TFT

USB1+
USB1-
VUSB V7

V5
R50
V2
V4

C3
C4
C5
C6
C7
C8

GND

P25 P24

/CTS1

P13

P0

P3

P10

P29P26

A19
/NMI

/INT1

INT2

PRG

INT3

INT0

V8
V6

V1
V3

VCC

C0
C1
C2

GND

C9
C10

D0B

D1B

D2B D3B

D7
D6

A0
A1
A2

GND

/WR
/RD

P16

A3
A4
A5
A6
A7

D14
D13

D12

D11
D10
D9
D8

A0 1

A1 2

A2 3

A3 4

A4
 5

/CS 6

D0 7

D1 8

D2 9

D3
 10

VCC 11

GND 12

D4 13

D5 14

D6
 15

D7 16

/WR 17

A5 18

A6 19

A7
 20

A8 21

A16 22

A15 44

A14 43

A13 42

/OE 41

/UB
40

/LB 39

D15 38

D14 37

D13 36

D12
35

GND 34

VCC 33

D11 32

D10 31

D9
30

D8 29

NC 28

A12 27

A11 26

A10
25

A9 24

A17 23

U3 RAM44

GND

VS

K 1 2

 3 4

H6

HDRD4
+V

GND
GND
/RST1 2

3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP2

HD28

X7 X8

C0
10PF

XTAL4

16MHZ
C12

P12

/WR /RD
/INT41 2

3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP1

HD28

V33

VCC VUSB 1 2
H3

VLCD

WDI

TXD0

 1 2
J7

VOFF

 1 2
J8VCC

RS232

TXD0
RXD0
TX3
TX2
TX4
TX5
RX2
RX3
RX4
RX5
/RT2
/RT3
/RT4
/RT5
/CT2
/CT3

VCC
GND

RXD1
TXD1

P0
/CTS1
P15
P2
/RTS0
P5
/RTS1
/CTS0
VS
K
S1
N1
+V
V+

D7
D6
D5
D4
D3

D2
D1
D0

DP1
DM1

USB2+
USB2-

R12 27

DP2
DM2

R10 27

R11R9USB1+
USB1-

V33
GND

BD7

D7
D6
D5 D5B

D6B
D7BA1 2 B1 18

A2 3 B2 17

A3 4 B3 16

A4 5 B4 15

A5
 6

B5
14

A6 7 B6 13

A7 8 B7 12

A8 9 B8 11

G
 19

DIR 1

U01

HCT245
HCT245

PLLPL
C22

27PF

C23

1UF

R5

180

BD7

R2
100K

VLCD
C02

VCC

C20

10UF

+VI 12V
D2

1N5817
C31

10UF

1
2

T1

T2

X4
C4

XTAL1
12MHZ

/RD

D4
D3
D2
D1
D0 D0B

D1B
D2B
D3B
D4B

P3

X3

C9

C13

C01 GND

CD2
RI2
RX2

DSR2

NC 1

NC 2

DSRA
 3

CTSA 4

DTRA 5

VCC 6

RTSA 7

INTA
 8

CSA 9

TXA 10

IOW 11

TXB 12

CSB
 13

INTB 14

RTSB 15

GND 16

DTRB 17

CTSB 18

DSRB 19

NC 20

N
C

8
0

C
D
A

7
9

R
I
A

7
8

R
X
A

7
7

G
N
D

7
6

D
7

7
5

D
6

7
4

D
5

7
3

D
4

7
2

D
3

7
1

D
2

7
0

D
1

6
9

D
0

6
8

I
N
T
S

6
7

V
C
C

6
6

R
X
D

6
5

R
I
D

6
4

C
D
D

6
3

N
C

6
2

N
C

6
1

NC 60

DSRD 59

CTSD
58

DTRD 57

GND 56

RTSD 55

INTD 54

CSD
53

TXD 52

IOR 51

TXC 50

CSC 49

INTC
48

RTSC 47

VCC 46

DTRC 45

CTSC 44

DSRC 43

NC 42

NC 41
N
C

2
1

N
C

2
2

C
D
B

2
3

R
I
B

2
4

R
X
B

2
5

C
K
S
E
L

2
6

N
C

2
7

A
2

2
8

A
1

2
9

A
0

3
0

X
1

3
1

X
2

3
2

R
S
T

3
3

R
X
R
D
Y

3
4

T
X
R
D
Y

3
5

G
N
D

3
6

R
X
C

3
7

R
I
C

3
8

C
D
C

3
9

N
C

4
0

U8

16C754

C5

C38

C39

VCC
RX5
RI5
CD5

TX2

DSR5
/CT5

TX3

RX5

TX5
TX4

/RT3

RX3
RX4

RXD0

/RT2

/RT4

RX2

VUSB
C35

1UF GND

GND

GND

A10

A8

A11
A12 A13

A6 A5
A4 A3
A2 A1

A7

A0

RSTP14
A14

A9

V33

GND

