

MiniDrive™

C/C++ Programmable LCD Controller
plus

40 I/O lines

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

 MiniDrive is a trademark of TERN, Inc..
 V25 is a Trademark of NEC Electronics Inc.

 Turbo Debugger, Turbo C, and Borland C++ are trademarks of Borland
International.

 Microsoft, MS-DOS and Windows are trademarks of Microsoft Corporation.
 IBM is a trademark of InSTEational Business Machines Corporation.

 Paradigm LOCATE, DEBUG/RT-V25 and PDREM are trademarks of Paradigm
Systems.

Version 2.00

October 29, 2010

No part of this document may be copied or reproduced in any form or by any means

without the prior written consent of TERN.

© 1996-2010
 1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

 TERN is developing complex, high technology integration systems. These
systems are integrated with software and hardware that are not 100% defect free. TERN
products are not designed, intended, authorized, or warranted to be suitable for use in
life-support applications, devices, or systems, or in other critical applications. TERN
and the Buyer agree that TERN will not be liable for incidental or consequential damages
arising from the use of TERN products. It is the Buyer's responsibility to protect life and
property against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

MiniDrive™ Ch. 1 Introduction
__

1-1

Chapter 1
Introduction

1.1 Functional Description
The MiniDrive™ is a low cost, C/C++ programmable, 16-bit industrial controller. It is designed for
embedded applications that require compactness, low power consumption, and high reliability. The
MiniDrive™ has a total of 40 I/O lines, including eight 4-bit ADC inputs, 7 high voltage outputs, 24 bi-
directional I/Os. It supports various type character or graphic LCDs. It can be integrated into an OEM
product, or as a stand-alone controller in an application system. By building your product with the
MiniDrive™, you reduce the time from design to market introduction, cut development costs, minimize
technical risks, and deliver a more reliable product.
Measuring 4.8 x 3.4 inches, the MiniDrive™ offers a complete C/C++ programmable standalone computer
system with 16-bit CPU (NEC V25), upto 1MB memory, EPROM or Flash, battery-backed SRAM,
EEPROM, real time clock, three serial channels, two 16-bit timers, 42 I/O lines, power failure detection,
watchdog timer, LED, beeper, and interface to varies character type or graphics LCD modules. It is an ideal
controller for a user interface design. A functional block diagram of the MiniDrive™ is shown in Fig. 1.1.

Int SRAM
(512 bytes)

Ser0
Ser1

Time Base Counter

16-Bit Timers (2)

Port T with 8 Comparators

2 counters, 500K

Digital I/O Ports (3)

MAX691
Supervisor

EEPROM
up to 8K

SCLSDA

P00P01 P03 NMI

RSTPFO

VRAM

MiniDrive
16-bit C/C++

Controller

Data
Addr
Cntl

*

EPROM
(0xc0000-0xfffff, mem)

SRAM
(0-0x7ffff, mem)

U2

U3

U1

U6U7
HWD

/RESET

V25
CPU

80x86/8088
Compatible

7 solenoid drivers
50V 350 mA

1 TTL Output

24 I/Os
8 4-bit ADCAnalog or

Digital
I/O

Solenoid
Relays
Valves

Interface
to LCDs

Character
Graphics

LCD

Fig. 1.1. Functional block diagram of the MiniDrive™.

How do you program the MiniDrive™ ? You can program the MiniDrive™ from your PC via serial link
with a RS232 interface. You can use your favorite Borland or Microsoft C/C++ compilers. Your C/C++
program can be remotely debugged with remote debugger over the serial link at 115,000 baud rate. TERN
provides I/O driver libraries, sample programs, remote DEBUG EPROM, batch files, and all the hardware
necessary for you to quickly start developing your application software. After debugging a program, by
setting a STEP2 jumper, you can test run the MiniDrive™ in the field standalone, away from the PC, with
your application program in the battery-backed SRAM. When the field test is complete, an application
EPROM may be burned to replace the DEBUG EPROM. The .HEX or .BIN file can be easily generated
with the makefile provided. Development of application software consists of three easy steps. Setting a
jumper on the MiniDrive™ J6 pin 1-2, (see Fig 3.5) will set the MiniDrive™ operating mode in STEP 2.
With no jumper on J6 pin 1-2 while power on or reset, the MiniDrive™ will operate in the DEBUG
mode(STEP1). A 128K/512K flash EEPROM can be used in the ROM socket, providing field
programming or data storage.

MiniDrive™ Ch. 1 Introduction
__

1-2

 Replace TERN EPROM, project is complete.

STEP 3

Test MiniDrive in the field, standalone.STEP 2
Application program resides in the battery-backed SRAM.

Run C/C++ on MiniDrive and Debug with Remote Debugger.
STEP 1 Serial link PC and MiniDrive, program in C/C++.

Make your application EPROMs.

MiniDrive

DC power jack

DC +9V 300 mA
Wall transformer
Center Negative

PC-V25 CablePC

Fig. 1.2. Serial link a PC with the MiniDrive™, program on the PC, run C/C++ on the MiniDrive™

1.2 Features:
• 4.4 x 2.6 inches , 16-bit CPU (NEC V25), 16 Mhz crystal
• Power consumption: 120 mA normal
• Low power version: 75 mA full speed, 20 mA standby
• Upto 512K EPROM/Flash, 512K SRAM, 512 bytes EE
• Three 16-bit timers and two 16-bit counters(500KHz)
• 7 channels of high voltage/current drivers, 50V 350 mA per driver.
• 24 bi-directional I/O lines from V25
• 8 comparator inputs as 4-bit ADC and 3 interrupt inputs
• 2 high speed RS-232 serial ports(115,200 baud or higher)
• Watchdog timer, powerfail reset, lithium coin battery
• Interface to various graphic or character type LCDs.
• Beeper, keypads support.

1.3 Layout and Procedure
The physical layout of the MiniDrive™ is shown in Fig. 1.3.

MiniDrive™ Ch. 1 Introduction
__

1-3

4.4x2.6

H1

0,0

V25 CPU

24 I/O lines
8 4-bit ADC

2 ch. RS-232

Upto 512KB
ROM/Flash

Upto 512KB
SRAM

7 Solenoid Drives
Graphic/Character LCD

Interface

+9V to 12V
DC input

Beeper

P02

GND
J6

pin 1=P02
pin2=GND

STEP2
 Jumper

Fig. 1.3. Layout of the MiniDrive™ and the STEP2 jumper.

If a jumper is on J6 pin 1-2 (see Fig 1.3), while power on or reset, the MiniDrive™ will operate in STEP 2.
If no jumper on the J6 pin 1-2 while reset or power on, it will operate in STEP 1. The status of J6 pin 2,
which is V25 P02, is only checked at power on or at reset.
A simple functional flowchart of the DEBUG EPROM is shown in Fig. 1-4.

Power On or Reset

YES

Go to Application Code CS:IP

STEP 2

Go to BEBUG

STEP 1

J6 pin1=pin2 ?

NO

P02=GND ?
CS:IP in EEPROM:

0x10=CS high byte
0x11=CS low byte
0x12=IP high byte
0x13=IP low byte

Fig. 1.4. Flowchart of the power-on procedure.

There are three steps in terms of the development of a C/C++ application program.

MiniDrive™ Ch. 1 Introduction
__

1-4

STEP 1: DEBUG.
 You write your C/C++ application program in C/C++. You connect your controller to your PC via
the PC-V25 serial link cable. Use the batch file (p.bat or e.bat) to compile, link, locate, download, and
debug your C/C++ application program. See Chapter 2 and Chapter 3 for more details.
STEP 2: Standalone Field Test.
 Set a jumper on J2 pin 2-4. While power on or reset, if J2 pin 2(P02), is low, the CPU will run the
code in the battery backup SRAM. The start address must be pre-loaded in the on board EEPROM. You
may use a sample program step2.c to write the CS:IP into EEPROM before the STEP 2 test.
STEP 3: Make your EPROM.
 If you are happy with your STEP 2 test, you may go back to your PC to generate your application
EPROM to replace the TERN EPROM. You need change the DEBUG=2 to DEBUG=0 in the makefile.
A sample program step2.c is in the TERN disk samples\ve directory. You may use the step2.c program to
setup the STEP 2 address for your application code. If SRAM=0 in your makefile, the LOCATE will locate
your code starting at 0400:0000. If SRAM=1 in your makefile, your code starts at 0800:0000. You must use
DEBUG to download your code in the battery backup SRAM before you can run STEP 2.
A “step2.c” sample program is included in TERN disk. You may use it to initialize the EEPROM.

1.4 Power Consumption
With quarter-power PAL16V8Q in U5, 1488 in U12, 1489 in U11, the MiniDrive™ consumes approximate
180 mA in normal mode(16MHz, crystal), and 100 mA in standby mode. With zero-power PALCE16V8Z
in U5, 75C188 in U12 and 75C189 in U11, as a low power version, the power consumption can be reduced
to less than 75 mA in normal mode and 20 mA in standby mode.

1.5 Minimum Requirements for System Development
Hardware:
� A PC or PC compatible computer;
� A MiniDrive™ with DEBUG EPROM (C-Engine-∗-xxx-E).
 where ∗ =0, using SER0; ∗ = 1, using SER1 for debug, xxx is the version number;
 E, indicating use Paradigm DEBUG/RT-EV or DEBUG/RT-V25.
� A PC-V25 serial cable(Fig. 1.2); and a wall transformer (+9V 500 mA, center negative).
Software:
� Borland C/C++ 5.0/4.5/4.0/3.1, or Turbo C/C++ 3.0 and TASM, or
� Microsoft visual C/C++ 1.0/1.5/1.52, and MASM6.11
� Paradigm LOCATE, or LOCATE-EV and Paradigm DEBUG/RT-V25, or DEBUG/RT-EV.
� TERN C libraries.

A C/C++ Evaluation Kit(EV-C), and a C/C++ Development Kit(DV) is available from TERN. The EV-C
kit is a limited functionality version of DV. Using the EV-C kit, user can program and debug the
MiniDrive™ in STEP1 and STEP2, but not in STEP3. In order to generate a user EPROM and complete
the project, user should use the Development Kit(DV).

MiniDrive™ Ch. 2 Installation
 __

2-1

Chapter 2
Installation
The installation procedure presented here assumes that you have already established a Borland C/C++, or
Microsoft C/C++ environment on your PC.

2.1. Software Installation
1. Install Paradigm LOCATE in C:/LOCATE.
2. Install Paradigm DEBUG/RT-V25 or DEBUG/RT-EV in C:\PD.
3. Specify parameters for the remote debugger communication between PC and the MiniDrive™ select
"Serial" from "Remote Type" option, select "COM1/2" from "Remote Link Port" option, select "115000
baud" from "Link Speed" option.
4. Copy the TERN disk to your hard disk in C:\STExxxx

2.2 Hardware Installation

 1. Serial link the MiniDrive™ and your PC with the PC-V25 cable.
If your are using SER0 EPROM(MiniDrive-0-xxx-E), install the 5x2 IDC connector to J3 header. Note that
the red side of the cable must point to the pin 1 of the MiniDrive™ J3 header. A small circle is drawn for
indication in the Fig. 2.1. The DB9 connector of the PC-V25 cable is connected to the PC's COM1/2.

or COM2
To COM1

PC

Red side of serial cable

to pin 1 of J3 header

V25 ROM RAM

J4 J3

+9V 500mA center negative wall

DB9

Fig. 2.1.Serial connection between the MiniDrive™ and the PC

2. Connect the wall transformer +9V DC plug to the MiniDrive DC power jack. LED should blink twice

after power on or reset, indicating initialization success. If not, see Chapter 3.

MiniDrive™ Ch. 3 Tutorial

3-1

Chapter 3. Tutorial
In this tutorial, we will run a sample program led.c to test both the software and hardware installation
performed in chapter 2. We will illustrate the use of Paradigm DEBUG/RT-V25.

3.1 STEP1 Debug a Sample Program
A sample program, led.c is in the directory of TERN disk a:\samples\ve. It is also in your working directory
c:\stebc31. We use BC31 for Borland C/C++ 3.1 as an example. A batch file m.bat is designed to test the
C/C++ software environment. At DOS prompt c:\stebc31>
 type m led
It will perform the operation defined in the makefile. It should pass the stage of compile, link, and locate.
A batch file e.bat(Evaluation Kit), or p.bat(Development Kit) is designed to test software and hardware
installation. It will handle all file making and debugging activities. We use p.bat in this sample. Type p led.
It compiles led.c, links and locates its output files, produces a test.axe file, and then down loads the
test.axe to the MiniDrive™. If both software and hardware are successfully installed, the following
Paradigm DEBUG/RT screen (Fig. 3.1) will show on the screen and "ready" will be shown at the upper
right corner of the screen. This means that the executable file of led.c has been downloaded into the
MiniDrive™

File Edit View Run Breakpoint Data Options Window Help Ready

Module: LED FILE: C:\stebc31\LED.C 1

Watches 2

//
//

//

//

#include <dos.h>

#include "ve.h"

char ledd;

unsigned int i, k;

void main(void)
{

/***/

/***/

led.c
Test LED

TURN LED ON AND OFF
Copyright (C) 1995 STE. All Rights reserved

F1-Help F2-Bkpt F3-Mod F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu
Fig. 3.1. "Ready" on the screen indicating a successful installation

If a message, "Remote link time-out", is displayed, you may check:
1) Is the MiniDrive™ DC power on ?
2) Does the red led on the MiniDrive™ flash twice after the power on ?
3) Is the cable connecting to J3 of MiniDrive™ with a DEBUG EPROM(C-Engine-0-xxx-?) installed ?
4) Is the red line on the cable pointing to the pin 1 of the J3 header ?
5) Is the DB9 connector connecting the correct PC serial port COM1/2 ?
6) Does your PC have other devices occupying the same COM port you specified for the MiniDrive™ ?
7) Did you specify correct parameters (115,000 Baud, Remote, COM1/COM2) in DEBUG installation ?
8) Try Paradigm BBS at 607-786-0705. An utility RTTEST.ZIP may help.
If all efforts fail, call TERN tech-support at 916-758-0180.

