MiniDrive ™

C/C++ Programmable LCD Controller
plus
40 1/O lines

-Fip - e g -3

iEE E e e e e mnm
T

|
|
1)
L]
]
E
|
[}
L
I
i
[}
[
[]
L]

Technical Manual

TRy

1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

MiniDrivell is a trademark of TERN, Inc..
V25 is a Trademark of NEC Electronics Inc.
Turbo Debugger, Turbo C, and Borland C++ are traat&s of Borland
International.

Microsoft, MS-DOS and Windows are trademarks offdsoft Corporation.
IBM is a trademark of INSTEational Business MaekiiCorporation.
Paradigm LOCATE, DEBUG/RT-V25 and PDREM are tradeks of Paradigm

Systems.

Version 2.00
October 29, 2010

No part of this document may be copied or reproduceany form or by any means
without the prior written consent 3ERN.

© 1996-201C TERIQI

1950 ¥ Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratispstems. These
systems are integrated with software and hardweateare not 100% defect freEERN
products are not designed, intended, authorizedwarranted to be suitable for use in
life-support applications, devices, or systems,imrother critical applications. TERN
and the Buyer agree thBERN will not be liable for incidental or consequenti@mages
arising from the use oFERN products. It is the Buyer's responsibility to eitlife and
property against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@mnesults of limited sample tests; they
are provided for design reference use only.

MiniDrive™ Ch. 1 Introduction

Chapter 1
Introduction

1.1 Functional Description

The MiniDrive™ is a low cost, C/C++ programmableg-lit industrial controller. It is designed for
embedded applications that require compactness, dower consumption, and high reliability. The
MiniDrive™ has a total of 40 I/O lines, includinggbt 4-bit ADC inputs, 7 high voltage outputs, 24 b
directional 1/0Os. It supports various type charade graphic LCDs. It can be integrated into an OEM
product, or as a stand-alone controller in an apptin system. By building your product with the
MiniDrive™ you reduce the time from design to n®trlintroduction, cut development costs, minimize
technical risks, and deliver a more reliable praduc

Measuring 4.8 x 3.4 inches, the MiniDrive™ offers@nplete C/C++ programmable standalone computer
system with 16-bit CPU (NEC V25), upto 1IMB memoBPROM or Flash, battery-backed SRAM,
EEPROM, real time clock, three serial channels, W8ebit timers, 42 I/O lines, power failure deteati
watchdog timer, LED, beeper, and interface to satigaracter type or graphics LCD modules. It igdaal
controller for a user interface design. A functibllack diagram of the MiniDrive™ is shown in Fig.1.

MiniDrive V25
16-bit C/C++ cPU Lo by Errom U3
Controller 80x86/8088 — (OXc0000-Oxfifff, mem)
Compatible u2 .
Time Base Counter
SRAM U1l
16-Bit Timers (2) <;:1> (0-0x7ffff, mem)
2 counters, 500K Data ﬁ [
24 1/0s Addr
Analog or 8 4-bit ADC| | pigital 110 Ports (3) cnt
Digital <; C:‘> Port T with 8 Comparators
1/10 Ser0
Serl
Interface FOT P00 [Pos /WM VRESET| ()| 7 Solenoid drive Solenoid
to LCDs S0V350 mA | l\| Relays
SDA{, SCL WD |PFO_|RST ~ — N1 valves
RO Jiaxeor UG [VRAM 1 TTL Outpu

Fig. 1.1. Functional block diagram of the MiniDgi¥.

How do you program the MiniDrive™ ? You can program the MiniDrive™ from your PC viaiaklink
with a RS232 interface. You can use your favoritel&d or Microsoft C/C++ compilers. Your C/C++
program can be remotely debugged with remote dedyuger the serial link at 115,000 baud rate. TERN
provides I/O driver libraries, sample programs, seerDEBUG EPROM, batch files, and all the hardware
necessary for you to quickly start developing yapplication software. After debugging a program, by
setting a STEP2 jumper, you can test run the Miné&JM in the field standalone, away from the PChwit
your application program in the battery-backed SRAMhen the field test is complete, an application
EPROM may be burned to replace the DEBUG EPROM. .H&eX or .BIN file can be easily generated
with the makefile provided. Development of applicatsoftware consists of three easy steps. Sedting
jumper on the MiniDrive™ J6 pin 1-2, (see Fig 3wl set the MiniDrive™ operating mode in STEP 2.
With no jumper on J6 pin 1-2 while power on or tgeghe MiniDrive™ will operate in the DEBUG
mode(STEP1). A 128K/512K flash EEPROM can be usedthe ROM socket, providing field
programming or data storage.

MiniDrive™ Ch. 1 Introduction

STEP 1 Serial link PC and MiniDrive, program in C/C-
Run C/C++ on MiniDrive and Debug with Remote Defperg

STEP 2 Test MiniDrive in the field, standalor
Application program resides in the battery-backBA\B..

STEP 3 Make your application EPRON
Replace TERN EPROM, project is compl

DC +9V 300 mA

Wall transformer
Center Negative
PC PC-V25 Cable /

coo =L 1] g

DC power jack

MiniDrive
Fig. 1.2. Serial link a PC with the MiniDrive™, mn@m on the PC, run C/C++ on the MiniDrive™

1.2 Features:

» 4.4x2.6inches, 16-bit CPU (NEC V25), 16 Mhzstay
» Power consumption: 120 mA normal

» Low power version: 75 mA full speed, 20 mA standby
* Upto 512K EPROM/Flash, 512K SRAM, 512 bytes EE
* Three 16-bit timers and two 16-bit counters(500KHz)

e 7 channels of high voltage/current drivers, 50V 88 per driver.
* 24 bi-directional I/O lines from V25

e 8 comparator inputs as 4-bit ADC and 3 interrupuis

» 2 high speed RS-232 serial ports(115,200 baudgbreh)
» Watchdog timer, powerfail reset, lithium coin bajte

» Interface to various graphic or character type LCDs

» Beeper, keypads support.

1.3 Layout and Procedure
The physical layout of the MiniDrive™ is shown iigF1.3.

1-2

MiniDrive™ Ch. 1 Introduction

Upto 512KB Upto 512KB

2 ch. RS-232 ROM/Flash SRAM
/< >\ »\ 4.4x2.6
l%ﬂé 2 5 o J2 { :;
S, 5 ! 16 s
TE- v
|| +9V to 12V
e V25 CPL DC input
241/0 lines Y 12
8 4-bit ADC

i3
I —
I;ms n 1]
BP1 - ¢ Bt IL;()H% i__—}ﬁ—‘c
@mcs'ru RC - H5|°i° ,/

1

Beeper
0,0 ¢ . R Graphic/Character LCD
7 Solenoid Drive Interface
GND
J6
pin 1=P02 ! 000000 !
pin2=GND ¢— . |8/0 06 0 0 0 0 @
STEP2 . P02
Jumper

Fig. 1.3. Layout of the MiniDrive™ and the STEPjuer.

If a jumper is on J6 pin 1-2 (see Fig 1.3), whitaver on or reset, the MiniDrive™ will operate in 5 2.
If no jumper on the J6 pin 1-2 while reset or powar it will operate in STEP 1. The status of J& j
which is V25 P02, is only checked at power on aeaet.

A simple functional flowchart of the DEBUG EPROMsBown in Fig. 1-4.

[Power On or Reset]

J6 pinl=pin2
P02=GND ?

STEP 2

Go to Application Code CS:
CS:IP in EEPRON
0x10=CS high by

0x11=CS low byt
STEP 1 0x12=IP high byt
Go to BEBUG 0x13=IP low byt

Fig. 1.4. Flowchart of the power-on procedure.

There are three steps in terms of the developnfenttdC++ application program.

1-3

MiniDrive™ Ch. 1 Introduction

STEP 1 DEBUG.

You write your C/C++ application program in C/C#ou connect your controller to your PC via
the PC-V25 serial link cable. Use the batch fildgb or e.bat) to compile, link, locate, downloadd
debug your C/C++ application program. See Chapterd®Chapter 3 for more details.

STEP 2 Standalone Field Test.

Set a jumper on J2 pin 2-4. While power on ortés82 pin 2(P02), is low, the CPU will run the
code in the battery backup SRAM. The start addmasst be pre-loaded in the on board EEPROM. You
may use a sample program step2.c to write the GSWFEEPROM before the STEP 2 test.

STEP 3 Make your EPROM.

If you are happy with your STEP 2 test, you maygok to your PC to generate your application
EPROM to replace the TERN EPROM. You need chang®®BBUG=2 to DEBUG=0 in the makefile.

A sample program step2.c is in the TERN disk sagwdedirectory. You may use the step2.c program to
setup the STEP 2 address for your application dé@&RAM=0 in your makefile, the LOCATE will locate
your code starting at 0400:0000. If SRAM=1 in youakefile, your code starts at 0800:0000. You mast u
DEBUG to download your code in the battery back®#AB! before you can run STEP 2.

A “step2.c” sample program is included in TERN di¥ku may use it to initialize the EEPROM.

1.4 Power Consumption

With quarter-power PAL16V8Q in U5, 1488 in U12, 84@ Ul1, the MiniDrive™ consumes approximate
180 mA in normal mode(16MHz, crystal), and 100 mAstandby mode. With zero-power PALCE16V8Z
in U5, 75C188 in U12 and 75C189 in Ul1l, as a lowsgxoversion, the power consumption can be reduced
to less than 75 mA in normal mode and 20 mA inditgrmode.

1.5 Minimum Requirements for System Development
Hardware:
71 A PC or PC compatible computer;
11 A MiniDrive™ with DEBUG EPROM (C-Enginéixxx-E).
where[1=0, using SERQ;]1= 1, using SERL1 for debug, xxx is the version nemb
E, indicating use Paradigm DEBUG/RT-EV or DEBUG/RZ5.
11 A PC-V25 serial cable(Fig. 1.2); and a wall tramsfer (+9V 500 mA, center negative).
Software:
71 Borland C/C++ 5.0/4.5/4.0/3.1, or Turbo C/C++ &r@l TASM, or
] Microsoft visual C/C++ 1.0/1.5/1.52, and MASM6.11
[Paradigm LOCATE, or LOCATE-EV and Paradigm DEBUG/R25, or DEBUG/RT-EV.
71 TERN C libraries.

A C/C++ Evaluation Kit(EV-C), and a C/C++ Developméit(DV) is available from TERN. The EV-C
kit is a limited functionality version of DV. Usinghe EV-C kit, user can program and debug the
MiniDrive™ in STEP1 and STEP2, but not in STEP3ohder to generate a user EPROM and complete
the project, user should use the Development Ki)DV

1-4

MiniDrive™ Ch. 2 Installation

Chapter 2
Installation

The installation procedure presented here assuma¢you have already established a Borland C/C#+, o
Microsoft C/C++ environment on your PC.

2.1. Software Installation

1. Install Paradigm LOCATE in C:/LOCATE.

2. Install Paradigm DEBUG/RT-V25 or DEBUG/RT-EV@\PD.

3. Specify parameters for the remote debugger conmation between PC and the MiniDrive™ select
"Serial" from "Remote Type" option, select "COM1/26m "Remote Link Port" option, select "115000
baud" from "Link Speed" option.

4. Copy the TERN disk to your hard disk in C:\STExx

2.2 Hardware Installation

1. Serial link the MiniDrive™ and your PC with tR&-V25 cable.

If your are using SERO EPROM(MiniDrive-0-xxx-E) stall the 5x2 IDC connector to J3 header. Note that
the red side of the cable must point to the pirf the MiniDrive™ J3 header. A small circle is drafax
indication in the Fig. 2.1. The DB9 connector of fAC-V25 cable is connected to the PC's COM1/2.

To COM1
or COMz

Red side of serial cal V25 ROM
to pin 1 of J3 head

==
o0 o
== |/pc

+9V 500mA center negative w

Fig. 2.1.Serial connection between the MiniDrivefitl ahe PC

2. Connect the wall transformer +9V DC plug to MmiDrive 0 DC power jack. LED should blink twice
after power on or reset, indicating initializatisuccess. If not, see Chapter 3.

2-1

MiniDrive™ Ch. 3 Tutorial

Chapter 3. Tutorial

In this tutorial, we will run a sample prograed.c to test both the software and hardware instatlatio
performed in chapter 2. We will illustrate the w§é>aradigm DEBUG/RT-V25.