GND

GND

GND

D4D5
D6D7

D0D1
D2D3

V33

1
2
3
4

RE1

REED RELAY

I2

SCK
SDI

R50

R50

/AD1
DOUT

EOC
C0
C1
C2
C3
C4
C5
C6

AD0
 1

AD1 2

AD2 3

AD3 4

AD4 5

AD5
 6

AD6 7

AD7 8

AD8 9

GND 10

VCC
20

EOC 19

CLK 18

DIN 17

DOUT 16

CS
15

REF+ 14

REF- 13

AD10 12

AD9 11

U16

P2543

/UR5

/UR4

GND
DTR5

/RT5

TX5

TX4

/RT4

/RD

P13

INT3

/RT5
/CT2
/CT3

GND
VCC

RXD1
TXD1

P0
/CTS1
P15
P2

/UR3

/UR2

VCC
DTR2

TX2

TX3
/WR

/RT2

/CT2

INT2

INT0

12V

VUSBNC 1

PG 2

GND 3

EN 4

5V 8

5V 7

9V 6

9V 5

U26

TPS765

 1 2
H01

VCC

/259
D0

A1
A2
A3

/RST

/AD
/DA

A1 1

A2 2

A3 3

Q0
 4

Q1 5

Q2 6

Q3 7

GND 8

V+ 16

RT 15

EN 14

D0
13

Q7 12

Q6 11

Q5 10

Q4 9

U13

259V
74HC259

/AD1

+VI
+VI

P11
P12
GND

A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U7

24C04S

VCC

SCK
SDI

L6
L5
L4

/NMI

/INT1

/INT4

P26

V33

P29

 8
 7
 6
 5
 4
 3
 2
 1

RN1

12V

12 345

U18

LM2575

R14
1M

PRG

A5
A6
A7

P3

GND

CD3

DTR3
/CT3
DSR3

/RT3

A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U02

74HC138

CD4

VCC
DTR4
/CT4
DSR4

/RTS0
P5

/RTS1
/CTS0

VS
K
S1
N1

R18 D6BV33

+V
V+

GND

GND
SDI

/AD

SCK

C7
C8

SDO

GND

C9
C10 VCC

VLCD

VCC
1
2
3
4

RE2

REED RELAY

N1

S1

L5

/L4

VL

P17

A7
/UR2
/UR3
/UR4
/UR5A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U4

74HC138

/259
/CF

/RST /RDK
/LCD

A6
A5

VCC

D0
/RDK

D1
DOUT

1G 1

1A1 2

2Y4 3

1A2 4

2Y3 5

1A3 6

2Y2 7

1A4 8

2Y1 9

GND 10

VCC 20

2G 19

1Y1 18

2A4 17

1Y2 16

2A3 15

1Y3 14

2A2 13

1Y4 12

2A1 11

U25 244V

D7
ACK

/RXF
D4

VCC
R50

GNDG 1

BY 2

EXT 3

G 4

G 5

G 6

COM 7

A0 8

A1 9

A2 10

A3 11

A4
 12

S
K

3
8

S
D
O

3
7

C
S

3
6

F
0

3
5

S
D
I

3
4

G

3
3

G

3
2

G 31

RF- 30

RF+ 29

VCC 28

MXO- 27

AI- 26

AI+ 25

MXO+ 24

A15 23

A14 22

A13 21

A12
20

A
5

1
3

A
6

1
4

A
7

1
5

A
8

1
6

A
9

1
7

A
1
0

1
8

A
1
1

1
9

U11

LTC2449
LTC2449

D2
BSY
/RDK

SDO

EOC

D6
/TXE
D5

GND

GND

B00

R50

BSY

VCC R17 /RST

R19
D5BV33

C03
VLCD

GND

RI4
RX4

VCC
A3

A1
A2

X7
X8
RST

GND
B00

NC 1

IN 2

TEMP 3

GND 4

NC 8

HEAT 7

OUT 6

TRIM 5

U12

LT1019

C32

10UF

VCC

V+

GNG 1

VO 2

VI 3 VO 4

U14

BB1117

RX3
RI3

R50
C21

/RDU

/WRU

V33 V33
C36 C37

- 1 + 2

+ 3

B1

BTH1

VBAT

LX1
VOFF

GND
VCC

I1 330uH

12V

D1

1N5817

C30

/RST
P3

VCC

VRAM
VBAT

GND

/RST

WDI
/RAM

WDO

/NMI

/LCS
VCC

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI 9

U6

MAX691

1A 1

1Y 2

2A 3

2Y
 4

3A 5

3Y 6

G 7

V 14

6A 13

6Y 12

5A
11

5Y 10

4A 9

4Y 8

U9

74HC14Z

VCC

GND

/NMI
NMI