The number circled in Fig. 3.2 is the line number of program led.c in the program window, which is the #1
window. Use F8 to single-step, and the line number will increase accordingly. You may "step" over the
program. ALT-2 will activate the Watch window, which is window #2 as shown on the screen. Typing "i"
in the Watch window allows you to watch the change of the variable "i" during the execution of the

MiniDrive™ Ch. 3 Tutorial

3-2

debugger (Fig. 3.2). F9-Run runs the led.c program, and you can see the LED on MiniDrive™ blinking
(Fig. 2.4) continuously and "Ready" is replaced by "Running" (Fig. 3.3). To stop running the program, use
Ctrl-Break . Move cursor to the line you want, and set a breakpoint with F2, which will highlight that line.
Toggling F2 removes or sets a breakpoint. F9 to run the program and the program should stop at the
breakpoint

.

File Edit View Run Breakpoint Data Options Window Help Ready

Module: LED FILE: C:\stebc31\LED.C 1

Watches 2

//

//

//

//

#include <dos.h>

#include "ve.h"

char ledd;

unsigned int i, k;

void main(void)
{

/***/

/***/

led.c
Test LED

TURN LED ON AND OFF
Copyright (C) 1995 STE. All Rights reserved

F1-Help F2-Bkpt F3-Mod F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

11

i

 Fig. 3.2. Line number of the program and use of the Watch window

Module:LED FILE:C:\STEBC31\LED.C 1

Watches 2

//
//

//

//

#include <dos.h>

#include "ve.h"

char ledd;

unsigned int i, k;

void main(void)
{

/***/

/***/

led.c
Test LED

TURN LED ON AND OFF
Copyright (C) 1995 STE. All Rights reserved

F1-Help F2-Bkpt F3-Mod F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10-Menu

11

File Edit View Run Breakpoint Data Options Window Help Running

Fig. 3.3. Screen shows a program is "running" on the MiniDrive™

Select "view" from the main menu in Fig. 3.1, and pull down a sub menu, which allows more windows to be
opened. You may open the CPU window to see the assembly equivalent of your C program and registers.
With "F8" single step, you can examine details of the C program execution, including the interpreting of C
by the assembly language, the changing contents in the registers, and the changing of the machine status.
Use Alt-X to exit from the debugger. To see the LED blinking slower, modify the value of variable "i" in
the led.c with the editor, for example, i = 30,000, and then repeat the above steps.

MiniDrive™ Ch. 3 Tutorial

3-3

3.2 STEP2, Running the MiniDrive™ Standalone

If a battery is installed, program and data in the SRAM will not be lost while the main power is turned off.
You can run the downloaded program on the MiniDrive™ away from the PC. You must pre-load the correct
CS:IP value into EEPROM with step2.c program. See chapter 1 for the list of step2.c. If the SRAM=0 is in
the makefile, the led.c code will be located and downloaded to the SRAM starts at 0400:000. If the
SRAM=1 is in the makefile, the led.c code will be located and downloaded to the SRAM starts at 0800:000.
You must run the step2.c program in the STEP 1 to load the CS:IP into the EEPROM. After you pre-load
the CS:IP into EEPROM, you can download the sample program led.c in STEP 1. You may power off the
controller and set a jumper on the J6 pin 1-2 (Fig. 1.3). After power on, the LED should blink again. The
MiniDrive™ is running your program standalone, and you may disconnect the serial cable from your PC.
For a 128K SRAM, you must run the step2.c program to load 0800:000 as CS:IP into EEPROM. then you
put a jumper on the pins 1 and 2 of the J6 on the MiniDrive™(Fig. 1.3). It will run the program starting at
0x0800:0000 after a power on or reset.

3.3 STEP3, Make an EPROM File
You can make an EPROM for your applications program to replace TERN’s DEBUG EPROM. You need
modify the makefile. Note: The C/C++ Evaluation Kit does not support generating EPROM files.

Modify the Makefile : You only need to change EPROM=0 in the makefile to make an EPROM file.
DEBUG = 0 # 0 - none, 2 - PDREMOTE

Generate an EPROM File: After modifying the makefile to set DEBUG=0, you can run the batch file
m.bat for your application program appl.c by typing "m appl". This will produce an Intel extended hex file
appl.hex, or a binary file appl.bin,

3.4 How to debug multiple interrupts
We have a sample program "int_demo.c" in TERN disk. We will discuss how to debug multiple interrupts
on the MiniDrive™ with Paradigm DEBUG/RT-V25 dynamic mode. The sample program is on the TERN
disk a:\samples\ve\int_demo.c.

1. Start with "p int_demo".

2. F10, active menu.
 To set dynamic mode: main menu, view, Paradigm, Debug Controls, dynamic Enabled ...
 To save dynamic mode: main menu, view, Paradigm, Save setup

3. Alt 2, active the watch window. Type the variables you want to watch
 intp0_count, intp1_count, intp2_count, nmi_count, timer0_count, or timbas_count

4. F10, select the top line main menu.
 view, target, SFR

5. F10, select the top line main menu.
 view, target, variables

6. F9, run. You should see the timer0_count and timbas_count are changing in the watch window and the
variable window. P0 should change every 10 second in the SFR window.

7. Any time you may activate the main program window and set a breakpoint with F2 (toggle F2 will reset /
set the breakpoint). If you set a breakpoint at * timer0_count=0; DEBUG will stop and show "ready" at that
breakpoint. Toggle F2 to remove the breakpoint and F9 to run again. Since V25 has only one interrupt
controller, it will not be released until a fint(); instruction. The remote DEBUG is interrupt driven and

MiniDrive™ Ch. 3 Tutorial

3-4

shares the same interrupt controller. If you set a breakpoint at fint(); or before fint(); in a interrupt service
routing, the DEBUG will be lost and responsed with "remote time-out". You have to hardware reset the
MiniDrive™ and start over again. A good practice is to modify your source code to temporally put the
fint(); at the very beginning of the interrupt service routing, as shown in the timer0 interrupt handler t0_isr.
Then you can set a breakpoint in the t0_isr after the fint();.

8. You can force a INTP0(P11 J2 pin 8) or NMI(J10 pin2) by connecting the pins to ground. The
intp0_count or nmi_count will change. Be very careful, study the pin locations, do not smoke your board.

9. F10, select the top line main menu.
 RUN, Halt
 or Program reset, or Debugger reset
 Then start over again.

10. If you want to modify the source code, you have to Ctrl-Break then Alt-x. Exit from the DEBUG. Goto
an editor and modify your C program.

MiniDrive™ Ch. 4 Hardware
__

4-1

Chapter 4. Hardware

4.1 V25 I/O Ports
V25 (µPD70320 NEC) CPU has 32 I/O lines which are basically organized as three bi-directional I/O
ports(P0-2) and a comparator input port T. The 24 bi-directional I/O lines are multiplexed with different
functions. One I/O line can be specified as an input, output, or a control line. There are three Special
Function Registers (SFR) associated with each port: Port Mode Control Register (PMC0, PMC1, PMC2),
Port Mode Register (PM0, PM1, PM2), and Port Data Register (P0, P1, P2). The SFRs are memory
mapped. You can write or read these registers via: pokeb(0xfff0, 0x??, 0x!!); or peekb(0xfff0, 0x??);
 where ?? is the register offset address, !! is the control/data byte.
SFR addresses and Port operation tables are listed in the NEC V25 User’s Manual.
For example, in order to use port 0 P05 as output, you need program port 0 in 3 steps:
1) program the PMC0 register and set PMC0 bit 5=0, which defines P05 as I/O function.
2) program PM0 register and set PM0 bit 5=0, which defines P05 as output.
3) Write a “1” to P0 data register bit 5, the P05 pin on the MiniDrive™ J2-5 should be high (5V).
 Write a “0” to P0 data register bit 5, the P05 pin on the MiniDrive™ J2-5 should be low (0V).
Some I/O lines are used by the MiniDrive™ system as listed below:

P00 I/O EEPROM (U7 pin 6) clock SCL
P01 I/O EEPROM (U7 pin 5) data SDA
P02 I/O J6 pin 2. STEP2 jumper
P05* I/O J1 pin 30, on board LED control
P07 CLK J1 pin 40, CLK, 8 Mhz system clock, U5.1.
P17 RDY J1 pin 16, V25 ready signal, used for more wait states, U5.12.

P00, P01 are used by system EEPROM. While using the DEBUG EPROM, P02 is used to select STEP 1
(DEBUG mode) or STEP 2 (standalone mode) during the power on or reset, see Fig 1.3 for detail. P17 is
assigned as RDY signal for inserting more wait states in order to interface with slow LCD modules. If you
do not need LCD functions, you may assign P17 as a I/O function line and cutoff the pin on the U5 PAL pin
16. The P17=RDY is also routed to J1 pin 16. P05 is used for on board LED control, but P05 is also can be
used as for application, if you do not need LED.
Due to SFR registers of PMC0-2, PM0-2 are write only, image registers are assigned to locations in the on
board EEPROM at:
 PM0 0x08 ee_rd(0x08); or ee_wr(0x08, pm0);
 PMC0 0x09 ee_rd(0x09); or ee_wr(0x09, pmc0);
 PM1 0x0a ee_rd(0x0a); or ee_wr(0x0a, pm1);
 PMC1 0x0b ee_rd(0x0b); or ee_wr(0x0b, pmc1);
 PM2 0x0c ee_rd(0x0c); or ee_wr(0x0c, pm2);
 PMC2 0x0d ee_rd(0x0d); or ee_wr(0x0d, pmc2);
The ee_rd() and ee_wr() functions are very slow. The EEPROM is only modified by the ve_init();. Other
functions may change the PMCx and PMx registers without modifying the EEPROM. If you need fast
access the image registers, you may use SRAM variables instead.
After ve_init(void);, the initial register control bytes are written into EEPROM. You may use these image
registers to determine the status of the port. You may also need to update these registers in your
applications. The port0-2 are initialized by the ve_init(void) as listed below:
void ve_init(void){
 pokeb(0xfff0,0x02,0x80); /* Set PMC0 P07=CLK */
 pokeb(0xfff0,0x01,0xd7); /* Set PM0 for input, P05=LED P03=HWD output */
 pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */
 pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
 pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */
 pokeb(0xfff0,0x11,0xf7); /* Set PM2 for input, P23=EN485 output */ }
The port data registers can be read and write. In order to modify only one bit, you need to read back the
data byte from that data register first, then do OR/AND operation on that bit.
For example, you can manipulate P05 to low or high with these functions:

MiniDrive™ Ch. 4 Hardware
__

4-2

 pokeb(0xfff0,0x00,(unsigned char) (peekb(0xfff0,0)&0xdf)); /* Set P05=low */
 pokeb(0xfff0,0x00,(unsigned char) (peekb(0xfff0,0)|0x20)); /* Set P05=high */
 Name Pin # Pin # Name
 P20 ---- 1 2 ---- P21
 P22 ---- 3 4 ---- P23
 P24 ---- 5 6 ---- P25
 P26 ---- 7 8 ---- P27
 NMI/P10 ---- 9 10 ---- P11
 P12 ---- 11 12 ---- P13
 P14 ---- 13 14 ---- P15
 P16 ---- 15 16 ---- P17
 PT0 ---- 17 18 ---- PT1
 PT2 ---- 19 20 ---- PT3
 PT4 ---- 21 22 ---- PT5
 PT6 ---- 23 24 ---- PT7
 GND ---- 25 26 ---- P00
 GND ---- 27 28 ---- P01
 GND ---- 29 30 ---- P02
 GND ---- 31 32 ---- P03
 GND ---- 33 34 ---- P04
 GND ---- 35 36 ---- P05
 GND ---- 37 38 ---- P06
 GND ---- 39 40 ---- CLK/P07
 Table 4.1 J1, 20x2 pin I/O port