3.1 STEP1 Debug a Sample Program
A sample programigd.cis in the directory of TERN disk a:\samples\veslalso in your working directory
c:\stebc31. We use BC31 for Borland C/C++ 3.1 asxample. A batch filen.bat is designed to test the
C/C++ software environment. At DOS prompt c:\sibe

typem led
It will perform the operation defined in the makefilt should pass the stage of compile, link, kudte.
A batch file e.bat{Evaluation Kit), orp.bat(Development Kit) is designed to test software aaddware
installation. It will handle all file making and begging activities. We ugebat in this sample. Typp led.
It compilesled.c, links and locates its output files, producesest.axe file, and then down loads the
test.axe to the MiniDrive™. If both software and hardwaree asuccessfully installed, the following
Paradigm DEBUG/RT screen (Fig. 3.1) will show oe #treen andréady" will be shown at the upper
right corner of the screen. This means that thecatable file ofled.c has beerdownloaded into the
MiniDrive ™

— File Edit View Run Breakpoint Data Options Wndow Help Ready
r——[]=Mdule: LED FILE: C: \stebc31\LED.X 1=01INUT 5
A
/***/ =
11 led.c
I Test LED
11 TURN LED ON AND OFF
/] Copyright (C) 1995 STE. Al Rights reserved
/***/
#i ncl ude <dos. h>
#i ncl ude "ve. h"
char | edd;
unsigned int i, k;
» void nmain(voi d)
{ v
L —«: p—
Wt ches 2

F1-Hel p F2-Bkpt F3-Myd F4-Here F5-Zoom F6- Next F7-Trace F8-Step F9-Run F10- Menu
Fig. 3.1. "Ready" on the screen indicating a sssifte installation

If a message, "Remote link time-out", is displaygml) may check:

1) Is the MiniDrive™ DC power on ?

2) Does the red led on the MiniDrive™ flash twideeathe power on ?

3) Is the cable connecting to J3 of MiniDrive™ wittDEBUG EPROM(C-Engine-0-xxx-?) installed ?
4) Is the red line on the cable pointing to the biof the J3 header ?

5) Is the DB9 connector connecting the correct @&@bkport COM1/2 ?

6) Does your PC have other devices occupying thee$a0M port you specified for the MiniDrive™ ?
7) Did you specify correct parameters (115,000 B&emote, COM1/COM2) in DEBUG installation ?
8) Try Paradigm BBS at 607-786-0705. An utility RHST.ZIP may help.

If all efforts fail, call TERN tech-support at 917%8-0180.

The number circled in Fig. 3.2 is the line numbEpgram led.c in the program window, which is #e

window. UseF8 to single-step, and the line number will increaseordingly. You may "step" over the
program.ALT-2 will activate the Watch window, which is window #2 shown on the screen. Typing "i"
in the Watch window allows you to watch the chamjethe variable "i" during the execution of the

3-1

MiniDrive™ Ch. 3 Tutorial

debugger (Fig. 3.2F9-Run runs theled.c program, and you can see the LED on MiniDrive Kihg

(Fig. 2.4) continuously and "Ready" is replaced'Bynning" (Fig. 3.3). To stop running the programe
Ctrl-Break . Move cursor to the line you want, and set a peak with F2, which will highlight that line.
Toggling F2 removes or sets a breakpoiff© to run the program and the program should stofhet
breakpoint

— File Edit View Run Breakpoipft Data\ Options Wndow Help Ready

r——[]=Module: LED FILE: C:\stebc3}\LEDIL¢ 1=[1][L] =Y
A
/********************************* **************************/ =
/1 led. c
/1 Test LED
/1 TURN LED ON AND OFF
/] Copyright (C) 1995 STE. All Rights reserved
/***/
#i ncl ude <dos. h>
#i ncl ude "ve. h"
char |edd;
unsigned int i, k;
» void nain(void)
{ v
| —<x p—1
Wat ches 2
i

Fl-Hel p F2-Bkpt F3-Md F4-Here F5-Zoom F6-Next F7-Trace F8-Step F9-Run F10- Menu
Fig. 3.2. Line number of the program and use efWatch window

— File Edit View Run Breakpoint Data Options Wndow Help

r——[]= Modul e: LED FI LE: C:\ STEBC31\ LED. C 11 1=71
A

/***/ =

/1 led. c

11 Test LED

11 TURN LED ON AND OFF

/] Copyright (C) 1995 STE. Al Rights reserved

/***/

#i ncl ude <dos. h>

#i ncl ude "ve. h"

char |edd;

unsigned int i, k;

» void nain(voi d)

{ v
L—<r »—

Wt ches 2

F1-Hel p F2-Bkpt F3-Mbd F4-Here F5-Zoom F6- Next F7-Trace F8-Step F9-Run F10- Menu

Fig. 3.3. Screen shows a program is "running" enMiniDrive™

Select "view" from the main menu in Fig. 3.1, andl down a sub menu, which allows more windows¢o b
opened. You may open the CPU window to see tharddgeequivalent of your C program and registers.
With "F8" single step, you can examine detailsh&f € program execution, including the interpretufig

by the assembly language, the changing contentseimegisters, and the changing of the machinesstat
UseAlt-X to exit from the debugger. To see the LED blinkahgwer, modify the value of variable "i" in
theled.c with the editor, for example, i = 30,000, and thepeat the above steps.

MiniDrive™ Ch. 3 Tutorial

3.2 STEP2, Running the MiniDrive™ Standalone

If a battery is installed, program and data in $f®AM will not be lost while the main power is tucheff.
You can run the downloaded program on the MiniDfivaway from the PC. You must pre-load the correct
CS:IP value into EEPROM with step2.c program. Septer 1 for the list of step2.c. If the SRAM=0ris
the makefile, the led.c code will be located andviloaded to the SRAM starts at 0400:000. If the
SRAM=1 is in the makefile, the led.c code will loedted and downloaded to the SRAM starts at 0800:00
You must run the step2.c program in the STEP baal the CS:IP into the EEPROM. After you pre-load
the CS:IP into EEPROM, you can download the sampdgramled.cin STEP 1. You may power off the
controller and set a jumper on the J6 pin 1-2 (Ei§). After power on, the LED should blink agalie
MiniDrive™ is running your program standalone, adi may disconnect the serial cable from your PC.
For a 128K SRAM, you must run the step2.c prografoad 0800:000 as CS:IP into EEPROM. then you
put a jumper on the pins 1 and 2 of the J6 on ti@Dvive ™ (Fig. 1.3). It will run the program stamtj at
0x0800:0000 after a power on or reset.

3.3 STEP3, Make an EPROM File
You can make an EPROM for your applications progtameplace TERN’'s DEBUG EPROM. You need
modify the makefile. Note: The C/C++ Evaluation Hdes not support generating EPROM files.

Modify the Makefile: You only need to change EPROM=0 in the makeéilentke an EPROM file.
DEBUG = 0 #0 - none, 2 - PDREMOTE

Generate an EPROM File: After modifying themakefile to set DEBUG=0, you can run the batch file
m.bat for your application programppl.c by typing 'm appl”. This will produce an Intel extended hex file
appl.hex,or a binary fileappl.bin,

3.4 How to debug multiple interrupts

We have a sample program "int_demo.c" in TERN di¥k. will discuss how to debug multiple interrupts
on the MiniDrive™ with Paradigm DEBUG/RT-V25 dynaminode. The sample program is on the TERN
disk a:\samples\ve\int_demo.c.

1. Start with p int_dema".

2.F10, active menu.
To set dynamic mode: main menu, view, ParadignbugeControls, dynamic Enabled ...
To save dynamic mode: main menu, view, Paradigime Setup

3. Alt 2, active the watch window. Type the variables yantto watch
intpO_count, intpl_count, intp2_count, nmi_codinter0_count, or timbas_count

4.F10, select the top line main menu.
view, target, SFR

5. F10, select the top line main menu.
view, target, variables

6. F9, run. You should see the timerO_count and timbasnicare changing in the watch window and the
variable window. PO should change every 10 secottide SFR window.

7. Any time you may activate the main program windmd set a breakpoint wiff2 (toggle F2 will reset /
set the breakpoint). If you set a breakpoint abtetO_count=0; DEBUG will stop and show "ready'ttst
breakpoint. Toggld-2 to remove the breakpoint af® to run again. Since V25 has only one interrupt
controller, it will not be released until fant(); instruction. The remote DEBUG is interrupt dnivand

3-3

MiniDrive™ Ch. 3 Tutorial

shares the same interrupt controller. If you sktemkpoint afint(); or beforefint(); in a interrupt service
routing, the DEBUG will be lost and responsed wittmote time-out”. You have to hardware reset the
MiniDrive™ and start over again. A good practicetassmodify your source code to temporally put the
fint(); at the very beginning of the interrupt serviogting, as shown in the timer0 interrupt hand@erigr.
Then you can set a breakpoint in the t0_isr afterfint();.

8. You can force a INTPO(P11 J2 pin 8) or NMI(J1i@2p by connecting the pins to ground. The
intpO_count or nmi_count will change. Be very cate$tudy the pin locations, do not smoke your doar

9. F10, select the top line main menu.
RUN, Halt
or Program reset, or Debugger reset
Then start over again.

10. If you want to modify the source code, you hav€Etrl-Break thenAlt-x. Exit from the DEBUG. Goto
an editor and modify your C program.

MiniDrive™ Ch. 4 Hardware

Chapter 4. Hardware

4.1 V25 1/0O Ports
V25 (uPD70320 NEC) CPU has 32 1/O lines which aasitally organized as three bi-directional I/O
ports(P0-2) and a comparator input port T. The Rdirectional 1/O lines are multiplexed with difiemt
functions. One 1/O line can be specified as an tinputput, or a control line. There are three Sgleci
Function Registers (SFR) associated with each portt Mode Control Register (PMCO, PMC1, PMC2),
Port Mode Register (PMO, PM1, PM2), andort Data Register (PO, P1, P2). The SFRs are memory
mapped. You can write or read these registers vigokeb(0xfff0, 0x??, Ox!!); or peekb(0xfff0, 0x??);
where ?7? is the register offset address, !! istrgrol/data byte.

SFR addresses and Port operation tables are iiisted NEC V25 User’'s Manual.
For example, in order to use port 0 PO5 as ouymut,need program port 0 in 3 steps:
1) program the PMCO register and set PMCO bit 5#tich defines P05 as 1/0 function.
2) program PMO register and set PMO bit 5=0, widefines P05 as output.
3) Write a “1” to PO data register bit 5, the PO% gn the MiniDrive™ J2-5 should be high (5V).

Write a “0” to PO data register bit 5, the R85 on the MiniDrive™ J2-5 should be low (0V).
Some /O lines are used by the MiniDrive™ systertishsd below:

P00 I/0 EEPROM (U7 pin 6) clock SCL

PO1 I/O EEPROM (U7 pin 5) data SDA

P02 /0 J6 pin 2. STEP2 jumper

PO5* 1/O J1 pin 30, on board LED control

PO7 CLK J1 pin 40, CLK, 8 Mhz system clock, U5.1.

P17 RDY J1 pin 16, V25 ready signal, used for muaé states, U5.12.

P00, P01 are used by system EEPROM. While usingpE#EBUG EPROM, P02 is used to select STEP 1
(DEBUG mode) or STEP 2 (standalone mode) duringpth&er on or reset, see Fig 1.3 for detail. P17 is
assigned as RDY signal for inserting more waitestam order to interface with slow LCD modulesydiu
do not need LCD functions, you may assign P17 143 &nction line and cutoff the pin on the U5 PAln
16. The P17=RDY is also routed to J1 pin 16. PQfsé&xd for on board LED control, but P05 is also lzan
used as for application, if you do not need LED.
Due to SFR registers of PMCO0-2, PM0-2 are writeypimhage registers are assigned to locations irothe
board EEPROM at:

PMO 0x08 ee rd(0x08); oree wr(0x08, pm0);

PMCO 0x09 ee rd(0x09); oree wr(0x09, pmc0);

PM1 OxOa ee rd(Ox0a); oree wr(0x0a, pml);

PMC1 OxOb ee rd(0Ox0b); oree wr(0x0b, pmcl);

PM2 0OxOc ee rd(0x0c); oree wr(0xOc, pm2);

PMC2 0x0d ee rd(0x0d); oree wr(0x0d, pmc2);
The ee rd() andee_wr() functions are very slow. The EEPROM is only niiedi by the ve_init();. Other
functions may change the PMCx and PMx registertionit modifying the EEPROM. If you need fast
access the image registers, you may use SRAM Vesiatstead.
After ve_init(void);, the initial register control bytes are tt@n into EEPROM. You may use these image
registers to determine the status of the port. Yioay also need to update these registers in your
applications. The port0-2 are initialized by theeinit(void) as listed below:
void ve_init(void){

pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */

pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, LED PO3=HWD output */

pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for REXDBY

pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, £ARTS1,P16=RTS0 OUTPUT */

pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for pordde */

pokeb(0xfff0,0x11,0xf7); [* Set PM2 for input, B2EN485 output */ }
The portdata registers can be read and write. In order to nyoalifly one bit, you need to read back the
data byte from that data register first, then ddAND operation on that bit.
For example, you can manipulate P05 to low or ligh these functions:

4-1

MiniDrive™

Ch. 4 Hardware

pokeb(0xfff0,0x00, (unsigned char) (peekb(0xfff0,0)&0xyf) /* Set PO5=low */
pokeb(0xfff0,0x00,(unsigned char) (peekb(0xfff0,0)|0xR0) /* Set PO5=high */

Name
P20
P22
P24
P26

NMI/P10

P12
P14
P16
PTO
PT2
PT4
PT6
GND
GND
GND
GND
GND
GND
GND
GND

Table 4.1 J1, 20x2 pin I/O port

4.2 Jumpers and Headers

Name Size

JO DJ-005

J1 20x2

R4 2x1

J2 9x1
SRAM Size:
ROM Size:

J3
J4
J5
J6

J7
J8
J9
HO
H1
H2
H3
H4
H5

Pin # Pin #

1 2

3 4

5 6

7 8

9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

Function

DC power jack, 9V-12V

main 1/O port

VCC and TTL output signal HV8I

Memory selection:

pin 2-3 SRAM 256K-512K,

pin 5-6 ROM size 32K-128K
pin 4-5 ROM size 256K-512K

EPROM/Flash read in U3 pin 7-8;

5x2
5x2
2x1
8x2

pin 5-6, switching power on/off ;

SERO RS-232
SER1 RS-232
+12VI and GND

Program Flast3n

Name

P21
P23
P25
P27
P11
P13
P15
P17
PT1
PT3
PT5
PT7
POO
PO1
P02
PO3
P04
P05
P06
CLK/PO7

pin 1-2 SRANK-128K

pin 8-9

Function Control: pin 1-2, STEP2 controfiin 3-4, reset;

pin 11=12, EEPROM write protect; pin 11-13, Nadtevprotect
pin 15-16, watchdog enabled, software must egercCD2(1/O 0xAO0)

2x1
3x1
10x1
2x1
8x2
10x2
14x1
20x1
20x1

VCC and GND

pin 7-8 and 9110, Graphics LCD function select

-15V, VLC, and GND. a pot for graphics L€@ntrast adjustment

Solenoid drivers
Vcec and GND

LCD interface, character 16x2
LCD interface, 240x64 pixels
LCD interface, character 20x4

LCD interface, 320x240 pixels, Seiko G324E
LCD interface, 240x128 pixels, HDM128GS24Y

4-2

MiniDrive™ Ch. 4 Hardware

PIN 1

J2
[0 ejofe of0 oo o pin 1-2 SRAM 32K, 128K

pin 2-3 SRAM 256K, 512K
pin 4-5 ROM 256K, 512K

J4 J3 pin 5-6 ROM 32K, 64K, 128K
) pin 7-8 EPROM/Flash read only
SER1 RS232| SERO RS231 pin 8-9 Flash Read/Write
X 1
= MEBE I8 i
ULl
Jl 189 ™
I/O lines / - |—u—| ue +9Vto 12V
8 4-bit ADC o U2 Us 691 B‘i‘/ DC input
u12 é:/lifj PAL L [=
188 T MI
u7
o L] s
el ROM RAM [H1
u13
259 U9 |;| B e
2003 %% H2
= || C 3 HE —2— =
P i 1 B :é - Ld_
R4 R N Graphic/Character LCID
e e | [00 00000000 Interfaces

GND K HV1 HV2 HV3 HV4 HV5 HV6 HV7 NC

J9

7 Solenoid Drives
Fig. 4.1. Layout of Jumpers and Headers

All CPU-on-chip peripherals are memory mapped. They controlled by a bank of 256-byte special
function registers (SFRs). Most of the CPU-on-gbgpipheral signals can be reached from J1.

4.3 Interrupts

V25 has a built-in high performance interrupt cohiérr that can control multiple processing of 1#mupt
sources. Five of these interrupt sources, NMI,PRTINTP1, INTP2, and INT are external and accéssib
via memory mapped SFRs. The MAX691/LTC691 PFO (Rdvalure Output) U6 pin 10 may be wire
connected to NMI, J1.9. The user may connect thgPdwer Failure Input) pin of MAX691 to an extetna
voltage divider to monitor the power voltage levehe PFI pin has been pulled high to VCC with a 10K
resistor on the MiniDrive™. When the external DGveo drops and the voltage on the PFI (U6 pin 9 of
MiniDrive™) is less than 1.3 V, the MAX691 will dudlown PFO pin.

V25 has three different methods of responding tanéerrupt: vector interrupt functions, registemka
switching functions, and macro service functionsmiBrive™ uses vector interrupt.

9-14 V(8.35 V min) VCC = +5V
47K % %OK
External Resistor Divider ®— U6 pin ¢
for K PFI of MAX691
Power Failure Detection (1.3 V min)

Fig. 4.2. Using PFI to monitor power voltage leve

4.4 Comparator Input Port (PORTT)

Port T is an 8-bit comparator input port. The shi@d voltage VTH can be fixed to VCC or connedtzd
variable voltage source. Software can set the eatsr voltage to one of 16 levels (1/16xVTH to
16/16xVTH). It provide users with an easy and irengive way to measure analog input signals.

MiniDrive™ Ch. 4 Hardware

4.5 External Event Counters/DMA
V25 has two DMA channels, DMAO and DMA1. The DMArtmllers can be used as 16-bit external event
counters. After you set a 16-bit counter value oaanter0 or counterl with

counterQ_init(unsigned int cnt0); azounterO_init(unsigned int cnt0);
Every rising edge input signal on J1 pin 1(P20/DR@) decrement the counter0. Every rising edgeuinp
signal on J1 pin 4(P23) will decrement the counterl
An interrupt will occur, after counting to zero. Yaeed an interrupt service route to serve the teoun
interrupt. For more detail, please see a samplgrano in TERN disk, a:\samples\ve\ve_count.c.

4.6 Clock and Timers

A built-in clock generator supplies various clodksthe CPU and peripheral hardware. The MiniDrive™
uses a 16 MHz crystal. Default system clock ougdtér initialization is 8 MHz on CLK line (pin 4 afl).
One clock cycle is 125 ns. The normal bus cycleiireg two clock cycle, which is 250 ns. With buiit-
wait state generation, up to 2 wait states camberied. Additional wait states can be insertedding the
RDY line. With the default initialization of 2 wadtates, EPROMSs of 120 ns to 150 ns can be userk Mo
delays may be required to support slow I/O devisash as LCD (Liquid Crystal Display).

The time base counter operates continuously siedtiniDrive™ is powered on. It provides clock sidm
for two 16-bit timers, baud rate generator, refrésting, refresh address, and time base interreguest
flag. A time base interrupt is generated at 4 difffi¢ intervals, 128 us, 1.024 ms, 8.192 ms, and0¥2ims,
selectable by software.

Two 16-bit timer units, TMO and TM1, can operateinterval timer mode or one-shot timer mode. The
TOUT=P15 is available on pin 14 of J1 (Table 4.1).

4.7 Serial Channels

The MiniDrive™ has 2 serial channels: two interd@RT, SERO, SER1. They can operate in full-duplex
communication mode.

The internal serial channels can operate in aspmclus mode and 1/O interface mode. In asynchronous
mode, the start/stop bit transmit/receive metho@nyployed so that bit synchronization and character
synchronization are obtained by the start bit./@ interface mode, data is transferred in synchzation
with the controlled serial clock. Each internaligechannel includes serial data input RxDn, sedizia
output TxDn, and Clear-to-Send signal input (CTSrj)e CTS0 and CTS1 signals are connected to GND
on the MiniDrive™. For SERO and SER1, a built-iubdaate generator can be used to select standadd ba
rates from 110 to 1.25 M. One of these internalasgorts is used by the MiniDrive™ for programming
with the PC. It uses 115,000 Baud rate for programgmit is possible to use both SERO and SER1 in
applications. The user can use SERO to debug alicajgn program for SER1, and then use SERL1 to
debug(EPROM available from TERN) application pragsafor SERO. The application programs can be
combined and downloaded via either serial chamkgblication program using both SERO and SER1 can
run at the same time, but not debug at the sane tim

4.8 Halt and Stop Mode

The MiniDrive™ is an ideal core module for low paweonsumption applications, such as a battery
operated instrument. V25 has two standby modes;haduie set by halt(); and stop(); In the HALT mode,
the CPU clock is stopped and program executionaisett, the registers are retained, and peripheral
hardware continues to function. The total powearstanption is approximately 20 mA. The HALT mode
is released by interrupt input or reset input. TO® mode, all clocks stop, but data in registers RAM

are retained. The total power consumption isfeas 10 mA. The STOP mode only can be released by
NMI input or reset input.

4.9 Supervisor chip

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the MiniDrive™ has functions of
watchdog timer, battery backup, power-on-reset ydef@ower-supply monitoring, and power-failure
warning. These will significantly improve the systeeliability.

The watchdog timer will be activated by settinguenper on J6 pin 15-16 of the MiniDrive™ (Fig. 4.2).
The watchdog timer provides a means of verifyingpgr software execution. In user's application moy

use C function inportb(0x00a0); to hit watchdadgnlist be accessed at least once every 1.6 sedbtius.

J6 pin 15-16 jumper is on and the inportb(Ox00a®)not accessed within this time-out period, the
watchdog timer pulls the WDO pin low, which asséRESET. This automatic assertion of /RESET may
recover the application program if something is ng.oAfter the MiniDrive™ being reset, the WDO

4-4

MiniDrive™ Ch. 4 Hardware

remains low until a transition occurs at the WD pf the MAX691. When shipping, NO jumper is on J6
pin 15-16, the watchdog timer is disabled.

You may solder a wire jumper from J1 pin 9=NMI e tU6 pin 10=PFO (Power Failure Output) pin of the
MAX691. When the power failure is sensed by thé iR of the MAX691 (lower than 1.3 V), the PFO
pulls NMI low, and an NMI interrupt occurs beforeet power-failure occurs. You may design a NMI
service routine to take protect actions beforetth¢ drops and processor dies.

A battery-switch-over circuit compares VCC to VBAF3 V lithium battery positive pin), and connects
whichever is higher to the VRAM (power for SRAM)h& SRAM is protected with battery backed up. The
lithium battery should last about 3-5 years in narorse. When the external power is on, the batesiich-
over circuit will select the VCC to connect to tMRAM.

4.10 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesO@4), 2K bytes (24C16), or 8K bytes (24C65) can
be installed in U7. The MiniDrive™ uses the P00 aimd the PO1 pin to interface with the EEPROM by
connecting them to the SCL (Serial Clock) and tbA%Serial Data) signal on EEPROM. The EEPROM
can be used to store important data, such as a awdieess, calibration coefficients, and configomati
codes. It has typically 1,000,000 erase/write @yclThe data retention is more than 40 years.

J6 pin 11=WP, pin 12=GND, and pin 13=Vcc providé&evprotection for the EEPROM. When J6 pins 11-
12 of the J7 are connected by putting on a jumpete is prohibited in low pages. When J6 pinslBlare
connected, no write protection is enforced. EEPREM be read and written by simply calling funcsion
ee_rd() and ee_wr().

4.11 High-voltage, High-current Drivers

ULN2003 has high voltage, high current Darlingtoansistor arrays, consisting of 7 silicon NPN
Darlington pairs on a common monolithic substraéchannels feature open-collector outputs fokiig

350 mA at 50V, and integral protection diodes fovidg inductive loads. Peak inrush currents ota600

mA sinking are allowed. The outputs may be paradlelo achieve high-load capability, although each
driver has a maximum continuous collector currating of 350 mA at 50V.

The maximum power dissipation allowed is 2.20 W ¢dp at 25 degree C. The common substrate G is
routed to J9 pinl GND. All currents sinking in mbst return from J9 pin 1 GND. A heavy gage(20) wire
may be used to connect GND terminal to externalguosupply ground return. K is connecting to the
protection diodes. K should be tied to highestagydtin the external load system. K is connecteldtpin

HV1

_ Solenoid +12V/24V

Power Supply

]

GND/SUB

XA

O Q
K +12V/+24V
IGND/SUB

ULN2003

2.
Fig. 4.3 Drive inductive load with high voltage/cemt drives.

ULN2003 is a sink driver not sourcing driver. A iyl application wiring is shown in Fig. 4.3
The ULN2003 is driven by U13 74HC259. You can wtite 74HC259 witloutportb(0x80A0+hv, dat);
where hv=0-6 for solenoid drivers HV1-7 on J9;

4-5

MiniDrive™ Ch. 4 Hardware

hv=7 for TTL output HV8I on R4
dat=0/1, off/on

4.12 1/0 Space Mapped Devices
External 1/0 device use 1/0 mapping. You may acd&3swith inportb(port) or outportb(port,dat);. The
external I/O space is 64K, ranging from 0x0000x&fD

I/0 space Usage

0x0080 LCD

0x00A0 LCD2

0x80A0 /259 for solenoid drivers

4.13 LCD support

MiniDrive™ can directly interface to many types l0€D modules. Many LCD modules have a build in
controller support a microprocessor bus interfacmsists of 8 data line, 1 address, 1 enable, weibel/
Vce, GND, and a contrast adjustment voltage. Mini®™ provides all these signals on 5 different gir
headers, H1-5. These headers are designed to matthSeiko(213-517-7770), Hantronix(408-252-1100)
LCD modules.

