H-Drive™

Host USB Drive, 100M BaseT Ethernet, RS232, Confflash, 24-bit ADC, DAC,
Solenoid Drivers, Relay, and support Graphic Coler

Technical Manual

TTERN

INC.
1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181

Internet Email: tern@netcom.com http: //mvww.tern.com

COPYRIGHT

H-Drive, E-Engine, A-Engine86, A-Engine, A-Core&6Core, i386-Engine, MemCard-
A, MotionC, VE232, and ACTF are trademarks of TERIN.
Am188ES and Am186ES are trademarks of Advanceddvbavices, Inc.
Borland C/C++ is a trademark of Borland Internagion
Microsoft, MS-DOS, Windows, Windows95, and Windo®s®re trademarks of
Microsoft Corporation.

Version 1.03
January 6, 2012

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1993-201% TERQI

1950 %" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.teoom

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedi® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to it life and property
against incidental failure.

TERN reserves the right to make changes and improvemenits products
without providing notice.

H-Drive Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

The HD™ is a high performance, low cost, C/C++ programmable controller based on a 40/80MHz 16-bit CPU. It
is intended for networking industrial process control, high-speed data acquisition, and especially ideal for OEM
applications.

An Fast Ethernet Module can be installed to provide 100M Base-T network connectivity. This Ethernet module
has a hardware LSI TCP/IP stack. It implements TCP/IP, UDP, ICMP and ARP in hardware, supporting internet
protocol DLC and MAC. It has 16KB internal transmit and receiving buffer. The host can access the buffer via
high speed DMA transfers. The hardware Ethernet module releases internet connectivity and protocol processing
from the host processor, which represents a huge improvement over software-based TCP/IP stacks. The resulting
system can easily handle transmissions in the 100KB/s+ range in real world applications with 4 independent stack
connections simultaneously. Software is available for connecting to Windows Internet Explorer.

A 5.7 TFT display can be installed, providing QVGA color graphics support to the HD™ .

As for data conversion, a sigma-delta 24-bit ADC(LTC2448) offers 8 ch. differential or 16 ch. single-ended input
channels. A peak single-channel output rate of 5 KHz can be achieved. A 16-bit DAC(LTC2600) provides 8
analog output voltages (0-5V). Also, a 12-bit 11-channel ADC (LTC2543) is available optionally.

The HD™ supports up to 2 GB mass storage CompactFlash cards with Windows compatible FAT file system
support, allowing user easily transfer large amounts of data to or from a PC.

Other features include a 16-bit ACTF Flash (256 KW) and battery-backed SRAM (256 KW). It also includes 3
timers, PWMs, P10s, 512-byte serial EEPROM, 3 timer/counters, and a watchdog timer. The 16-bit counters can
be used to count or time external events, up to 10 MHz (on a 40MHz board), or to generate non-repetitive or
variable-duty-cycle waveforms as PWM outputs. A real time clock (DS1337, Dallas) is available.

Two RS232 ports are available from the CPU, and an additional 4 RS232 ports are provided by the QUART
TL16C754B. Two of these ports may be converted to RS485 optionally.

Seven high voltage sink drivers are installed, capable of sinking 350 mA at 50V per line, and they can directly
drive solenoids, relays, or lights. Two mechanical Reed relays provides reliable, fast switching contacts with a
specification of 200 V, maximum 1 Amp carry current, 0.5 Amp switching, and 100 million times operation.

The HD™ has on-board optional switching regulator with power-off mode, and may be powered with 9-24V DC
with this option.

Two Host USB ports may be installed as well. One is able to take input from a USB keyboard or mouse, while the
other can utilize a USB Flash Disk.

Features:

» 4.25x 3.3”, 250 mA at 5V, DC Power 24V/12V/5V

* 40 MHz 16-bit CPU, program in C/C++

8 high voltage 1/0s, 4 TTL I/Os and Reed Relay

6 RS232/485 serial ports, Real-time clock, PWM, Timers
16 ch. 24-bit ADC, 11 ch. 12-bit ADC, 8 ch. 16-bit DAC
Hardware TCP/IP stack for 100M Base-T Ethernet
CompactFlash card with FAT file system support

Two Host USB ports for Flash Disk, USB mouse/keyboard
* QVGAJL.7” TFT color display interface

1-1

Chapter 1: Introduction

H-Drive

1.2 Physical Description

The physical layout of the HD is shown below.

H1: Serial Ports 0/1
(0 = Debug Port)

J4: 8-ch. 16-bit
DAC

J4: 16-ch. 24-bit

Step 2 Jumper

J6: 7 High
Voltage sinking
outputs

J6: Reed Relay

12V Power
Input

ADC

J4: 11-ch. 12-bit
ADC

LED

...........

RDC
ROE20
0221-0-L0
6U-FF20T

Compact Flash

interface

CompactFlash®

CO. 3 ’.
..,--- [
| I N 1.
USB Host ports | 100M BaseT
1&2 Ethernet

reconfig)

H2: 4 RS232
ports (2 RS485

Figure 1.1 Physical layout of the H-Drive

H-Drive Chapter 1: Introduction

Step 1 settings
In order to talk to HD with Paradign C++, the HD must meet these requirements:

1) EE40_115.HEX must be pre-loaded into Flash starting address 0xFAQQO.

2) The SRAM installed must be large enough to hold your program.

For a 32K SRAM, the physical address is 0x00000-0x07fff
For a 128K SRAM, the physical address is 0x00000-0x01ffff
For a 512K SRAM, the physical address is 0x00000-0x07ffff

3) The on-board EEPROM must have a jump address for the EE40_115.HEX with starting address of 0xFAQQO.
4) The STEP2 jumper must be installed on J2 pins 38-40.

For further information on programming the HD, refer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

(Power On or Reset)

Step 2 jumper
set?

STEP 2

Go to Application Code CS:IP
CS:IP in EEPROM:

0x10=CS high byte
STEP 1 0x11=CS low byte

0x12=IP high byte
ACTF menu sent out through ser0 0x13=IP low byte

at 19200 baud - J

Figure 1.2 Flow chart for ACTF operation
The “ACTF boot loader” resides in the top protected sector of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the DEBUG kernel (EE40_115.hex) is pre-loaded
in the Flash starting at 0OxFA000, and the RED STEP2 jumper is installed, ready for
Paradigm C++ debugger. User does not need to download a DEBUG kernel to start with.

At power-on or RESET, the “ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the ACTF
menu will be sent out from serial port0 at 19200 baud for a HD.

If the STEP 2 jumper is installed, the “jump address” located in the on-board serial EEPROM will be read out and
then jump to that address. A DEBUG kernel “EE40_115.hex” for the HD can be downloaded, residing in
“OxFA000” of the 512KB on-board flash chip.

1-3

Chapter 1: Introduction H-Drive

1.3 H-Drive Programming Overview

Steps for product development:

Preparation for Debugging(DONE in Factory)

« Connect HD to PC via RS-232 link, 19,200, 8, N, 1

« Power on HD without STEP 2 jumper installed

* ACTF menu should be sent to PC terminal

* Use “D” command to download “L_TDREM.HEX” in SRAM
* “G04000” to run “L_TDREM”

* Download “c:\tern\186\rom\ae86\EE40_115.HEX” to Flash

* “GFAQ00” to setup EEPROM and run remote debugger

« Install the STEP2 jumper (J2.38-40)

« Power-on or reset HD, Ready for Remote debugger

STEP 1: Debugging
« Start Paradigm C++, run “led.ide” or “test.ide”
« Download code to target SRAM.
« Edit, compile, link, locate, download, and remote-debug

U

STEP 2: Standalone Field Test

» ”G08000” setup EEPROM Jump Address, points to
application code resides in battery backed SRAM

» Install STEP2 jumper, then power on

» Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.)

STEP 3: Production DV-P Kit

 Generate application HEX file with DV-P and ACTF Kit
* ACTF “D” to download “L_29F400.HEX” into SRAM

« Download application HEX file into FLASH

* Modify EEPROM jump address to 0x80000

e Set STEP2 jumper

There is no ROM socket on the HD. The user’s application program must reside in SRAM for debugging in
STEP1, reside in battery-backed SRAM for the standalone field test in STEP2, and finally be programmed into
Flash for a complete product. For production, the user must produce an ACTF-downloadable HEX file for the

application, based on the DV-P+ACTF Kit. The “STEP2” jumper (J2 pins 38-40) must be installed for every
production-version board.

H-Drive Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the “tern_docs\Software_kit.pdf” Technical manual on TERN CD, for information on
installing software.

2.2 Hardware Installation

Overview

e Connect PC-IDE serial cable:
For debugging (STEP 1), place IDE connector on SERO with red
edge of cable on side of H1 pin 1 (See Fig. 2.1). This DEBUG
cable is a 10-pin IDE to DB9 cable, made by TERN.

o Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
using power jack adapter supplied with EV-P/DV-P Kit

Hardware installation consists primarily of connecting the microcontroller to your PC.

2.2.1 Connecting the HD to the PC

The HD is linked to the PC via a serial cable (DB9-1DE) which is supplied with TERN EV-P / DV-P Kits.

The HD communicates through SERO by default. Install the 5x2 IDE connector on the SERO H1 pin
header. Note this header is shared with serial port 1, so only the odd side (H1.1,3,5,7,9) is used for
SERO, where H1.3=/TxD0, H1.5=/RxD0, and H1.9=GND. The DB9 connector should be connected to
one of your PC's COM Ports (COM1 or COM2).

See Figure 2.1 for specific cable installation on the HD.

Serial Port 1
(H1.2,4,6,8,10)

Debug Port Ser0
(H1.1,3,5,7,9)

Debug Cable (5x2)

Pin 1

Figure 2.1 Debug Cable and H1 Header fitting (Pin 1 of cable to Pin 1 of header)

2-1

Chapter 2: Installation H-Drive

2.2.2 Powering-on the HD

The following diagram (Fig 2.2) provides the location of the debug serial port and the power jack.
By factory default setting:
1) The RED STEP2 Jumper is installed. (Default setting in factory)

2) The DEBUG kernel is pre-loaded into the on-board flash starting at address of 0XFAQ000. (Default
setting in factory)

3) The EEPROM is set to jump address of 0XFAQOQO. (Default setting in factory)

Connect +9-12V DC to the DC power terminal. The screw terminal at the corner of the board is positive
12V input and the other terminal is GND (see figure for details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be used to connect the output of the power jack adapter
and the HD. Note that the output of the power jack adapter is center negative.