4.2 Jumpers and Headers
 Name Size Function
 J0 DJ-005 DC power jack, 9V-12V
 J1 20x2 main I/O port
 R4 2x1 VCC and TTL output signal HV8I
 J2 9x1 Memory selection:
 SRAM Size: pin 2-3 SRAM 256K-512K, pin 1-2 SRAM 32K-128K
 ROM Size: pin 5-6 ROM size 32K-128K

 pin 4-5 ROM size 256K-512K
 EPROM/Flash read in U3 pin 7-8; Program Flash in U3 pin 8-9

 J3 5x2 SER0 RS-232
 J4 5x2 SER1 RS-232
 J5 2x1 +12VI and GND
 J6 8x2 Function Control: pin 1-2, STEP2 control; pin 3-4, reset;
 pin 5-6, switching power on/off ; pin 7-8 and pin 9-10, Graphics LCD function select
 pin 11=12, EEPROM write protect; pin 11-13, No write protect
 pin 15-16, watchdog enabled, software must exercise LCD2(I/O 0xA0)
 J7 2x1 VCC and GND
 J8 3x1 -15V, VLC, and GND. a pot for graphics LCD contrast adjustment
 J9 10x1 Solenoid drivers
 H0 2x1 Vcc and GND
 H1 8x2 LCD interface, character 16x2
 H2 10x2 LCD interface, 240x64 pixels
 H3 14x1 LCD interface, character 20x4
 H4 20x1 LCD interface, 320x240 pixels, Seiko G324E
 H5 20x1 LCD interface, 240x128 pixels, HDM128GS24Y

MiniDrive™ Ch. 4 Hardware
__

4-3

H1

U2
V25
CPU

J1
I/O lines

8 4-bit ADC

J4
SER1 RS232

J2
pin 1-2 SRAM 32K, 128K
pin 2-3 SRAM 256K, 512K
pin 4-5 ROM 256K, 512K
pin 5-6 ROM 32K, 64K, 128K
pin 7-8 EPROM/Flash read only
pin 8-9 Flash Read/Write

J9
7 Solenoid Drives

Graphic/Character LCD
Interfaces

+9V to 12V
DC inputU5

PAL

ROM

J3
SER0 RS232

RAM

U6
691

U7
EE

U13
259

U12
188

U11
189

PIN 1

U9
2003

R4
VCC HV8I

GND K HV1 HV2 HV3 HV4 HV5 HV6 HV7 NC

J6

H3
H4
H5

H2

Fig. 4.1. Layout of Jumpers and Headers

All CPU-on-chip peripherals are memory mapped. They are controlled by a bank of 256-byte special
function registers (SFRs). Most of the CPU-on-chip peripheral signals can be reached from J1.

4.3 Interrupts
V25 has a built-in high performance interrupt controller that can control multiple processing of 17 interrupt
sources. Five of these interrupt sources, NMI, INTP0, INTP1, INTP2, and INT are external and accessible
via memory mapped SFRs. The MAX691/LTC691 PFO (Power Failure Output) U6 pin 10 may be wire
connected to NMI, J1.9. The user may connect the PFI (Power Failure Input) pin of MAX691 to an external
voltage divider to monitor the power voltage level. The PFI pin has been pulled high to VCC with a 10K
resistor on the MiniDrive™. When the external DC power drops and the voltage on the PFI (U6 pin 9 of
MiniDrive™) is less than 1.3 V, the MAX691 will pull down PFO pin.
V25 has three different methods of responding to an interrupt: vector interrupt functions, register bank
switching functions, and macro service functions. MiniDrive™ uses vector interrupt.

External Resistor Divider
for

Power Failure Detection

47K

2K PFI of MAX691

(1.3 V min)

(8.35 V min)9-14 V

10K

VCC = +5V

U6 pin 9

 Fig. 4.2. Using PFI to monitor power voltage level

4.4 Comparator Input Port (PORTT)
Port T is an 8-bit comparator input port. The threshold voltage VTH can be fixed to VCC or connected to a
variable voltage source. Software can set the reference voltage to one of 16 levels (1/16xVTH to
16/16xVTH). It provide users with an easy and inexpensive way to measure analog input signals.

MiniDrive™ Ch. 4 Hardware
__

4-4

4.5 External Event Counters/DMA
V25 has two DMA channels, DMA0 and DMA1. The DMA controllers can be used as 16-bit external event
counters. After you set a 16-bit counter value into counter0 or counter1 with
 counter0_init(unsigned int cnt0); or counter0_init(unsigned int cnt0);
Every rising edge input signal on J1 pin 1(P20/DR0) will decrement the counter0. Every rising edge input
signal on J1 pin 4(P23) will decrement the counter1.
An interrupt will occur, after counting to zero. You need an interrupt service route to serve the counter
interrupt. For more detail, please see a sample program in TERN disk, a:\samples\ve\ve_count.c.

4.6 Clock and Timers
A built-in clock generator supplies various clocks to the CPU and peripheral hardware. The MiniDrive™
uses a 16 MHz crystal. Default system clock output after initialization is 8 MHz on CLK line (pin 4 of J1).
One clock cycle is 125 ns. The normal bus cycle requires two clock cycle, which is 250 ns. With built-in
wait state generation, up to 2 wait states can be inserted. Additional wait states can be inserted by using the
RDY line. With the default initialization of 2 wait states, EPROMs of 120 ns to 150 ns can be used. More
delays may be required to support slow I/O devices, such as LCD (Liquid Crystal Display).
The time base counter operates continuously since the MiniDrive™ is powered on. It provides clock signals
for two 16-bit timers, baud rate generator, refresh timing, refresh address, and time base interrupt request
flag. A time base interrupt is generated at 4 different intervals, 128 us, 1.024 ms, 8.192 ms, and 131.072 ms,
selectable by software.
Two 16-bit timer units, TM0 and TM1, can operate in interval timer mode or one-shot timer mode. The
TOUT=P15 is available on pin 14 of J1 (Table 4.1).
4.7 Serial Channels
The MiniDrive™ has 2 serial channels: two internal UART, SER0, SER1. They can operate in full-duplex
communication mode.
The internal serial channels can operate in asynchronous mode and I/O interface mode. In asynchronous
mode, the start/stop bit transmit/receive method is employed so that bit synchronization and character
synchronization are obtained by the start bit. In I/O interface mode, data is transferred in synchronization
with the controlled serial clock. Each internal serial channel includes serial data input RxDn, serial data
output TxDn, and Clear-to-Send signal input (CTSn). The CTS0 and CTS1 signals are connected to GND
on the MiniDrive™. For SER0 and SER1, a built-in baud rate generator can be used to select standard baud
rates from 110 to 1.25 M. One of these internal serial ports is used by the MiniDrive™ for programming
with the PC. It uses 115,000 Baud rate for programming. It is possible to use both SER0 and SER1 in
applications. The user can use SER0 to debug an application program for SER1, and then use SER1 to
debug(EPROM available from TERN) application programs for SER0. The application programs can be
combined and downloaded via either serial channel. Application program using both SER0 and SER1 can
run at the same time, but not debug at the same time.

4.8 Halt and Stop Mode
The MiniDrive™ is an ideal core module for low power consumption applications, such as a battery
operated instrument. V25 has two standby modes, which are set by halt(); and stop(); In the HALT mode,
the CPU clock is stopped and program execution is halted, the registers are retained, and peripheral
hardware continues to function. The total power consumption is approximately 20 mA. The HALT mode
is released by interrupt input or reset input. In STOP mode, all clocks stop, but data in registers and RAM
are retained. The total power consumption is less than 10 mA. The STOP mode only can be released by
NMI input or reset input.

4.9 Supervisor chip
The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the MiniDrive™ has functions of
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve the system reliability.
The watchdog timer will be activated by setting a jumper on J6 pin 15-16 of the MiniDrive™ (Fig. 4.2).
The watchdog timer provides a means of verifying proper software execution. In user's application program,
use C function inportb(0x00a0); to hit watchdaog. It must be accessed at least once every 1.6 seconds. If the
J6 pin 15-16 jumper is on and the inportb(0x00a0); is not accessed within this time-out period, the
watchdog timer pulls the WDO pin low, which asserts /RESET. This automatic assertion of /RESET may
recover the application program if something is wrong. After the MiniDrive™ being reset, the WDO

MiniDrive™ Ch. 4 Hardware
__

4-5

remains low until a transition occurs at the WDI pin of the MAX691. When shipping, NO jumper is on J6
pin 15-16, the watchdog timer is disabled.
You may solder a wire jumper from J1 pin 9=NMI to the U6 pin 10=PFO (Power Failure Output) pin of the
MAX691. When the power failure is sensed by the PFI pin of the MAX691 (lower than 1.3 V), the PFO
pulls NMI low, and an NMI interrupt occurs before the power-failure occurs. You may design a NMI
service routine to take protect actions before the +5V drops and processor dies.
A battery-switch-over circuit compares VCC to VBAT (+3 V lithium battery positive pin), and connects
whichever is higher to the VRAM (power for SRAM). The SRAM is protected with battery backed up. The
lithium battery should last about 3-5 years in normal use. When the external power is on, the battery-switch-
over circuit will select the VCC to connect to the VRAM.

4.10 EEPROM
A serial EEPROM of 128 bytes (24C01), 512 bytes (24C04), 2K bytes (24C16), or 8K bytes (24C65) can
be installed in U7. The MiniDrive™ uses the P00 pin and the P01 pin to interface with the EEPROM by
connecting them to the SCL (Serial Clock) and the SDA (Serial Data) signal on EEPROM. The EEPROM
can be used to store important data, such as a node address, calibration coefficients, and configuration
codes. It has typically 1,000,000 erase/write cycles. The data retention is more than 40 years.
J6 pin 11=WP, pin 12=GND, and pin 13=Vcc provide write protection for the EEPROM. When J6 pins 11-
12 of the J7 are connected by putting on a jumper, write is prohibited in low pages. When J6 pins 11-13 are
connected, no write protection is enforced. EEPROM can be read and written by simply calling functions
ee_rd() and ee_wr().

4.11 High-voltage, High-current Drivers
ULN2003 has high voltage, high current Darlington transistor arrays, consisting of 7 silicon NPN
Darlington pairs on a common monolithic substrate. All channels feature open-collector outputs for sinking
350 mA at 50V, and integral protection diodes for driving inductive loads. Peak inrush currents of up to 600
mA sinking are allowed. The outputs may be paralleled to achieve high-load capability, although each
driver has a maximum continuous collector current rating of 350 mA at 50V.
The maximum power dissipation allowed is 2.20 W per chip at 25 degree C. The common substrate G is
routed to J9 pin1 GND. All currents sinking in must be return from J9 pin 1 GND. A heavy gage(20) wire
may be used to connect GND terminal to external power supply ground return. K is connecting to the
protection diodes. K should be tied to highest voltage in the external load system. K is connected to J9 pin

2.

K +12V/+24V

+12V/24V

GND/SUB

GND/SUB

Power Supply

Solenoid

HV1

ULN2003

Fig. 4.3 Drive inductive load with high voltage/current drives.

ULN2003 is a sink driver not sourcing driver. A typical application wiring is shown in Fig. 4.3
The ULN2003 is driven by U13 74HC259. You can write the 74HC259 with outportb(0x80A0+hv, dat);
where hv=0-6 for solenoid drivers HV1-7 on J9;

MiniDrive™ Ch. 4 Hardware
__

4-6

 hv=7 for TTL output HV8I on R4
 dat=0/1, off/on

4.12 I/O Space Mapped Devices
External I/O device use I/O mapping. You may access I/O with inportb(port) or outportb(port,dat);. The
external I/O space is 64K, ranging from 0x0000 to 0xffff.
I/O space Usage
--
0x0080 LCD
0x00A0 LCD2
0x80A0 /259 for solenoid drivers

4.13 LCD support
MiniDrive™ can directly interface to many types of LCD modules. Many LCD modules have a build in
controller support a microprocessor bus interface, consists of 8 data line, 1 address, 1 enable, read/write,
Vcc, GND, and a contrast adjustment voltage. MiniDrive™ provides all these signals on 5 different pin out
headers, H1-5. These headers are designed to match most Seiko(213-517-7770), Hantronix(408-252-1100)
LCD modules.
MiniDrive™ LCD Manufacture Size of LCD Part Number PAL in MiniDrive U5
H1 Seiko 16 ch. x 2 lines M1632 mdp000.pds
H1 Seiko 40 ch. x 4 lines M4024 mdp000.pds
H2 Toshiba/Hantr. 240 x 64 pixels Graphics TLX711A/HDM64GS24Y mdp010.pds
H3 Seiko 20 ch. x 4 lines L2014 mdp000.pds
H3 Seiko 16 ch. x 1 lines L1641 mdp000.pds
H3 Seiko 16 ch. x 2 lines L1642 mdp000.pds
H3 Seiko 16 ch. x 1 lines L1651 mdp000.pds
H3 Seiko 16 ch. x 2 lines L1652 mdp000.pds
H3 Seiko 16 ch. x 4 lines L1614 mdp000.pds
H3 Seiko 24 ch. x 1 lines M24111 mdp000.pds
H4 Seiko. 320 x 240 pixels Graphics G324E mdp010.pds
H5 Hantronix. 240 x 128 pixels Graphics HDM128GS24Y mdp010.pds

You may directly solder attach the MiniDrive™ on the back side of the LCD module, without cable.
The PAL mdp000 provides active high LCD enable signal. The PAL mdp010 provides active low signal.
A MAX766 switching requlator can be imstalled in U10 in order to provide -15V to graphics LCDs.
You may also drive a keypads, and a beeper with I/O lines from the MiniDrive™

Fig. Install a MiniDrive™ on the back side of a LCD module.