MiniDrive ™ LCD Manufacture Size of LCD Part Number PAL in MiniDrive U5
H1 Seiko 16 ch. x 2 lines M1632 mdp000.pds
H1 Seiko 40 ch. x 4 lines M4024 mdp000.pds
H2 Toshiba/Hantr. 240 x 64 pixels Graphics TLX7IHEBM64GS24Y mdp010.pds
H3 Seiko 20 ch. x 4 lines L2014 mdp000.pds
H3 Seiko 16 ch. x 1 lines L1641 mdp000.pds
H3 Seiko 16 ch. x 2 lines L1642 mdp000.pds
H3 Seiko 16 ch. x 1 lines L1651 mdp000.pds
H3 Seiko 16 ch. x 2 lines L1652 mdp000.pds
H3 Seiko 16 ch. x 4 lines L1614 mdp000.pds
H3 Seiko 24 ch. x 1 lines M24111 mdp000.pds
H4 Seiko. 320 x 240 pixels Graphics G324E mdpeds

H5 Hantronix. 240 x 128 pixels Graphics HDM128G%24 mdp010.pds

You may directly solder attach the MiniDrive™ orthack side of the LCD module, without cable.
The PAL mdp000 provides active high LCD enable aighhe PAL mdp010 provides active low signal.
A MAX766 switching requlator can be imstalled in@ih order to provide -15V to graphics LCDs.
You may also drive a keypads, and a beeper withitk from the MiniDrive ™

Solder Side
MiniDrive™

Fig. Install a MiniDrive™ on the back side of a L@Ebdule.

4-6

MiniDrive™ Ch. 5 Software

Chapter 5 Software

Many powerful C language software development emvitents are available based on PC platform. The
leading compilers are Borland or Microsoft C/C+he§e compilers are excellent in their code germrati
run-time libraries, and complete documentation. Waersions of the Borland and Microsoft C/C++
compilers, can be used to develop embedded softvateuns on the C-Engine™. By not being tied to a
particular editor or compiler, the C-Engine™ usans free to choose the tools they are most confifierta
with. TERN provides C/C++ development kits for statone embedded controllers. The Evaluation Kit
and Development Kit integrate compiler, debuggedCIATE, remote kernel, I/O libraries, and practical
sample programs.

What are TERN'’s Development kits?

TERN has produced two different software kits @fdw you, the user, to easily debug and downlaaat y
code to your TERN controllers. Both of these kitstain versions of Paradigm Debugger and Locate,
TERN C-Libraries, batch files, configuration filesnakefiles, sample programs, technical manuals,
schematics, wall transformers, RS232 cables, DEERFROM for the controller, and lots of everything
else that you need to start your project immedjatdlhese two products are essential if you placréate
applications for your TERN controllers by programmiwith Borland/Microsoft C/C++ in 3 STEPS.
STEP 1, debug. STEP 2, stand-alone with batteckdgthSRAM. STEP 3, user EPROM.

What's in the Evaluation Kit?

The EV-C, or Evaluation Kit, is a good investmeat the first-time buyer who isn’t prepared to goto
production or doesn’t need the full capabilitiesadDevelopment Kit at a cost of only $299. Thiftvsare

kit includes Evaluation versions of Paradigm Delarggnd Locate that allows the user to debug and
download code into the controller. The user caso alin the downloaded code stand-alone from the
battery-backed SRAM away from the PC for prototgpipurposes. This kit however is limited to
downloading no more than 64K bytes of your .AXE filThe EV-C Kit also does not contain the featfre
creating Intel extended HEX files that can be paogmed into application EPROMSs. In other wordse th
EV-C Kit supports STEP 1 and STEP 2, but not SBEP

What's different about the Development Kit?

The DV, or Development Kit, at a cost of $799 pdms all the extra support that an engineer wildrtee
complete his or her project. You can do everythhng Evaluation Kit does with the Development Igis,
well as the ability to download .AXE files limitednly by memory hardware, and the ability to burn
EPROMSs for OEM products.

What are the software requirements?

First, you will need a C/C++ compiler. TERN supgoMicrosoft Visual C/C++ 1.0, 1.5, 1.52, Borland
Turbo C/C++ 3.0 for DOS, and Borland C/C++ 3.1,,4.%. You will also need an Assembler. If yoa ar
using Microsoft C/C++, you will need MASM 6.11. ybu are using a Borland C compiler, you will need
to have TASM.

The software development for C-Engine involvesehrejor steps:

STEP1.

Verify that the hardware related variab\ds, andSRAM in the makefile is matching the hardware you are
using.

VE = 0 # 0-CE only

SRAM = 1 #0-32K,1-128K/512K

EPROM = 0 #0-32K,1-64K

DEBUG = 2 # 0 - Make EPROM, 2 - PDREMOTE

If you are not using float point calculation, irder to reduce program size set

FLOAT = 0 # 0 - none, 2 - emulator

If you have to use float point calculation, atsed28K SRAM must be installed and set
FLOAT = 2 # 0 - none, 2 - emulator

MiniDrive™ Ch.5 Software

At least 128K SRAM should be used in the STEPL1. &dloating point application or a large C/C++
program debugging, 32K SRAM will not run. The LOCBRWill complain about the overlap violation.
Use any text editor you are most comfortable watlwtite or edit your source program in Microsofo€
Borland C language. Usa.bat to test your software environment. Usdat(EV kit) or p.bat(DV kit) to
invoke the makefile to process the source filedpoe finish code and download it to the C-Engine/¥.
serial link. You may single step, set breakpoidehug, or run the program. Repeat these steps (refe
Chapter 1.1) till you are happy with the performané a functional program.
If you are going to STEP2, you must run the “stepprogram during STEP1 to setup the CS:IP in the
EEPROM, then download your application program \pitiat or e.bat
STEP2.
You place a jumper on J2 pin 2-4 to set the C-Eirstandalone mode(refer to Fig. 1.2a). Turn the DC
power off and disconnect the C-Engine™ from the Pen power on (or reset) again with the mode
setting jumper on, and the C-Engine™ will run tlhegsgam which resides in the battery backed up SRAM.
You may test your C-Engine™ based system in a rerfietd with the program resides in the battery
backed-up SRAM. In normal condition, the battergudtl operate at least 5 years. With external DQitinp
on, the internal battery is disconnected.
STEP3.
After the field test, it is the time to burn a EPROA romable .HEX file or Binary .BIN file can be
generated by simply modifying the output paraméatethe makefile(see Chapter 3.3) and run rihéat.
DEBUG = 0 # 0 - Make EPROM, 2 - PDREMOTE
EPROM = 0 #0-32K,1-64K
You can program your EPROM with the output .HEXBIN file on a EPROM programmer.

By following three steps, you can develop an apilimn program for the C-Engine™. However, the C-
Engine™ is not a complete PC. We have to explaiw ko support the C programming in a non-PC
environment. Paradigm LOCATE package provides difie version of startup module for all Microsoft
C/C++ or Borland C/C++ compilers. The modified stprmodule allows running the C-Engine™ without
DOS control. All C/C++ standard library functiortsat call the BIOS or DOS are copied, modified, and
renamed during the installation of LOCATE. We h&wveelocate the .EXE file to codes fits the C-Ergih
memory mapping . It is a complex process, espgdialbrder to cover all major C/C++ compilers. Bt
also very simple, because the user just simply typ& "e”, or "p". The whole process will be under
control of the well designed makefile.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must follow, otherwise it will result & system crash, PC hang-up, and a lot of confusion
Always a concern is the debugging of interrupt harsdwith the Remote Debugger. It is possible toude

an interrupt handler but it is not without hazaktbst problems occur in multi-interrupt driven sitioa.
Since the remote kernel running on the C-Engine™tesrupt driven, it demands interrupt servicesir
the CPU. If an application program enables intereuyg occupying interrupt controller longer timartithe
remote debugger can live with, then the debuggkbeitimeout. Your PC may hang-up, and a powegtres
may be required to restart your PC. Always be awaue system is remote kernel interrupt driven for
debugging. In order to debug a interrupt serviceting(ISR), a fint() function(V25 finish interrupt
instruction) must be issued before the breakpbimtause it will release the interrupt controlles¢ove the
debugger interrupt request.

VE.LIB

VE.LIB is a C library for basic V25 operations. iticludes modules: VE.OBJ, SER0.0BJ, SER1.0BJ,
SCC.OBJ, VEEE.OBJ, LCD.OBJ.

You need to include the VE.LIB in your applicaticarsd include the corresponding header files. Hethd

list of the header files:

Include-file name Description
VE.H timers, time base counter, port t, intefRAM, Watchdog,

MiniDrive™ Ch.5 Software

SERO.H V25 internal serial port O
SER1.H V25 internal serial port 1
SCC.H V25 external UART SCC2691
VEEE.H C-Engine™ on-board EEPROM
LCD.H LCD functions

Functions in the VE.OBJ
Initialization
void ve_init(void);
Initialize SFRs and set I/O pin functions Aftez init(void);, the initial register control bytes are tten
into EEPROM(see Appendix J). You may use these émmagisters to determine the status of the portt Yo
may also need to update these registers in yodicappns. The port0-2 are initialized as below:
void ve_init(void){
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */
pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, . ED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for REXDEY
pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, #ARTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for pordde */
pokeb(0xfff0,0x11,0xf7); [* Set PM2 for input, B2EN485 output */ }

Time Base Counter
void time_base_ini{unsigned char interval);
Set interval for time base interrupt,
interval = 0 time base interrupts every 128 us
interval = 1 time base interrupts every 1.6%}
interval = 2 time base interrupts every 8.8
interval = 3 time base interrupts every 132.6%.
void time_base_interrupt (unsigned char i, void interrupt far (*timbas_{3))
Set time base interrupt service routine,
i = 0, time base interrupt disabled,
i =1, time base interrupt enabled, and servipetimbas_isr (user defined)

Timer O
void timerQ_init (unsigned char mode, unsigned int md0, unsignetnj;
Initialize timer O with mode, mdO, and tmO.
where mode is written into TMCO(see V25 User'ardal, page 8-3).
Select start/stop, clock freq. one-shot or tiM&@UT.
Examples: mode=0xc0, 125x128%&6er count
mode=0x80, 125x6=750 ns per count
mdO is written into MDO, md0O = 0 to 65535
tmO is written into TMO, tm0 = 0 to 65535
void timerQ_interrupt (unsigned char i, void interrupt far (*timer0_ig))(
Set interrupt service routine for timer 0,
i =0, timer O interrupt disabled
i = 1, timer O interrupt enabled, and servicgdilmerQ_isr (user defined)
unsigned intimer0_rd (unsigned char i);

i = 0 read 16-bit data from MDO i =1 read 164dta from TMO
void delay(unsigned int t); Simple software loop, delay(kile(t){ t--; } }
void delay_mgint m); where m=0-999 for delay approximate ®@%® ms

Timer 1

void timerl_init (unsigned char mode, unsigned int md1, unsignetiih};
Initialize timer 1 with mode, md1, and tm1,
where mode is written into TMC1(see V25 User’s Mahpage 8-3),

5-3

MiniDrive™ Ch.5 Software

select start/stop, clock freq. timerl has no TQlWd one-shot mode
mode=0xc0, starts 8 count down
mode=0x80, starts 750 ns count down
md1 is written into MD1, md1=0 to 65535
tm1 is written into TM1, tm1=0 to 65535
void timerl_interrupt (unsigned char i, void interrupt far (*timerl_ig))(
Set interrupt service routine for timer 1,
i = 0, timer O interrupt disabled,
i =1, timer O interrupt enabled, and servicedilmerl_isr (user defined)

unsigned intimerl_rd (unsigned char i); i=0 read 16-bit data from MD% 1 read from TML1.

Timer2_interrupt
void timer2_interrupt (unsigned char i, void interrupt far (*tmf2_isi)()

This interrupt request is generated by underfloWM1 register of timer 1. Only in one-shot
mode, TMF2 bit of TMIC2 set, generates an interrupt

i =0, timer_flag2 interrupt disabled,

i =1, timer_flag2 interrupt enabled and servibgdmf2_isr (users defined).