The on-board LED should blink twice and remain on, indicating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for programming and debugging.

H1: Serial Port 0
(Debug Port) ; LED
Serial Port 1
under cable.

« B3l

I
L
1
1
1
]
|
1
=
o
e
-

CompactFlash®

9-12Vv
Power plug
(center negative)

Figure 2.2 Locations of STEP2 Jumper, LED, Power input and DEBUG port

2-2

H-Drive Chapter 3: Hardware

Chapter 3. Hardware

3.1 Am186ES/R8820/1A186 - Introduction

The Am186ES is based on industry-standard x86 tmathire. The AmM186ES controllers uses 16-bit
external data bus, are higher-performance, moegiated versions of the 80C188 microprocessorshwhic
uses 8-bit external data bus. In addition, the ABEIB has new peripherals. The on-chip system imterfa
logic can minimize total system cost. The Am186ES ltwo asynchronous serial ports, 32 PIOs, a
watchdog timer, additional interrupt pins, a pwsielth demodulation option, DMA to and from serial
ports, a 16-bit reset configuration register, ankdamced chip-select functionality.

There are a total of three compatible CPU chipsbeansed in thélD:

R8820 from RDC is a drop-in replacement 5V, 40MHipdor the AM186ES, AM186ES(AMD, 5V, 40
MHz), R8820(RDC, 5V, 40 MHz), and IA186ES(INNOVASI&V, 40 MHz). The multiple sources of the
CPU can support longer life time of th#D product. The technical specifications and disaussiin this
manual are based on AM186ES.

By default, theHD uses 5V 40 MHz R8820 and low power 55ns SRAM.
There are three pads on the PCB for battery. Ods igeground, and the other two pads allowing a 3V
backup lithium battery be installed in two diffetgositions:

3.2 Am186ES — Features

3.2.1Clock and crystal

Due to its integrated clock generation circuithe Am186ES microcontroller allows the use of a siroee
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4fadé 40 MHz forHD.

CLKOUTA remains active during reset and bus holdditions. The initial function ae_init(); disables
CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pi
The R8820 uses a 40 MHz crystal.
Debug kernels for Paradigm C++ TERN Edition arelatbte:
c:\tern\186\rom\ae86\EE40_115.hex
The EE40_115.hex will allow 40 MHZD talk to Paradigm C++ TERN Edition at 115,200 baud.
By default, the EE40_115.hex is pre-programmedHer40 MHzHD.
User can use software to setup the CPU speed:
outport(0xfff8,0x0103); // PLLCON, 20MHz cryst&l103=40 MHz, 0107=80MHz

3-1

Chapter 3: Hardware H-Drive

3.2.2External Interrupts and Schmitt Trigger Input Buffe

There are eight external interrupts: INTO-INT6 adl.

INTO, J2 pin 8, used by QUART.

/INT1, J2 pin 6, free to use.

INT2, J2 pin 19, used by QUART

INT3, J2 pin 21, used by QUART

/INT4, J2 pin 33, used by 100M BaseT Ethernet
INT5=P12=DRQO0, used by LED/EE/HWD/RTC
INT6=P13=DRQ1, J2 pin 11, used by QUART
/NMI, J2 pin 7, used by MAX691 as PFO

Some of external interrupt inputs, /INT1, 4 and /NMre buffered by Schmitt-trigger inverters (U9,
74HC14), in order to increase noise immunity aatigform slowly changing input signals to fast cliagg
and jitter-free signals. As a result of this buffgr these pins are capable of only acting as input

These buffered external interrupt inputs requifalling edge (HIGH-to-LOW) to generate an interrupt

The HD uses vector interrupt functions to respond to restieinterrupts. Refer to the Am186ES User's
manual for information about interrupt vectors.

3.2.3Asynchronous Serial Ports

The Am186ES CPU has two asynchronous serial cheinB88IRO and SER1. Both asynchronous serial
ports support the following:

* Full-duplex operation

* 7-bit, 8-bit, and 9-bit data transfers

e 0dd, even, and no parity

* One stop bit

» Error detection

* Hardware flow control

» DMA transfers to and from serial ports

e Transmit and receive interrupts for each port
e Multidrop 9-bit protocol support

e Maximum baud rate of 1/16 of the CPU clock speed
* Independent baud rate generators

The software drivers for each serial port implemanting-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sanifidsss1 _echo.@and sO_echo.d \tern\186\samples\ag

3.2.4Timer Control Unit

The timer/counter unit has three 16-bit programmaiphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to external pins:
Timer0 output = P10 = J2 pin 12
TimerO input =P11=U7 EE & UL5 RTC pin5
Timerl output = P1 =J2 pin 29
Timerl input =P0 =J2 pin 20
TimerO input P11 is used and shared by on-boardrieERTC, not recommended for other external use.

The timer can be used to count or time externahsy®r can generate non-repetitive or variablg-gytle
waveforms.

3-2

H-Drive Chapter 3: Hardware

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timen@timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operat®i#IHz (on a 40MHz board), since each timer is
serviced once every fourth clock cycle. Timer omtfakes up to six clock cycles to respond to clock
gate events. See the sample progrdaimer02.c and ae_cntl.cin the t er n\ 186\ sanpl es\ ae
directory.

3.2.5PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eitergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the t@bernate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurmpig signal’s high and low phases on the /INT2=J2
pin 19, assuming the QUART is not installed.

3.2.6Power-save Mode

The HD can be used for low power consumption applicatidiiee power-save mode of the Am186ES
reduces power consumption and heat dissipatiomghlyeextending battery life in portable systems. In
power-save mode, operation of the CPU and intgpeabpherals continues at a slower clock frequency.
When an interrupt occurs, it automatically retwmgs normal operating frequency.

3-3

Chapter 3: Hardware H-Drive

3.3Am186ES PIO lines

The Am186ES has 32 pins available as user-progréeniéD lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO line ban
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojleain
output. A pin’s behavior, either pull-up or pull\p, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins eeded for specific on-board usage, as well. These
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.1

PIO | Function Power-On/Reset statug HD Pin No. HD Initial

PO Timerl in Input with pull-up J2 pin 20;U27 HVY nplut with pull-up

P1 Timerl out Input with pull-down J2 pin 29 Inguith pull-down
P2 /PCS6/A2 Input with pull-up J2 pin 24;U27 HV4 plt with pull-up

P3 /PCS5/A1 Input with pull-up J2 pin 15; USB lbmith pull-up

P4 DT/R Normal J2 pin 38 Input with pull-up Step 2
P5 /IDEN/DS Normal J2 pin 30;U27 HV6| Input with puf

P6 SRDY Normal J2 pin 35 Input with pull-down
pP7 Al7 Normal N/A Al7

P8 Al18 Normal N/A A18

P9 Al19 Normal J2 pin 10 Al9

P10 | TimerO out Input with pull-down J2 pin 12 Inpuith pull-down
P11 | TimerOin Input with pull-up EE;RTC Input wigull-up

P12 | DRQO/INT5 | Input with pull-up N/A Output for LEBE/HWD
P13 | DRQL/INT6 | Input with pull-up J2 pin 11; QUART| nput with pull-up
P14 | /MCSO Input with pull-up J2 pin 37;JP1.5 (E[N)nput with pull-up(ET)
P15 | /MCS1 Input with pull-up J2 pin 23;U27 HV3 Inuth pull-up
P16 | /PCSO Input with pull-up J1 pin 19 /PCSO

P17 | /PCS1 Input with pull-up HC138 U4.4,5 /PCS1

P18 | CTS1/PCS2 Input with pull-up J2 pin 22;U27 HVRInput with pull-up
P19 | RTS1/PCS3 Input with pull-up J2 pin 31;U27 HV[/Input with pull-up
P20 | RTSO Input with pull-up J2 pin 27;U27 HVY Inpuith pull-up
P21 | CTSO Input with pull-up J2 pin 36;U27 HVE Inpuith pull-up
P22 | TxDO Input with pull-up J2 pin 34 TxDO

P23 | RxDO Input with pull-up J2 pin 32 RxDO

P24 | /MCS2 Input with pull-up J2 pin 17 Input withlup

P25 | /MCS3 Input with pull-up J2 pin 18 Input withlup

P26 | Uzl Input with pull-up J2 pin 4; USB U5.9 Inpwith pull-up*
P27 | TxD1 Input with pull-up J2 pin 28 TxD1

P28 | RxD1 Input with pull-up J2 pin 26 RxD1

P29 | /CLKDIV2 Input with pull-up J2 pin 3; USB U5.4b Input with pull-up*
P30 | INT4 Input with pull-up J2 pin 33;JP1.2 (ET) put with pull-up
P31 | INT2 Input with pull-up J2 pin 19; QUART Inpwtth pull-up

* Note: P26 and P29 must NOT be forced low duriog/@r-on or reset.

3-4

Table 3.1 I/O pin default configuration after power-on or reset

H-Drive Chapter 3: Hardware

Three external interrupt lines are not shared RIth pins:
INTO = J2 pin 8; QUART U8.8
INT1 =J2 pin 6
INT3 = J2 pin 21; QUART U8.48

The 32 PIO lines, PO-P31, are configurable via 1®ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

HD initialization on P1O pins ime_init() is listed below:

outport(Oxff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); /l PIOM1

outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PC8A€
outport(0xff70,0x1000); // PIOMO, P12=LED

The C function in the librarge_lib can be used to initialize PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, sEL the tablevabo

Example: pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgtiog pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,

Some of the 1/O lines are used by tHB system for on-board components (Table 3.2). Wmest that
you not use these lines unless you are sure thataye not interfering with the operation of such
components (i.e., if the component is not installed

You should also note that the external interrugd Bins INT1 and 4 are not available for use as w@utp
because of the inverters attached. The inpuegadd these PIO interrupt lines will also be ingdrfor the
same reason. As a result, callipigp_rd to read the value of P31INT2) will return 1 when pin 19 on
header J2 is pulled low, with the result reverdede pin is pulled high.