INT1

INT4

/INT1

/INT4

RST

WRU
/WRU

/RST
L4
/L4

VBAT

LC
L1

LED

VCC P12
R16

680

X6
VOFF

X6 X5

VCC

GND

X1 1

X2 2

A
 3

G 4

V3 8

B 7

SCL
 6

SDA 5

U15

DS1337

V33

X132K

R20

P12
P11

C10
V33

/DA

GND

R50

V1
V2
V3
V4

GND 1

V1
 2

V2 3

V3 4

V4 5

REF 6

/CS
 7

SCK 8

VCC 16

V8
15

V7 14

V6 13

V5 12

/CR 11

SDO
10

SDI 9

U10

LTC2600

SCK

VRAM
/INTB

B01
B02
B03
B04

/RST

V8
V7

SDI

VCC

V5
V6

B15

B05
B06
B07 B09

B10
B11

B12
B13
B14

B08

Date: November 2, 2007 Sheet 2 of 2

Size Document Number REV

B HE.2

Title

RS232

TERN/STE

HV5

HV6
HV7
HV8

S1 S1

1 2
3 4
5 6
7 8
9 10
11 12

J6

HDRD12
HDRD12

+V +VHV1
HV2
HV3
HV4
HV5
HV6

HV1

HV2
HV3

HV4
N1N1

GNDI1 1

I2 2

I3
 3

I4 4

I5 5

I6 6

I7 7

I8 8

VS 9

O1 18

O2 17

O3
16

O4 15

O5 14

O6 13

O7 12

O8 11

G 10

U27

UDS2982

P0
/CTS1
P15
P2

/RTS0
P5

P0
/CTS1

P15
P2

/RTS0
P5

VCC

GND
C1-

C1+

C2+ GND

V+

/TXD1
/RXD1

C3C1
C1+

C1-
C2+

V+ C1+
 1

V+ 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I 8

VCC
16

GND 15

T1O 14

R1I 13

R1O 12

T1I 11

T2I 10

R2O 9

U19

MAX232A

V+

/TXD0
/RXD0

C2-
V-

C3+

C3-
C4+
C4-

V1+ C1+ 1

V+ 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I 13

R1O 12

T1I 11

T2I 10

R2O 9

U20

MAX232A

TXD0
RXD0

C2- V-

RX2
/RX2
/TX2

VCC

GND
C3-

C3+

C4+

C11
C2

C26

C27

RXD1
TXD1

/TX2 CT2 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20

H2

HDRD20

/RTS1
/CTS0

VS

/RTS1

VS
/CTS0 K

HV7
HV8

K TXD0
RXD0
TX3
TX2
TX4
TX5
RX2
RX3
RX4
RX5

TXD1
RXD1

TX2
TX3

RX5

TX5
TX4

RX3
RX4

RXD0
TXD0

RX2

RXD1
TXD1

/RT3
/RT2

/RT4
/RT5
/CT2
/CT3

GND
VCCVCC

GND

/RT2
/RT3
/RT4
/RT5
/CT2
/CT3/TXD1

/RXD1

GND

/TXD0
/RXD0

 1 2
 3 4
 5 6
 7 8
 9 10

H1

GND

/RX2 RT2
/TX3
/RX3
GND GND

GND GND

CT3
RT3

/TX4
/RX4
/TX5
/RX5

485-
485+
485A-
485A+

VCC

GND

C5-

C5+

C6+
RX4
TX4

TX2
C4-

/TX4
/RX4

RX3
TX3

C28

C5+

C5-
C6+
C6-

V1+

V1-

/TX3
/RX3

V1-

C1+ 1

V+ 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I
 8

VCC 16

GND 15

T1O 14

R1I 13

R1O 12

T1I 11

T2I 10

R2O
 9

U21

MAX232A

C7+

C7-
C8+
C8-

V1+

V1-

/TX5
/RX5

C1+
 1

V+ 2

C1- 3

C2+ 4

C2- 5

V-
 6

T2O 7

R2I 8

VCC
16

GND 15

T1O 14

R1I 13

R1O 12

T1I
11

T2I 10

R2O 9

U22

MAX232A

C6-

VCC

GND

C7-

C7+

C8+
GND

V1+

/RT2
/CT2
CT2
RT2

RX5
TX5

C16

C17

C18

C19

C29

/RT3
/CT3 C8-

V1-
CT3
RT3

RX4

TX4

GND
/RT4

RO 1

/RE 2

DE 3

DI 4

VCC 8

B 7

A 6

GND 5

U23

LTC485

VCC

485-
485+

VCC

485A-
485A+

GND
RX5

TX5
/RT5

RO 1

/RE 2

DE 3

DI 4

VCC 8

B 7

A 6

GND 5

U24

LTC485

