

MiniDrive88™

C/C++ Programmable, 16-bit Microprocessor Module
Based on the Am188ES

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

A-Core, A-Engine, A-Engine-P, VE232, MiniDrive88, and ACTF are trademarks of
TERN, Inc.

Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Turbo C and Borland C++ are trademarks of Borland International.

Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of
Microsoft Corporation.

IBM is a trademark of International Business Machines Corporation.

Version 3.10

July 24, 2012

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1997-2012
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

MiniDrive88 Chapter 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description

The MiniDrive88 (MD88) is a low-cost, high performance, C/C++ programmable, 16-bit microprocessor
core module. It is designed for embedded applications that require compactness, low power consumption,
and high reliability. The MD88 is a modified version of the A-Core with 35 buffered high voltage I/Os.
The MD88 can be integrated into an OEM product as a processor core component.

Am188ES
CPU
80x86

Compatible

DMA(2)
16-Bit Timers(3)
Ext. Interrupts(8)

32 I/O lines
PWM/PWD

691 U6

EEPROM u7

512 BYTES

ROM/FLASH
512K

SRAM
512K

SDA P11

SDL P12

Header J2

7805 5V
regulator

74HC259

RTC

Screw Terminals J1

Figure 1.1 Functional block diagram of the MD88

Measuring 3.1 by 2.6 by 0.3 inches, the MD88 offers a C/C++ programmable computer system with a 16-bit
high performance CPU (Am188ES, AMD) and operates at 40 MHz (or 20 MHz) system clock with zero-
wait-state. Optional features include up to 512K EPROM/Flash and up to 512K battery-backed SRAM. A
512-byte serial EEPROM is included on-board. An optional real-time clock provides information on the
year, month, date, hour, minute, second, and 1/64 second, and an interrupt signal. The MD88 is available
with on-board 5-volt regulator and 2 channels of RS232 drivers.

Two DMA-driven serial ports from the Am188ES support high-speed, reliable serial communication at a
rate of up to 115,200 baud while supporting 8-bit and 9-bit communication.

The MD88 offers three 16-bit programmable timers/counters and a watchdog timer. The timer can be used
to count or time external events, at a rate of up to 10 MHz, or to generate non-repetitive or variable-duty-
cycle waveforms as PWM outputs. Pulse Width Demodulation (PWD), a distinctive feature, can be used to
measure the width of a signal in both its high and low phases. It can be used in many applications, such as
bar-code reading.

There are 14 solenoid drivers outputs, 7 high voltage inputs, and 14 hardware configurable high voltage
I/Os. High voltage I/O lines are routed to user programmable I/O pins, external interrupt inputs of the
Am188ES and a 74HC259 data latch. A supervisor chip with power failure detection, a watchdog timer, an
LED, and expansion ports are on-board.

Standard Features
• Dimensions: 3.1 x 2.6 x 0.3 inches
• 16-bit CPU (Am188ES), Intel 80x86 compatible. Easy to program in C/C++
• Power consumption: 160/120 mA at 5V for 40/20 MHz
• Power saving mode: 30/24 mA at 5V for 40/20 MHz

Chapter 1: Introduction MiniDrive88

1-2

• Power input: +9V to +12 V unregulated DC
• Up to 512KB Flash/ROM
• 2 high-speed PWM outputs and Pulse Width Demodulation
• 32 I/O lines from Am188ES
• 512-byte serial EEPROM
• 8 external interrupt inputs, three 16-bit timer/counters
• 2 serial ports support 8-bit or 9-bit asynchronous communication
• Supervisor chip (691) for power failure, reset and watchdog

Optional Features (*):

• 32KB, 128KB, or 512KB SRAM*
• Real-time clock RTC72423*, lithium coin battery*

1.2 Physical Description

Figure 1.2 physical layout of the MD88

1.3 MD88 Programming Overview

Development of application software for the MD88 consists of three easy steps, as shown in the block
diagram below.

STEP 1 Serial link PC and MiniDrive88, program in C/C++,
Debug C/C++ program with Remote Debugger

STEP 2 Test MiniDrive88 in the field, away from PC
Application program resides in the battery-backed SRAM

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

SRAM

CPU

RTC

MiniDrive88 Chapter 1: Introduction

1-3

There are three possible steps in the development of a TERN controller. The EV Kit is capable of doing
Step 1 and Step 2. The EV Kit cannot perform Step 3. Step 3 allows you to generate a HEX or BIN file and
allows you to produce your own ROM/Flash chip. You will need the DV Kit and/or the ACTF Flash Kit to
perform Step 3.

Please refer to the Tutorial section in the Technical Manuals for the EV/DV Kit to obtain further details on
programming the MD88.

1.3.1 Step1

STEP 1: Debugging

Write your C/C++ application program in C/C++. Connect the MD88 (with a DEBUG ROM TDREM_AC
installed) to your PC via the PC-V25 serial link cable.

Use the batch file m.bat to compile, link, and locate, or use t.bat to compile, link locate, download, and
debug your C/C++ application program.

DC +9V 300 mA
Wall transformer
Center Negative

PC-V25 Cable

PC

SRAM

CPU

RTC

GND

12 V

Figure 1.3 Connecting a serial link cable and wall transformer (with adapter).

1.3.2 Step 2

STEP 2: Standalone Field Test.

Set the jumper on J6 pins 1-2 (Figure 1.4). At power-on or reset, if J6 pin 1 (A19) is low, the CPU will run
the code that resides in the battery-backed SRAM. The MD88 will operate in STEP 2 if a jumper is placed
on J6 pins 1-2 during power-on or reset. If the jumper is off J6 pins 1-2 during power-on or reset, the MD88
will operate in STEP 1. The status of the J6 pin 1 (signal A19) for the Am188ES is only checked at power-
on or at reset.

Chapter 1: Introduction MiniDrive88

1-4

Figure 1.4 Location of Step 2 jumper on the MD88 (J6)

1.3.3 Step 3

STEP 3: Generate the application .BIN or .HEX file, make production ROMs, or download your program
to FLASH via ACTF.