Signal Pin Function

PO Timerl in; J2.20 U27 HV1, high voltage driventrol

P2 /PCS6; J2.24 U27 HV4, high voltage driver cdntro
P3 /PCS5; J2.15 U01.19, U02.4,5

P4 /DT; J2.38 STEP2 jumper

P5 /DEN; J2.30 U27 HV6, high voltage driver control
P11 Timer0 in Shared with RTC, EE data input
P13 /INT6; J2.11 QUART U8.54

3-5

Chapter 3: Hardware H-Drive

Signal Pin Function

P14 /MCS0; JP1.5 100M BaseT Ethernet

P15 /IMCS1; J2.23 U27 HV3, high voltage driver cohtr
P18 /ICTS1; J2.22 U27 HV2, high voltage driver cohtr
P19 /IRTS1; J2.31 U27 HV7, high voltage driver cohtr
P20 IRTSO0; J2.27 U27 HV5, high voltage driver cohtr
P21 /ICTSO0; J2.36 U27 HV8, high voltage driver cohtr
P22 TxDO0; J2.34 Default SERO debug

P23 RxDO; J2.32 Default SERO debug

P26 uzl; J2.4 USB U5.9

P27 TxD1; J2.28 Serial Port 1 Transmit

P28 RxD1; J2.26 Serial Port 1 Receive

P29 /CLKDIV2; J2.3 USB U5.45

P30 INT4; J2.33 Ethernet interrupt JP1.2

P31 INT2; J2.19 QUART U8.14

Table 3.2 1/0O lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0 Space

External I/O devices can use I/O mapping for accées can access such 1/O devices wiiortb(port) or
outporth(port,dat). These functions will transfer one bgtenvord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000xtfD

The default I/0 access time is 15 wait states. iviay use the function void_wait(char wait) to define the
I/O wait states from O to 15. The system clock5sn® (or 50 ns), giving a clock speed of 40 MHzZ0
MHz). Details regarding this can be found in thdt8are chapter, and in the Am186ES User's Manual.
Slower components, such as most LCD interfaceshtnfiigd the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus sgdeof the system, some components need to be edtdach
I/O pins directly.

For details regarding the chip select unit, plesesseeChapter 5 of the Am186ES User's Manual.

The table below shows more information about I/(piiag.

I/O space Select | Location Usage

0x0000-0x00ff | /PCSO| J1 pin 19=P16 USER*

0x0100 /UR5 U4.15, U8.53 QUART URS5 select
0x0120 /UR4 U4.14, U8.49 QUART URA4 select
0x0140 /UR3 U4.13, U8.13 QUART URS3 select
0x0160 /UR2 U4.12, U8.9 QUART UR2 select
0x0180 TFT N/A End Command
0x0182 TFT N/A Command Packet Port
0x01A0 RDK U25 HC?244 8-bit Data Read
0x01CO0 /IAD Ul11.36 ADC LTC2448 select
0x01C2 /DA U10.7 DAC LTC2600 select
0x01C4 SCK U10,U11,U16 DAC & ADC clock
0x01C6 SDI U10,U11,U16 DAC & ADC data in

3-6

H-Drive Chapter 3: Hardware

0x01C8 L4 Relay RE2 pin 3 Relay Control
0x01CA L5 Relay RE1 pin 3 TFT

0x01CC L6 H4.7 TFT

0x01CE /AD1 | U16.15 ADC P2543 select

0x0200-0x02ff | /PCS2| J2pin 22=CTS1 USER (control2-a$ 1/0 P18)
0x0300-0x03ff | /PCS3| J2 pin 31=RTS1 USER (control?Hs 1/0O P19)

0x0400-0x04ff | /PCS4 Reserved
0x0500-0x05ff | /PCS5| J2 pin 15=P3 UsSB
0x0600-0x06ff | /PCS6| J2 pin 24=P2 USER (control HA¢4/0 P2)

*PCS0 may be used for other TERN peripheral boards.

To illustrate how to interface théD with external 1/0O boards, a simple decoding ciréoii interfacing to
an 82C55 parallel 1/0 chip is shown in Figure 3.1.

74HC138 82C55
RST .
A5 1!, vo| 15 NC m P00-PO7
A6 2] vi| 14 /SEL20 —=
A7 3 c Y2| 13 /SEL40
Y3| 12 /SEL60 | ;5| 20| /cS P10-P17

v4| 11 /SEL80
/SELA0 DAVR 1 /WR

/PCSO 4~ G2A Y5|.10
5d G2B ve[9 ISELCO grp /RD
vCcC 6 | 61 Y7l 7 /SELFO P20-P27

Figure 3.1 Interface to external I/O devices

The functionae_i ni t () by default initializes the /PCSO line at base IMdr@ss starting at 0x00. You
can read from the 82C55 withportb(0x020)or write to the 82C55 witlbutportb(0x020,dat) The call to
inportb(0x020)will activate /PCSO0, as well as putting the adg@s00 over the address bus. The decoder
will select the 82C55 based on address lines A&nd,the data bus will be used to read the apprepdita
from the off-board component.

3.50ther Devices

A number of other devices are also available onHBe Some of these are optional, and might not be
installed on the particular controller you are gsinFor a discussion regarding the software interfeor
these components, please see the Software chapter.

3.5.10n-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, theHD has several functions: watchdog
timer, battery backup, power-on-reset delay, posugply monitoring, and power-failure warning. These
will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumperJ5 of theHD. The watchdog timer provides a
means of verifying proper software execution. e tuser's application program, calls to the fumctio
hitwd() (a routine that toggles the P12=HWD pin of the M#91) should be arranged such that the HWD

3-7

Chapter 3: Hardware H-Drive

pin is accessed at least once every 1.6 secoridbe 05 jumper is on and the HWD pin is not acedss
within this time-out period, the watchdog timer Iputhe WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the egfiin program if something is wrong. After tH® is
reset, the WDO remains low until a transition oscatr the WDI pin of the MAX691. When controllergar
shipped from the factory the J5 jumper is off, whitisables the watchdog timer.

The Am186ES has an internal watchdog timer. Thiisabled by default withe_init().

J5 — Watchdog Header

Power-failure Warning

The supervisor supports power-failure warning aadkbp battery protection. When power failure is
sensed by the PFI= pin 9 of the MAX691 (lower tHaB V), the PFO is low. The PFI pin 9 of 691 is
directly shorted to VCC by default. In order to el externally, cut the trace and bring the P&hal out.
You may design an NMI service routine to take prbtections before the +5V drops and processor dies.
The following circuit shows how you might use trengr-failure detection logic within your applicatio

—————————————————

! |

9-14 V(8.35 VV min) | VCC=+5v :

! |

: 1 c? l

47K ‘ —|— |
Ll PFI, pin 9 of MAX691

| (1.3V min) !

2K | |

Using the supervisor chip for power failure detecti

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atie real-time clock DS1337 are backed up. In
normal use, the lithium battery should last abegty&ars without external power being supplied. W/iie
external power is on, the battery-switch-over diraiil select the VCC to connect to the VRAM.

3.5.2EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesO@4), or 2K bytes (24C16) can be installed in U7.
The HD uses the P12=SCL (serial clock) and P11=SDA (sddtn) to interface with the EEPROM. The
EEPROM can be used to store important data such asde address, calibration coefficients, and
configuration codes. It typically has 1,000,008serwrite cycles. The data retention is more #tapears.
EEPROM can be read and written by simply callirgfimctionsee_rd() andee_wr().

The EEPROM and the RTC (U15) share the same data @ignal line, P11. A range of lower addresses in
the EEPROM is reserved for TERN use. Details miggrwhich addresses are reserved, and for what
purpose, can be found in Appendix B of this manual.

3-8

H-Drive Chapter 3: Hardware

3.5.3Realtime Clock (DS1337)

The DS1337 serial real-time clock is a low-powencklcalendar with two programmable time-of-day
alarms and a programmable square-wave output. Addrad data are transferred serially via a 2-wire,
bidirectional bus. The clock/calendar provides selsp minutes, hours, day, date, month, and year
information. The data at the end of the month iematically adjusted for months with fewer thandziys,
including corrections for leap year. The clock @tes in either 24-hour or 12-hour format with AM/PM
indicator.

The RTC is accessed via software drivetsl init() and rtcl rds(). Refer to sample code in the
\tern\186\samples\fndirectory forfn_rtc.c. The sample code is in tiéashcore-N directory, but applies to
the HD. The RTC is located at U15 and uses a 32KHz cry3taé data sheet can be found in the
tern_docs\partsdirectory and is namets1337.pdf

It is also possible to configure the real-time &léa raise an output line attached to an extemtatiupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervdhis can be used in a time-driven applicat@rthe
VOFF signal can be used to turn on/off the controlEng the switching power supply, LM2575.

3.5.4Reed Relay

One usable Reed Relay can be installed onHibe The relay offers high speed switching compared to
electromechanical relays, a specification of 200ngximum 1 Amp carry current, 0.5 Amp switchingdan
100 million times operation. The relay is drivenlby (0x01C8) and has contacts routed to J6 pin& 12
Seetern\186\samples\hd\ relay.@nd\tern_docs\parts\relay9007.pdffor details.

3.5.5High-Voltage, High-Current Drivers

ULN2003A has high voltage, high current Darlingtivansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substraéchannels feature open-collector outputs fokiig
350 mA at 50V, and integral protection diodes fovidg inductive loads. Peak inrush currents ota600
mA sinking are allowed. By default, U27 provideghrivoltage sinking outputs. A high-voltage sougcin
output chip (UDS2982) may be installed instead, thet user will have to provide external high voétag
(+V=H6.4) for the VS pin (H6.3), and short K (H6@) GND (H6.1). See sectidh6.4for a summary of
these settings.

H6.1 (GND)

H6.3 (VS)

H6 pin 1

Figure 3.2 High Voltage Driver w/ J6 header sinking output pins

These outputs may be paralleled to achieve high-kepability, although each driver has a maximum
continuous collector current rating of 350 mA av50he maximum power dissipation allowed is 2.20 W
per chip at 25 degrees €@J). The common substrate VS is routed to H6 piAlBcurrent sinking in must
return to GND, so a jumper must be installed fidé1 (GND) to H6.3 (VS) A heavy gauge (20) wire
must be used to connect a GND terminal to an eateammon ground return. K connects to the pratecti
diodes in the ULN2003A chips and should be tiedhighest voltage in the external load system.
ULN2003A is asinking driver. An example of typical application wiring is sholwalow.

3-9

Chapter 3: Hardware H-Drive

o1

Solenoid +12Vv

Power Supply

|

GND/SuUB

H6.2
0O QO
K +12v
GND/SUB

XXX

ULN2003 TinyDrive

Figure 3.3 Drive inductive load with high voltage/current drivers.