Solder Side
MiniDrive™

LCD

MiniDrive™ Ch. 5 Software
__

5-1

Chapter 5 Software
Many powerful C language software development environments are available based on PC platform. The
leading compilers are Borland or Microsoft C/C++. These compilers are excellent in their code generation,
run-time libraries, and complete documentation. Many versions of the Borland and Microsoft C/C++
compilers, can be used to develop embedded software and runs on the C-Engine™. By not being tied to a
particular editor or compiler, the C-Engine™ users are free to choose the tools they are most comfortable
with. TERN provides C/C++ development kits for standalone embedded controllers. The Evaluation Kit
and Development Kit integrate compiler, debugger, LOCATE, remote kernel, I/O libraries, and practical
sample programs.

What are TERN’s Development kits?
TERN has produced two different software kits that allow you, the user, to easily debug and download your
code to your TERN controllers. Both of these kits contain versions of Paradigm Debugger and Locate,
TERN C-Libraries, batch files, configuration files, makefiles, sample programs, technical manuals,
schematics, wall transformers, RS232 cables, DEBUG EPROM for the controller, and lots of everything
else that you need to start your project immediately. These two products are essential if you plan to create
applications for your TERN controllers by programming with Borland/Microsoft C/C++ in 3 STEPS.
STEP 1, debug. STEP 2, stand-alone with battery-backed SRAM. STEP 3, user EPROM.

What’s in the Evaluation Kit?
The EV-C, or Evaluation Kit, is a good investment for the first-time buyer who isn’t prepared to goto
production or doesn’t need the full capabilities of a Development Kit at a cost of only $299. This software
kit includes Evaluation versions of Paradigm Debugger and Locate that allows the user to debug and
download code into the controller. The user can also run the downloaded code stand-alone from the
battery-backed SRAM away from the PC for prototyping purposes. This kit however is limited to
downloading no more than 64K bytes of your .AXE file. The EV-C Kit also does not contain the feature of
creating Intel extended HEX files that can be programmed into application EPROMs. In other words, the
EV-C Kit supports STEP 1 and STEP 2, but not STEP 3.

What’s different about the Development Kit?
The DV, or Development Kit, at a cost of $799 provides all the extra support that an engineer will need to
complete his or her project. You can do everything the Evaluation Kit does with the Development Kit, as
well as the ability to download .AXE files limited only by memory hardware, and the ability to burn
EPROMs for OEM products.

What are the software requirements?
First, you will need a C/C++ compiler. TERN supports Microsoft Visual C/C++ 1.0, 1.5, 1.52, Borland
Turbo C/C++ 3.0 for DOS, and Borland C/C++ 3.1, 4.0, 4.5. You will also need an Assembler. If you are
using Microsoft C/C++, you will need MASM 6.11. If you are using a Borland C compiler, you will need
to have TASM.

The software development for C-Engine involves three major steps:
STEP1.
Verify that the hardware related variables VE, and SRAM in the makefile is matching the hardware you are
using.
 VE = 0 # 0-CE only
 SRAM = 1 # 0 - 32K, 1 - 128K/512K
 EPROM = 0 # 0 - 32K, 1 - 64K
 DEBUG = 2 # 0 - Make EPROM, 2 - PDREMOTE
 If you are not using float point calculation, in order to reduce program size set
 FLOAT = 0 # 0 - none, 2 - emulator
 If you have to use float point calculation, at least 128K SRAM must be installed and set
 FLOAT = 2 # 0 - none, 2 - emulator

MiniDrive™ Ch.5 Software
__

5-2

At least 128K SRAM should be used in the STEP1. For a floating point application or a large C/C++
program debugging, 32K SRAM will not run. The LOCATE will complain about the overlap violation.
Use any text editor you are most comfortable with to write or edit your source program in Microsoft C or
Borland C language. Use m.bat to test your software environment. Use e.bat(EV kit) or p.bat(DV kit) to
invoke the makefile to process the source file, produce finish code and download it to the C-Engine™. via
serial link. You may single step, set breakpoints, debug, or run the program. Repeat these steps (refer to
Chapter 1.1) till you are happy with the performance of a functional program.
If you are going to STEP2, you must run the “step2.c” program during STEP1 to setup the CS:IP in the
EEPROM, then download your application program with p.bat or e.bat.
STEP2.
You place a jumper on J2 pin 2-4 to set the C-Engine™ standalone mode(refer to Fig. 1.2a). Turn the DC
power off and disconnect the C-Engine™ from the PC. Then power on (or reset) again with the mode
setting jumper on, and the C-Engine™ will run the program which resides in the battery backed up SRAM.
You may test your C-Engine™ based system in a remote field with the program resides in the battery
backed-up SRAM. In normal condition, the battery should operate at least 5 years. With external DC input
on, the internal battery is disconnected.
STEP3.
After the field test, it is the time to burn a EPROM. A romable .HEX file or Binary .BIN file can be
generated by simply modifying the output parameter in the makefile(see Chapter 3.3) and run the m.bat.
 DEBUG = 0 # 0 - Make EPROM, 2 - PDREMOTE
 EPROM = 0 # 0 - 32K, 1 - 64K
You can program your EPROM with the output .HEX or .BIN file on a EPROM programmer.

By following three steps, you can develop an application program for the C-Engine™. However, the C-
Engine™ is not a complete PC. We have to explain how to support the C programming in a non-PC
environment. Paradigm LOCATE package provides different version of startup module for all Microsoft
C/C++ or Borland C/C++ compilers. The modified startup module allows running the C-Engine™ without
DOS control. All C/C++ standard library functions that call the BIOS or DOS are copied, modified, and
renamed during the installation of LOCATE. We have to relocate the .EXE file to codes fits the C-Engine™
memory mapping . It is a complex process, especially in order to cover all major C/C++ compilers. But it is
also very simple, because the user just simply type "m", "e”, or "p". The whole process will be under
control of the well designed makefile.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must follow, otherwise it will result in a system crash, PC hang-up, and a lot of confusion.
Always a concern is the debugging of interrupt handlers with the Remote Debugger. It is possible to debug
an interrupt handler but it is not without hazard. Most problems occur in multi-interrupt driven situation.
Since the remote kernel running on the C-Engine™ is interrupt driven, it demands interrupt services from
the CPU. If an application program enables interrupt and occupying interrupt controller longer time than the
remote debugger can live with, then the debugger will be timeout. Your PC may hang-up, and a power reset
may be required to restart your PC. Always be aware, our system is remote kernel interrupt driven for
debugging. In order to debug a interrupt service routing(ISR), a fint() function(V25 finish interrupt
instruction) must be issued before the breakpoint, because it will release the interrupt controller to serve the
debugger interrupt request.

VE.LIB
VE.LIB is a C library for basic V25 operations. It includes modules: VE.OBJ, SER0.OBJ, SER1.OBJ,
SCC.OBJ, VEEE.OBJ, LCD.OBJ.
You need to include the VE.LIB in your applications and include the corresponding header files. Here is the
list of the header files:

 Include-file name Description
 VE.H timers, time base counter, port t, internal RAM, Watchdog,

MiniDrive™ Ch.5 Software
__

5-3

 SER0.H V25 internal serial port 0
 SER1.H V25 internal serial port 1
 SCC.H V25 external UART SCC2691
 VEEE.H C-Engine™ on-board EEPROM
 LCD.H LCD functions

Functions in the VE.OBJ
Initialization
void ve_init(void);
Initialize SFRs and set I/O pin functions After ve_init(void);, the initial register control bytes are written
into EEPROM(see Appendix J). You may use these image registers to determine the status of the port. You
may also need to update these registers in your applications. The port0-2 are initialized as below:
void ve_init(void){
 pokeb(0xfff0,0x02,0x80); /* Set PMC0 P07=CLK */
 pokeb(0xfff0,0x01,0xd7); /* Set PM0 for input, P05=LED P03=HWD output */
 pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */
 pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
 pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */
 pokeb(0xfff0,0x11,0xf7); /* Set PM2 for input, P23=EN485 output */ }

Time Base Counter
void time_base_init(unsigned char interval);
 Set interval for time base interrupt,
 interval = 0 time base interrupts every 128 us,
 interval = 1 time base interrupts every 1.024 ms,
 interval = 2 time base interrupts every 8.192 ms,
 interval = 3 time base interrupts every 131.072 ms.
void time_base_interrupt (unsigned char i, void interrupt far (*timbas_isr)());
 Set time base interrupt service routine,
 i = 0, time base interrupt disabled,
 i = 1, time base interrupt enabled, and serviced by timbas_isr (user defined)

Timer 0
void timer0_init (unsigned char mode, unsigned int md0, unsigned int tm0);
 Initialize timer 0 with mode, md0, and tm0.
 where mode is written into TMC0(see V25 User’s Manual, page 8-3).
 Select start/stop, clock freq. one-shot or timer, TOUT.
 Examples: mode=0xc0, 125x128=16µs per count
 mode=0x80, 125x6=750 ns per count
 md0 is written into MD0, md0 = 0 to 65535
 tm0 is written into TM0, tm0 = 0 to 65535
void timer0_interrupt (unsigned char i, void interrupt far (*timer0_isr)());
 Set interrupt service routine for timer 0,
 i = 0, timer 0 interrupt disabled
 i = 1, timer 0 interrupt enabled, and serviced by timer0_isr (user defined)
unsigned int timer0_rd (unsigned char i);
 i = 0 read 16-bit data from MD0 i = 1 read 16-bit data from TM0
void delay(unsigned int t); Simple software loop, delay(t){ while(t){ t--; } }
void delay_ms(int m); where m=0-999 for delay approximate 0 to 999 ms

Timer 1
void timer1_init (unsigned char mode, unsigned int md1, unsigned int tm1);
 Initialize timer 1 with mode, md1, and tm1,
 where mode is written into TMC1(see V25 User’s Manual, page 8-3),

MiniDrive™ Ch.5 Software
__

5-4

 select start/stop, clock freq. timer1 has no TOUT and one-shot mode
 mode=0xc0, starts 16µs count down
 mode=0x80, starts 750 ns count down
 md1 is written into MD1, md1=0 to 65535
 tm1 is written into TM1, tm1=0 to 65535
void timer1_interrupt (unsigned char i, void interrupt far (*timer1_isr)());
 Set interrupt service routine for timer 1,
 i = 0, timer 0 interrupt disabled,
 i = 1, timer 0 interrupt enabled, and serviced by timer1_isr (user defined)

unsigned int timer1_rd (unsigned char i); i = 0 read 16-bit data from MD1, i = 1 read from TM1.

Timer2_interrupt
void timer2_interrupt (unsigned char i, void interrupt far (*tmf2_isr)());
 This interrupt request is generated by underflow of TM1 register of timer 1. Only in one-shot
mode, TMF2 bit of TMIC2 set, generates an interrupt,
 i = 0, timer_flag2 interrupt disabled,
 i = 1, timer_flag2 interrupt enabled and serviced by tmf2_isr (users defined).

I/O Ports
// V25 port0,1,2 PMCx and PMC registers setting
// See V25 User's Manual Table 7-5, Table 7-6 and Table 7-7
// There are 3 registers associated with each port:
// PMC0, PM0, and P0 for PORT0
// PMC1, PM1, and P1 for PORT1
// PMC2, PM2, and P2 for PORT2
// PMCx select CONTROL function or I/O function for every bit
// PMx select INPUT or OUTPUT for every bit
// Px is the DATA register for reading inputs or writing outputs
//
// void port_init(char port, unsigned char pmc, unsigned char pm);
// where port = 0, 1, or 2
// pmc is a control byte to define each pin as CONTROL or I/O
// if bitx=0, I/O; bitx=1, CONTROL
// pm is a control byte to define each pin as input or output
// if bitx=0, output; bitx = 1, input
// note to check the pins used by the system
//
void port_init (char p, unsigned char pmc, unsigned char pm);

unsigned char port_rd (unsigned char p); Reads a byte from the data register of port p

void port_wr (unsigned char p, unsigned char dat); Write character "dat" to the data register of
 port p. if the pin is output, the dat bit will be output. if the pin is input, no change.

