MiniDrive88™

C/C++ Programmable, 16-bit Microprocessor Module
Based on the Am188ES

Technical Manual

Tiery

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //www.tern.com

COPYRIGHT

A-Core, A-Engine, A-Engine-P, VE232, MiniDrive8&)&hACTF are trademarks of
TERN, Inc.
Am188ES and Am186ES are trademarks of Advanceddvba&vices, Inc.
Turbo C and Borland C++ are trademarks of Borlartdrhational.
Microsoft, MS-DOS, Windows, Windows95, and Windo®s®e trademarks of
Microsoft Corporation.
IBM is a trademark of International Business MaelsiiCorporation.

Version 3.10
July 24, 2012

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1997-201z TERIQI

1950 %" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to it life and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@ndsults of limited sample tests; they
are provided for design reference use only.

MiniDrive88 Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

The MiniDrive88 (MD88) is a low-cost, high performance, C/C++ programmable, 16-bit microprocessor
core module. It is designed for embedded applications that require compactness, low power consumption,
and high reliability. The MD88 is a modified version of the A-Core/7 with 35 buffered high voltage 1/Os.
The MD88 can be integrated into an OEM product as a processor core component.

ROM/FLASH AMIBBES SRAM
512K 80x86 o12K
Compatible
7805 5V
SDL P12
= DMA(2) regulator
EEPROM 16-Bit Timers(3)
512 BYTES Ext. Interrupts(8)
— .
SDA P11 32110 Lnes RTC

Header J2

| Screw Terminals J1 |

Figure 1.1 Functional block diagram of the MD88

Measuring 3.1 by 2.6 by 0.3 inches, the MD88 offers a C/C++ programmable computer system with a 16-bit
high performance CPU (Am188ES, AMD) and operates at 40 MHz (or 20 MHZz) system clock with zero-
wait-state. Optional features include up to 512K EPROM/Flash and up to 512K battery-backed SRAM. A
512-byte seriadl EEPROM s included on-board. An optional real-time clock provides information on the
year, month, date, hour, minute, second, and 1/64 second, and an interrupt signal. The MD88 is available
with on-board 5-volt regulator and 2 channels of RS232 drivers.

Two DMA-driven seria ports from the Am188ES support high-speed, reliable serial communication at a
rate of up to 115,200 baud while supporting 8-bit and 9-bit communication.

The MD88 offers three 16-bit programmable timers/counters and a watchdog timer. The timer can be used
to count or time external events, at a rate of up to 10 MHz, or to generate non-repetitive or variable-duty-
cycle waveforms as PWM outputs. Pulse Width Demodulation (PWD), a distinctive feature, can be used to
measure the width of a signal in both its high and low phases. It can be used in many applications, such as
bar-code reading.

There are 14 solenoid drivers outputs, 7 high voltage inputs, and 14 hardware configurable high voltage
I/0s. High voltage /O lines are routed to user programmable 1/O pins, external interrupt inputs of the
Am188ES and a 74HC259 data latch. A supervisor chip with power failure detection, a watchdog timer, an
LED, and expansion ports are on-board.

Standard Features
* Dimensions: 3.1x 2.6 x 0.3 inches
» 16-bit CPU (Am188ES), Intel 80x86 compatible. Easy to program in C/C++
* Power consumption: 160/120 mA at 5V for 40/20 MHz
» Power saving mode: 30/24 mA at 5V for 40/20 MHz

1-1

Chapter 1: Introduction MiniDrive88

e Power input: +9V to +12 V unregulated DC

¢ Upto512KB Flash/ROM

¢ 2 high-speed PWM outputs and Pulse Width Demodul ation

e 321/Olinesfrom Am188ES

e 512-byte serial EEPROM

e 8externa interrupt inputs, three 16-bit timer/counters

e 2 seria ports support 8-bit or 9-bit asynchronous communication
e Supervisor chip (691) for power failure, reset and watchdog

Optional Features(*):

e 32KB, 128KB, or 512KB SRAM*
¢ Real-time clock RTC72423*, lithium coin battery*

1.2 Physical Description

M AN D .

N
W,
N
W,
N
W,
A
W

D

\

AR

W,

AR

W,

/4
W

N
Al

(N
U

A
Y,

Figure 1.2 physical layout of the MD88

1.3 MD88 Programming Overview

Development of application software for the MD88 consists of three easy steps, as shown in the block
diagram below.

STEP 1 Seria link PC and MiniDrive88, program in C/C++,
Debug C/C++ program with Remote Debugger

U

STEP 2 Test MiniDrive88in the field, away from PC
Application program resides in the battery-backed SRAM

"]

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

1-2

MiniDrive88 Chapter 1: Introduction

There are three possible steps in the development of a TERN controller. The EV Kit is capable of doing
Step 1 and Step 2. The EV Kit cannot perform Step 3. Step 3 allows you to generate a HEX or BIN file and
allows you to produce your own ROM/Flash chip. Y ou will need the DV Kit and/or the ACTF Flash Kit to
perform Step 3.

Please refer to the Tutorial section in the Technical Manuals for the EV/DV Kit to obtain further details on
programming the MD88.

1.3.1 Stepl

STEP 1: Debugging

Write your C/C++ application program in C/C++. Connect the MD88 (with a DEBUG ROM TDREM_AC
installed) to your PC viathe PC-V25 serial link cable.

Use the batch file m bat to compile, link, and locate, or uset . bat to compile, link locate, download, and
debug your C/C++ application program.

PC-V25 Cable
PC
iR i
51 OO
P, 7 &5
— ol——
ofl* ;. CPU
°l :
N (2| iR
DC +9V 300 mA ol MiE
Wall transformer No |:|
Center Negative EFQ . —eafd
/\ 12V

Figure 1.3 Connecting a serial link cable and wall transformer (with adapter).