3.5.6USB

The HD integrates a high-performance USB stack chip tvige an easy to program USB interface. The
onboard hardware fully handles USB stack processang provides for high-speed bi-directional 8-bit
parallel communication. The hardware interfacetuidek 384 bytes of FIFO transmit buffer, and 12&byt
of FIFO for the receiving buffer, making this ar&d low-overhead solution for all embedded applbeest.

No USB specific firmware programming is requiredtbe controller side. The USB interface is seea as
transparenParalle FIFO buffer tasked with transferring data back andhfarith the remote host. The
only control signals needed are “ready to transmittl “data received” signals, readily availableydmir
C/C++ application running on the TERN controller.

Royalty-free software drivers are provided for méshdows environments (XP, 2000, NT, 98). These
field proven USB software drivers eliminates thguieement for Windows USB driver development. Two
types of USB software drivers are available: VCB B2xx. The VCP (Virtual Com Port) driver supports
up to 300 K bytes per second transfer rate, awavadf the device to be accessed transparentlyeR @
side through traditional COM port software. The RZKSB direct driver and DLL) drivers can suppapt u
to 1M bytes per second. Additional utilities aahile from third-party sources allow the USB integfdo

be programmed with unique service and product IDbmers, allowing the unit to be transparently
integrated into OEM applications.

Two Host USB ports are provided on tHB. Port 1 (upper) can interface to a USB keyboard/mmoBsrt

2 (lower) supports a USB Flash Disk. Simple commsazah handle FAT file system applications. No USB
specific firmware programming is required on thatcoller side. This is already taken care of ictday.
Signal AC6 is jumpered to GND (H5.1=H5.2), while B\ pulled up to suppoRarallel FIFO operation.
For more detailed information regarding this praded firmware, seBS_VNC1L_FW_VDAP.pdf in the
Tern_docs\parts\USBdirectory (on any TERN CD).

Figure 3.4 shows the locations of USB port 1 amh 2heHD, as well as the necessary power jumper on
H3 (providing 5V to VUSB).

3-10

H-Drive Chapter 3: Hardware

H3.1 (VCC)

H3.2 (VUSB)

100M Ethernet

USB Port 1 Module

(Keyboard,
mouse)

USB Port 2
(USB Flash
Disk)

Figure 3.4 USB Ports 1 & 2; Ethernet Module

3.5.7100 MHz BaseT Ethernet

An WizNet™ Fast Ethernet Module can be installegrovide 100M Base-T network connectivity. This
Ethernet module has a hardware LSl TCP/IP stackmpiements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAChas 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memdhge host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releasemet connectivity and protocol processing from th
host processor. It supports 4 independent stackemions simultaneously at a 4Mbps protocol prangss
speed. An RJ45 8-pin connector is on-board for eoting to 10/100 Base-T Ethernet network. A sofevar
library is available for Ethernet connectivity.

Figure 3.4 (above) shows the location of the Etbemodule. See sampléstpd_fs.c andtcp_echo.cin
\tern\186\samples\i2chipdirectory for software details. These samplesatse prebuilt into théchip.ide
project, available in this same directory. Use TeRN_EE definition in Local Options>Defines for
software compatibility.

3.5.8QUAD UART

The QUAD UART TL16C754B uses 3.6864 MHz crystal amdvides 4 UART serial ports. By default,
ports 2,3,4, and 5 are routed through RS232 drifegr@32-level communication. Ports 4 and 5, hosvev
may use RS485 optionally. All four ports are aseesvia header H2.

See sample_echo.cin the\tern\186\samples\hddirectory for RS232 echo and RS485 transmit code.

3.5.9CompactFlash Interface

By utilizing the compact flash interface on tH®, users can easily add widely used 50-pin CF standa
mass data storage cards to their embedded apgpticeith RS232, TTL I12C, or parallel interface. TERN
software supports Linear Block Address mode, 16-BiT flash file system, RS-232, TTL I12C or parallel

3-11

Chapter 3: Hardware H-Drive

communication. Users can write files to the Complasth card or read files from the CompactFlash.card
Users can also transfer files to a PC via the @Heaeport.

CF cards can also be used as a means to storesiraadedata to be displayed onto the LCD. This allow
users to have access to unlimited images to be insed application in conjunction with the LCD. As
dicussed above, the AM186ES suuports DMA to allmades/data to be transferred directly to the image
buffer for increased speed.

Sample code and function prototypes are availablaessist in creating applications which use the fil
system to access the CF. Refer to the tatgen\186\samples\hd\fs_cmdsl.axelThis sample uses the
source codatern\186\samples\flashcore\fs_cmdsl.@lso, for a complete listing of file system fuinct
prototypes and data types, refer to the headey fifdeio.h” and “filegeo.h” found thétern\186\include
directory.

3.5.10 12-bit, 11-channel ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, susisesapproximation, 11 channels, serial interface,
analog-to-digital converter. Three control linege ased to handle the ADC, with /CS=/AD1; CLK=SCK;
and DIN=SDI.

The ADC digital data output communicates with athttsough a serial tri-state output (DOUT). If
/AD1=/CS is low, the TLC2543 will have output on DO. If /AD1=/CS is high, the TLC2543 is disabled
and DOUT is free. The TLC2543 has an on-chip 14wkl multiplexer that can select any one of 11
inputs or any one of three internal self-test \gat& The sample-and-hold function is automatichatend

of conversion, the end-of-conversion (EOC) outpaég high to indicate the conversion is complete,
although it is not connected externally.

TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingida
isolation of analog circuitry from logic and supptpise. A switched-capacitor design allows low-erro
conversion over the full operating temperature earigne analog input signal source impedance shuaild
less than 5Q and capable of slewing the analog input voltage @60 pf capacitor.

A reference voltage of 5V must be connected. Tdrelluare shares the same line for the referencagmlt
as for the incoming power. A REF02 precision 5Vpamay be installed to provide this voltage, omsig
R50 can be jumpered on J4.23 to VCC (J4.24).

The CLK signal to the ADC is toggled through an @, and serial access allows a conversion ratgof
to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines ased, as listed below:

/ICS Chip select = /AD1, high to low transition elesbDOUT, DIN and CLK.
Low to high transition disables DOUT, DIN and CLK.
DIN SDI, serial data input

DOUT DOUT, 3-state serial data output.

EOC HC244V U25.6; End of Conversion, high indicatesversion complete angd
data is ready

CLK I/O clock = SCK
REF+ Upper reference voltage (R50=VQ@CE use REF02 5V reference chip)
REF- Lower reference voltage (PCB GND)

VCC Power supply, +5 V input (from R50=VCC or useM2 5V chip)
GND Ground

The analog inputs CO-C10 are available at J4 pfin& 31-40 Reference and power R50 is available on J4
pin 24.

3-12

H-Drive Chapter 3: Hardware

3.5.1116-bit, 8-channel DAC(LTC2600)

The LTC2600 is an eight channel 16-bit digital-tlg converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output ammificapable of driving up to 15mA. It uses a 3-v&iel
compatable serial interface and has an output rah@eREF volts, making 1 LSB equal to REF/65535 V.
The reference voltage input is by default shore®dV (either from the REF02 precision 5V chip, or a
manual jumper to VCC on J4.23=J4.24). The DAC otstpwe routed to the J4 pins 19-22 & 25-28

The DAC is installed on thelD at location U10 and uses /DA as the chip seldog ynchronous serial
interface is used to send data to the device. Refére sample cod&ern\186\samples\hd\hd_da.for an
example on driving the DAC. The sample is alsoluded in the pre-built sample project
\tern\186\samples\hd\h_drive.ide. Refer to the DAC data sheet for additional speaiions;
\tern_docs\parts\litc2600.pdf.

Outputs:
J4.19-22
J4.25-28

DAC LT260C

Figure 3.5 8-channel 16-bit DAC LT2600

3.5.12 24-bit, 16-channel ADC(LTC2448)

A 24-bit LTC2448 sigma-delta ADC can be installétie LTC2448 chip offers 8 ch. differential or 16 ch
single-ended input channels. Variable speed/rasalgettings can be configured. A peak single-okan
output rate of 5 KHz can be achieved.

The LTC2448 switches the analog input to a 2 phcapr at 1.8MHz with an equivalent input resiseiot
110K ohm. The ADC works well directly with straiges, current shunts, RTDs, resistive sensors4and
20mA current loop sensors. The ADC can also woek directly with thermocouples in the differential
mode. By default, a precision reference with arirde temperature sensor (REF02, 5V) is installed,
providing local temperature measurement for thewapte applications. This reference will grant a.B\2
input range per channel. A 2.5V reference (with 26Y input) may be installed as well only if théseno
TLC2543 and DAC2600 installed, as those requiry agderence shared by the LTC2448.

Inputs are routed directly to header J4 pins 3&8e Figure 3.6). It should be noted that J4 13in
corresponds to input BOO, which is tied to the terafure pin on REF02 chip. This input cannot bedus
regularly if the temperature pin is still connecgtbdcause it will already provide a digital convensof the
temperature input).

Pin Header J4
16-channel input

to 24-bit ADC 34 pin 17
ADC temperature
input (no other inputs
J4pinl allowed

The software source sample code on TERN €Bern\186\samples\hd\hd_ad24,allows user to modify
the input reading resolution. For digital inputs)yoone byte reading is needed. Also see Chapfer 4
software channel / hardware pin details.

3-13

Chapter 3: Hardware H-Drive

3.5.13TFT Support

A Color QVGA TFT (320x240 pixels, 5.7") display came installed. Aluminum Bezel and plastic
enclosures for the 5.7 display are available. sTHFT is installed below theD, using header H4 (under
the CompactFlash interface), as seen in Figure Seg sampléern\186\samples\hd\tft_top.cfor details.

Figure 3.7 TFT Display (left) ; TFT to HD connection (right)

3.5.14Power Supplies

TheHD can be powered by 2 ways:
1) Regulated external 5V DC power via J2.39=VCC 32d0=GND, or J1.1=VCC and J1.2=GND..

2) Unregulated 9V to 12V DC power via two pin scriannimals(T1) while a 5V linear regulator(LM7805,
UO00) is installed. There is a polarity protectidade installed for the screw terminal input DC powEhe
LM7805 is rated for 1A current, and can take asfag 35V. However, due to the linear regulatiohthed
input voltage has to drop to 5V, if the voltagemwith the current (200 mA) is generating a loheét.