Comparator Port T
unsigned char portt_rd (void); Reads port T 8 comparator inputs
void portt_wr (unsigned char vref); Set reference voltage (0-15) for port T

External Interrupts
void nmi_init (void interrupt far (* nmi_isr)());
 Set NMI interrupt service routine nmi_isr for NMI (user defined nmi_isr).
void intp0_init (unsigned char i, void interrupt far (* intp0_isr());

MiniDrive™ Ch.5 Software
__

5-5

 Set interrupt service routine intp0_isr for INPT0, i = 0 INPT0 interrupt disabled,
 i = 1 INPT0 interrupt enabled and serviced by intp0_isr (user defined).
void intp1_init (unsigned char i,void interrupt far (* intp1_isr());
 Set interrupt service routine intp1_isr for INPT1,
 i = 0 INPT1 interrupt disabled,
 i = 1 INPT1 interrupt enabled and serviced by intp1_isr (user defined).
void intp2_init (unsigned char i,void interrupt far (* intp2_isr());
 Set interrupt service routine intp2_isr for INPT2,
 i = 0 INPT2 interrupt disabled,
 i = 1 INPT2 interrupt enabled and serviced by intp2_isr (user defined).

void fint (void); Finish interrupt, required by all interrupt service routine to release V25 interrupt
 controller, except NMI, INT, and software interrupts.
Watchdog Timer
void hitwd (void); Toggle J6 pin2 HWD once, hit watchdog, if J6 jumper is on.
void wdo(void); Read the Watchdog Out pin (P04 of V25).

LED
void led (int i); Turn LED on if i=1, turn LED off if I=0.

Counters / DMA
void counter0_init(unsigned int count0);
 Load 16-bit count0 word into counter0. Every low to high edge at P20=DR0 will decreament the
counter till zero. The counter must be reload by user. An interrupt can be generated at the end of count zero.
Use V25 DMA0 16-bit address counter as external event counter. counter0_init() defines P20 as DMARQ0.
It also uses eeprom 0x0d as PMC2 image register. The follow code are included.
 pmc=0x01|ee_rd(0x0d);
 ee_wr(0x0d,pmc);
 pokeb(0xfff0,0x12,pmc); /* Set P20=DR0 */
 See sample program samples\ve\ve_cnt0.c

unsigned int counter0_rd(void); returns 16-bit counts in the counter0.
void counter0_interrupt (unsigned char i, void interrupt far (* cnt0_isr)());
 Setup an interrupt service routine cnt0_isr for counter0 counts to 0 interrupt,
 i = 0 counter0 interrupt disabled,
 i = 1 counter0 interrupt enabled and serviced by cnt0_isr (user defined).

void counter1_init(unsigned int count1);
 Load a 16-bit word count1 into counter1. Every low to high edge at P23=DR1 will decreament the
counter till zero. The counter must be reload by user. An interrupt can be generated at the end of count zero.
Use V25 DMA1 16-bit address counter as external event counter. counter1_init() defines P23 as DMARQ1.
It also uses eeprom 0x0d as PMC2 image register. The follow code are included.
 pmc=0x08|ee_rd(0x0d);
 ee_wr(0x0d,pmc);
 pokeb(0xfff0,0x12,pmc); /* Set P23=DR1 */
 See samples program samples\ve\ve_cnt1.c
unsigned int counter1_rd(void); returns 16-bit counts.
void counter1_interrupt (unsigned char i, void interrupt far (* cnt1_isr)());
 Setup an interrupt service routine cnt1_isr for counter1 counts to zero interrupt,
 i = 0 counter1 interrupt disabled,
 i = 1 counter1 interrupt enabled and serviced by cnt0_isr (user defined).

CPU States
void poll(void); Poll and wait until the /POLL pin (P14) low.

MiniDrive™ Ch.5 Software
__

5-6

void halt(void); Force CPU into HALT state until an INT, NMI, or RESET event occurs.
void stop(void); STOP, forcing CPU into STOP mode. Only wakeup by NMI or RESET

Functions in SER0.OBJ Module
void s0_init(char m, char b, char* ibuf, int isiz, char* obuf, int osiz, COM *c);
 initialize SER0, where: m = mode,
 b = baud rate
 ibuf = pointer to input buffer
 isiz = size of input data buffer, use 512, 1024, 2048, 4096,... bytes.
 obuf = pointer to output buffer
 osiz = size of output data buffer
 c = serial data structure, COM
 where b = baud rate expressed in number 0 to 11
 baud = 1, 110 baud
 baud = 2, 150 baud
 baud = 3, 300 baud
 baud = 4, 600 baud
 baud = 5, 1200 baud
 baud = 6, 2400 baud
 baud = 7, 4800 baud
 baud = 8, 9600 baud (default)
 baud = 9, 19,200 baud
 baud = 10, 38,400 baud
 baud = 11, 57,600 baud
 baud = 12, 76,800 baud
 baud = 13, 115,200 baud
 baud = 14, 230,400 baud
 baud = 15, 460,800 baud
 baud = 16, 1M baud
 mode - 8 bits = SCM0
 bit 7=TxE=0, transmit disable
 bit 7=TxE=1, transmit enable
 bit 6=RxE=0, receive disable
 bit 6=RxE=1, recieve enable
 bit 5,4 = 0,0 No parity
 bit 5,4 = 0,1 Trans. Parity bit=0, Rec. ignore parity
 bit 5,4 = 1,0 Odd parity
 bit 5,4 = 1,1 Even parity
 bit 3 = 0 7 data bits
 bit 3 = 1 8 data bits
 bit 2 = 0 1 stop bit
 bit 2 = 1 2 stop bits
 bit 1 = 0
 bit 0 = 1 Async mode
 For example, mode=0xc9:
 transmit enable, receive enable, no parity, 8 bits, 1 stop bit
unsigned char getser0(COM *c); get a character from input buffer of SER0
int getsers0(COM *c, int len, unsigned char *str);
 get a string from SER0, where c = serial data structure, COM
 len = max length of input buffer of structure c
 str = pointer to a buffer for storing the string
 output = number of characters read
 = -1 if abort

MiniDrive™ Ch.5 Software
__

5-7

int putser0(unsigned char outch, COM *c);
 output a character to the SER0 MACRO service
 return 1, if MACRO service valid and the character will be output.
 return 0, if MACRO service is not available, NO operation.

int putsers0(unsigned char *str, COM *c);
 output a string to SER0 MACRO service, appends a 0x0d=CR, 0x0a=LF, 0x00=‘\0’
 where str = pointer to the string being output
 c = serial data structure, COM
 return = 1, if MACRO service valid, string will be output
 return = 0, if MACRO service is not available, NO operation.
int puts0(unsigned char *str, unsigned char n, COM *c);
 output str to SER0 MACRO service, where str = pointer to str being output
 n = number of unsigned characters being output
 c = serial data structure, COM
 return = 1, if MACRO service valid, string will be output
 return = 0, if MACRO service is not available, NO operation.
int serhit0(COM *c); check if SER0 has received any character. return 1, if any, return 0, if nothing

Functions in SER1.OBJ Module
void s1_init(char m, char b, char* ibuf, int isiz, char* obuf, int osiz, COM *c);
 initialize SER1, where: m = mode, b = Baud rate
 ibuf = pointer to input buffer
 isiz = size of input data buffer
 obuf = pointer to output buffer
 osiz = size of output data buffer
 c = serial data structure, COM
 where b = baud rate expressed in number 0 to 11
 baud = 1, 110 baud
 baud = 2, 150 baud
 baud = 3, 300 baud
 baud = 4, 600 baud
 baud = 5, 1200 baud
 baud = 6, 2400 baud
 baud = 7, 4800 baud
 baud = 8, 9600 baud (default)
 baud = 9, 19,200 baud
 baud = 10, 38,400 baud
 baud = 11, 57,600 baud
 baud = 12, 76,800 baud
 baud = 13, 115,200 baud
 baud = 14, 230,400 baud
 baud = 15, 460,800 baud
 baud = 16, 1M baud
 mode - 8 bits = SCM1
 bit 7=TxE=0, transmit disable
 bit 7=TxE=1, transmit enable
 bit 6=RxE=0, receive disable
 bit 6=RxE=1, recieve enable
 bit 5,4 = 0,0 No parity
 bit 5,4 = 0,1 Trans. Parity bit=0, Rec. ignore parity
 bit 5,4 = 1,0 Odd parity
 bit 5,4 = 1,1 Even parity
 bit 3 = 0 7 data bits

MiniDrive™ Ch.5 Software
__

5-8

 bit 3 = 1 8 data bits
 bit 2 = 0 1 stop bit
 bit 2 = 1 2 stop bits
 bit 1 = 0
 bit 0 = 1 Async mode
 For example, mode=0xc9:
 transmit enable, receive enable, no parity, 8 bits, 1 stop bit
unsigned char getser1(COM *c); get a character from input buffer of SER1

int getsers1(COM *c, int len, unsigned char *str);
 get a string from SER1, where: c = serial data structure, COM
 len = max length of input buffer
 str = pointer to a buffer for storing the string
 return = number of characters read, or -1 if abort

int putser1(unsigned char outch, COM *c);
 output a character to the SER1 MACRO service
 return 1, if MACRO service valid and the character will be output.
 return 0, if MACRO service is not available, NO operation.

int putsers1(unsigned char *str, COM *c);
 output a string to SER1 MACRO service, appends a 0x0d=CR, 0x0a=LF, 0x00=‘\0’
 where str = pointer to the string being output
 c = serial data structure, COM
 return = 1, if MACRO service valid, string will be output
 return = 0, if MACRO service is not available, NO operation.

int puts1(unsigned char *str, unsigned char n, COM *c);
 output str to SER1 MACRO service, where str = pointer to str being output
 n = number of unsigned characters being output
 c = serial data structure, COM
 return = 1, if MACRO service valid, string will be output
 return = 0, if MACRO service is not available, NO operation.

int serhit1(COM *c); check if SER1 has received character, return 1 if any, return 0, if nothing

Functions in VEEE.OBJ Module

int ee_wr(int addr,unsigned char dat); Write a byte "dat" to address "addr"
int ee_rd(int addr); Read from an address "addr"

Functions in LCD.OBJ Module
void lcd_init (void); Initialize the LCD1, for BB/SW/PD

void lcdcmd(int); Write the low byte of the int to the LCD1 command register
 LCD command list:
 0x01 Clear Screen
 0x0c Cursor OFF (cursor invisible, blink off)
 0x0e Cursor ON (solid cursor block)
 0x0d Cursor BLINK (blinks continuously)
 0x18 Shift Display Left
 0x1c Shift Display Right
 0x80 - 0x93 Position Cursor Line 0
 0xC0 - 0xD3 Position Cursor Line 1

MiniDrive™ Ch.5 Software
__

5-9

 0x94 - 0xA7 Position Cursor Line 2
 0xD4 - 0xE7 Position Cursor Line 3
void lcddat(int); Write the low byte of the int to LCD1 data register
void lcd_wait(void); Waiting for the LCD1 response
void lputc(unsigned char); Put a charater on the LCD1 at the cursor pointing position
void lcd_clr_line(unsigned char); Clear a line.
 lcd_clr_line(0x80) clear line 0; lcd_clr_line(0xc0) clear line 1
printf() and int _putch(int); Microsoft / Borland C/C++ printf() function will use this putch() to
print formated charaters to the LCD. At least 10K of codes will be linked in the program, if you use the
printf (). In order to reduce your program size, you may consider use lcdcmd() and lcddat() directly for
your LCD application.