I/O Ports

1 V25 port0,1,2 PMCx and PMC registers setting

1 See V25 User's Manual Table 7-5, Table 7-6&alole 7-7
I There are 3 registers associated with each port

1 PMCO, PMO, and PO for PORTO

1 PMC1, PM1, and P1 for PORT1

I PMC2, PM2, and P2 for PORT2

I PMCx select CONTROL function or I/O function fevery bit

I PMx select INPUT or OUTPUT for every bit

I Px is the DATA register for reading inputs ofitimg outputs

I

I void port_init(char port, unsigned char pmcsigned char pm);

/I where port=0, 1, or 2
/I pmc is a control byte to define each piltC&NTROL or I/O

1 if bitx=0, I/O; bitx=1, CONTROL

/I pm s a control byte to define each piringsit or output
I if bitx=0, output; bitx = 1, input

I note to check the pins used by the system

1
void port_init (char p, unsigned char pmc, unsigned char pm);

unsigned chaport_rd (unsigned char p); Reads a byte from the datatesgf port p

void port_wr (unsigned char p, unsigned char dat); Write chiarddat" to the data register of
port p. if the pin is output, the dat bit will betput. if the pin is input, no change.

Comparator Port T
unsigned chaportt_rd (void); Reads port T 8 comparator inputs
void portt_wr (unsigned char vref); Set reference voltage (Ofdsport T

External Interrupts
void nmi_init (void interrupt far (* nmi_isr)());

Set NMI interrupt service routine nmi_isr for NMIser defined nmi_isr).
void intp0_init (unsigned char i, void interrupt far (* intp0_igt()

5-4

MiniDrive™ Ch.5 Software

Set interrupt service routine intp0_isr for INPT&,0 INPTO interrupt disabled,
i =1 INPTO interrupt enabled and serviced bpintisr (user defined).
void intp1_init (unsigned char i,void interrupt far (* intp1_igt()
Set interrupt service routine intpl_isr for INRT1
i = 0 INPTL1 interrupt disabled,
i =1 INPTL1 interrupt enabled and serviced ldpinisr (user defined).
void intp2_init (unsigned char i,void interrupt far (* intp2_igr(
Set interrupt service routine intp2_isr for INRT2
i =0 INPT2 interrupt disabled,
i =1 INPT2 interrupt enabled and serviced bp2ntisr (user defined).

void fint (void); Finish interrupt, required by all interrugrvice routine to release V25 interrupt
controller, except NMI, INT, and software intertsip
Watchdog Timer

void hitwd (void); Toggle J6 pin2 HWD once, hit watchdog]@ jumper is on.
void wdo(void); Read the Watchdog Out pin (P04 of V25).

LED

void led (int i); Turn LED on if i=1, turn LED off if I=0

Counters / DMA
void counterQ_init(unsigned int countO);

Load 16-bit countO word into counter0. Every lawhigh edge at P20=DRO0 will decreament the
counter till zero. The counter must be reload bBrudn interrupt can be generated at the end afitcoero.
Use V25 DMAO 16-bit address counter as externaheweunter. counterQ_init() defines P20 as DMARQO.
It also uses eeprom 0x0d as PMC2 image register fdllow code are included.

pmc=0x01|ee_rd(0x0d);

ee_wr(0x0d,pmc);

pokeb(0xfff0,0x12,pmc); /* Set P20=DRO0 */

See sample program samples\ve\ve_cnt0.c

unsigned intounter0_rd(void); returns 16-bit counts in thmuater0.

void counterQ_interrupt(unsigned char i, void interrupt far (* cntO_is))()
Setup an interrupt service routine cnt0_isr fmurter0 counts to O interrupt,
i = 0 counterQ interrupt disabled,
i = 1 counterO interrupt enabled and servicedt® isr (user defined).

void counterl_init(unsigned int countl);

Load a 16-bit word countl into counterl. Every kmvwhigh edge at P23=DR1 will decreament the
counter till zero. The counter must be reload bBruin interrupt can be generated at the end afitcoero.
Use V25 DMAL 16-bit address counter as externahegeunter. counterl_init() defines P23 as DMARQL1.
It also uses eeprom 0x0d as PMC2 image register fdllow code are included.

pmc=0x08Jee_rd(0x0d);

ee_wr(0x0d,pmc);

pokeb(0xfff0,0x12,pmc); /* Set P23=DR1 */

See samples program samples\ve\ve_cntl.c
unsigned intounterl_rd(void); returns 16-bit counts.
void counterl_interrupt(unsigned char i, void interrupt far (* cntl_is))()

Setup an interrupt service routine cntl_isr fourdterl counts to zero interrupt,
i = 0 counterl interrupt disabled,
i = 1 counterl interrupt enabled and servicedri isr (user defined).

CPU States
void poll(void); Poll and wait until the /POLL pin (P14w.

5-5

MiniDrive™

Ch.5 Software

void halt(void); Force CPU into HALT state until an INT, NMdr RESET event occurs.
void stop(void); STOP, forcing CPU into STOP mode. Only eag by NMI or RESET

Functions in SER0.OBJ Module

void sO_init(char m, char b, char* ibuf, int isiz, char* obinft osiz, COM *c);

initialize SERO, where:

where

m = mode,
b = baud rate
ibuf = pointer to input buffer
isiz = size of input data buffer, use 512, 1,028, 4096,... bytes.
obuf = pointer to output buffer
osiz = size of output data buffer
¢ = serial data structure, COM
b = baud rate expressed in number 0 to 11

baud =1, 110 baud
baud = 2, 150 baud
baud = 3, 300 baud
baud =4, 600 baud
baud =5, 1200 baud
baud = 6, 2400 baud
baud =7, 4800 baud
baud =8, 9600 baud (default)
baud =9, 19,200 baud
baud = 10, 38,400 baud
baud =11, 57,600 baud
baud =12, 76,800 baud
baud = 13, 115,200 baud
baud = 14, 230,400 baud
baud = 15, 460,800 baud
baud = 16, 1M baud
mode - 8 bits = SCMO

bit 7=TxE=0, transmit disable

bit 7=TxE=1, transmit enable

bit 6=RXE=0, receive disable

bit 6=RxE=1, recieve enable

bit 5,4 = 0,0 No parity

bit5,4=0,1 Trans. Parity bit=0,dRignore parity

bit54=1,0 Odd parity

bit54=1,1 Even parity

bit3=0 7 data bits

bit3=1 8 data bits

bit2=0 1 stop bit

bit2=1 2 stop bits

bit1=0

bit0o=1 Async mode

unsigned chagetserCOM *c);

For example, mode=0xc9:
transmit enable, receive enable, no parityits b stop bit
get a character from input buffer of SER

int getsersQCOM *c, int len, unsigned char *str);
get a string from SERO, where ¢ = serial datacttire, COM

len = max length of input buffer of structure
str = pointer to a buffer for storing thersgr
output = number of characters read

= -1 if abort

5-6

MiniDrive™ Ch.5 Software

int putserQ(unsigned char outch, COM *c);
output a character to the SERO MACRO service
return 1, if MACRO service valid and the charaetél be output.
return 0, if MACRO service is not available, NOeogtion.

int putsersQ unsigned char *str, COM *c);
output a string to SERO MACRO service, appendsCa8CR, 0xOa=LF, 0x00=0’
where str = pointer to the string being output
¢ = serial data structure, COM
return = 1, if MACRO service valid, string wile output
return = 0, if MACRO service is not availableQNperation.
int putsO(unsigned char *str, unsigned char n, COM *c);
output str to SERO MACRO service, where str =nfmgito str being output
n = number of unsigned characters being output
¢ = serial data structure, COM
return = 1, if MACRO service valid, string Wile output
return = 0, if MACRO service is not availabdD operation.
int serhitO(COM *c); check if SERO has received any charactturn 1, if any, return 0, if nothing
Functions in SER1.0BJ Module
void s1_init(char m, char b, char* ibuf, int isiz, char* obirft osiz, COM *c);

initialize SER1, where: m = mode, b = Baud rate
ibuf = pointer to input buffer
isiz = size of input data buffer
obuf = pointer to output buffer
osiz = size of output data buffer
¢ = serial data structure, COM
where b = baud rate expressed in number Qto 1
baud =1, 110 baud
baud = 2, 150 baud
baud = 3, 300 baud
baud = 4, 600 baud
baud =5, 1200 baud
baud = 6, 2400 baud
baud =7, 4800 baud
baud = 8, 9600 baud (default)
baud =9, 19,200 baud
baud = 10, 38,400 baud
baud =11, 57,600 baud
baud =12, 76,800 baud
baud = 13, 115,200 baud
baud = 14, 230,400 baud
baud = 15, 460,800 baud
baud = 16, 1M baud
mode - 8 bits = SCM1
bit 7=TxE=0, transmit disable
bit 7=TxE=1, transmit enable
bit 6=RxE=0, receive disable
bit 6=RxE=1, recieve enable
bit5,4=0,0 No parity
bit 5,4 =0,1 Trans. Parity bit=G®Rignore parity
bit54=1,0 Odd parity
bit54=1,1 Even parity
bit3=0 7 data bits

S5-7

MiniDrive™ Ch.5 Software

bit3=1 8 data bits
bit2=0 1 stop bit
bit2=1 2 stop bits
bit1=0

bit0=1 Async mode

For example, mode=0xc9:
transmit enable, receive enable, no parityits b stop bit
unsigned chagetser{COM *c); get a character from input buffer of SER

int getsers{COM *c, int len, unsigned char *str);
get a string from SER1, where: ¢ = serial datacttire, COM
len = max length of input buffer
str = pointer to a buffer for storing thersgr
return = number of characters read, or -1 if abor

int putserl(unsigned char outch, COM *c);
output a character to the SER1 MACRO service
return 1, if MACRO service valid and the charaetél be output.
return 0, if MACRO service is not available, NOeogtion.

int putsers1(unsigned char *str, COM *c);
output a string to SER1 MACRO service, appendsCa8CR, 0x0a=LF, 0x00="0’
where str = pointer to the string being output
¢ = serial data structure, COM
return = 1, if MACRO service valid, string wile output
return = 0, if MACRO service is not availableQNperation.

int puts1(unsigned char *str, unsigned char n, COM *c);
output str to SER1 MACRO service, where str = fmito str being output
n = number of unsigned characters being output
¢ = serial data structure, COM
return = 1, if MACRO service valid, string Wile output
return = 0, if MACRO service is not availabd) operation.

int serhitl(COM *c); check if SER1 has received characteyrretl if any, return 0, if nothing
Functions in VEEE.OBJ Module

int ee_wi(int addr,unsigned char dat); Write a byte "datatdress "addr"
int ee_rdint addr); Read from an address "addr"

Functions in LCD.OBJ Module

void Icd_init(void); Initialize the LCD1, for BB/SW/PD

void Icdecmd(int); Write the low byte of the int to the LC@bmmand register
LCD command list:
0x01 Clear Screen
0x0c Cursor OFF (cursor invisiblénk off)
0x0e Cursor ON (solid cursor blgck
0Ox0d Cursor BLINK (blinks continuoysl
0x18 Shift Display Left
Ox1c Shift Display Right

0x80 - 0x93 Position Cursor Line 0
0OxCO - 0xD3 Position Cursor Line 1

MiniDrive™ Ch.5 Software

0x94 - OxA7 Position Cursor Line 2
0xD4 - OXE7 Position Cursor Line 3

void Icddat(int); Write the low byte of the int to LCD1 @aregister
void lcd_wait(void); Waiting for the LCD1 response
void Iputc(unsigned char); Put a charater on the LCD1 attinsor pointing position

void Icd_clr_line(unsigned char); Clear a line.

Icd_clr_line(0x80) clear line 0; Icd_clr_lineq®D) clear line 1
printf() and int_putch(int); Microsoft / Borland C/C++ printf() functiowill use this putch() to
print formated charaters to the LCD. At least 1GKades will be linked in the program, if you ube t
printf (). In order to reduce your program size, you maysider usécdcmd() andlcddat() directly for
your LCD application.