If you are happy with your Step 2 test, you can go back to your PC to generate your application ROM to
replace the DEBUG ROM (TDREM_AC). Important: You need to change DEBUG=1 to DEBUG=0 in the
makefile.

You must have the DV Kit and/or ACTF Kit to perform Step 3.

Please refer to the Tutorial chapter in the EV/DV Kit manual, for further details on programming the MD88.

1.4 Minimum Requirements for MD88 System Development

1.4.1 Minimum Hardware Requirements

• PC or PC-compatible computer with serial COMx port that supports 115,200 baud
• MD88 controller with DEBUG ROM TDREM_AC
• PC-V25 serial cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector for controller)
• Center negative wall transformer (+9V 500mA)

1.4.2 Minimum Software Requirements

• TERN EV/DV Kit installation diskettes
• PC software environment: DOS, Windows 3.1, Windows95, or Windows98

Set the jumper on
the J6 pins in step 2.

SRAM

CPU

RTC

MiniDrive88 Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the Evaluation/Development (EV/DV) Kit Technical for information on installing software.

The README.TXT file, located on the TERN EV/DV disk, contains important information for installing
and evaluating TERN controllers.

2.2 Hardware Installation

2.2.1 Powering-on the MD88

Connect a +9V-12V DC power to the screw terminal J1 pin 1 (12V) and pin2 (GND) on the MD88 (Figure
2.1). The wall transformer may be connected to the MD88 via a power jack adapter. Make sure the debug
ROM is installed and STEP 2 jumper is off.

At power-on, the
on-board LED
should blink twice
and remain on.

Power Jack
Adapter

Wall
Transformer

+9V

GND

SRAM

CPU

RTC

Figure 2.1 Power connection for MD88 with LED blinking twice at power-on.

Overview
• Connect PC to the MD88 using the PC-V25 cable.

• Connect 9V wall transformer to screw terminal on MD88

• User is ready to begin development.

MD88 Chapter 3: Hardware

3-1

Chapter 3: Hardware

3.1 Am188ES - Introduction

The Am188ES is based on the industry-standard x86 architecture. Am188ES controllers are high-
performance, more integrated versions of the 80C188 microprocessors. In addition, the Am188ES has new
peripherals. The on-chip system interface logic minimizes total system cost. The Am188ES has two
asynchronous serial ports, thirty-two PIOs, a watchdog timer, additional interrupt pins, pulse width
demodulation option, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced
chip-select functionality.

3.2 Am188ES – Features

3.2.1 Clock

Due to its integrated clock generation circuitry, the Am188ES microcontroller allows the use of a times-one
crystal frequency. The design achieves 40MHz CPU operation, while using a 40 MHz crystal.

3.2.2 External Interrupts

There are eight external interrupts:

INT0, CPU pin 56 and U14 pin 11.
INT1, CPU pin 55 and U14 pin 12.
INT2, CPU pin 54 and U14 pin 15.
INT3, CPU pin 53 and U14 pin 13
INT4, CPU pin 52 and U14 pin 14
INT5=P12=DRQ0, CPU pin 77, used as output pin for LED/EE/HWD
INT6=P13=DRQ1, CPU pin 76 and U14 pin 10
NMI, CPU pin47 and U14 pin 16.

All eight interrupts are edge-triggered and are pulled up with 10K resistors. A ULN2003 or a resistor pack
can be installed in U14 buffering all interrupt inputs. They all require a raising edge (LOW-to-HIGH) to
generate an interrupt.

The MD88 uses vector interrupt functions to respond to external interrupts. Refer to the Am188ES User’s
Manual for information regarding interrupt vectors.

3.2.3 Asynchronous Serial Ports

The AM188ES CPU has two asynchronous serial channels: SER0 and SER1. Each asynchronous serial
port supports:

• Full-duplex operation, 7-bit, 8-bit and 9-bit data transfers
• Odd, even and no parity, One stop bit
• Error detection, Hardware flow control, DMA transfers to and from serial ports
• Transmit and receive interrupts for each port, Multidrop 9-bit protocol support
• Maximum baud rate of 1/16 of the CPU clock, Independent baud rate generators

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sample files: s1_echo.c and s0_echo.c.

Chapter 3: Hardware MD88

3-2

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to four external pins:

Timer0 output = P10 = CPU pin 74=U4 pin 2 to O9
Timer0 input = P11 = CPU pin 75, used by EE
Timer1 output = P1 = CPU pin 73 = U4 pin 1 to O8
Timer1 input = P0 = CPU pin 72 = U15 pin 5 from IO11

The timer can be used to count or time external events, or can generate non-repetitive or variable-duty-cycle
waveforms. Timer2 is not connected to any external pin. It can be used as an internal timer for real-time
coding or time-delay applications. It can also prescale Timer0 and Timer1 or be used as a DMA request
source. The maximum rate at which each timer can operate is 10 MHz, since each timer is serviced on every
fourth clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See
sample programs timer12.c and ae_cnt1.c in \samples\ae.

3.2.5 PWM outputs and PWD

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. The minimum timer
output cycle, therefore, is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the timer’s maximum value. Both Timer0 and Timer1
have a secondary maximum count register for variable duty cycle output. Using both the primary and
secondary maximum count registers lets the timer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the INT2.

3.2.6 Power-save Mode

The MD88 is an ideal core module for low power consumption applications. The power-save mode of the
Am188ES reduces power consumption and heat dissipation, thereby extending battery life in portable
systems. In power-save mode, operation of the CPU and internal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatically returns to its normal operating frequency.