// functions of LCD 2 are for the second LCD module, functions of LCD3-4 are for the V104™ LCD.
void lcd2_init(void);
void lcd2cmd(int);
void lcd2dat(int);
void lcd2_wait(void);
void lputc2(unsigned char);
void lcd2_clr_line(unsigned char);
void lcd3_init(void);
void lcd3cmd(int);
void lcd3dat(int);
void lcd3_wait(void);
void lputc3(unsigned char);
void lcd3_clr_line(unsigned char);
void lcd4_init(void);
void lcd4cmd(int);
void lcd4dat(int);
void lcd4_wait(void);
void lputc4(unsigned char);
void lcd4_clr_line(unsigned char);

MiniDrive™ Appendix A

A-1

A. Mounting Hole Locations

H1

U2
V25 CPU

U5
PAL

ROM RAM

U6
691

U7
EE

U13
259

U12
188

U11
189

U9
2003

J6

H3
H4
H5

H2

0.1, 2.5

4.18, 2.5

0.1, 0.1

0, 0

4.23, 0.12

0.1, 2.5

0.92, 2.26

2.0, 0.1 4.1, 0.1

3.92, 1.0

4.4, 2.6

MiniDrive™ Appendix B
__

B. MiniDrive™ Part List

MiniDrive™ Part List Revised: April 7, 1996

Item Quantity Reference Part
__
1 1 B1 BTH1
2 1 BP1 BEEP
3 8 C1,C2,C3,C6,C8,C14,C18,C19 0.01 UF, DIPCAP
4 2 C4,C5 10PF
5 7 C7,C9,C10,C11,C12,C15,C16 10uf35V Al. El. Cap.
6 2 C13,C17 0.1UF
7 2 D1,D2 1N5817
8 3 J5,J7,H0 HDRD2
9 2 H1,J6 HDRD16
10 1 H2 HDRD20
11 1 H3 HDRS14
12 2 H4,H5 HDRS20
13 1 I1 22UF, Inductor
14 1 J0 DJ-005
15 1 J1 HDRD40
16 1 J2 HDRS9
17 2 J3,J4 HDRD10
18 1 J8 HDRS3
19 1 J9 HDRS10
20 1 L1 LED
21 1 P0 POT
22 1 R3 1K
23 6 RN1,RN2,RN3,R4,RN4,RN5 10K
24 1 U1 RAM271024
25 1 U2 PD70320_V25
26 1 U3 PROM1024
27 1 U4 ICL7662
28 1 U5 PAL16V8
29 1 U6 MAX691
30 1 U7 24C04
31 1 U8 LM7805Z
32 1 U9 ULN2003
33 1 U10 MAX766
34 1 U11 1489/75C189
35 1 U12 1488/75C188
36 1 U13 74HC259
37 1 XTAL1 16MHZ

MiniDrive™ Appendix C
--

 C-1

Appendix C. Serial Port SER0/SER1 Drivers

Most embedded applications require serial communications among controllers and PCs. A reliable, high speed, easy to use serial port
driver can save you weeks of time, and is essential for all success OEM products. We know what frustrations are, if using a controller
with an un-reliable serial port. It eventually will kill the whole project.
TERN controllers and serial port software drivers will provide you with the best serial communication performance in the embedded
control industry. There are 2 serial ports in the V25 CPU, SER0 and SER1. By default, SER0 is used by DEBUG. You also can use
SER1 for DEBUG with TERN EPROM(1). We will use SER1 as the example in the following discussion. After
initialization(s1_init();), SER1 is configured as a full-duplex serial port and is ready to transmit/receive serial data at one of the 16
baud rates from 110 to 1M. The supported baud rates are: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800,
115200, 230400, 460800 and 1 M.
An input buffer(ser1_in_buf), size specified by user, will automatically store the input serial data TERNam. There is no software
overhead or interrupt latency for user application program even at the highest 1M baud rate, except checking the buffer
status(serhit1();) and taking out the data from buffer(getser1();), if any. The input buffer is used as a circular ring buffer, as shown in
Fig E-1.

ibuf in_tail ibuf+isizin_head

Due to the nature of high speed baud rate and unknown external environment, serial input data will automatically fill in the buffer
circularly regardless without stop. If user did not take out the data(getser1();) from the ring buffer before the ring buffer is full, the new
data will overwrite the old data without warning or control. The input buffer(ibuf), buffer size(isiz), baud rate(baud), and mode(7/8
data bits, 1/2 stop bits, parity) can be specified by user with s1_init();. If you defined a 4K(0x1000) input buffer, at 9600 baud, at least
in 4 seconds time you do not have to deal with the serial input, although it is always good to take out data from the input buffer before
ring buffer round over. You should design higher baud rate for transmiting data out and slower baud rate for the receiving. It will give
yourself more time to do other things without overrun the input buffer. You use serhit1(); to check the status of the input buffer and
return the offset of the in_head pointer from the in_tail pointer, if return 0, in_head=in_tail, nothing is available. You use getser1(); to
get the serial input data byte from FIFO. The in_tail pointer will automatically increment after every getser1();. There are no need to
suspend external device from sending in serial data with /RTS. Only hardware reset or s1_close(); can stop this receiving operation.
For transmission, you can use putser1(), putsers1(), or puts1(); to send out a character, a string, or a block of memory. Before you
transmit, your should check the availability of transmit buffer by using serout1();. If serout1() returns 0, you can take over the
transmission, otherwise, it is busy, you have to wait. After call transmit functions, you are free to do other task with no software
overhead on the transmitting operation. It will automatically send out all the data you specified. After all data is out, it will clear the
busy flag, ready for the next transmission. A communication structure COM used by SER0, SER1, and SCC, is defined in VE.H. SER0
functions are defined in SER0.H. SER1 functions are defined in SER1.H. A sample program ser1_0.c, demonstrates how a protocol
translator works. It will receive an input HEX file from SER1, and translates every ':' to '?', then transmit the HEX file out of SER0. It
also works with 57,600 baud input and 115,200 baud output.

void s0_init(unsigned char m, unsigned char b, unsigned char*ibuf, int isiz, unsigned char*obuf, int osiz, COM *c);
SER0 initialization.
void s1_init(unsigned char m, unsigned char b, unsigned char*ibuf, int isiz, unsigned char*obuf, int osiz, COM *c);
SER1 initialization.
where m = mode- 8 bits
// bit 7=TxE=0, transmit disable
// bit 7=TxE=1, transmit enable
// bit 6=RxE=0, receive disable
// bit 6=RxE=1, receive enable
// bit 5,4 = 0,0 No parity
// bit 5,4 = 0,1 Transmit Parity bit=0, Receive ignore parity
// bit 5,4 = 1,0 Odd parity
// bit 5,4 = 1,1 Even parity
// bit 3 = 0 7 data bits
// bit 3 = 1 8 data bits
// bit 2 = 0 1 stop bit
// bit 2 = 1 2 stop bits
// bit 1 = 0
// bit 0 = 1 Async mode
// For example, mode=0xc9
// transmit enable, receive enable, no parity, 8 bits, 1 stop bit
// where baud - baud rate expressed in number 1 to 15
// baud = 1, 110 baud

MiniDrive™ Appendix C
--

C-2

// baud = 2, 150 baud
// baud = 3, 300 baud
// baud = 4, 600 baud
// baud = 5, 1200 baud
// baud = 6, 2400 baud
// baud = 7, 4800 baud
// baud = 8, 9600 baud (default)
// baud = 9, 19,200 baud
// baud = 10, 38,400 baud
// baud = 11, 57,600 baud
// baud = 12, 76,800 baud
// baud = 13, 115,200 baud
// baud = 14, 230,400 baud
// baud = 15, 460,800 baud
// baud = 15, 1 M baud
ibuf = input buffer pointer; isiz = input buffer size; obuf = output buffer pointer; osiz = output buffer size
void cntl_rts0(int flag, COM *c)
 rts0 pin control. where flag =0, rts0 low, flag=1, rts0 high active
void cntl_rts1(int flag, COM *c)
 rts1 pin control. where flag =0, rts1 low, flag=1, rts1 high active
unsigned char getser0(COM *c);
 returns the data in the ser0_in_buf(FIFO). increment the in_tail.
unsigned char getser1(COM *c);
 returns the data in the ser1_in_buf(FIFO). increment the in_tail.
unsigned char serhit0(COM *c);
unsigned char serhit1(COM *c);
 if return 0, nothing received, in_head=in_tail.
 if return >0, the offset, unsigned char pointer in_head leading in_tail.
 if return <0, the offset, unsigned char pointer in_head behind of in_tail.
unsigned char serout0(COM *c);
unsigned char serout1(COM *c);
 returns the number of bytes remaining in the output buffer.
 Only if serout0/1()==0;, a new transmit task can be started.
int putser0(unsigned char outch, COM *c);
int putser1(unsigned char outch, COM *c);
 return 0, if transmitter is busy. or
 return 1, after put the outch into out_buf. It returns before outch being transmited out.
int putsers0(unsigned char *str, COM *c);
int putsers1(unsigned char *str, COM *c);
 return 0, if transmitter is busy. or
 return 1, after put a string *str, into out_buf. It returns before str being transmit out.
int puts0(unsigned char *str, unsigned char n, COM *c);
int puts1(unsigned char *str, unsigned char n, COM *c);
 return 0, if transmitter is busy. or
 return 1, after puting a block of data, pointed by *str, with a length of n bytes into out_buf. It returns
 before the string being transmited out.
void s0_close(COM *c);
void s1_close(COM *c);
 close down the ser0/1 transmit and receive.

Sample program ser1_0.c

SER1 SER0

C-Engine

4800 baud
19200 baud

PC0PC1

: ?

MiniDrive™ Appendix C
--

C-3

/** **********************
 SER0 and SER1 exchange data DEMO 09-14-1994
 ser1_0.c

; DESCRIPTION:
; This program shows a possibility using both SER0 and SER1 in application
; Needs two PCs or terminals to test this sample program.
; We can not debug this sample program, but we can test it.
; Load this program with TD/PD, then run from battery back SRAM
; See Technical Manual for detail about how to run from SRAM
; This sample program use SER0 9600 baud talk to PC0, window, terminal; SER1 19200 baud talk to PC1 window terminal;
; Every character typed from PC0-SER0 will be sent to PC1-SER1
; Every character typed from PC1-SER1 will be sent to PC0-SER0
; Set PC1 send any HEX file, will shows on PC0, with every ':' translated to '?'
// Copyright (C) 1995 TERN, INC. All rights reserved.
*** *********************/
#include <stdio.h>
#include <dos.h>
#include <string.h>
#include "ve.h" /* V25 initializations */
#include "ser1.h"
#include "ser0.h"

#define MAXISIZE 0x1000
#define MAXOSIZE 0x1000
unsigned char ser1_in_buf[MAXISIZE];
unsigned char ser1_out_buf[MAXOSIZE];
unsigned char ser0_in_buf[MAXISIZE];
unsigned char ser0_out_buf[MAXOSIZE];
int isize,osize;
int i,j;
unsigned char mode,baud;

extern COM ser1_com;
extern COM ser0_com;

void main(void)
{
COM * c0;
COM * c1;
 ve_init();
 c0 = &ser0_com;
 c1 = &ser1_com;
/* transmit enable, receive enable, no parity, 8 bits, 1 stop bit */
 mode = 0xc9;
 baud1 = 7; /* 4800 baud for SER0 */
 baud0 = 9; /* 19200 baud for SER1 */
 isize=MAXISIZE;
 osize=MAXOSIZE;
 s1_init(mode,baud,ser1_in_buf,isize,ser1_out_buf,osize,c1);
 s0_init(mode,baud,ser0_in_buf,isize,ser0_out_buf,osize,c0);
while(1){
 if(serhit0(c0)){ /* hit by PC0 */
 i = getser0(c0); // get the character
 if(i==':') i='?';
 while(!puts1(&i,1,c1)); } /* sent to PC1 */
 if(serhit1(c1)){ /* hit by PC1 */
 j = getser1(c1); // get the character
 if(j==':') j='?';
 while(!puts0(&j,1,c0)); } /* sent to PC0 */
 }
}

MiniDrive™ Appendix D
--

 D-1

Appendix D. What is ACTR™ ?
Operating TERN's 16-bit controllers with ACTR™

What is the first thing you want to do with a new embedded controller ? Read the manual ? Look over the board ? Study the onboard
components ? Study the schematics ? Install the software package ? Find a sample program ? Try to learn how to program it in C/C++ ?
There are many things that you can do. Maybe the most desirable thing to do is just to power the board, read the ADC, display a
message on the LCD, turn on/off LED, or relays... ACTR™ from TERN can do all these for you !
ACTR™ is an unique firmware in EPROM/EEPROM on TERN controllers. With a terminal, such as PC windows terminal, setup to
19200, 8, N, 1, via serial link, and by typing text commands, you can operate the controller and exercise all C functions immediately.
For a project requiring embedded controllers, a lot of work must be done before you can have a hardware syTERNm ready for
software development. You need to connect sensors to the signal conditioning circuit and the ADC. You may need to acquire several
input signals, including analog and digital signal simultaneously. You need to turn relays or solenoids on and off. you need to have a
user interface to know what is going on. You may display a message on a LCD, sound a beeper, or flash a LED. You may need to find
out what is the practical sample rate for your sensors and syTERNm. You need a easy way to test the power consumption in standby
mode. You need to read/write memory, regiTERNr and I/Os. In order to have all this try-outs, you may have to spend days or weeks.
The ACTR™ from TERN is a instant actor or actuator for you to operate TERN controllers. ACTR™ provides an interactive menu
and on-line help for you, so you do not have to dig into manuals. ACTR™ not only provides you an easy access to all C functions, but
also allow you to download a debugger for your C/C++ program development. After you debug your program, you can download your
program to the controller and run. An operation functional block diagram of the ACTR™ is shown in Fig. .

Power on or Reset

Is Jumper on ?

Yes

Recover the CS:IP of the last download program

Recover the CS:IP of the last GO command
 or

RUN the program starting at the CS:IP

No SEND out MENU over SER0 at 19200, N, 8, 1

RUN ACTR

See ACTR MENU and Functions for detail

 Starting Data logging and waiting for ASCII commands

 or P22=GND ?