NOTE: A 9V to 24V input switching regulator is optial and can be installed in place of the deféaudtar
regulator.

TheHD also requires regulated 3.3V DC power for the Etée which is already taken care of on the 3.3V
(U14) regulator. i

T1.1: DC 9-12V

T1.2: GND Linear Regulator
Input: 9-12V DC

Ouput: 5V DC

3-14

H-Drive Chapter 3: Hardware

3.6 Headers and Connectors

3.6.1Expansion Headers J1 and J2

There are two 20x2 0.1 spacing headers for expanslost signals are directly routed to the Am186ES
processor. These signals are 5V only, and any fergtrge voltages will most likely damage the board.

VCC

anD 40 > 39 vcc? J1
ST =T Ti4 v 1~ o2 GND
[CTS@E & A 35 P 2y Ol
THDO =4 33/ INT4 — a o—=_ SHD
ExDo =2 g 8 =1 ETo ; o O 1§ Do
=0 =Ll 1O O+
TRDL =8 =7 JETS0 o0
e = = ! D15 13 14 D32
DL o6 @ St TnTe Als 12
= O—F=+57 - /RET 1% Te D4
/ = = EeT 17 < O T
LLT2E2 o o—== LT =0 O—=i—=
PO =0 15 INTZ2 Pls Dt
e 1 2 O Di2 21 ~ . 22 D7
— O D1z =22 24 GND
T 1t D2 D13 23 o ;24 GNI
D2E 12 o O—TI% — 26 A7
e O D1% =7 O—==—
0 1o oLl i 2T & & X
215 10 S D1E TN ELF:
T e 2 O ED 21 32 A4
INTO 2 T JHMI LED 2L oy o 22 A4
{INTL & Qo T LOE D11 33 34 A3
P26 4 3 P29 Di1a 25 35 AZ
= 2:}01 = 1::93?083.5:4.1
o——FE DE 30 ~ o 20 &0

HDRDA 0 Jz

3.6.2 Connector J4 - ADC inputs, DAC outputs

There are 16 24-bit ADC inputs on J4.3-18, 8 16BAC outputs on J4.19-22 & J4.25-28, and 11 12-bit
ADC inputs on J4.29 & J4.31-40. Signal R50 (J4@85t only be set manually if there is no REFOD chi

—GEE ? o——== 16-channel 24-bit

O O i .

i] O—0 E07 ADC input
V+ (9V) from 'E'-JLETOD o 12 BiG P
RS232 input EOC 13 11 B
Eos it 2 O Eoo

=0 0———
w BOO 17 12 BO1

o > W = =
5 ; 5V=R5(4 (']

5z V221 22 V1)
8§ > =t Ot 8-channel 16-bit
DAC ouput

Precision 5V chip. =
= o7 31 2
Output=R50 (J4.23) Te a2 2 =i o 11-channel 12-bit
T i
o0 O ADC input

3-15

Chapter 3: Hardware H-Drive

3.6.3Connector H2 — QUART Ports

Four QUART serial ports are routed to the H2 headeorts 2 through 5 are all installed as RS232 by
default. Ports 4 and 5 are optionally capablestigiRS485 drivers.

UART Serial Port 2
Transmit (/TX2) &
Receive (/RX2)

Hz
: STHZ |1 O o—= -T2
UART Serial Port 3 I E o S
. y =
; c & _OT3
Transmit (/TX3) & a0 O0——5 UART Serial Port 4
Receive (/RX3) . ST
< Tod i oo ig EEE- / a8> (IO\'N)
mp— . “—11 T SE TS 485+ (high)
UART Serial Port 4 JTHE 1C GE 15| 4558 RS48!
Transmit (/TX4) & [EEdT 5 1= 495?‘*\ UART Serial Port 5
. 16 20 gNp
Receive (/RX4) eI 1N o O 485- (low)
485+ (high)

UART Serial Port 5
Transmit (/TX5) &
Receive (/RX5)

3.6.4H-Drive Jumper Connections

Several jumper settings are available onHEe Below is a summary of these settings.

Connector Pin ID’s Usage
J2 J2.38=P4 ; J2.40=GND| Step 2 Jumper
J5 J5.1=WDI ; J5.2=P12 Watchdog Jumper
J7 J7.1=VOFF ; J7.2=GND VOFF jumper (switching fatpr)
H3 H3.1=VCC ; H3.2=VUSB USB Power jumper
H5 H5.1=AC6 ; H5.2=GND USB Parallel FIFO setting
H6 H6.1=GND ; H6.2=K U27 High-Voltage driver settings.
H6.3=VS ; H6.4=+V Sinking output (ULN2003): H6.1=H6.3.
Sourcing output (UDS2982):H6.1=H6.2 & H6.3=H6.4 (Must
provide external sourcing voltage to +V)

3-16

H-Drive Chapter 4: Software

Chapter 4: Software

Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix C.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an 1/0 address space and a memory address
space. 1/O address space ranges from 0x0000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. 1/0 and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/0O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in 1/0O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in 1/0 space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

4-1

Chapter 4: Software H-Drive

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in 1/0 space. It is used most often
when working with processor registers that are mapped into 1/0 space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in 1/0 space. You will find that most
hardware options added to TERN controllers are mapped into 1/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using 1/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of 1/0 and memory mappings, please refer to the Hardware chapter of this
technical manual.

4.1 AE.LIB

AE.LIB is a C library for basic HD operations. It includes the following modules: AE.OBJ, SER0.OBJ,
SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and include the
corresponding header files. The following is a list of the header files:

Include-file name | Description

AE.H timer/counter, Watchdog
SERO.H Internal serial port O
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

4-2

H-Drive Chapter 4: Software

4.2 Functions in AE.OBJ

4.2.1 H-Drive Initialization

ae_init

This function should be called at the beginning of every program running on HD controllers. It provides
default initialization and configuration of the various 1/O pins, interrupt vectors, sets up expanded DOS
1/0, and provides other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae_init are described below. For details regarding register use, you will want to refer
to the AMD Am186ES Microcontroller User’s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xfffff (to map MemCard 1/0O window)

512K ROM Block size operation.

Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state if you require increased performance (at a risk of stability in
noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)

reference in the processor User’s manual.
outport(0Oxffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-OxFFfFff

Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.
Three wait state operation. Reducing this value can improve performance.

Disables PSRAM, and disables need for external ready.
outport(Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

MCSO0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the 1/0 window.

Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(Oxffa8, OxaObf); // s8, 3 wailt states
outport(Oxffa6, 0x81ff); // CSOMSKH

Initialize PACS so that PCS0-PCS3 are configured so that:

Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.
The chip select lines starts at 1/0 address 0x0000, with each successive chip select line addressed

0x100 higher in 1/O space.
outport(Oxffad4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

Configure the two P10 ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SERO and SER1.
outport(OxfF78,0xe73c); // PDIR1, TxDO, RxDO, TxDl1l, RxD1,
// P16=PCS0O, P17=PCS1=PPI
outport(0OxfF76,0x0000) ; // PI1OM1
outport(OxfF72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0Oxff70,0x1000); // PIOMO, P12=LED

The chip select lines are by default set to 15 wait states. This makes it possible to interface with many
slower external peripheral components. If you require faster 1/0 access, you can modify this number
down as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is
decreased too dramatically. A function is provided for this purpose.

4-3

Chapter 4: Software H-Drive

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.

wait=0, wait states 0, 1/0 enable for 100 ns
wait=1, wait states , 1/0 enable for 100+25 ns
wait=2, wait states , 1/0 enable for 100+50 ns
wait=3, wait states , 1/0 enable for 100+75 ns
wait=4, wait states , 1/0 enable for 100+125 ns
wait=5, wait states , 1/0 enable for 100+175 ns
wait=6, wait states , 1/0 enable for 100+225 ns
wait=7, wait states 5, 1/0 enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sources on the HD, consisting of seven maskable interrupt pins
(INT6-INTO) and one non-maskable interrupt (NMI). There are also an additional eight internal
interrupt sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD Am186ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the eight external interrupts. The user can call any of
the interrupt init functions listed below for this purpose. The first argument indicates whether the
particular interrupt should be enabled, and the second is a function pointer to an appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOl command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOl command, you need to write the EOI register word with 0x8000.
outport(Oxff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 ps.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR
will return on interrupt.

void intO_init(unsigned char 1, void interrupt far(* intO_isr)());

4-4

H-Drive Chapter 4: Software

void intl_init(unsigned char
void Int2_init(unsigned char
void Int3_init(unsigned char
void int4_init(unsigned char
void int5_init(unsigned char
void int6_init(unsigned char
void int7_init(unsigned char
void Int8_init(unsigned char
void Int9_init(unsigned char
void nmi_init(void interrupt f

, void interrupt far(* intl_isr)()
, void interrupt far(* int2_isr)()
, void interrupt far(* int3_isr)()
, void interrupt far(* int4_isr)()
, void interrupt far(* int5_isr)()
, void interrupt far(* int6_isr)()
, void interrupt far(* int7_isr)()
, void interrupt far(* int8_isr)()
, void interrupt far(* int9_isr)()
r (* nmi_isr)(Q));

o o/ o/ o/ o/ o/ o/ o/
Nl el NI NI NI NI NN

(I T T TR T TR T T T

4.2.3 1/O Initialization

Two ports of 16 1/O pins each are available on the HD. Hardware details regarding these P10 lines can be
found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will need to initialize these pins in one of the four
available modes. Before selecting pins for this purpose, make sure that the peripheral mode operation of
the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the 1/0
ports, please refer to Chapter 11 of the AMD Am186ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the P10 lines.

The function pio_wr and pio_rd can be quite slow when accessing the P1O pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the P1O pins occur
if you instead modify the P10 registers directly with an outport instruction Performance in this case will
be around 1-2 us to toggle any pin.

The data register is 0xff74 for PIO port 0, and Oxff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
0 = Normal operation

1 = Input with pullup/down

2 = Output
3 = Input without pullup/down

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current 1/0 value for the P1O pins in the selected port.