/ functions of LCD 2 are for the second LCD modlilections of LCD3-4 are for the V104™ LCD.
void lcd2_init(void);

void Icd2cmd(int);

void lcd2dat(int);

void lcd2_wait(void);

void Iputc2(unsigned char);

void lcd2_clr_line(unsigned char);
void lcd3_init(void);

void lcd3cmd(int);

void lcd3dat(int);

void lcd3_wait(void);

void Iputc3(unsigned char);

void lcd3_clr_line(unsigned char);
void lcd4_init(void);

void Icd4cmd(int);

void lcd4dat(int);

void lcd4_wait(void);

void Iputc4(unsigned char);

void lcd4_clr_line(unsigned char);

5-9

MiniDrive™ Appendix A

A. Mounting Hole Locations

01 25 4.4,2.6
) MEE] o 5 a— 418 25
0.92, 2.26 —“F L118191 |_u_|
- MK
U2 Us 691
™ V25 CPU PAL |:|
u12 |_|
188 e
B L] e
n ROM A ﬂi/&gz, 1.0
uUi13
259
9 E J6
2303 Ho H2
H3 J8
- yC 3 p=— b
HO H5 |
01,01 «—+o M °x RIG+— 4.23,0.12
0,0 2.0,0.1 41,01

A-1

MiniDrive™ Appendix B

B. MiniDrive™ Part List

MiniDrive™ Part List Revised: April 7, 1996
ltem Quantity Reference Part

1 1 Bl BTH1

2 1 BP1 BEEP

3 8 C1,C2,C3,C6,C8,C14,C18,C19 0.01 UF, DIPCAP
4 2 C4,C5 10PF

5 7 Cc7,C9,C10,C11,C12,C15,C16 10uf35V Al. El. Cap.
6 2 C13,C17 0.1UF

7 2 D1,D2 1N5817

8 3 J5,J7,HO HDRD2

9 2 H1,J6 HDRD16

10 1 H2 HDRD20

11 1 H3 HDRS14

12 2 H4,H5 HDRS20

13 1 11 22UF, Inductor
14 1 JO DJ-005

15 1 J1 HDRDA40

16 1 J2 HDRS9

17 2 J3,J4 HDRD10

18 1 J8 HDRS3

19 1 J9 HDRS10

20 1 L1 LED

21 1 PO POT

22 1 R3 1K

23 6 RN1,RN2,RN3,R4,RN4,RN5 10K

24 1 Ul RAM271024
25 1 uz2 PD70320_V25
26 1 U3 PROM1024
27 1 U4 ICL7662

28 1 us PAL16V8

29 1 U6 MAX691

30 1 u7 24C04

31 1 us LM7805Z

32 1 U9 ULN2003

33 1 ui10 MAX766

34 1 U1l 1489/75C189
35 1 Uiz 1488/75C188
36 1 ui13 74HC259

37 1 XTAL1 16MHZ

MiniDrive™ Appendix C

Appendix C. Serial Port SERO/SER1 Drivers

Most embedded applications require serial commtinita among controllers and PCs. A reliable, higeesl, easy to use serial port
driver can save you weeks of time, and is essebfiall success OEM products. We know what fruire are, if using a controller
with an un-reliable serial port. It eventually willl the whole project.

TERN controllers and serial port software driveill provide you with the best serial communicatiperformance in the embedded
control industry. There are 2 serial ports in tHB5\CPU, SERO and SER1. By default, SERO is usedEBUG. You also can use
SER1 for DEBUG withn TERN EPROM(1). We will use SER4s the example in the following discussion. After
initialization(s1_init();), SER1 is configured as a full-duplex serial pamnt is ready to transmit/receive serial data at @the 16
baud rates from 110 to 1M. The supported baud eat=s110, 150, 300, 600, 1200, 2400, 4800, 968200, 38400, 57600, 76800,
115200, 230400, 460800 and 1 M.

An input bufferéerl in_buf), size specified by user, will automatically stdhe input serial data TERNam. There is no software
overhead or interrupt latency for user applicatipogram even at the highest 1M baud rate, excepthkihg the buffer
statusgerhit1();) and taking out the data from buffge(ser1();), if any. The input buffer is used as a circulag buffer, as shown in
Fig E-1.

ibuf in_tail in_head ibuf+isiz

v J
[L[]

1 |

Due to the nature of high speed baud rate and wmkrexternal environment, serial input data willauatically fill in the buffer
circularly regardless without stop. If user did take out the datgétser1();) from the ring buffer before the ring buffer idlf the new
data will overwrite the old data without warning @ntrol. The input buffer(ibuf), buffer size(isiz)aud rate(baud), and mode(7/8
data bits, 1/2 stop bits, parity) can be specifigdiser withsl_init();. If you defined a 4K(0x1000) input buffer, at @0baud, at least
in 4 seconds time you do not have to deal withstiréal input, although it is always good to také data from the input buffer before
ring buffer round over. You should design highendbaate for transmiting data out and slower batel fiar the receiving. It will give
yourself more time to do other things without ouerthe input buffer. You userhitl(); to check the status of the input buffer and
return the offset of the in_head pointer from thetail pointer, if return 0, in_head=in_tail, natbiis available. You usgetser1(); to
get the serial input data byte from FIFO. The iil_gainter will automatically increment after eveggtser1();. There are no need to
suspend external device from sending in serial déta/RTS. Only hardware reset st_close(); can stop this receiving operation.
For transmission, you can upatser1(), putsersl(), or putsl(); to send out a character, a string, or a blocknefmory. Before you
transmit, your should check the availability ofrisanit buffer by usingseroutl();. If seroutl() returns O, you can take over the
transmission, otherwise, it is busy, you have tdt.wsfter call transmit functions, you are free do other task with no software
overhead on the transmitting operation. It will@uatically send out all the data you specifiedeAfill data is out, it will clear the
busy flag, ready for the next transmission. A comization structure COM used by SERO, SER1, and $0d&fined in VE.H. SERO
functions are defined in SER0.H. SER1 functionsdefined in SER1.H. A sample program serl_0.c, destnates how a protocol
translator works. It will receive an input HEX fifeom SER1, and translates every "' to '?', thansimit the HEX file out of SERO. It
also works with 57,600 baud input and 115,200 bautgut.

void sO_init(unsigned char m, unsigned char b, unsigned chafitt isiz, unsigned char*obuf, int osiz, COM)c
SERQO initialization.

void s1_init(unsigned char m, unsigned char b, unsigned chafiifit isiz, unsigned char*obuf, int osiz, COM)¢
SERL1 initialization.

where m = mode- 8 bits

1 bit 7=TxE=0, tiEmit disable

1 bit 7=TxE=1, fEmit enable

1 bit 6=RxE=0, edee disable

1 bit 6=RxE=1, edee enable

1 bit5,4=0,0 Narity

1 bit 5,4 =0,1 Temit Parity bit=0, Receive ignore parity
1 bit5,4=1,0 Opdrity

1 bit5,4=1,1 Evparity

1 bit3=0 7 data bits

1 bit3=1 8 data bits

1 bit2=0 1 stop bit

1 bit2=1 2 stop bits

1 bit1=0

1 bit0=1 Async mode

1 For example, mode=0xc9

1 transmit enable, receive enablepaaty, 8 bits, 1 stop bit
/I where baud - baud rate expressed inbeurhto 15

1 baud = 1, 110 baud

C-1

MiniDrive™ Appendix C

1 baud = 2, 150 baud

1 baud = 3, 300 baud

1 baud = 4, 600 baud

1 baud =5, 1200 baud

1 baud = 6, 2400 baud

1 baud =7, 4800 baud

1 baud = 8, 9600 baud (default)
1 baud =9, 19,200 baud

1 baud = 10, 38,400 baud

1 baud = 11, 57,600 baud

1 baud = 12, 76,800 baud

1 baud = 13, 115,200 baud

1 baud = 14, 230,400 baud

1 baud = 15, 460,800 baud

1 baud = 15, 1 M baud

ibuf = input buffer pointer; isiz = input bufferzs; obuf = output buffer pointer; osiz = outputfeufize

void cntl_rtsO(int flag, COM *c)

rtsO pin control. where flag =0, rts0O low, flag*ts0 high active
void cntl_rts1(int flag, COM *c)

rts1 pin control. where flag =0, rts1 low, flag¥ts1 high active
unsigned chagetserO(COM *c);

returns the data in the ser0_in_buf(FIFO). incnentiee in_tail.
unsigned chagetser1(COM *c);

returns the data in the serl_in_buf(FIFO). incnentiee in_tail.
unsigned chaserhit0(COM *c);
unsigned chaserhitl(COM *c);

if return 0, nothing received, in_head=in_tail.

if return >0, the offset, unsigned char pointerthiead leading in_tail.

if return <0, the offset, unsigned char pointerthiead behind of in_tail.
unsigned chaserout0(COM *c);
unsigned chaseroutl(COM *c);

returns the number of bytes remaining in the duitpidfer.

Only if serout0/1()==0;, a new transmit task carstarted.
int putserO(unsigned char outch, COM *c);
int putser1(unsigned char outch, COM *c);

return 0, if transmitter is busy. or

return 1, after put the outch into out_buf. lures before outch being transmited out.
int putsersO(unsigned char *str, COM *c);
int putsers1(unsigned char *str, COM *c);

return 0, if transmitter is busy. or

return 1, after put a string *str, into out_bufrdturns before str being transmit out.
int putsO(unsigned char *str, unsigned char n, COM *c);
int puts1(unsigned char *str, unsigned char n, COM *c);

return 0, if transmitter is busy. or

return 1, after puting a block of data, pointed&ty, with a length of n bytes into out_buf. It eturns

before the string being transmited out.
void sO_close(COM *c);
void s1_close(COM *c);

close down the ser0/1 transmit and receive.

Sample program serl_0.c

4800 baud
19200 baud 2

PC1 PCO

SER1 SERO

C-Engine

C-2

MiniDrive™ Appendix C
/ khkkkkkkkkkkkkkkkhkkhk

SERO and SER1 exchange data DEMO 09-14-1994

serl_O.c
; DESCRIPTION:

; This program shows a possibility using both SEBRA SER1 in application
; Needs two PCs or terminals to test this sampgnam.

; We can not debug this sample program, but weestrit.

; Load this program with TD/PD, then run from battkack SRAM

See Technical Manual for detail about how tofrem SRAM

; This sample program use SER0 9600 bauddd®#CO0, window, terminal; SER1 19200 baud talR®@1 window terminal;

; Every character typed from PCO-SERO wilsket to PC1-SER1

; Every character typed from PC1-SER1 wilseet to PCO-SERO

; Set PC1 send any HEX file, will shows orOP®ith every "' translated to '?'
/I Copyright (C) 1995 TERN, INC. All rightsserved.

i it

#include <stdio.h>

#include <dos.h>

#include <string.h>

#include "ve.h" [* V25 initializations */
#include "ser1.h"

#include "ser0.h"

#define MAXISIZE 0x1000

#define MAXOSIZE 0x1000

unsigned char serl_in_buf[MAXISIZE];
unsigned char serl_out_buf[MAXOSIZE];
unsigned char ser0_in_buf{[MAXISIZE];
unsigned char ser0_out_buf[MAXOSIZE];
int isize,osize;

inti,j;

unsigned char mode,baud;

extern COM serl_com;
extern COM ser0_com;

void main(void)

{
COM * c0;
COM *cl;
ve_init();
c0 = &ser0_com;
cl = &serl_com;
[* transmit enable, receive enable, no parity,t8, di stop bit */
mode = 0xc9;
baudl = 7; /* 4800 baud for SERO/ *
baud0 = 9; /* 19200 baud for SERT/
isize=MAXISIZE;
0size=MAXOSIZE;
s1_init(mode,baud,serl_in_buf,isize,serl_out_birdeocl);
sO_init(mode,baud,ser0_in_buf,isize,ser0_out_bireoc0);

while(1){
if(serhit0(c0) X /* hitby PCO */
i = getser0(c0); /I get the character
if(i=="") i='?";
while(puts1(&i,1,cl)); } /* sentto PC1 */
if(serhitl(c1) X /* hit by PC1 */
j = getserl(cl); /I get the character
if(==") j="?"
while(puts0(&j,1,c0)); } /* sent to PCO */
}

C-3

MiniDrive™ Appendix D

Appendix D. What is ACTR™ ?

Operating TERN's 16-bit controllers with ACTR™

What is the first thing you want to do with a nemsbedded controller ? Read the manual ? Look owebtiard ? Study the onboard
components ? Study the schematics ? Install thevaf package ? Find a sample program ? Try ta leaw to program it in C/C++ ?
There are many things that you can do. Maybe thst ehesirable thing to do is just to power the Hpaead the ADC, display a
message on the LCD, turn on/off LED, or relaysCT/R™ from TERN can do all these for you !

ACTR™ is an unique firmware in EPROM/EEPROM on TEB®htrollers. With a terminal, such as PC windoersninal, setup to
19200, 8, N, 1, via serial link, and by typing tegimmands, you can operate the controller and eeeadl C functions immediately.
For a project requiring embedded controllers, aolotvork must be done before you can have a hamel\wgf ERNm ready for
software development. You need to connect senedigetsignal conditioning circuit and the ADC. Ymay need to acquire several
input signals, including analog and digital sigsiahultaneously. You need to turn relays or solew@d and off. you need to have a
user interface to know what is going on. You magplliy a message on a LCD, sound a beeper, ordla&D. You may need to find
out what is the practical sample rate for your semand syTERNm. You need a easy way to test theipoonsumption in standby
mode. You need to read/write memory, regiTERNr H8d. In order to have all this try-outs, you mayvé to spend days or weeks.
The ACTR™ from TERN is a instant actor or actudtwryou to operate TERN controllers. ACTR™ providesinteractive menu
and on-line help for you, so you do not have toidig manuals. ACTR™ not only provides you an easyess to all C functions, but
also allow you to download a debugger for your G/@togram development. After you debug your progrgon can download your
program to the controller and run. An operationctional block diagram of the ACTR™ is shown in Fig.