3.3 Am188ES PIO lines

The Am188ES has thirty-two pins available as user-programmable I/O lines. Each of these pins can be used
as a user-programmable input or output signal if the normal shared function is not needed. A PIO line can
be configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-
drain output. A pin’s behavior, either pull-up or pull-down, is pre-determined as shown in Table 3.1.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries also reconfigures some of these pins as needed for specific on-board usage. These

MD88 Chapter 3: Hardware

3-3

configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

PIO Function Power-On/Reset
status

MD88 Pin No. MD88 Initial

P0 Timer1 in Input with pull-up J2 pin 22=IO11
P1 Timer1 out Input with pull-down J2 pin 26=O8 CLK_1
P2 /PCS6/A2 Input with pull-up J2 pin 17=IO2 RTC chip select
P3 /PCS5/A1 Input with pull-up J2 pin 18=IO1 /PCS5
P4 DT/R Normal J2 pin 12=IO7 STEP2
P5 /DEN/DS Normal J2 pin 14=IO5 Input with pull-up
P6 SRDY Normal J2 pin 13=IO6 Input with pull-down
P7 A17 Normal A17
P8 A18 Normal A18
P9 A19 Input w. pull-up J6 pin 1 Input with pull-up
P10 Timer0 out Input with pull-down J2 pin 27=O9 Input with pull-down
P11 Timer0 in Input with pull-up EE pin 5 Input with pull-up
P12 DRQ0/INT5 Input with pull-up LED Output for LED/EE/HWD
P13 DRQ1/INT6 Input with pull-up J2 pin 11=I7 Input with pull-up
P14 /MCS0 Input with pull-up J2 pin 15=IO4 Input with pull-up
P15 /MCS1 Input with pull-up J2 pin 16=IO3 Input with pull-up
P16 /PCS0 Input with pull-up 74HC259 pin 14 74HC259 latch chip select
P17 /PCS1 Input with pull-up J2 pin 23=IO10 Input with pull-up
P18 CTS1/PCS2 Input with pull-up J2 pin 24=IO9 Input with pull-up
P19 RTS1/PCS3 Input with pull-up J2 pin 25=IO8 Input with pull-up
P20 RTS0 Input with pull-up J2 pin 20=IO13 Input with pull-up
P21 CTS0 Input with pull-up J2 pin 21=IO12 Input with pull-up
P22 TxD0 Input with pull-up 232, U8 pin 10 TxD0
P23 RxD0 Input with pull-up 232, U8 pin 9 RxD0
P24 /MCS2 Input with pull-up J2 pin 28=O10 Input with pull-up
P25 /MCS3 Input with pull-up J2 pin 29=O11 Input with pull-up
P26 UZI Input with pull-up J2 pin 30=O12
P27 TxD1 Input with pull-up 232, U8 pin 11 TxD1
P28 RxD1 Input with pull-up 232, U8 pin 12 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 31=O13 Input with pull-up*
P30 INT4 Input with pull-up J2 pin 7=I3 Input with pull-up

P31 INT2 Input with pull-up J2 pin 6=I2 Input with pull-up

* Note: P26, P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Three external interrupt lines are not shared with PIO pins and only can be used to generate interrupts:

INT0 = U14 pin 11=J2 pin 10=I6
INT1 = U14 pin 12=J2 pin 9 =I5
INT3 = U14 pin 13=J2 pin 8 =I4

The thirty-two PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and
PIODIRECTION registers. The settings are listed as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation

Chapter 3: Hardware MD88

3-4

1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

MD88 initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The C function in the library ae_lib can be used to initialize PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pins is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pins is in input mode,

Some of the I/O lines are used by the MD88 system for on-board components (Table 3.2). We suggest that
you do not use these lines unless you are sure that you are not interfering with the operation of such
components (i.e., if the component is not installed).

Signal Pin Function

P2 /PCS6 U4 RTC chip select. It can be used as IO2, if RTC not installed
P4 J6 pin 1 Step2 jumper
P11 Timer0 input U7 24C04 EE data input

The EE data output can be tri-state, while disabled
P12 DRQ0/INT5 Output for LED or U7 serial EE clock or Hit watchdog
P16 /PCS0 U11 74HC259 chip select at base I/O address 0x0000
P22 TxD0 Default SER0 debug
P23 RxD0 Default SER0 debug

Table 3.2 I/O lines used for on-board components

3.4 I/O Mapped Devices

3.4.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port) or
outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000 to 0xffff.

MD88 Chapter 3: Hardware

3-5

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define the
I/O wait states from 0 through 15. The system clock is either 25 or 50 ns, giving a clock speed of either 40
or 20 MHz respectively. Details regarding this can be found in the Software chapter, and in the Am188ES
User’s Manual. Slower components, such as most LCD interfaces, might find the maximum programmable
wait state of 15 cycles still insufficient. Due to the high bus speed of the system, some components need to
be attached to I/O pins directly.

For details regarding the chip select unit, please see Chapter 5 of the Am188ES User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Usage Location

0x0000-0x00ff /PCS0 74HC259 U11 pin 14=P16
0x0100-0x01ff /PCS1 USER P17
0x0200-0x02ff /PCS2 USER CTS1
0x0300-0x03ff /PCS3 USER RTS1
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 USER J2 pin 16=P3
0x0600-0x06ff /PCS6 RTC 72423 U5 pin 3=P2

3.4.2 74HC259

The 74HC259 8-bit decoder latch provides eight additional output lines for the MD88. The 74HC259 is
mapped in the I/O address space 0x0000. You may access this device by using the following code:

 outportb(0x0000 + i, val); // i = output pin, val = 0/1 to set or reset latch.

1

/PCS0

A2

14

3

2
A0

A1

T1

T7

T6
T5

T4

T3
T2

T0

5

6

7

9

10

11
12

4

74HC259

C

A

B

G

Q2

Q3
Q4

Q5

Q6
Q7

Q1

Q013D0 G1 outportb(0x0000, x)
outportb(0x0001, x)
outportb(0x0002, x)
outportb(0x0003, x)
outportb(0x0004, x)
outportb(0x0005, x)
outportb(0x0006, x)
outportb(0x0007, x)

x = 0, output low
x = 1, output
high

Figure 3.1 74HC259 diagram with corresponding outport addresses

3.4.3 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON, U4) is mapped in the I/O address space 0x0600. It must
be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or rtc_rd().
See Appendix C and the Software chapter for details.