4-5

Chapter 4: Software H-Drive

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the HD can be used for a variety of applications. All three timers run at 1/4
of the processor clock rate (L0MHz based on 40MHz system clock, or one timer clock per 100ns), which
determines the maximum resolution that can be obtained. Be aware that if you enter power save mode,
that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD Am186ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high. It is important to note the the interrupt latency generated by
the ISRs that handle a signal transition will define the time resolution the user will be able to achieve.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timerl can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this
down even further. The sample files timer02.c and timerl2.c, located in tern\186\samples\ae,
demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
AMI186ES User’s Manual.

void t0_init

void t1_init

Arguments: int tm, int ta, int th, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the TOCON/T1CON
mode registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

4-6

H-Drive Chapter 4: Software

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J5) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a roll-over in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

There is a common data structure used to access and use both interfaces.

typedef struct{
unsigned char secl; One second digit
unsigned char seclO; Ten second digi
unsigned char minl; One minute digit
unsigned char minl0; Ten minute digit
unsigned char hourl; One hour digit.
unsigned char hourl10; Ten hour digit.
unsigned char dayl; One day digit.
unsigned char dayl0; Ten day digit.
unsigned char monl; One month digit.
unsigned char monl0; Ten month digit.
unsigned char yearl; One year digit.
unsigned char year10; Ten year digit.
unsigned char wk; Day of the week.

} TIM;

t

intrtcl rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns 0 on success and returns 1 in case of error,
such as the clock failing to respond.

4-7

Chapter 4: Software H-Drive

Void rtcl_init
Arguments: char™ t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, yearl, month10, monthl, day10, dayl, hourl0,
hourl, minute10, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the
byte array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, O, 5, 1, 3, 5, 5, 3, 0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

while(t) { t--; }
Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crcl6
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.
void ae_reset

Arguments: none
Return value: none

4-8

H-Drive Chapter 4: Software

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prototyped in the header file ser0.h and serl1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SERQO is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port O.

Two asynchronous serial ports are integrated in the Am186ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SERQO is used by the DEBUG ROM for application download/debugging in Step One and Step
Two. We will use SER1 as the example in the following discussion; any of the interface functions which
are specific to SER1 can be easily changed into function calls for SERQ. While selecting a serial port for
use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 10 of the Am186ES Microprocessor User’s Manual
and the schematic of the HD provided on the CD in the tern_docs\schs directory.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock.

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SERL1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, serl_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMAL operation. In terms of receiving, there is no

4-9

Chapter 4: Software H-Drive

software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhitl() and take out the data from the buffer with getser1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy 2
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SPOCT/SP1CT) if necessary, as described in chapter 10 of the Am186ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser1() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4
KB buffer will be able to store data for approximately four seconds without overwrite.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhitl() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putserl() to send out a byte, or use putsersl() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putserl() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every “:” character to “?’. The translated HEX file is then transmitted
out of SERQ. This sample program can be found in tern\186\samples\ae.

4-10

H-Drive Chapter 4: Software

Software Interface
Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either sO or
serQ can be replaced with sl or serl, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
unsigned char ready; /* TRUE when ready */
unsigned char baud;
unsigned char mode;

unsigned char iflag; /* interrupt status */
unsigned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int iIn_size; /* Input buffer size */

int in_crent; /* Input <CR> count */

unsigned char in_mt; /* Input buffer FLAG */
unsigned char in_full; /* input buffer full */
unsigned char *out_buf; /* Output buffer */

int out_tail; /* Output buffer TAIL ptr */

int out_head; /* Output buffer HEAD ptr */

int out_size; /* Output buffer size */

unsigned char out_full; /* Output buffer FLAG */
unsigned char out_mt; /* Output buffer MT */

unsigned char tmso; // transmit macro service operation
unsigned char rts;

unsigned char dtr;

unsigned char en485;

unsigned char err;

unsigned char node;

unsigned char cr; /* scc CR register */

unsigned char slave;

unsigned Int in_segm; /* input buffer segment */
unsigned int in_offs; /* input buffer offset */
unsigned iInt out_segm; /* output buffer segment */
unsigned int out_offs; /* output buffer offset */

unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 with the specified parameters. b is the baud rate value
shown in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, and no parity communication.

4-11

Chapter 4: Software H-Drive

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the
byte array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

4-12

H-Drive Chapter 4: Software

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these 1/0O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the Am186ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial 1/0O ports available on the Am186ES Processor have many other features that
might be useful for your application. If you are truly interested in having more control, please read
Chapter 10 of the AM186ES manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to Ox1ff, is available for your application use.

4-13

Chapter 4: Software H-Drive

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is O in success.
ee rd
Arguments: int addr

Return value: int data

This function returns one byte of data from the specified address.

4.5 Analog-to-Digital Conversion
Two ADC chip can be installed on the HD.
4.5.1 TLC2543 (12-bit 11 channels)

The ADC unit provides 11 channels of analog inputs based on the reference voltage supplied to R50
(J4.23). For details regarding the hardware configuration, see the Hardware chapter.

For a sample file demonstrating the use of the ADC, please see hd_ad12.c in tern\186\samples\hd.

int hd_ad12 (\tern\samples\hd\hd_ad12.c)
Arguments: unsigned char ¢
Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel ADO, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

hd_ad12(0); // Read from channel O
chn_0_data = hd_ad12(0); // Start the next conversion, retrieve value.

4.5.2 LT2448 (24-bit 16 channels)

Delta-Sigma ADC LTC2448

The LTC2448 ADC (U11) provides 16 channels of 0-2.5V analog single-ended (24 differential) inputs.
The following functions will drive the 24-bit ADC. The order of functions given here should be followed
in actual implementation.

void ad24_setup(unsigned char chip, unsigned int control_byte);

void ad24 _rd(unsigned char* raw);

4-14

H-Drive Chapter 4: Software

The control byte, control_byte, drives the LTC2448 in 16 channel single-ended mode with value 0xb000.
In code, the control byte is calculated this way:
ch_sel=0; /Iselect channel
control_byte=control_byte+speed[10]; //add speed desired to 0xb000
control_byte=control_byte+(ch_sel<<8); //add channel selection w/ 8 bit left shift

NOTE: “ch_sel” and the desired channel signal do not match up. Instead use the following scheme to
select the desired signal on the board:

ch_sel OnUl1 Header
chip J4 pin
0 B0O (TMP) 17
1 B02 16
2 B04 14
3 B06 12
4 B08 11
5 B10 8
6 B12 6
7 B14 4
8 BO1 18
9 B03 15
10 B05 13
11 BO7 10
12 B09 9
13 B11 7
14 B13 5
15 B15 3

The LTC2448 also supports 8 channel differential mode. This can be achieved by changing the control
byte passed to the ‘ad24_setup’ routine to 0xa0000 (speed and channel selection is added on the same way
as in single-ended mode). See the LTC2448 data sheet for details on how to define the control byte,
‘LTC2448.pdf’ in the tern_docs\parts directory.

For a sample file demonstrating the use of the ADC, please see hd_ad24.c in tern\186\samples\hd.

This sample is also included in the h_drive.ide test project in the tern\186\samples\hd directory.

4.6 Digital-to-Analog Conversion

The LT2600 provides 8 channels of 16-bit digital to analog conversion. For software purposes, we must
initialize the clock (SCK), data-in (SDI), and chip select (/DA):

outportb(SCK, 1); // set all control pins high
outportb(DA, 1); // DAC LTC2600/CS
outportb(SDI, 1);

void da_16 (\tern\samples\hd\hd_dal6.c)
Arguments: unsigned char mod, unsigned int dac
Return values: none

4-15

Chapter 4: Software H-Drive

The argument mod selects the channel to write to. A value of 0x3[Y], where [Y]=0-7, corresponds to
channels VV1-V8 respectively. Alternatively, 0x3f corresponds to all channels.

The argument dac is ranged from 0 to Oxffff, on a 5-volt scale.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

hd_ad12(0); // Read from channel O
chn_0_data = hd_ad12(0); // Start the next conversion, retrieve value.

For sample DAC code, see hd_dal6.c in the \tern\186\samples\hd directory.

4.7 QUART TL16C754B

The four UART ports from the QUART TL16C754B require separate driver code outside of ae.lib. The
file quart.c in the \tern\186\samples\hd directory provides this code. A prebuilt project h_drive.ide in
the same directory includes u_echo.c, which is a sample of QUART software usage.

There is no library as of yet to enclose these drivers, so this file must be included in any project node using
the QUART chip.

4.8 USB

The VNCLL chip using the Vinculum VDAP firmware is configured to provide 2 host USB ports. Port 1
is used to interfacing to a USB Keyboard or mouse, while Port 2 is used for USB Flash Disk interface.

The document concerning all details of this firmware is in the \tern_docs\parts\USB directory on the
TERN CD, under the title DS_VNC1L_FW_VDAP.pdf.

Pages 10-13 of this document list out the entire firmware command set when communicating with the
VNCILL, as well as the responses expected from the chip. In the \tern\186\samples\hd directory,
hd_serl.c can be used to talk to the VNCL1L through a hyperterminal over serial port 1.

There are key bits to examine when transmiting/receiving data from the VNCI1L. Register RDK at
address 0x1AOQ contains an 8-bit status on various lines. A summary of corresponding lines to bits is listed
below:

Bit ID Function
Low = ok to write command to WRU(0x560)
7 ITXE High = do not write
DATAACK# = High for command mode

6 ACK Low for data mode

Low = one byte ready to be read from RDU (0x5E0)
5 /IRXF High = do not read
4 EOC End of Conversion for ADC TLC2543 (not for USB)
3 n/a n/a
2 DOUT Data Out for ADC TLC2543 (not for USB)
1 SDO Data Out for ADC LT2448 (not for USB)
0 BSY BUSY for ADC LT2448 (not for USB)

4-16

H-Drive Chapter 4: Software

Table 4.2 RDK (0x1A0) Bit Definition

As can be seen in the table above, commands may be written to WRU (0x560), and responses from the
chip may be read from RDU (0x5EQ).

Other samples include keyboard.c (USB Keyboard sample) and usb_disk.c (USB Flash disk sample).
Both of which are located in \tern\186\samples\hd.

4-17

HD

Appendix A: HD Layout

Appendix A: HD Layout

The HD measures 4.25 x 3.3 inches.