CPOWGI’ on or Reset)

SEND out MENU over SERO at 19200, N, 8, 1

RUN ACTR
Starting Data logging and waiting for ASCII comrdan

Recover the CS:IP of the last download progr? \l/

Is Jumper on ?
or P22=GND 2

or
Recover the CS:IP of the last GO command Process Commands)
See ACTR MENU and Functions for detai

[

C RUN the program starting at the CS:@

ACTR™ may be used in you final product. As longtes jumper is on, every time power on or resetcthr@roller always run your

program. You may download several application progr in different memory location, take off the juanpuse ACTR™ GxxxXX

commands to setup a new CS:IP, then put the jubgaek on, and it will run the program you want eviame when power on or reset.
You also may download a new program in the fielthwhe ACTR™. If you have enough memory spaces ivise to have the
ACTR™ onboard. It is also useful in the future feeld testing or troubleshooting. The ACTR™ are ilakde in EPROM or Flash

EEPROM. Your application program may reside indigtbacked SRAM or Flash EEPROM.

* How to setup the controller ?

Connect PC COM1/2 and the controller with a sexdddle(PC-V25, TERN). Setup PC Windows terminal9@do, N, 8, 1. Power on
the controller with ACTR™ EPROM installed.

A menu should be displayed on the terminal aftset.e

>C C FUNCTIONS, SEE HELP C

>D Download an Intel Extend Hex file

>G Go and Run the Hex file

>H HELP, HC1 for C FUNCTIONS

>L Upload Data Log Record

>M MENU

>N Nodes on the network

>S Set Data Log Sample Rate in the unit of 16 us
>U Upload a block of Binary data

ACTR™ only takes commands of upper case keys. Es@nymand must terminate with a "Enter"/CR.
If an error occur, it will show a message as: "Uppase Keys only ! Start with ~ for remote, M foemo"
* How to get help ?

"H" will show a help menu:

"HC1 ---poke,peek,inport, outport”

"HC2 ---p0,p1,p2,pt,led,hitwd,rtc,ce_ad12"

"HC3 ---SERL1 s1_init, putsersl, getserl, serhitl"

"HC4 ---Icd, Icd2, and printf"

"HC5 ---BirdBox PDC, bb_led, bb_beep"

"HC6 ---SensorWatch ad, da, led, beep, hv, relmy, p

"HC7 ---PowerDrive ad, da, led, beep, hv, relay, hp

D-1

MiniDrive™ Appendix D

"HC8 ---TinyDrive ad, hv"

"HD ----Download a HEX FILE"

"HU ----Upload 256 bytes data(HEX) starts at xxxxx"
"HL ----Upload Data Log Record in the ring_buf"
"HS ----Set a Sample Rate for Data Log Operation”

"C" is the main command to active C functions. &into the way DOS handles BIOS function calls, &CT uses a code to associate
with each C function. In order to know the codes) ynay use "HCx" for helping on C.
For example, If you want to know more on poke kpé@gort and outport,HC1" will show:

"C11 SSSS 0000 BB-----pokeb(SSSS,0000,BB);";

"C12 SSSS 0000 BBBB---poke(SSSS,0000,BBBB);";

"C13 SSSS O000------- peekb(SSSS,0000);";

"C14 SSSS O000------- peek(SSSS,0000);"

"C15 PPPP---o-roomeee inportb(PPPP);";
"C16 PPPP BB-------—--- outportb(PPPP,BB);";
L halt()";
"C18 ~-rmrmeomeoeeee stop()";

C13 1234 0005 will show one byte memory contemidalress of 1234:0005.

If you want to know more on V25 p0,p1,p2,pt,ledpdifrtc,ce_ad12,HC2" will show:
Oy ve_init();"

-hitwd();"

led(B); B=0/1"

—————————— port_init(P,BB); P=0,1,2"

---port_wr(P,BB); P=0,1,2"

port_rd(P); P=0,1,2"

portt_wr(R); R=0-F, VREF"

--portt_rd(); read comparators”

iram_wr(AA,BB); write BB to AA"

----------- iram_rd(AA); read IRAM"

--ce_ad12(C); read CE/TD 12-BiDC channel C=0-A"

----------------- rtc_rd(); read RTC"

"C2D WYYMMDDHHMMSS--rtc_init();"

"C2C" will show you the real time

If you want to know how to use UART SERL functioss, init, putsersl, getserl,serhitdC3" will show:
"C30 MM BB----s1_init(mode,baud);"

"C31----mmme s1_close();"

"C33 AAAA ----putsersl; write string AAAA to SER1"
"C35----—----- getserl; read from SER1"

"C36---------- serhitl; return 1, if any char. imet buffer"

"C38 AAAA DD--ee_wr(AAAA,DD); write EEPROM"
"C39 AAAA-----ee_rd(AAAA); read EEPROM"
"C30 C9 09" will initialize the SER1 to 9600 ba@&] N, 1. Please see C-Engine™ manual for SER1Islé@B3 hello" will send a
string of "hello" out of SER1 TXD1 pin.
If you want to know how to use LCD, printf(); funmts, 'HC4" will show:
"C40-------- led_init();"
"C41 CC----lcdcmd(CC);, CC=80, 1st line, CC=Caddine"
"C42 DD-----lcddat(DD);"
"C44 CC-----lputc(CC); put CC at cursor"
"C45 CC-----lcd_clr_line(CC);"
"C46-------- Icd2_init();"
"C47 CC-----lcd2cmd(CC);, CC=80, 1st line, CC=R6ad line"
"C48 DD-----lcd2dat(DD);"
"C4A CC-----Iputc(CC); put char CC at cursor”
"C4B CC-----lcd2_clr_line(CC);"
"C4C xxxx---printf(xxxx)"
You must use "C40" to initial LCD first, before uls€D functions, otherwise it may lock up the syTERN
"HG" helps on how to goto a new program
"GxxxxX ---Goto xxxxx and modify EEPROM start attdr
"HU" helps on how to upload a block of memory
"U12345 ---READ 256 bytes of MEMORY starts at 1Z80D5"
"HD" helps on Intel Hex file download
"HS" helps on how to set the sample rate for ringduffata logging
"Sxxxx ---Sample Rate, min. xxxx=0271 equ 625x$6RkFFF=1.048s"
* What is the data log ring buffer ?
If no command is issued, ACTR™ will continuely saenADC, PO, P1, P2, PT, RTC and flashing LED.
The sample rate can be setup with "S" command d&kee collected will be recorded in a ring buffeaihog data record format:
" 11 channels 12-bit ADC reading:"
"V25 PO, P1, P2, PT reading:"

D-2

MiniDrive™ Appendix D

" Real time YYMMDD HHMMSS:"
* The memory map
You may use 32K SRAM to use ACTR™. At least 128KABRmust be installed in order to program and deiou@/C++ with large
program or floating point calculation.
ACTR™ is in EPROM/EEPROM in the 1 M byte memorgrihg at OxfO000 to Oxfffff.
ACTR™ uses SRAM starting at 0x01000 to 0x04500diata log ring buffer, UART buffer and variables.
You may load DEBUG with the HEX file pdrem32.hex3@K SRAM in 0x06e00 to 0x07fff.
You may load DEBUG with the HEX file pdrem128.hexi28K SRAM in 0x1e000 to Ox1ffff.
You may load DEBUG with the HEX file pdrem512.hex&t12K SRAM in 0x7e000 to Ox7ffff.

OXFFFFF o OXFFFFF o
* ACTR N * ACTR N
0xF0000 0xF0000

Upto 512K EPROM/EEPROM
Upto 512K EPROM/EEPROM

0x80000 N _ 0x80000 N
x N * N
OxX1FFFF /N
DEBUG
Ox07FFF DEBUG /N Upto 512K SRAM 0Ox1E000 Upto 512K SRAM
0x06E00
X 32K SRAM 128K SRAM
0x04500 ACTR 0x04500 ACTR
0x00000 N7 0x00000 N N7

* How to make an Intel Extended Hex file suitablef ACTR™ downloading
You need the TERN C/C++ Development Kit(DV) andRNEC library disk.
The C/C++ program must have been well debugged.
Set the makefile DEBUG=0,
Change the TEST32 to load
Use load.rm as the configuration file
Set the correct segment map as you want, for eleamp
segment map

map 0x00000 to 0x00fff as reserved /I Interrugattar table

map 0x01000 to 0x17fff as rdwr 1/ 64KB RAM adds space

map 0x18000 to Ox1ffff as rdonly /| CODE

map 0x20000 to Oxfffff as reserved // No access

dup DATA ROMDATA /I Make a copy of initializkdata
class CODE = 0x1800 /I Assume loading at asli8000H
class DATA = 0x0100 /I Data at addre58ADH

* How to program in C/C++ ?
1. You need the DEBUG(PDREM1E.HEX) for 128K or (REM7E.HEX) for 512K SRAM.
2. "D" download the PDREM1E.HEX to the controlgth Windows, Terminal, Send Text File.
3. Set a jumper for P22=GND, Power off/on or regbe controller is ready for debug.
4. Use p led for led.c, refer to C-Engine™ TechhManual for details.
* How to down load an Intel Extended Hex file ?
1. Use "D" command. It will response with
"Ready to receive Intel Extend HEX file at 1922ud"
2. Select windows terminal , File transfer, "Sdeat File", select your Intel Extended Hex file,
OK to download.
3. If the file transfer is successful, ACTR™ valiow
"END of File Record" "CHKSUM = 0" "CS=xxxx |Bayy"
If error occur during file transfer, ACTR™ wilhew "Transfer Error | CHKSUM=2?2?"
You have to reset and transfer again.
* How do | set up the sample rate ?
"S0271" ---Sample Rate, min. xxxx=0271 equ 6254 6FFFF=1.048 second
* How can | read ADC ?
for a C-Engine™, "C2B C"-------------- ce_ad12(Cgad CE/TD 12-bit ADC channel C=0-A
* How to read the real time clock ?
"C2C" e rtc_rd(); read RTC
* How to turn a relay on ?
"C64 D"--------- sw_relay(D); relay on, if D=1
* How to show "Hello " on the first line of the 1&2 LCD ?
"C40"-------- lcd_init();

D-3

MiniDrive™ Appendix D

"C45 80"-----Icd_clr_line(80);
"C4C Hello !"---printf(Hello !)
* How to turn a LED on/off ?
"C23 1"---mmmmmmeee] led(1); led on
"C23 0"---m-mmmmee led(0); led off
* How to upload a block of memory ?
"U12345" ---READ 256 bytes of MEMORY starts at #23005
* How to read the data log ring buffer ?
"L" will upload the whole ring buffer in the forraf
" 11 channels 12-bit ADC reading:"
"V25 PO, P1, P2, PT reading:"
" Real time YYMMDD HHMMSS:"
* How to transmit or receive a character with SERL
"C30 C9 09" will initialize the SER1 to 9600 bau] N, 1
"C33 hello" will send a string of "hello" out oER1 TXD1 pin.
"C36"---------- serhitl; return 1, if any char. the buffer. return 0, if nothing
"C35"--mmmmme- getserl; read a character from SER1
* How to actuate slaves over RS-485 network ?