3.5 Other Devices

A number of other devices are also available on the MD88. Some of these are optional and might not be
installed on the particular controller you are using. For a discussion regarding the software interface for
these components, please see the Software chapter.

Chapter 3: Hardware MD88

3-6

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the MD88 has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

Setting a jumper on J9 of the MD88 (see Figure 3.2) activates the watchdog timer. The watchdog timer
provides a means of verifying proper software execution. In the user's application program, calls to the
function hitwd() (a routine that toggles the P12=HWD pin of the MAX691) should be arranged such that
the HWD pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is not
accessed within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET.
This automatic assertion of /RESET may recover the application program if something is wrong. After the
MD88 is reset, WDO remains low until a transition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

In addition, the Am188ES has an internal watchdog timer. This is disabled by default with ae_init().

Figure 3.2 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3V lithium battery positive pin), and connects the one that is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last about 3 to 5 years without external power being supplied.
When the external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

3.5.2 EEPROM

A serial 512-byte EEPROM (24C04) can be installed in U7. The MD88 uses the P12=SCL (serial clock)
and P11=SDA (serial data) to interface with the EEPROM. The EEPROM can be used to store important
data, such as a node address, calibration coefficients, and configuration codes. It has typically 1,000,000
erase/write cycles. The data retention lasts for more than 40 years. EEPROM can be read and written by
simply calling functions ee_rd() and ee_wr(). See Appendix E for more information.

J9
Enable watchdog
timer if jumper
installed

SRAM

CPU

RTC

MD88 Chapter 3: Hardware

3-7

3.6 Headers and Connectors

3.6.1I/O Headers

The MD88 has one 17x2 pin header (J2) and a 10x1-screw terminals (J1) for user high voltage I/Os. Signals
are buffered by resistors or ULN2003, not directly routed to the Am188ES processor. The signals for both
J1 and J2 are listed in Table 3.3.

J7 and J8 are 5x2 headers for SER0 and SER1 RS232 serial ports. The signal for J7 and J8 are listed in
Table 3.4.

Table 3.3 Signals for J1 (10x1) and J2 (17x2) expansion ports

J7 or J8 Signal

 1 2
/TXD0 or 1 3 4
/RXD0 or 1 5 6
 7 8
GND 9 10 GND

Table 3.4 Signals for J7 (5x2) and J8 (5x2)

3.6.2 Connectors, Headers and Jumpers

Table 3.5 lists the jumpers and connectors on the MD88. Figure 3.3 indicates their locations. For a larger
scale diagram, refer to Appendix B.

J2 Signal

12V 1 2 K
GND 3 4 GND
I1 5 35 I2
I3 7 33 I4
I5 9 10 I6
I7 11 12 IO7
IO6 13 14 IO5
IO4 15 16 IO3
IO2 17 18 IO1
IO14 19 20 IO13
IO12 21 22 IO11
IO10 23 24 IO9
IO8 25 26 O8
O9 27 28 O10
O11 29 30 O12
O13 31 32 O14
GND 33 34 GND

J1 Signal

12V 1
GND 2
VCC 3
O7 4
O6 5
O5 6
O4 7
O3 8
O2 9
O1 10

Chapter 3: Hardware MD88

3-8

Name Size Function Possible Configuration

J1 10x1 Screw terminals for O1-7 12V power input
J2 17x2 High voltage I/Os
J3 3x1 SRAM selection pin 2-3 SRAM 256K-512K

pin 1-2 SRAM 32K-128K
J4 3x1 ROM size selection pin 1-2: ROM size 32K-128K

pin 2-3: ROM size 256K-512K
J5 3x1 EPROM/FLASH

selection
pin 1-2: EPROM size 512K
pin 2-3 FLASH size 128K/512K, or
EPROM 32K-256K

J6 2x1 A19=P9 Step Two Jumper with TDREM_AC ROM
J7 5x2 RS-232 SER0 connector
J8 5x2 RS-232 SER1 connector
J9 2x1 Watchdog timer Enabled if Jumper is on

Disabled if jumper is off

Table 3.5 The size, function and possible configurations od the jumpers and
connections in the MD88.

Figure 3.3 Locations of jumpers and connectors on the MD88

3.6.3 Protective high voltage inputs

In order to support high voltage digital signal input up to 30V, Darlington Transistor Arrays (ULN2003A)
can be installed in U14, U5, and U15. The input pin has a resistance load of 12.7K towards the GND. You
have to provide a pulled high signal input. A valid input low voltage is less than 0.8V, and a valid input
high voltage is higher than 3V and less than 30V. Please refer to Figure 3.4 for a schematic circuit diagram
of a Darlington Transistor used as a protective high voltage input.

SRAM

CPU

RTC

J1

J6

J2

J7 J8

J5

J4

J3

J9

MD88 Chapter 3: Hardware

3-9

Digital Input upto 30V DC

Darlington Transistor

ULN2003A

Am188ES PIO

5V

K

10 K

2.7 K

 OUT

 GND

Figure 3.4 Darlington Transistor used as Protective High Voltage Input.

U5 and U15 can be configured as input or output. By factory default, U5 and U15 are sink output. They
also can be sourcing output with optional UDS2982 installed.

The user can re-install the ULN2003 in U5 and U15 with different orientation. The input and output
orientation for U5 and U15 is illustrated below in Figure 3.5. Follow these illustrations carefully to prevent
damage to the chips. Notice that U5 and U15 can be aligned differently. In addition, the ULN2003 chips
may be replaced with a resistor pack to provide digital inputs or outputs to the terminal blocks.

Figure 3.5 Locations of user configurable Darlington Transistor Arrays.