0.10, 3.20

0.733, 3.142

|

1.708, 3.133

|

4.25,3.30

3.80,'2.958

HE a#l
Hi
a d -

e

(x)

ra
J HT D i \
7 w
Ut [I dg =
M1 o =
= Mg us —Y
= +
g || B : +
N B = B
37 =
o ot "
g 20 U E
o K
g i By _ (T [k
[[|7 | %
B
S o I | ™ {83 .
o [E gl _l = él N
°__::_.Ed? 1| ;U - 3
K =
& - I_I |
c W | @ o ®,
0.0, 0.0 \ | \
0.60, 0.10 2.908, 0.092
0.10, 0.10 4.15,0.10

A-1

0Z€ ‘ST

STT'OTY

HD Appendix B: Serial EEPROM Map

Appendix B: Serial EEPROM Map

Part of the on-board serial EEPROM locations are used by system software. Application programs must not
use these locations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO_receive, used by ser0.c

0x05 SERO_transmit, used by ser0.c

0x06 SER1_receive, used by serl.c

0x07 SER1_transmit, used by serl.c

0x10 CS high byte, used by ACTR™

0x11 CS low byte, used by ACTR™

0x12 IP high byte, used by ACTR™

0x13 IP low byte, used by ACTR™

0x18 MM page register 0

0x19 MM page register 1

Oxla MM page register 2

0x1b MM page register 3

HD Appendix C: Software Glossary

Appendix C: Software Glossary

The following is a glossary of library functions for HD.

void ae_init(void) ae.h

Initializes the AM188ES processor. The following is the source code for ae_init()
outport(0xffa0,0xc0bf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states

outport(0xffa8,0xa0bf); // 256K block, 64K MCSO0, PCS 1/0
outport(0xffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffad,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCS high

clka_en(0);

enable();

Reference: led.c

void ae_reset(void) ae.h

Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ae.h

Toggles P12 used for led.

Var: 1 - Led on or off

Reference: led.c

C-1

Appendix C: Software Glossary HD

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple for loop up to t.

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: 1 — 1 enables power save only. Does not disable.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: 1 — 1 enables clock output, O disables (saves current when
disabled).

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a P10 line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit — P10 line O - 31
Mode — above mode select

Reference: ae_pio.c

HD Appendix C: Software Glossary

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit — P10 line O - 31
dat — 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16 bit PIO port.

Var: port — 0: PIO O - 15
1: P10 16 - 31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to 1/0 address portid.

Var: portid — 1/0 address
value — 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid — 1/0 address
value — 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an 1/O address portid. Returns 16-bit value.

Var: portid — 1/0 address

Reference: ae_ppi.c

C-3

Appendix C: Software Glossary

HD

int inportb(int portid) dos.h

Reads from an 1/O address portid. Returns 8-bit value.

Var: portid — 1/0 address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae_ee.c

HD Appendix C: Software Glossary

void io_wait(char wait) ae.h

Setup 1/0O wait states for 1/O instructions.

Var: wait — wailt duration {0..7}
wait=0, wait states 0, 1/0 enable for 100 ns
wait=1, wait states 1, 1/0 enable for 100+25 ns
wait=2, wait states 2, 1/0 enable for 100+50 ns

wait=3, wait states = 3, 1/0 enable for 100+75 ns
wait=4, wait states = 5, 1/0 enable for 100+125 ns
wait=5, wait states = 7, 1/0 enable for 100+175 ns
wait=6, wait states = 9, 1/0 enable for 100+225 ns
wait=7, wait states = 15, 1/0 enable for 100+375 ns
Reference:
void rtcl_init(unsigned char * time) fn.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:

time[0] = weekday
time[1l] = yearlO
time[2] = yearl
time[3] = monlO
time[4] = monl
time[5] = daylO
time[6] = dayl
time[7] = hourlO
time[8] = hourl
time[9] = minl0
time[10] = minl
time[11] = seclO
time[12] = secl

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0}%};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtcl_rd(TIM *r) fn.h

Reads from the real time clock.

Var: *r — Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, mini, min10, hourl, hourl0;
unsigned char dayl, day10, monl, mon10, yearl, year10;
unsigned char wk;
}TIV;

Reference: rtc.c

C-5

Appendix C: Software Glossary

HD

void t2_init(int tm, int ta, void interrupt far(*t2_isr)());
void t1_init(int tm, int ta, int th, void interrupt far(*t1_isr)());
void t0_init(int tm, int ta, int th, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

ae.h

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the AMD CPU Manual

ta — Count time a (1/4 clock speed).
tb — Count time b for timer O and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PWM). See

hardware chapter.

t#_iIsr — pointer to timer interrupt routine.
Reference: timer.c, timerl.c, timer02.c, timer2.c, timer0.c timerl12.c

void nmi_init(void interrupt far (* nmi_isr)());

void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void intl_init(unsigned char i, void interrupt far (*intl1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts O through 6 and NMI (Non-Maskable Interrupt).

Var: 1 — 1: enable, 0: disable.

int#_isr — pointer to interrupt service.

Reference: intx.c

ae.h

void sO_init(unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c) (void);
void s1_init(unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b — baud rate. Table below for 40MHz and 20MHz Clocks.
ibuf — pointer to input buffer array

isiz — input buffer size

obuf — pointer to output buffer array

osiz — ouput buffer size

c — pointer to serial port structure. See AE.H for COM

structure.

b baud (40MHz) | baud (20MHZz)
1 110 55

2 150 110

3 300 150

4 600 300

5 1200 600

C-6

ser0.h

serl.h

HD Appendix C: Software Glossary

6 2400 1200

7 4800 2400

8 9600 4800

9 19200 9600
10 | 38400 19200
11 | 57600 38400
12 | 115200 57600
13 | 23400 115200
14 | 460800 23400
15 | 921600 460800

Reference: sO_echo.c, s1_echo.c, s1_0.c

Serial port 0, 1 initialization.

Var: ml = SCC691 MR1
m2 = SCC691 MR2
b — baud rate. Table below for 8MHz Clock.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size
c — pointer to serial port structure. See AE.H for COM

structure.
ml bit Definition
7 (RxRTS) receiver request-to-send control, 0=no, l=yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIFO FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Block
4-3 (Parity Mode), 00=with, Ol1=Force, 10=No, 11=Special
2 (Parity Type), O=Even, 1=0dd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8
m2 bit Definition
7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=Remote
loop
5 (TXRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bit), 0111=1, 1111=2

Reference: sO_echo.c, s1_echo.c, s1_0.c

int putserO(unsigned char ch, COM *c); ser0.h
int putserl(unsigned char ch, COM *c); serl.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr

Var: ch — character to output
c — pointer to serial port structure

Reference: sO_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); serl.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

C-7

Appendix C: Software Glossary HD

Var: str — pointer to output character string
c — pointer to serial port structure

Reference: serl_sin.c

int serhitO(COM *c); ser0.h
int serhitl(COM *c); serl.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else
0.

Var: c¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getser1(COM *c); serl.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h

Retrieves a fixed length character string from the input buffer. If the buffer contains less
characters than the length requested, str will contain only the remaining characters from the
buffer. Appends a “\0’ character to the end of str. Returns the retrieved string length.

Var: c¢ — pointer to serial port structure
len — desired string length
str — pointer to output character string

Reference: serl.h, ser0.h for source code.