* What software drivers are available ®e list part of the software drivers here. Theg erady to be called, and linked in your
applications:

void pokeb(unsigned int segm, unsigned int offsigmed char b);
void poke(unsigned int segm, unsigned int offsjgmed int b);
unsigned char peekb(unsigned int segm, unsigneaffg)t
unsigned int peek(unsigned int segm, unsignedfig};o

unsigned char inportb(unsigned char port); witportb(unsigned char port, unsigned char p);
void halt(void); void stop(void);

void ve_init(void); void hitwd(void); void ledrt);

void port_init(unsigned char p, unsigned char mpde) void port_wr(unsigned char p, unsigned char;dat)

unsigned char port_rd(unsigned char p); voidtpewt(unsigned char vref);

unsigned char portt_rd(void);

void iram_wr(int addr, unsigned char dat); unsichar iram_rd(int addr);

int ce_ad12(unsigned char ch); int rtc_rd(TIN *r

void rtc_init(unsigned char*);
void s1_init(unsigned char m,unsigned char b, uresdgchar* ibuf,int isiz, unsigned char* obuf,intQsCOM *c);
void s1_close(COM *c);

int puts1(unsigned char *str, unsigned char n, C@M int putsers1(unsigned char *str, COM *c);
int putser1(unsigned char outch, COM *c); unsijchar getserl(COM *c);

int serhitl(COM *c); unsigned char serout1{)oi

int ee_wr(int addr, unsigned char dat); int egint addr);

void timerQ_init(unsigned char mode, unsigned idOpunsigned int tm0);
unsigned int timer0_rd(unsigned char i);
void timer1_init(unsigned char mode, unsigned idiLpunsigned int tm1);
unsigned int timer1_rd(unsigned char i);

void Icd_init(void); void lcdcmd(int cmd); voiddidat(int dat);

void lcd_wait(void); void Iputc(unsigned chel);

void Icd_clr_line(unsigned char code); void Icddt(void); void lcd2cmd(int cmd);

void Icd2dat(int dat); void lcd2_wait(void); voldutc2(unsigned char ch);

void lcd2_clr_line(unsigned char code); void [ifhixxx");

void sw_led(unsigned char led, unsigned char onoff) void sw_do(unsigned char o, unsigned char k);
unsigned char sw_di(unsigned char i); void swuhsigned char hv, unsigned char k);
void sw_relay(unsigned char k); void sw_beeg(imt I);

int sw_kb_scan(); int sw_ee_wr(int addr, unsigokdr dat); int sw_ee_rd(int addr);

void sw_ad10(int* ad); void sw_dal10(int dat); igned char adch(unsigned char ch);
int sw_ad12(unsigned char ch, unsigned char mode); int sw_ad12a(unsigned char ch, unsigned char)node

unsigned int sw_ptc_rd(unsigned char chnnl, unsigrar rmd);

* Paradigm DEBUG in Intel Extended Hex file for loding to ACTR™:
pdrem32.hex
pdrem128.hex
pdrem512.hex

D-4

MiniDrive™ Appendix E

Appendix E. Interface a RELAY7™ with MiniDrive™

There are seven High-voltage, High-current Driverson the MiniDrive. There are 7

12V power relays on the RELAY7.
The ULN2003(U9) on the MD has high voltage, high current Darlington transistor arrays, consisting of 7
silicon NPN Darlington pairs on a common monolithic substrate. All channels feature open-collector
outputs for sinking 350 mA at 50V, and integral protection diodes for driving inductive loads. Peak inrush
currents of up to 600 mA sinking are allowed. All driver outputs are routed to J9. as shown below.

PIN 1

J2

pin1-2 SRAM 32K, 128K
pin 2-3 SRAM 256K, 512K

pin 4-5 ROM 256K, 512K
J4 J3 pin 5-6 ROM 32K, 64K, 128K
in 7-8 EPROM/Flash read onl
SER1 RS232 || SERO RS232 S:ﬂ 8.0 Flach RecWiite
R 1
o MB JBE] ot
U1l
Jl 189 ™
1/0 lines / - m us +9V to 12V
8 4-bit ADC o U2 us 691 B‘i‘/ DC input
u12 é:/éa PAL L [=
188 T MI
U7
e || Falis
el ROM RAM H1
U13
259 U9 |;| H =»
] 283 pg _Du H2
— [| —
P i 1 B :é - Ld_
R4 N Graphic/Character LCD
oo aval |oooooooooo| Interfaces

GND K HV1 HV2 HV3 HV4 HV5 HV6 HV7 NC

J9

7 Solenoid Drives

You must provide +12V on the MiniDrive to J9 pin 2“K”, in order to
power the RELAY7.

A wire can be soldered on the back side of MD, beten the LM7805
pin 1 to J9 pin2=K.

The interface signal between MD and RELAY 7 are:

GND, K=12V, HV1, HV2, HV3, HV4, HV5, HV6, HV7.

Y ou may connect MD and RELAY 7 by solder directly, socket, or wire.

The common substrate G is routed to J9 pinl GND. All currents sinking in must be return from J9 pin 1

GND. A heavy gage(20) wire may be used to connect GND terminal to external power supply ground
return. K is connecting to the protection diodes. K should be tied to +12V in the system.

E-1

MiniDrive™

MD

XA

J9

RELAY7

HV1

HV2

HV3

HV4

HV5

HV6

HV7

ULN2003

K=12V

Fig. Drive RELAY 7 with MiniDrive high voltage/current drives.

GND/SUB

[

RELAY1
O

[©

RELAY?2
O

[-

RELAY3
O

[©

RELAY7
O

Appendix E

The ULN2003 isdriven by U13 74HC259. Y ou can write the 74HC259 with outportb(0x80A0+hv, dat);
where hv=0-6 for solenoid drivers HV1-7 on J9;

hv=7 for TTL output HV8I on R4

dat=0/1, off/on

E-2

/1 08TB XTAL1L vee 1 o 2 GD RN4 RA2
3 | MREQ [T NBIB X2 X1 us uL 1V 1 Voo
o [€X) R W HDRD2 2 TRISO 2 P21
= REEE 16MHZ VCC Ji 3 P20 312
P00 / REFEQ
DI PCAP PO1 [RST < AlS 11\ oo ool 329 AL81| \io ypp |32 VRAM P20 1 o 2 P21 4 pp2 4 p23
P02 VCC cs AT 7 78 | pan [BAW AT6Z| aia 300 [BT°ATS Pz 32 23 VY5 P24 [5 P25
P03 X2 10PF AT5 3| w18 /PRS0 AT7P ATA3| 1S 455 [30_Cce2 P24 5 25 VY6 P26 [6 Pa7
P04 X1 AL2 N> ALy [29 ALZ AlZ4| M3 B2 RwW P26 7 27 7 TNM 7 PiL
e G\D 10PF A7 _51%7° ‘aj3 [28 A13 A7 5|75 a13 [28 AL3 NM__ O P11 P12 8 pi3
P05 H A6 6 s s [27 A8 AG 6] ns ‘s | 27 A8 P12 11 2 12 P13 o pid 9 P15
P06 r1c AS 7|2 S [Z6-A9 A5 7| 2 S [26-A9 3 5 T 6 10 P17
Ao A o A A Bl s Al 25 AL 5 7
8 3 3
11 (I A3 24 [NRD A3 9 24 T NRD 7 T 10K 10K
1{0|9|8|7|6|5|4|3|2]1]4]3|2|7|0|9|8{ 7|6|5 o A3 1CE 5 Sl A3 1O 3 ato 15 s e
AL 1142 MO SSTRoM AL11] "2 A0 S TRAM PT4_21 22 _PT5 1wpo N8 0pn
PPI_PPPPPG/ / | R/ [VXXGVI oI Al CEST I AL scEl 52 1F 55O O—5 = FTS hT3
00C00000NMI M RRD2INTC w2 A0 D7 |2 A0 D7 |5 o O
65 43210DROSWESD ~ DH . 31 o D6 |20 31 o D6 |20 25 o2 0 8 8 PT5
AK12| ooy [EST ET PT7 il 9 i 9 o7 28 POL 7 7 P17
21 P07/ CLK £6TB E PT7 Tt 15 DL D5 3 = D1 D5 3 550 C—56+hoz 550 & o
DO A B O PT6 [D2 D4 4 D2 D4 29 5 o 0 0
4] o7 PTS PT5 6] o D |17 D8 6l oo Ds |17 D3 31 32 P03 5 P02 5 P03
5 o2 PD70320_V25 P14 4 | 33 3 4 4 P04 4 P05
FAAA—2
6 V255 3 PROVL024 RANE 71024 35 3 5 3 P06 3 0K
7153 L 37 3 5 N T2 TRISL [21¢C
cafieed PTL PTL vce J3 HDRD10 a\D] 39 1_VCC 1 Vo
D619 PTO (03] 1l o520 RN10S1 10K RN10S1
7 20| 6 P10 7 CLK 1 20 lvee [TXDO 3 4_CTSO
A0 21 D7 P17/ ROY 5 A7 2] K SViiotcme TR0 5 2 &6 Rrso 2
29 211 A0 P16/ SCKO o M1 o e 20 &
2Zln P15/ TOUT Pl5 12 O HTRay 92 £10 +12vi R4
el P14/ 1 NT/ POLL P14 S 13 o5 (1A o109 vee
Se A3 P13/ | NTP2/ | NTAK 3 {14 Of e s 1
A5 26| "4 P12/1 NTP1 T e 712 BrIz T2 J4 HDRD1O 2
ra—57] A5 P11/ | NTPO N s 16 @@z J\A 1 > TOR
A7 28] A8 P10O/NM 155557 R W l7 Ol 5517 [0 3R & ars1
A8 29| AY P27/ HLDRQ 55556 0!8 Driz TR0l 5 2 O 6 RrsL J9
25 A8 P26/ HLDAK (21-F22 Ol 1l 2 5 D
AL A9 ng{fgﬂ 55 P24 %7_ PALIEV: —5 0 S0 +12vi K i
Al D P23/ DRI | 24_P23 MDPOOO CHAR LCD © HVL 3
VRAM MDP010 GRAP. LCD H 2
c8 VA 5
L <] DI PCAP COPYRI GHT 1995, STE ALL Rl GHTS RESERVED. V5 ¢
HV6
5 - V7 g
3 U1 vee u13 Vi 20
[He) [RXD0 11 A voo | 449 D 13[4 v e
P22 A N B RxDL S 52 Vi FDRS10
P21 RXDO 3| gyra op A2 0 1lg, &6 na Vi HDRS10
VCoC CTS0 4] '\g " ourp| AL RXDI Al 215 g 7 hva ke
= 5] 10 Cisi A2 3] 9 FVb
rersi 6| B, NS 52 %‘ 0_FV6 FDRS20 FDRS20
7] QD ourC B LCTSL /259 144 ¢ R [11H J2 Sei ko G324E HDML28GS24Y
[RST 153 2 V8
i; 75C189 AR r RST %
1489 74FC25 C
c14 c1 3 H2 HL
& u12 0] DI PCAP P 1 2 _G\D D71 2 D6
R -15v 1[4 +12v Hv7l 1[5 1|26 H S 3 VLC 053 &
DI PCAP X0 2] A o [13,TXDL V6l 2| 55 pc |15 _HV6 5 53 & 670D 8 53 g 6 o
uz vee c19 TIX0 3| o s [1Z21 RVST 3| 50 35S [T4 VS J6 4 o T A0 PINAD
10 voo 89 &y TRsq 4| 6° L [/ Txo1 B I 35 2C I3 H PO2 1 2 s 9 TRST T TS W
2] a0 o v R 51812 s [T0JRIST A3l 5| op ec [12 FV3 TRST 3 D0 11 2 2 DL A0 T1 O 2 VLC
3] Az s 6 Poo DI PCAP RISO 6| a5 &3 2 216 op ac [AL B2 S 5 = 3 GND_13 4o
4] yes spal 5 POL 7] anp o 8 RTsL 11 7] o5 5610 AVE SELL 7 Q3 S8 D415 5 S 16 D5 LcD? 15 OO CO 6
- oo 8| PR SEL2 0 3 8 GND 73 8 7
24C04 75CI88 3 &1 'Gb D 19 HDRD16
Us 1488 UCNZ003 33 &1 cis —0 O——
VDI 5 6 LCD2 + HDRD20
VBAT 1.5 ger |16 RST D2 11 +12V o O Hh
VRAM 2| Vo | Ray [15 TRST -15V . HDRD16 C2 DI PCAP LMB40
|‘| 2 hveommcn VSR ISIN vy . Ci5 ey us
3 +12VI S04 &5 o I3/ RAMm L c1d 1Ns817 22UF 10UF35V 8 LM7805Z
Jo DJ- 005 g BON CEO i / DAM 10UF35V. Ulo RCH664 g DI PmPlSV . J8 D1 CcC
oo e ;; - +12VI +12V 1|, ool 39 voo
T i PRo[E0TPFO 1 vo Lxl-8 +12VI 1 o o 2 G\D EEE—
RNG T8 5 PR |9 PF RE 2| rp” v L 12V VLC 2 €16, 1ns817]+ Co G cr
10 SEL1 SHON 31 &P i [6 HDRD2 Y 10UF35V 10UF35V
9 SEL2 VAX69 1 R 3 5 D 3 10UF35V ALCAP2
REF G 2
8 /RO vee HDRS3
7T BP1 C13 VAX766 w
TNREQ 0. 1UF +12V c+ 1 8 +12V
TLC6TB vee ;; R3 i AL ST
B c17 1K &b 3| g 6
/ RST Hv8I Bl 0. 1Ul L1 /l\ C 4 C V- 5 -15V TERN/ STE
H BEEP VLC L2 vC AR P05 10UF35V
C 1| 7662 cio [ritre
10K RNLOSL -15V G\D <] + |34 vBaT LED lOUF35V$ M ni Dri ve- V25
PO BTHL Si ze |[Docunment Numnber REV|
poT B MD- MAN. SCH
Dat e: January 17, 2000 [Sheet 1 of