3.6.4 High-Voltage, High-Current Drivers

ULN2003 has high voltage, high current Darlington transistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substrate. All channels feature open-collector outputs for sinking
350 mA at 50V. They also contain integral protection diodes for driving inductive loads. Peak inrush
currents of up to 600 mA sinking are allowed. U4 and U13 are dedicated high-voltage drivers while U5 and

U5/U15

ULN2003
installed for sink
OUTPUT

ULN2003
installed for
INPUT

UDS2982
installed for
source OUTPUT

SRAM

RTC

Reversible high
voltage input/sinking
output

U5

U15

Chapter 3: Hardware MD88

3-10

U15 are configurable as high-voltage drivers. These outputs may be paralleled to achieve high-load
capability, although each driver has a maximum continuous collector current rating of 350 mA at 50V. The
maximum power dissipation allowed is 2.20 W per chip at 25 degrees Celsius (°C). The common substrate
G is routed to T2 GND pins. All currents sinking in must return to the J2 or J1 GND pin. A heavy gauge
(20) wire must be used to connect the J1, or J2 GND terminal to an external common ground return. The
signal, K, connects to the protection diodes in the ULN2003 chips and should be tied to highest voltage in
the external load system. K can be connected to an unregulated on board +12V via J2 pin 1-2. ULN2003 is
a sinking driver, not a sourcing driver. An example of typical application wiring is shown in Figure 3.6.

K +12V

+12V

GND/SUB

GND/SUB

Power Supply

Solenoid

O1

ULN2003 TinyDrive

Figure 3.6 Drive inductive load with high voltage/current drivers.

MD88 Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
Appendix G, “Software Glossary.”

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution for application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible, however,
to debug an interrupt handler. You do risk experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below:

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus. Any memory-space mappings in place for this particular range of memory is used
to activate appropriate chip-select lines and the corresponding hardware component responsible for
handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

Chapter 4: Software MD88

4-2

These functions retrieve the data for a specified address in memory space. Once again, the segment address
is shifted left by four bits and added to the offset to find the 20-bit address. This address is then output over
the address bus, and the hardware component mapped to that address should return either an 8-bit or 16-bit
value over the data bus. If there is no component mapped to that address, this function will return random
garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often when
working with processor registers that are mapped into I/O space and must be accessed using either one of
these functions. This is also the function used in most cases when dealing with user-configured peripheral
components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most hardware
options added to TERN controllers are mapped into I/O space, since memory space is valuable and is
reserved for uses related to the code and data. Using I/O mappings, the address is output over the address
bus, and the returned 16 or 8-bit value is the return value.

For further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 AE.LIB
AE.LIB is a C library for basic MD88 operations. It includes the following modules: AE.OBJ, SER0.OBJ,
SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and include the
corresponding header files. The following is a list of the header files:

Include-file name Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H Internal serial port 0
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

4.2 Functions in AE.OBJ

4.2.1 MD88 Initialization

ae_init

This function should be called up at the beginning of every program running on MD88 core controllers. It
provides default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded
DOS I/O, and provides other processor-specific updates needed at the beginning of every program.

MD88 Chapter 4: Software

4-3

There are certain default pin modes and interrupt settings you might wish to change. With that in mind, the
basic effects of ae_init are described below. For details regarding register use, you will want to refer to the
AMD Am188ES Microcontroller User’s manual.

• Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

− Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)

− 512K ROM Block size operation.

− Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you require increased performance (at a risk of stability
in noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)
reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

• Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

− Address space starts 0x00000, with a maximum of 512K RAM.

− 3 wait state operation. Reducing this value can improve performance.

− Disables PSRAM, and disables need for external ready.
outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

• Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

− MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

− Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

• Initialize PACS so that PCS0-PCS3 are configured so that:

− Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.

− The chip select lines starts at I/O address 0x0000, with each successive chip select line
addressed 0x100 higher in I/O space.

outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

• Configure the two PIO ports for default operation. All pins are set up as default input, except for
P12 (used for driving the LED), and peripheral function pins for SER0 and SER1, as well as chip
selects for the PPI.

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,
// P16=PCS0, P17=PCS1=PPI

outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

• Configure the PPI 82C55 to all inputs, except for lines I20-23 which are used as output for the
ADC. You can reset these to inputs if not being used for that function.

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high

The chip select lines are by default set to 15 wait state. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can decrease this number as
needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is decreased too
dramatically. A function is provided for this purpose.

Chapter 4: Software MD88

4-4

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sources on the MD88, consisting of seven maskable interrupt pins
(INT6-INT0) and one non-maskable interrupt (NMI). There is also an additional eight internal interrupt
sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD Am188ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the 8 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer that is directed to the appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled must
be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be handled
first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user chooses to
clear the in-service bit for the interrupt currently being handled, the interrupt service routine just needs to
issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer that will act
as the interrupt service routine. The overhead on the interrupt service routine is approximately 20 µs.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());

MD88 Chapter 4: Software

4-5

void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

There are two ports of 16 I/O pins available on the MD88. Hardware details regarding these PIO lines can
be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application where
you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode operation
of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 11 of the AMD Am188ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur if
you instead modify the PIO registers directly with an outport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

• 0, High-impedance Input operation
• 1, Open-drain output operation
• 2, output
• 3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat

Chapter 4: Software MD88

4-6

Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the MD88 can be used for a variety of applications. All three timers run at ¼
of the processor clock rate, which determines the maximum resolution that can be obtained. Be aware that
if you enter power save mode, that means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register, which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD AM188ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, or low to high.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution at
the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this down
even further. Sample files demonstrating this are timer02.c and timer12.c in the MD88 sample file
directory.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
AM188ES User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be specified
using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON mode
registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) is connected, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop or
stalled interrupt service routine, a hardware reset will occur.