Process Commands

ACTR™ may be used in you final product. As long as the jumper is on, every time power on or reset, the controller always run your
program. You may download several application programs in different memory location, take off the jumper, use ACTR™ Gxxxxx
commands to setup a new CS:IP, then put the jumper back on, and it will run the program you want every time when power on or reset.
You also may download a new program in the field with the ACTR™. If you have enough memory space, it is wise to have the
ACTR™ onboard. It is also useful in the future for field testing or troubleshooting. The ACTR™ are available in EPROM or Flash
EEPROM. Your application program may reside in battery backed SRAM or Flash EEPROM.
* How to setup the controller ?
Connect PC COM1/2 and the controller with a serial cable(PC-V25, TERN). Setup PC Windows terminal to 19200, N, 8, 1. Power on
the controller with ACTR™ EPROM installed.
A menu should be displayed on the terminal after reset:
>C C FUNCTIONS, SEE HELP C
>D Download an Intel Extend Hex file
>G Go and Run the Hex file
>H HELP, HC1 for C FUNCTIONS
>L Upload Data Log Record
>M MENU
>N Nodes on the network
>S Set Data Log Sample Rate in the unit of 16 us
>U Upload a block of Binary data

ACTR™ only takes commands of upper case keys. Every command must terminate with a "Enter"/CR.
If an error occur, it will show a message as: "Upper Case Keys only ! Start with ~ for remote, M for menu"
* How to get help ?
"H" will show a help menu:
"HC1 ---poke,peek,inport, outport"
"HC2 ---p0,p1,p2,pt,led,hitwd,rtc,ce_ad12"
"HC3 ---SER1 s1_init, putsers1, getser1, serhit1"
"HC4 ---lcd, lcd2, and printf"
"HC5 ---BirdBox PDC, bb_led, bb_beep"
"HC6 ---SensorWatch ad, da, led, beep, hv, relay, ptc"
"HC7 ---PowerDrive ad, da, led, beep, hv, relay, hp"

MiniDrive™ Appendix D
--

D-2

"HC8 ---TinyDrive ad, hv"
"HD ----Download a HEX FILE"
"HU ----Upload 256 bytes data(HEX) starts at xxxxx"
"HL ----Upload Data Log Record in the ring_buf"
"HS ----Set a Sample Rate for Data Log Operation"

"C" is the main command to active C functions. Similar to the way DOS handles BIOS function calls, ACTR™ uses a code to associate
with each C function. In order to know the codes, you may use "HCx" for helping on C.
 For example, If you want to know more on poke, peek, inport and outport, "HC1" will show:
 "C11 SSSS OOOO BB-----pokeb(SSSS,OOOO,BB);";
 "C12 SSSS OOOO BBBB---poke(SSSS,OOOO,BBBB);";
 "C13 SSSS OOOO--------peekb(SSSS,OOOO);";
 "C14 SSSS OOOO--------peek(SSSS,OOOO);";
 "C15 PPPP-------------inportb(PPPP);";
 "C16 PPPP BB----------outportb(PPPP,BB);";
 "C17 -----------------halt()";
 "C18 -----------------stop()";
C13 1234 0005 will show one byte memory content at address of 1234:0005.
If you want to know more on V25 p0,p1,p2,pt,led,hitwd,rtc,ce_ad12, "HC2" will show:
 "C21----------------ve_init();"
 "C22----------------hitwd();"
 "C23 B--------------led(B); B=0/1"
 "C24 P BB----------port_init(P,BB); P=0,1,2"
 "C25 P BB----------port_wr(P,BB); P=0,1,2"
 "C26 P--------------port_rd(P); P=0,1,2"
 "C27 R--------------portt_wr(R); R=0-F, VREF"
 "C28-----------------portt_rd(); read comparators"
 "C29 AA BB-------iram_wr(AA,BB); write BB to AA"
 "C2A AA-----------iram_rd(AA); read IRAM"
 "C2B C--------------ce_ad12(C); read CE/TD 12-bit ADC channel C=0-A"
 "C2C-----------------rtc_rd(); read RTC"
 "C2D WYYMMDDHHMMSS--rtc_init();"
"C2C" will show you the real time
If you want to know how to use UART SER1 functions, s1_init, putsers1, getser1,serhit1,"HC3" will show:
 "C30 MM BB----s1_init(mode,baud);"
 "C31----------s1_close();"
 "C33 AAAA ----putsers1; write string AAAA to SER1"
 "C35----------getser1; read from SER1"
 "C36----------serhit1; return 1, if any char. in the buffer"
 "C38 AAAA DD--ee_wr(AAAA,DD); write EEPROM"
 "C39 AAAA-----ee_rd(AAAA); read EEPROM"
"C30 C9 09" will initialize the SER1 to 9600 baud, 8, N, 1. Please see C-Engine™ manual for SER1 details. "C33 hello" will send a
string of "hello" out of SER1 TXD1 pin.
If you want to know how to use LCD, printf(); functions, "HC4" will show:
 "C40--------lcd_init();"
 "C41 CC-----lcdcmd(CC);, CC=80, 1st line, CC=C0, 2nd line"
 "C42 DD-----lcddat(DD);"
 "C44 CC-----lputc(CC); put CC at cursor"
 "C45 CC-----lcd_clr_line(CC);"
 "C46--------lcd2_init();"
 "C47 CC-----lcd2cmd(CC);, CC=80, 1st line, CC=C0, 2nd line"
 "C48 DD-----lcd2dat(DD);"
 "C4A CC-----lputc(CC); put char CC at cursor"
 "C4B CC-----lcd2_clr_line(CC);"
 "C4C xxxx---printf(xxxx)"
You must use "C40" to initial LCD first, before use LCD functions, otherwise it may lock up the syTERNm.
"HG" helps on how to goto a new program
 "Gxxxxx ---Goto xxxxx and modify EEPROM start addr";
"HU" helps on how to upload a block of memory
 "U12345 ---READ 256 bytes of MEMORY starts at 1234:0005"
"HD" helps on Intel Hex file download
"HS" helps on how to set the sample rate for ring buffer data logging
 "Sxxxx ---Sample Rate, min. xxxx=0271 equ 625x16 us, FFFF=1.048s"
* What is the data log ring buffer ?
If no command is issued, ACTR™ will continuely sample ADC, P0, P1, P2, PT, RTC and flashing LED.
The sample rate can be setup with "S" command. The data collected will be recorded in a ring buffer in a Log data record format:
 " 11 channels 12-bit ADC reading:"
 " V25 P0, P1, P2, PT reading:"

MiniDrive™ Appendix D
--

D-3

 " Real time YYMMDD HHMMSS:"
* The memory map
You may use 32K SRAM to use ACTR™. At least 128K SRAM must be installed in order to program and debug in C/C++ with large
program or floating point calculation.
ACTR™ is in EPROM/EEPROM in the 1 M byte memory, starting at 0xf0000 to 0xfffff.
ACTR™ uses SRAM starting at 0x01000 to 0x04500 for data log ring buffer, UART buffer and variables.
You may load DEBUG with the HEX file pdrem32.hex to 32K SRAM in 0x06e00 to 0x07fff.
You may load DEBUG with the HEX file pdrem128.hex to 128K SRAM in 0x1e000 to 0x1ffff.
You may load DEBUG with the HEX file pdrem512.hex to 512K SRAM in 0x7e000 to 0x7ffff.

0x00000

0xFFFFF

0xF0000

0x1E000

0x1FFFF

0x04500

ACTR

ACTR

DEBUG

0x80000

Upto 512K EPROM/EEPROM

Upto 512K SRAM

128K SRAM

0x00000

0xFFFFF

0xF0000

0x06E00

0x07FFF

0x04500

ACTR

ACTR

DEBUG

0x80000

Upto 512K EPROM/EEPROM

Upto 512K SRAM

32K SRAM

* How to make an Intel Extended Hex file suitable for ACTR™ downloading
 You need the TERN C/C++ Development Kit(DV) and TERN C library disk.
 The C/C++ program must have been well debugged.
 Set the makefile DEBUG=0,
 Change the TEST32 to load
 Use load.rm as the configuration file
 Set the correct segment map as you want, for example:
 segment map
 map 0x00000 to 0x00fff as reserved // Interrupt vector table
 map 0x01000 to 0x17fff as rdwr // 64KB RAM address space
 map 0x18000 to 0x1ffff as rdonly // CODE
 map 0x20000 to 0xfffff as reserved // No access
 dup DATA ROMDATA // Make a copy of initialized data
 class CODE = 0x1800 // Assume loading at address 18000H
 class DATA = 0x0100 // Data at address 01000H
 * How to program in C/C++ ?
 1. You need the DEBUG(PDREM1E.HEX) for 128K or (PDREM7E.HEX) for 512K SRAM.
 2. "D" download the PDREM1E.HEX to the controller with Windows, Terminal, Send Text File.
 3. Set a jumper for P22=GND, Power off/on or reset. The controller is ready for debug.
 4. Use p led for led.c, refer to C-Engine™ Technical Manual for details.
* How to down load an Intel Extended Hex file ?
 1. Use "D" command. It will response with
 "Ready to receive Intel Extend HEX file at 19200 baud"
 2. Select windows terminal , File transfer, "Send Text File", select your Intel Extended Hex file,
 OK to download.
 3. If the file transfer is successful, ACTR™ will show
 "END of File Record" "CHKSUM = 0" "CS=xxxx IP=yyyy"
 If error occur during file transfer, ACTR™ will show "Transfer Error ! CHKSUM=???"
 You have to reset and transfer again.
* How do I set up the sample rate ?
 "S0271" ---Sample Rate, min. xxxx=0271 equ 625x16 us, FFFF=1.048 second
* How can I read ADC ?
 for a C-Engine™, "C2B C"--------------ce_ad12(C); read CE/TD 12-bit ADC channel C=0-A
* How to read the real time clock ?
 "C2C"-----------------rtc_rd(); read RTC
* How to turn a relay on ?
 "C64 D"---------sw_relay(D); relay on, if D=1
* How to show "Hello !" on the first line of the 16x2 LCD ?
 "C40"--------lcd_init();

MiniDrive™ Appendix D
--

D-4

 "C45 80"-----lcd_clr_line(80);
 "C4C Hello !"---printf(Hello !)
* How to turn a LED on/off ?
 "C23 1"--------------led(1); led on
 "C23 0"--------------led(0); led off
* How to upload a block of memory ?
 "U12345" ---READ 256 bytes of MEMORY starts at 1234:0005
* How to read the data log ring buffer ?
 "L" will upload the whole ring buffer in the format of
 " 11 channels 12-bit ADC reading:"
 " V25 P0, P1, P2, PT reading:"
 " Real time YYMMDD HHMMSS:"
* How to transmit or receive a character with SER1 ?
 "C30 C9 09" will initialize the SER1 to 9600 baud, 8, N, 1
 "C33 hello" will send a string of "hello" out of SER1 TXD1 pin.
 "C36"----------serhit1; return 1, if any char. in the buffer. return 0, if nothing
 "C35"----------getser1; read a character from SER1
* How to actuate slaves over RS-485 network ?

* What software drivers are available ? we list part of the software drivers here. They are ready to be called, and linked in your
applications:

void pokeb(unsigned int segm, unsigned int offs, unsigned char b);
void poke(unsigned int segm, unsigned int offs, unsigned int b);
unsigned char peekb(unsigned int segm, unsigned int offs);
unsigned int peek(unsigned int segm, unsigned int offs);
unsigned char inportb(unsigned char port); void outportb(unsigned char port, unsigned char p);
void halt(void); void stop(void);
void ve_init(void); void hitwd(void); void led (int);
void port_init(unsigned char p, unsigned char mode); void port_wr(unsigned char p, unsigned char dat);
unsigned char port_rd(unsigned char p); void portt_wr(unsigned char vref);
unsigned char portt_rd(void);
void iram_wr(int addr, unsigned char dat); unsigned char iram_rd(int addr);
int ce_ad12(unsigned char ch); int rtc_rd(TIM *r);
void rtc_init(unsigned char*);
void s1_init(unsigned char m,unsigned char b, unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c);
void s1_close(COM *c);
int puts1(unsigned char *str, unsigned char n, COM *c); int putsers1(unsigned char *str, COM *c);
int putser1(unsigned char outch, COM *c); unsigned char getser1(COM *c);
int serhit1(COM *c); unsigned char serout1(void);
int ee_wr(int addr, unsigned char dat); int ee_rd(int addr);
void timer0_init(unsigned char mode, unsigned int md0, unsigned int tm0);
unsigned int timer0_rd(unsigned char i);
void timer1_init(unsigned char mode, unsigned int md1, unsigned int tm1);
unsigned int timer1_rd(unsigned char i);
void lcd_init(void); void lcdcmd(int cmd); void lcddat(int dat);
void lcd_wait(void); void lputc(unsigned char ch);
void lcd_clr_line(unsigned char code); void lcd2_init(void); void lcd2cmd(int cmd);
void lcd2dat(int dat); void lcd2_wait(void); void lputc2(unsigned char ch);
void lcd2_clr_line(unsigned char code); void printf("xxxx");
void sw_led(unsigned char led, unsigned char onoff); void sw_do(unsigned char o, unsigned char k);
unsigned char sw_di(unsigned char i); void sw_hv(unsigned char hv, unsigned char k);
void sw_relay(unsigned char k); void sw_beep(int t, int l);
int sw_kb_scan(); int sw_ee_wr(int addr, unsigned char dat); int sw_ee_rd(int addr);
void sw_ad10(int* ad); void sw_da10(int dat); unsigned char adch(unsigned char ch);
int sw_ad12(unsigned char ch, unsigned char mode); int sw_ad12a(unsigned char ch, unsigned char mode);
unsigned int sw_ptc_rd(unsigned char chnnl, unsigned char rmd);
* Paradigm DEBUG in Intel Extended Hex file for loading to ACTR™:
 pdrem32.hex
 pdrem128.hex
 pdrem512.hex

MiniDrive™ Appendix E
--

 E-1

Appendix E. Interface a RELAY7™ with MiniDrive™
There are seven High-voltage, High-current Drivers on the MiniDrive. There are 7
12V power relays on the RELAY7.
The ULN2003(U9) on the MD has high voltage, high current Darlington transistor arrays, consisting of 7
silicon NPN Darlington pairs on a common monolithic substrate. All channels feature open-collector
outputs for sinking 350 mA at 50V, and integral protection diodes for driving inductive loads. Peak inrush
currents of up to 600 mA sinking are allowed. All driver outputs are routed to J9. as shown below.