C-8

XTAL2 [RDU [TXE ace 18 2 Uiz CFB UL 29F800 H4 HDRD20 14 v 1
e BT v 20Tl tlao bt e mel 98loo 2o %o 2ap apmoomyad veil o 2ge
o74 R8 RS Q—/\/\/— —£1D3 D11 55—~ —%{ Al4 /BY o5& 0 O L O O = O C—3 = —0 & N
16MHZ V3 ACK GD VY 312 Diros 3]s IBY a6 Al 53 867 353 8 B2 /CT S &35 me 52 8 &D
ACo roB Q P11 4] (29~ 4] 45~ 1o 72 8 17 BIO TXDO 3 BN TR
ACT B 512 DISr5p- —w| A2 DLS g b3 &0 0 92 &1 7 32 3§31 /Rrs1 9 R 1o
5 31 6] 23 ;1L 2 72 > 08 11 12 Bos P> 30 2 29 p1 RSy
Va3 Voo R4 4|alalalalalalalal3lals — D7 __ D15 = —71 Al0 D14 —5— 3 O & BOS 13 O & BO4 TXDL 284 57 TRTSO D15_43 O
8|7(6]5{43[2|1]0[o|8| 7 — Ll /ce1ce2 22 — L a9 D6 |42 505 5 5 L3 5
a4 [Co5 B 33 B 21 7 15 B03 15 B02 RXDL26 2 O 25 JTNTB/RST 15
4 [c —8lato/vs: [33- —81as D132l o223 LN
91 N0 34 9| 8 13 (a0 RD17 VR B00 17 801 P2 2 23 PI5 ST 17
ap 1| GECCECECCENmDs |38 TI0] 05T TR IO RE o BT 9 5 Y4 19 5 V3 ICTSPZ2 5 5 21 INT3 PI619 5 o5 20 D6
V33 2| G76 5432100 Dby |35 DB 11 36 11 38 P TFT V2 21 22 VI PO__ 20 9 INT2 Dl421 22 D7
v A Allag JveRSS 11w v [28 Y2 2l 5 o022 o & o O
33 3 o 34 D3 12 37 12 37 R50 23 24 Vo P25 7 P24 323 24 QD
AC s AD3 A21A7 rov 3L 121)RsT veolSL- R023 5 o244 G\
VCC VCC X3 a4V oS 33> 13 60 R 3e 13 (RST Y36 33 525 26 V6 5 P3 25 26 A7
cialcis %45 32 DL —i4] (39~ 14| [35° WUSB 5 1 wsB Vi o7 2 €5 D285 3 8B D227 2 S8 A
4[c XO usB H ADL Aalae JcspS2 Ldl ¢ D3 32— 5V 5V
D 6] X9 DL 3T 5] a8 SME0 TI5| R o324 Use2- 61w 2 UsBi- G829 30 GND PI0_12 1 pL T\WR 29 30 A5
PLL 7| Aoy varo [0 Va3 16| hr o |81 TI6] o oo |33 USB2+ 7| pr po [3 USBI+ C7 31 O o 32 G0 Al9 10 O o9 DIB /RD31 o o 32 Ad
D 8 29 DB —I7] (42~ 17| (32~ 8 Z 33 34 C9 TNIO 7 1133 34 A3
TST USB2M PERIAY: § Al7 Do G G S o L 5 O S &
P26 9] rst USe2p |28 DP2 Bl 71pl 23 18157 D1 [31 3B 5 o036 N6 5 5 5 1035 5 o386 ~2
V33 VUSB PreT0] RSL 228 27 G TIo] a2 AP Iaa 19147 Bl 3o USB_A 3T 8&3a P4l Q3w 373 3 AT
[119 B v MI26 DML USBI+USBI- _20] a5 ' gBus 45 20 Ae Do 2 USB CONNECTOR 3R Q] D &b, 2 3 3_1PRG IS A0
RL Ti2| jBBBBCBBB & [25 DP1 [C34 [caa 210 1o ove 46 2L A s oel28 15)
10PF > 100K | TERRPLRDSTSER 221 01 e AL “22| 73 ap |2 Wl 1 2 P12 e HDRD40
27PF| 27PF 23 o Do |48 237 7> /e |28 1 2 VUSB
BD? 27 (29~ 24 25~ 37
1{1(1] 1/2|12[2[2[2 —55| WP D10 [£5- —< AL A0 =—— VOEE 1 2 o——
3[al5(e(7[8[3|02121314,, cD2 GAD RO NOEEL o
R WLCD D 4 +V
100K _[co2 33| ' |BD? R11 © O orDa
usB1+R% DP1 USB2+ DP2
TSBL A DML USB2- A D\V2 D3 2 VLCD
2B A ANV LOBLT 4\ A N DV o—= V8
w1 R10" 27 R12 D2 RAMA4
s o7 2[, g |18 D7B DL JP1L A |44
PL PLL 1A By — o vaz [/INT4 GND AL® a3
22 3 57 — TWR 9 —7rm> - 9 (22
D A3 B3 IR g3 4p—LRD —d a3 22
180 5143 B35 o1 Voo Pla_J: & RST A
27PF 1UF =6 3 & RX5 VUSB Ala 9 P—ab ab 20
27142 B5[73 B e RS C35 A2 97 8P a3 g 7'UB 39
D A6 B6 [3 5] A2 49 10 p—A13 —4 /LB 32
DI_8 2 DL @38 (o5 ALO ALL 38
A7 B7 A0 47910 p—ALL 4 D15 |28
D0 T ¢ ¢ &b A9 NG 37
A8 B8 e YHi G4 13714 D14 2L
+V] 12V A8 A7 1 36
31 p3 19 =9 13 8/7|717|7/7|7|7|7|7|716/6|6| 6(6/6/6| 6|6 A6 91516 A5 D13 35—
P3_19 g 01918765432109876%4)321 A6 §31718 D12 52—
1N5817 [RD 1 & & Ad A3 D5 34
3 IRD 115 R e Yk R 24 19 20 3 > a\D |53
CRRGDDDDDDDD| YRRCNN i 22122 p—al B0 VoS
1l NCCDIXN76543210NCXI BCCNC -8 /R A 23 24 D D DI1 |32
A '59 DSR5 7RI —9 V33 31
psro—5] NC AAAD LCDDD psro p2 = —Q 25 26 p—=5 D10 55—
>J psra CTSD P2 R] — 27 28 p— Do 5o
[CT2_4 5 R 29
49 cTsa DTRD P D8 [22-
bRz 5] ST e TC A28 R 28
VOC 6 16C754 55 Tcr 27
O vee RTSD A2 (2L
RT2 RTSA I NTD 24 IXD1 uL6 a1 28
INTO_ 81\ ‘\ra csp p22 RXDL D 1iao vec |22 RS0 ALO |22
—1Inc sV -8 LUR2 94 csa XD [-22 pue Sl 21am Eoc (42 EXC A9 |24
AL 1 6 _VCC 2 A S ™ 109 51 D & 3 8 50 53
AL v —21pG 5V TXA | OR el AD2 CLK AL7 (23
Aol VrrIsTRsT T3] ES SVITE TW11] |5y LR P50 PO 3 a| a2 QKRS
A3 3| A3 EN 3_4_Q59) EN 9V El_ZV TX3 TXB csC 49 A4 S| AD4 DOUT 6 DO
TAD 4] oy P13 Do 7URB 13] leo | NrG Pas (S RE et o5 b5 /ADL
TDA 5] 7 TADL TPS765 TNTZ 7 57 T R5
DA Sy o I'NTB RTSC AD6 REF+
SCR_6 1T TRT3 15 7 C7 3 GD
X2 & RTSB VCC AD7 REF-
SoT_7 0 L5 1 v33 &\D Z (o3} 2 CI0
®x & 3 G\D DTRC AD8 ADLO
5l &p & 2 2 PRG OT 2 10faw T aApo L @
3 /INT4 [CT3 Z
759V AT 71N pS Pz P2543
74HC259 AT K
ur A A Y] —
1 8 vec [\ "7 B3
2] 2 Voo 7o 8 /1 NT1 uo2
5 PI2 A5 1 15 /AD GND
7|02 S 5P ves75] 12v A6 2|2 YO PRI SDI
VsS SDA (—T=2 B Y1 by SIX
A7 T SCK .G\D
12345 c Y2
240045 Y2 Pz
U6 M P11 EEEEHE AU
va pil 8|7l6/5(4(3[2
VBAT 1 6 | RSB 10 / RDK 1
VB RST & a vs pid LROK 14 -
VRAM 2 5/ RST oF [P34 5 BSY 2 9 TRDK A5 1 5 /
VO / RST @A Y6 b2 SSCFSGG 1AL 2Gp A YO
VoC__3 W 5 7~/ RDU G\D_1 31 G\D D23 8 A6 2 JAY,
VCC VDO @B Y7 G 11sKBSoD G 2Y4 1Y1 B vi
EYS R vl B E RN c30 BSY 2] gvO I meo [307 7] 208 1 17 A7 3|8 VIPizy
5 2/ RAM . 74HCI38 V33 V33 \VCC uL2 ap 3 29 R50 5 6 DL 2 /U
—351BON CEO P34 ExT RE+ 122 RS0 515v3 1v2 Y3
6 I VD T 330uF =6 [Ca7_[C32 1 8 P\ 28 VCC ECC 6 5 A
—S1/L v u _css _[c —IIne ne 8- 241G vee 28 VX 1A3 2A3 12 Y4
7 07 1N5817 v+ 2 7 vieo 15 27 7 1 D4 / RSB 07
—§] & PFO~5vec RS0 10UF Boo 3| N MEAT 6 m0 [cpz $ 6|3 WO 56~ 1TxE 8]202 I3 3 TR Prra] &, V2 PTo7
—=21 0SS PFI == = 2 TEMP OUT [e—== _|003 ¢ 321G Al - 52— 1A4 2A2 @A Y6 b=
B1 c21 D, 4 G\D TRIM2- L lcov A+ 22 912v1 1va (22 D7 > @B v7 pLLD
MAX6O1 VCC 7] 2 veaT ul4 BOO 8] oF wor 24 10| 20 2a1 L1 ACGK
[INT4 1[5 08y,]249 1| — G\D 1[G TTI010 BOL 9 A0 X [23_B15 7AFCI38
TNTZ 218 o [13/ vRU .3 vear V33 2| S| 4 va3 uLo B02 101 A% AL® 22 B1a
La_ S15A 6y 22 yec 31y | L 4D 1 g\pyoc |HL8VeC B03 11153 321l B3
L4 415y sa Ll LRST BTHL VI 21y ve |22 V8 B04 12 MAAAA§é2 20 B12
S
(N 513X Y0 RST oK %1 U1 P17 V23l v aav AAAAATLY TERN STE
3y 4A TNTL L1 X6 X5 1 8 VRAM V4_ 5| V3 V65— LTC2449]
g 1c ay R16 A —||:||— X1 V3 va V5 2 al1afaf2fal1 Title
Voo Lc P12 X6 2 7 JINTB R50 6 T/ RST 1 LTC2449
X2 B REF/ CR 3 3(415(o{7[e13 HOST USB DRI VE
7AFCIA A VGFES] Moo P8 Pl2 1DA 7] oceno P10 BO5 11
LED L,}@g 41 G spa |5 P11 SCK_8 | 'sckspl 9 SDl BOG7 B10 Si ze|Docunent Number
K& D5I33 [TC260 B HD- MAN. SCH
Dat e: Novenber 20, 2007 [Sheet 1 of

w27 J6
PO 1 18 HvV1 G\D +V
u19 vee + R0 _rerst 21 LI vl Ji 2 VG Y >
[crst 12 e 3 1
c1+ voc 189 Vas [PIe >PL5 St 3 og |16 HV3 H 5 6 a\74
v+ G\ND zsl/T)I%chLCl— =L Z 3o 14 04 a7 A r .8 i
S mpHzreo o o[RS s ¢t Qs i] o= P N
6 82 %Io 1 XDl ©2 I;gg(l) Tcrso 8 :gg 1 HV8 HDRD12 D1
oV B Moo | v A~Vvs o]\2 BlIoK HDRD12 D0
T RXDO 8 Rl R2O 9 RXI vs > D E
UDS2982 X3
NAXZ32A X2
U20 \igc c3+ TX4
1 6 XS
c1+ voc 8
Vir 2| 3 LS5 an S SR
el DAt T3 C3- SR
7] &5 Ri I3 [RX2 Cax H2 RS I
51 & RloIZ R 27 /TX2 1 2 cT2 e RS
6] RBPmime TRZ 32 2 =y 2
3 Vo B MTxs o T3 52 3 [RIZ 2R3
N v TRe 72 3 RIS >TRa
GD _© N TRT5 SL RIS
i b ega s ay i
1 eos v 2 TTX5 15 3 S16 as5A- / TX0 3 4~/ TXDL LCTS ==
2] S YS[@5awn o5+ TG 173 S 285A+ 053 S5 RO
34 88 [TX4 an 193 § G 3 &8 eptve
4] &, g1 |13 /Rx4 C28 G\ND_ 9 10 _G\D e
513 Rz ra o HDRD20
& RO T Toa Gox
0 Tx5
H e BLEERE &0k
CS_
NAXZ32A
u22 \iQOC
6 cr+ Vi+
Cl+ vCC 2
Ve apHsaw o1 cel
Cl- T10 =1z =T ab
G+ Rl 2 S
C2- RIO o B
V. TU 5 RE co °$Z
T20 T2I T
rR2l RRO[2[CT3 C&-
VAXZ32A
w23 vee
RX4 1 8
D 2| RO.VCC 7 ass-
TRT4 3 6 485+
T 7| B A5
Dl GND
[Tcass
u24 vee
RX5 1 89
anD 2] ROVEE 7 assa-
/RT5 3 6 485A+
x5 4| F A5
X% 415 e
[TCass @
TERN STE
Title
RS232
Si ze|Docunent Nunber
B HE. 2
Date: November 2, 2007 [Sheet 2 of