MD88 Chapter 4: Software

4-7

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

There is a common data structure used to access and use both interfaces.
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the byte
array would be initialized to:

Chapter 4: Software MD88

4-8

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use hardware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits for communication with the PC. As a result, you will
not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the Am188ES CPU: SER0 and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

MD88 Chapter 4: Software

4-9

By default, SER0 is used by the DEBUG ROM for application download/debugging in STEP 1 and in
STEP 2. We will use SER1 as the example in the following discussion; any of the interface functions that
are specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for
use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 10 of the Am188ES Microprocessor User’s Manual and
the schematic of the MD88 provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These baud
rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate to be used in TERN
functions. These are based on a 40 MHz system clock: a 20 MHz system clock would have half the baud
rates.

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the receiving
serial data stream into the memory by DMA1 operation. In terms of receiving, there is no software overhead
or interrupt latency for user application programs even at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user only has to check the buffer status with serhit1() and, if
there is any present, take out the data from the buffer with getser1(). The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. The transmit operation, however, is interrupt-driven.

Chapter 4: Software MD88

4-10

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user does
not take out the data from the ring buffer with getser1() before the ring buffer is full, new data will
overwrite the old data without warning or control. Thus it is important to provide a sufficiently large buffer
if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4 KB buffer
will be able to store data for approximately four seconds.

It is always important, however, to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If there
is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise, it will
continue to take out the data from the out buffer, and transmit. After you call putser1() and transmit
functions, you are free to do other tasks with no additional software overhead on the transmitting operation.
It will automatically send out all the data you specify. After all data has been sent, it will clear the busy flag
and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?.’ The translated HEX file is then transmitted out
of SER0. This sample program can be found in tern\186\samples\ae.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

MD88 Chapter 4: Software

4-11

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value shown
in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within the
output buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one
of the following functions, however, the driver interrupt for the appropriate serial-port will be disabled,
which means that no values will be transmitted. This allows you to control when you wish the transmission
of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

Chapter 4: Software MD88

4-12

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return value
returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns one
in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are working
with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once again

MD88 Chapter 4: Software

4-13

be aware that the peripheral pin function you are using might not be selected as needed. For details, please
refer to the Am188ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the Am188ES Processor have many other features that might
be useful for your application. If you are truly interested in having more control, please read Chapter 10 of
the User’s manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ

The on-board 512-byte serial EEPROM (24C04) provides easy storage of non-volatile program parameters.
This is usually an ideal location to store important configuration values that do not need to be changed
often. Access to the EEPROM is quite slow, compared to memory access on the rest of the controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step 2, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

MiniDrive88 Appendix A: mechanical dimensions

 A-1

Appendix A: Mechanical dimensions of MiniDrive88

CPU

SRAM

R
T

C

(1.6, 0.1) (1.6, 0.3)

(0.1, 1.96)

(2.0, 2.5) (1.1, 2.5) (0.15, 2.35) (3.1, 2.6)

(3.0, 2.5)

(2.95, 2.3)

(0, 0) (0.15, 0.15)
(3.0, 0.1)

(2.95, 2.1)

MiniDrive88 Appendix B: Layout

 A-1

Appendix B: Layout

SRAM

CPU

RTC

J1

J6

J2

J8

J5

J4

J3

J9

J7

MiniDrive88 Appendix C: RTC72421 / 72423

 C-1

Appendix C: RTC72421 / 72423

Function Table

 Address Data
A3 A2 A1 A0 Register D3 D2 D1 D0 Count

Value
 Remarks

0 0 0 0 S1 s8 s4 s2 s1 0~9 1-second digit register

0 0 0 1 S10 s40 s20 s10 0~5 10-second digit register

0 0 1 0 MI1 mi8 mi4 mi2 mi1 0~9 1-minute digit register

0 0 1 1 MI10 mi40 mi20 mi10 0~5 10-minute digit register

0 1 0 0 H1 h8 h4 h2 h1 0~9 1-hour digit register

0 1 0 1 H10 PM/AM h20 h10 0~2
or
0~1

PM/AM, 10-hour digit
register

0 1 1 0 D1 d8 d4 d2 d1 0~9 1-day digit register

0 1 1 1 D10 d20 d10 0~3 10-day digit register

1 0 0 0 MO1 mo8 mo4 mo2 mo1 0~9 1-month digit register

1 0 0 1 MO10 mo10 0~1 10-month digit register

1 0 1 0 Y1 y8 y4 y2 y1 0~9 1-year digit register

1 0 1 1 Y10 y80 y40 y20 y10 0~9 10-year digit register

1 1 0 0 W w4 w2 w1 0~6 Week register

1 1 0 1 Reg D 30s
Adj

IRQ
Flag

Busy Hold Control register D

1 1 1 0 Reg E t1 t0 INT/
STD

Mask Control register E

1 1 1 1 Reg F Test 24/ 12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;

 2) Mask AM/PM bit with 10's of hours operations;

 3) Busy is read only, IRQ can only be set low ("0");

 4)

Data bit PM/AM INT/STD 24/12
 1 PM INT 24
 0 AM STD 12

 5) Test bit should be "0".

MiniDrive88 Appendix D: Serial EEPROM Map

D-1

Appendix D: Serial EEPROM Map
Part of the on-board serial EEPROM locations are used by system software. Application programs must not use
these locations.

0x00 Node Address, for networking
0x01 Board Type 00 VE
 10 CE
 01 BB
 02 PD
 03 SW
 04 TD
 05 MC
0x02
0x03
0x04 SER0_receive, used by ser0.c
0x05 SER0_transmit, used by ser0.c
0x06 SER1_receive, used by ser1.c
0x07 SER1_transmit, used by ser1.c

0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™

0x18 MM page register 0
0x19 MM page register 1
0x1a MM page register 2
0x1b MM page register 3

MiniDrive88 Appendix E: Software Glossary

E-1

Appendix E: Software Glossary
The following is a glossary of library functions for the MD88.

void ae_init(void) ae.h

 Initializes the AM188ES processor. The following is the source code for ae_init()
 outport(0xffa0,0xc0bf); // UMCS, 256K ROM, 3 wait states, disable AD15-0

outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states
outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS I/O
outport(0xffa6,0x81ff); // MMCS, base 0x80000
outport(0xffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high
clka_en(0);
clkb_en(0);
enable();

Reference: led.c

void ae_reset(void) ae.h

 Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m – Delay in approximate ms

Reference: led.c

void led(int i) ae.h

Toggles P12. Used for the LED.