H1

U2
V25
CPU

J1
I/O lines

8 4-bit ADC

J4
SER1 RS232

J2
pin 1-2 SRAM 32K, 128K
pin 2-3 SRAM 256K, 512K
pin 4-5 ROM 256K, 512K
pin 5-6 ROM 32K, 64K, 128K
pin 7-8 EPROM/Flash read only
pin 8-9 Flash Read/Write

J9
7 Solenoid Drives

Graphic/Character LCD
Interfaces

+9V to 12V
DC inputU5

PAL

ROM

J3
SER0 RS232

RAM

U6
691

U7
EE

U13
259

U12
188

U11
189

PIN 1

U9
2003

R4
VCC HV8I

GND K HV1 HV2 HV3 HV4 HV5 HV6 HV7 NC

J6

H3
H4
H5

H2

You must provide +12V on the MiniDrive to J9 pin 2 “K”, in order to
power the RELAY7.
A wire can be soldered on the back side of MD, between the LM7805
pin 1 to J9 pin2=K.

The interface signal between MD and RELAY7 are:

GND, K=12V, HV1, HV2, HV3, HV4, HV5, HV6, HV7.

You may connect MD and RELAY7 by solder directly, socket, or wire.
The common substrate G is routed to J9 pin1 GND. All currents sinking in must be return from J9 pin 1
GND. A heavy gage(20) wire may be used to connect GND terminal to external power supply ground
return. K is connecting to the protection diodes. K should be tied to +12V in the system.

MiniDrive™ Appendix E
--

E-2

K=12V

GND/SUB

HV1

ULN2003

J9

HV2

HV3

HV4

HV5

HV6

HV7

RELAY1

RELAY2

RELAY3

RELAY7

RELAY7MD

Fig. Drive RELAY7 with MiniDrive high voltage/current drives.

The ULN2003 is driven by U13 74HC259. You can write the 74HC259 with outportb(0x80A0+hv, dat);
where hv=0-6 for solenoid drivers HV1-7 on J9;
 hv=7 for TTL output HV8I on R4
 dat=0/1, off/on

Date: January 17, 2000 Sheet 1 of 1

Size Document Number REV

B MD-MAN.SCH

Title

MiniDrive-V25

TERN/STE

P11

VCC

P27
P25
P23

P21
IC2

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN2

10K

/NMI

VCC

P20

P26
P24
P22

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN4

10K

/RTS0

VCC

P27P26
P25P24
P23P22
P21P20

GND 1 2
J7

HDRD2

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

HDRD40

VRAM
A15
CE2
R/W

A18
 1

A16 2

A14 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2 15

GND 16

VDD
32

A15 31

CE2 30

R/W 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE1 22

D7 21

D6 20

D5 19

D4 18

D3 17

U1

RAM271024

A16

A12
A14

A14
A17P

VCC
A18

AWA16

A12

X1

A15

A18 VPP
 1

A16 2

A15 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2 15

GND 16

VCC
32

/PGM 31

NC 30

A14 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE 22

D7 21

D6 20

D5 19

D4 18

D3 17

U3

PROM1024

C4

10PF
X1

X2
VCC

/RST

R/W
/MSTB

/IOSTB
X2

XTAL1

16MHZ/REFEQ

C5
10PF

/MREQ

P04
P03

GND
P00

P01
P02

C3

DIPCAP

P06
P05

D0
D1

CLK P07/CLK 12

D0 13

D1 14

D2 15

D3 16

D4 17

D5 18

D6 19

D7 20

A0 21

A1 22

A2 23

A3 24

A4 25

A5 26

A6 27

A7
 28

A8 29

A9 30

A10 31

A11 32

P
0
6

1
1

P
0
5

1
0

I
C

9

P
0
4

8

P
0
3

7

P
0
2

6

P
0
1

5

P
0
0

4

G
N
D
/
E
A

3

/
M
R
E
Q

2

/
I
O
S
T
B

1

/
M
S
T
B

8
4

R
/
W

8
3

/
R
E
F
E
Q

8
2

/
R
S
T

8
1

V
D
D

8
0

X
2

7
9

X
1

7
8

G
N
D

7
7

V
T
H

7
6

I
C

7
5

PT7 74

PT6 73

PT5 72

PT4 71

PT3 70

PT2 69

PT1 68

PT0 67

P17/RDY 66

P16/SCKO 65

P15/TOUT 64

P14/INT/POLL 63

P13/INTP2/INTAK 62

P12/INTP1 61

P11/INTP0 60

P10/NMI 59

P27/HLDRQ
58

P26/HLDAK 57

P25/TC1 56

P24/DA1 55

P23/DR1 54

A
1
2

3
3

A
1
3

3
4

A
1
4

3
5

A
1
5

3
6

A
1
6

3
7

A
1
7

3
8

A
1
8

3
9

A
1
9

4
0

R
X
D
0

4
1

G
N
D

4
2

/
C
T
S
0

4
3

T
X
D
0

4
4

R
X
D
1

4
5

/
C
T
S
1

4
6

T
X
D
1

4
7

P
2
0
/
D
R
0

4
8

I
C

4
9

V
D
D

5
0

P
2
1
/
D
A
0

5
1

P
2
2
/
T
C
0

5
2

I
C

5
3

U2

PD70320_V25

V25S

IC

IC
VTH

GND A7
A6
A5
A4
A3
A2
A1
A0
D0
D1
D2PT6

PT5

PT7

A7
A6
A5
A4
A3
A2
A1
A0
D0
D1
D2

D3
D4
D5
D6
D7

A10

A11
A9
A8
A13

/MRD

/ROM

D3
D4
D5
D6
D7

A10

A11
A9
A8
A13

/MRD

/RAM PT4
PT3PT2
PT1PT0
P17P16
P15P14
P13P12
P11

PT6
PT5
PT7

/NMI

P01
P02

P00

P03

P12

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN1

10K RN10S1

P02

PT4
PT2
PT0

P14

PT6

P16

P00 P01

P13

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN3

10K RN10S1

PT3
PT1

P17

PT5
PT7

P15

P03

IC
VCC

P05
CLK

VCC 1
2

R4

10K

HV8I

VCC

P04
P06

VCC
GND

VLC

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

H5

HDRS20

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

H4

HDRS20

/RTS1

/RST
/IORD
R/W

GND

P04
P05
P06
CLK

VCC 1 2

H0HDRD2

 1 2
 3 4
 5 6
 7 8
 9 10

J3 HDRD10

 1 2
 3 4
 5 6
 7 8
 9 10

J4 HDRD10

+12VI

CTS0
RTS0

VCC

/RAMI

/MRD

/RXD0
/TXD0

LCD

/259

VCC

/IORD
LCD2

A19

PT4
PT3
PT2
PT1
PT0

/MREQ

P17
P16
P15
P14
P13
P12
P11

A15
A14

CLK CK 1

I1 2

I2 3

I3 4

I4 5

I5 6

I6 7

I7 8

I8
 9

G 10

5V 20

O7 19

O6 18

O5 17

O4 16

O3 15

O2 14

O1 13

O0
12

/OE 11

U5

PAL16V8

A5

A7

A5
A4
A3
A2
A1
A0

D2
D3
D4
D5
D6
D7

A11
A10
A9
A8
A7
A6

VRAM

R/W
/IOSTB

P27
P26
P25
P24
P23

/NMI

MDP000 CHAR. LCD
MDP010 GRAP. LCD

C8
DIPCAP

/ROM
P17

COPYRIGHT 1995, STE ALL RIGHTS RESERVED.

/RXD1
/TXD1

+12VI

CTS1
RTS1

SEL1
SEL2
LCD
A0
D0
D1
D2
D3
D4
D5
D6
D7

GND
VCC
VLC
A0

D3

D0
D1
D2

R/W
LCD

1
2
3
4
5
6
7
8
9
10
11
12
13
14

H3

HDRS14

LCD

D0
D1
D2
D3
D4
D5
D6
D7

A0
/IORD
R/W

HV1
HV2
HV3
HV4
HV5
HV6
HV7

1
2
3
4
5
6
7
8
9
10

J9

HDRS10
HDRS10

K
GND

/RST

SEL1
SEL2

-15V

Seiko G324E HDM128GS24Y

A17

VRAM
CE2

VCC
GND
VLC

GND
VEE

D4
D5
D6
D7

1
2
3
4
5
6
7
8
9

J2

HDRS9

/RST

HV3I
HV2I
HV1I

C1
DIPCAP

HV4I
HV5I
HV6I
HV7I
HV8I

VCC

RXD1

/RXD1
D0

A0
A1
A2

/RST
/259

D 13 Q0 4

Q1 5

S0 1 Q2 6

S1
 2

Q3
 7

S2 3 Q4 9

Q5 10

G 14 Q6 11

CLR 15 Q7 12

U13

74HC259

CTS1

/CTS1

RXD0

/RXD0 INA 1

CA 2

OUTA 3

INB
 4

CB 5

OUTB 6

GND 7

VCC 14

IND 13

CD 12

OUTD
11

INC 10

CC 9

OUTC 8

U11

75C189
1489

CTS0

/CTS0

VCC

TXD1

RXD1
TXD0

P22
P21

GND

P20

IC2

IC2

A12
A13
A14
A15
A16
A17
A18
A19
RXD0

GND

C6

DIPCAP

A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U7

24C04

WP

VCC

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI 9

U6

MAX691

GND

P00
P01

C14

DIPCAP
C19

DIPCAP

TXD0
/TXD0

-15V -V 1

AI 2

AO 3

BI1 4

BI2 5

BO 6

GND 7

+V 14

DI2 13

DI1 12

DO 11

CI2 10

CI1 9

CO 8

U12

75C188
1488

RTS0

/RTS0

TXD1

/TXD1

GND

HV3I
HV2I
HV1I

1B 1

2B 2

3B 3

4B 4

5B 5

6B 6

7B 7

G 8

1C 16

2C 15

3C 14

4C 13

5C 12

6C 11

7C 10

K 9

U9

ULN2003

HV4I
HV5I
HV6I
HV7I+12V

RTS1

/RTS1

WP
VCC

HV1
HV2
HV3
HV4
HV5
HV6
HV7

SEL1
SEL2

SHDN
/RST
P02 1 2

 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16

J6

HDRD16

K

A17

A18

GND

R/W
AW

D0
D2
D4
D6

VCC
GND

R/W
LCD

GND

VCC
A17P

GND
C18

DIPCAP

D1
D3
D5
D7

GND
A0

LCD

VLC

D1
D3
D5
D7

A0

GND

/RST

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20

H2

HDRD20

/IORD

LCD2

D0
D2
D4
D6

VCC
VLC
R/W

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16

H1

HDRD16

C7
10UF35V
ALCAP2

VCC
VCCI 1

G

2

VCC 3

U8
LM7805Z

LM340

+12V+12VI

C9
10UF35V

C16

10UF35V

D1

1N5817

C2

DIPCAP

LCD2

VLC

-15V

GND

 1

 2

 3

J8

HDRS3

GND

WDI

+12VI 1 2
J5

HDRD2

C15
10UF35V

+12V

+12V

I1

22UF
RCH664

RE

RE
SHDN

D2

1N5817

-15V

-VO 1

FB 2

SH 3

REF 4

LX 8

V+ 7

V+ 6

G 5

U10

MAX766

C12
10UF35V

C13
0.1UF

PFI

VRAM
VBAT

VCC
GND

/RST
RST

/RAM
/RAMI

/PFO
WDI

/ROM

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN5

10K RN10S1

SEL1
SEL2

2
3 +12VI

J0 DJ-005

VTH

PFI
/RST

/IOSTB

/MRD
/MREQ

VCC
-15V

VCC

HV8I

BP1

BEEP

- 1 + 2

+ 3

B1

BTH1P0
POT

VLC

GND VBAT

+12V

C17
0.1UF

VCC

P05VC

C+
C11

10UF35V

R3
1K

L1

LED

-15VC-
GND

C10
10UF35V

NC 1

C+ 2

G
 3

C- 4

V+ 8

OS 7

LV
 6

V- 5

U4

ICL7662

+12V