Var: i - Led on or off

Reference: led.c

Appendix E: Software Glossary MiniDrive88

E-2

void delay0(unsigned int t) ae.h

Software loop delay: While (t--);

Var: m – Delay in number of iterations

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode, which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i – 1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h
void clkb_en(int i)

Enables output clock ‘a’ and ‘b’ respectively.

Var: i – turns clock on/off.

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 Mode – above mode select

Reference: ae_pio.c

MiniDrive88 Appendix E: Software Glossary

E-3

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 dat – 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16-bit PIO port.

Var: port – 0: PIO 0 - 15
 1: PIO 16 – 31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid – I/O address
 value – 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid – I/O address
 value – 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an I/O address portid. Returns 16-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

Appendix E: Software Glossary MiniDrive88

E-4

int inportb(int portid) dos.h

Reads from an I/O address portid. Returns 8-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr – EEPROM data address
 dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr – EEPROM data address

Reference: ae_ee.c

void io_wait(char wait) ae.h

Set up I/O wait states for I/O instructions.

Var: wait – wait duration {0…7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

MiniDrive88 Appendix E: Software Glossary

E-5

void rtc_init(unsigned char * time) ae.h

Sets real-time clock date and time.

Var: time – time and date string
 String sequence is the following:

time[0] = weekday
time[1] = year10
time[2] = year1
time[3] = mon10
time[4] = mon1
time[5] = day10
time[6] = day1
time[7] = hour10
time[8] = hour1
time[9] = min10
time[10] = min1
time[11] = sec10
time[12] = sec1

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtc_rd(TIM *r) ae.h

Reads from the real-time clock.

Var: *r – Struct type TIM for all of the RTC data

typedef struct{
 unsigned char sec1, sec10, min1, min10, hour1, hour10;
 unsigned char day1, day10, mon1, mon10, year1, year10;
 unsigned char wk;

} TIM;

Reference: rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void t0_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm – Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual

ta – Count time a (1/4 clock speed).
tb – Count time b for timer 0 and 1 only (1/4 clock).

Time a and b establish timer duty cycle (PWM). See
hardware chapter.

 t #_isr – pointer to timer interrupt routine.

Reference: timer.c, timer1.c, timer02.c, timer2.c, timer0.c timer12.c

void interrupt far t2_isr(void); ae.h
void interrupt far t1_isr(void);

Appendix E: Software Glossary MiniDrive88

E-6

void interrupt far t0_isr(void);

Timer 0, 1, 2 interrupt service routine.

Var: None.
* note: End of interrupt must be issued in ISR to reset i nterrupt.
See AMD CPU Manual page 7-27 for EOI register.

Reference: timer.c, timer1.c, timer02.c, timer2.c, timer0.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void int1_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMI (Non-Maskable Interrupt).

Var: i – 1: enable, 0: disable.

 int #_isr – pointer to interrupt service.

Reference: intx.c

void interrupt far nmi_isr(void); ae.h
void interrupt far int0_isr(void);
void interrupt far int1_isr(void);
void interrupt far int2_isr(void);
void interrupt far int3_isr(void);
void interrupt far int4_isr(void);
void interrupt far int5_isr(void);
void interrupt far int6_isr(void);

Interrupt service routine for int0 – int6 and NMI.

Var: None.

* note: End of interrupt must be issued in ISR to reset i nterrupt.
See AMD CPU Manual page 7-27 for EOI register.

Reference: intx.c

MiniDrive88 Appendix E: Software Glossary

E-7

void s0_init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h
 unsigned char* obuf, int osiz, COM *c) (void);

void s1_init(unsigned char b, unsigned char* ibuf, int isiz, ser1.h
 unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b – baud rate. Table below for 40MHz and 20MHz Clocks.
 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)
1 110 55
2 150 110
3 300 150
4 600 300
5 1200 600
6 2400 1200
7 4800 2400
8 9600 4800
9 19200 9600
10 38400 19200
11 57600 38400
12 115200 57600
13 23400 115200
14 460800 23400
15 921600 460800

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putser0(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); ser1.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch – character to output
 c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsers0(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); ser1.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str – pointer to output character string
 c – pointer to serial port structure

Appendix E: Software Glossary MiniDrive88

E-8

Reference: ser1_sin.c

int serhit0(COM *c); ser0.h
int serhit1(COM *c); ser1.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else 0.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

unsigned char getser0(COM *c); ser0.h
unsigned char getser1(COM *c); ser1.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsers0(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); ser1.h

Retrieves a fixed-length character string from the input buffer. If the buffer contains less characters
than the length requested, str will contain only the remaining characters from the buffer. Appends
a ‘\0’ character to the end of str. Returns the retrieved string length.

Var: c – pointer to serial port structure

len – desired string length
str – pointer to output character string

Reference: ser1.h, ser0.h for source code.

Date: August 27, 1999 Sheet 1 of 1

Size Document Number REV

B MD88-MAN.SCH

Title

MINIDRIVE-88

TERN/STE

VRAM

/RSTA0
VCC

VOFF STD
 1

/CS0 2

ALE 3

A0 4

A1 5

A2 6

A3 7

/RD 8

GND 9

VRAM
18

X2 17

X1 16

CS1 15

D0 14

D1 13

D2 12

D3 11

/WR 10

U10

72421

P2T0
T1
T2

D0

A0

D 13 Q0 4

Q1 5

S0 1 Q2 6

S1 2 Q3 7

S2 3 Q4 9

Q5 10

G 14 Q6 11

CLR 15 Q7 12

U11

74HC259
74HC259S

1 2 3

J3 HDRS3

CE2=VRAM

1 2 3

J4 HDRS3

A17P=VCC
X1

C4
10PF

1 2 3

J5 HDRS3

A/W=/WB
X2

XTAL1

16MHZ
C5

10PF

1
2

J6

HDRD2
HDRD2

GND
P4

A18 /WB
/WB

VCC A17

I 1

G

2

VCC 3

U16
LM7805

VCC
A17VRAM

VRAM

A1
A2

/RST
P16

T7
T6
T5
T4
T3 A1

A2
A3

GND
/RD

D0
D1
D2
D3
/WR

VCC

/RST

P11P13

/RTS1
P15

/CTS1

P5 P6
P14

P0

P29P26

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

C 20

19 19

18 18

17 17

16 16

15 15

14 14

13 13

12 12

11 11

RN1

10K
RN768

NMI

INT4
INT2
INT0

INT3
INT1

P12
L1

LED

VCC
VC

R1

680

C1+ 1

V+
 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O
 7

R2I 8

VCC 16

GND
15

T1O 14

R1I 13

R1O 12

T1I 11

T2I
10

R2O 9

U8

MAX232A

12V

VBAT
- 1 + 2

+ 3

B1

BTH1

12VI
D1

1N5817

VB
 1

VO 2

VCC 3

GND 4

BON 5

/LL
 6

OSI 7

OSS 8

RST
16

/RST 15

WDO 14

CEI 13

CEO 12

WDI
11

PFO 10

PFI 9

U6

MAX691
MAX691S

GND

VCC

C6
10UF35V

VCC12V

C13
10UF35V

VPP 1

A16 2

A15 3

A12 4

A7 5

A6
 6

A5 7

A4 8

A3 9

A2 10

A1
 11

A0 12

D0 13

D1 14

D2 15

GND
 16

VCC 32

/PGM 31

NC 30

A14 29

A13 28

A8
27

A9 26

A11 25

/OE 24

A10 23

/CE
22

D7 21

D6 20

D5 19

D4 18

D3
17

U3

PROM1024
MEM32

VRAM
VBAT

VCC
GND

/RST

WDI

RST

/RAM

WDO

/PFO

/LCS

VCC

R2
10K

P12 1 2
J9

VCC

VCC

GND

TXD0
RXD0

TXD1
RXD1

/TXD0
/RXD0

/RXD1
/TXD1

C1+

C1-
C2+
C2-

V+

V-
C10
CAPNP

C9
CAPNP

C1+

C1-

C2+

C2-

V+

/RXD1
/TXD1

GND

 1 2
 3 4
 5 6
 7 8
 9 10

J8

HDRD10
HDRD10

 1 2
 3 4
 5 6
 7 8
 9 10

J7

HDRD10
HDRD10

/TXD0
/RXD0

C1

CAPNP

C2

CAPNP

C11
CAPNP

C12
CAPNP

GND

V-VCC

P11
P12

A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U7

24C04S
24C04S

GND

GND
GND
GND
GND

P25
P24

P29
P26

T7

P1
P10 1B

 1

2B 2

3B 3

4B 4

5B 5

6B
 6

7B 7

G 8

1C
16

2C 15

3C 14

4C 13

5C 12

6C
11

7C 10

K 9

U4

ULN2003
ULN2003

O8
O9
O10
O11
O12
O13
O14A18 1

A16 2

A14 3

A12 4

A7 5

A6 6

A5 7

A4 8

A3 9

A2 10

A1 11

A0 12

D0 13

D1 14

D2 15

GND 16

VDD 32

A15 31

CE2 30

R/W 29

A13 28

A8 27

A9 26

A11 25

/OE 24

A10 23

/CE1 22

D7 21

D6 20

D5 19

D4 18

D3 17

U1

RAM271024
MEM32S

K

GND
IO1
IO2

I1 1

I2 2

I3 3

I4 4

I5 5

I6 6

I7 7

I8 8

VS 9

O1 18

O2 17

O3 16

O4 15

O5 14

O6 13

O7 12

O8 11

G 10

U5

UDS2982

P15

P5

P3

P14

P2
IO3
IO4
IO5 T5

T4

T0
T1
T2
T3

1B 1

2B 2

3B 3

4B 4

5B 5

6B 6

7B 7

G 8

1C 16

2C 15

3C 14

4C 13

5C 12

6C 11

7C 10

K 9

U13

ULN2003
ULN2003

O1
O2
O3
O4
O5
O6

K 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34

J2

HDRD34
HDRD34

GND GND
I1 I2
I3 I4
I5 I6

12VI

GND

GND 1
2
3
4
5
6
7
8
9
10

J1

T10
T10

12VI

VCC

O1
O2
O3
O4
O5
O6
O7

GNDGND

I7

IO1IO2
IO3IO4
IO5IO6
IO7

IO8
IO9IO10
IO11IO12

IO14 IO13

O8
O9 O10
O11 O12
O13 O14

O7
K

INT2

INT1

NMI

INT3
INT4

T6

1B 1

2B 2

3B 3

4B 4

5B 5

6B 6

7B 7

G 8

1C 16

2C 15

3C 14

4C 13

5C 12

6C 11

7C 10

K 9

U14

ULN2003
ULN2003

I1
I2
I3
I4
I5

/RTS1

GND

/CTS1

P6

P17

P4
IO6
IO7

IO8
IO9
IO10

GNDI1 1

I2 2

I3 3

I4 4

I5 5

I6 6

I7 7

I8
 8

VS 9

O1 18

O2 17

O3 16

O4 15

O5 14

O6 13

O7 12

O8
11

G 10

U15

UDS2982

K

/RST

C7
CAPNP

VRAM

C8
CAPNP A19

/CTS0
/RTS0

P0 IO11
IO12
IO13
IO14
K

I6
I7

INT0
P13
VCC