1.3.2 Step 2

STEP 2: Standalone Field Test.

Set the jJumper on J6 pins 1-2 (Figure 1.4). At power-on or reset, if J6 pin 1 (A19) is low, the CPU will run
the code that resides in the battery-backed SRAM. The MD88 will operate in STEP 2 if ajumper is placed
on J6 pins 1-2 during power-on or reset. If the jumper is off J6 pins 1-2 during power-on or reset, the MD88
will operate in STEP 1. The status of the J6 pin 1 (signal A19) for the Am188ES is only checked at power-
on or at reset.

1-3

Chapter 1: Introduction MiniDrive88

Set the jumper on
the J6 pinsin step 2.

DORADDDDD DDDD

Figure 1.4 Location of Step 2 jumper on the MD88 (J6)

1.3.3Step 3

STEP 3: Generate the application .BIN or .HEX file, make production ROMs, or download your program
to FLASH viaACTF.

If you are happy with your Step 2 test, you can go back to your PC to generate your application ROM to
replace the DEBUG ROM (TDREM_AC). Important: Y ou need to change DEBUG=1 to DEBUG=0 in the
makefile.

You must have the DV Kit and/or ACTF Kit to perform Step 3.
Please refer to the Tutorial chapter in the EV/DV Kit manual, for further details on programming the MD88.

1.4 Minimum Requirementsfor MD88 System Development

1.4.1 Minimum Hardware Requirements

* PC or PC-compatible computer with serial COMx port that supports 115,200 baud

+ MD88 controller with DEBUG ROM TDREM_AC

PC-V25 seria cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector for controller)
e Center negative wall transformer (+9V 500mA)

1.4.2 Minimum Software Requirements

 TERN EV/DV Kit installation diskettes
» PC software environment: DOS, Windows 3.1, Windows95, or Windows98

1-4

MiniDrive88 Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Evaluation/Development (EV/DV) Kit Technical for information on installing software.

The README.TXT file, located on the TERN EV/DV disk, contains important information for installing
and evaluating TERN controllers.

2.2 Hardware I nstallation

Overview
e Connect PC to the MD88 using the PC-V 25 cable.

e Connect 9V wall transformer to screw terminal on MD88

e Userisready to begin development.

2.2.1 Powering-on the MD88

Connect a+9V-12V DC power to the screw terminal J1 pin 1 (12V) and pin2 (GND) on the MD88 (Figure
2.1). Thewall transformer may be connected to the MD88 via a power jack adapter. Make sure the debug
ROM isingtalled and STEP 2 jumper is off.

At power-on, the Wall

on-board LED Transformer g

should blink twice

and rer:'j ain on.

Figure 2.1 Power connection for MD88 with LED blinking twice at power-on.

D |

+9V

GND

DO RADDDDD

2-1

MD88 Chapter 3: Hardware

Chapter 3. Hardware

3.1 Am188ES - Introduction

The Am188ES is based on the industry-standard x®itacture. Am188ES controllers are high-
performance, more integrated versions of the 80ChR8oprocessors. In addition, the Am188ES has new
peripherals. The on-chip system interface logic imizes total system cost. The Am188ES has two
asynchronous serial ports, thirty-two PIOs, a wadch timer, additional interrupt pins, pulse width
demodulation option, DMA to and from serial porés;]16-bit reset configuration register, and enhanced
chip-select functionality.

3.2 AM188ES — Features

3.2.1 Clock

Due to its integrated clock generation circuithe Am188ES microcontroller allows the use of a srae
crystal frequency. The design achieves 40MHz CPé&tatmon, while using a 40 MHz crystal.

3.2.2 External Interrupts

There are eight external interrupts:

INTO, CPU pin 56 and U14 pin 11.

INT1, CPU pin 55 and U14 pin 12.

INT2, CPU pin 54 and U14 pin 15.

INT3, CPU pin 53 and U14 pin 13

INT4, CPU pin 52 and U14 pin 14

INT5=P12=DRQO0, CPU pin 77, used as output pin fablEE/HWD
INT6=P13=DRQ1, CPU pin 76 and U14 pin 10

NMI, CPU pin47 and U14 pin 16.

All eight interrupts are edge-triggered and ardeuulp with 10K resistors. A ULN2003 or a resigbaick
can be installed in U14 buffering all interrupt itg. They all require a raising edge (LOW-to-HIGH)
generate an interrupt.

The MD88 uses vector interrupt functions to respond to rexteinterrupts. Refer to the AM188ES User's
Manual for information regarding interrupt vectors.

3.2.3 Asynchronous Serial Ports

The AM188ES CPU has two asynchronous serial chan®#R0 and SER1. Each asynchronous serial
port supports:

* Full-duplex operation, 7-bit, 8-bit and 9-bit datansfers

e 0dd, even and no parity, One stop bit

e Error detection, Hardware flow control, DMA transféo and from serial ports

» Transmit and receive interrupts for each port, Muttp 9-bit protocol support

* Maximum baud rate of 1/16 of the CPU clock, Indefmam baud rate generators
The software drivers for each serial port implementing-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the safiipes1_echo. ¢ ands0_echo. c.

3-1

Chapter 3: Hardware MD88

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmdiphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to four externas:pi

Timer0 output = P10 = CPU pin 74=U4 pin 2 to O9

TimerO input = P11 = CPU pin 75, used by EE

Timerl output = P1 = CPU pin 73 = U4 pin 1 to O8

Timerl input = PO = CPU pin 72 = U15 pin 5 from O1
The timer can be used to count or time externahisy®r can generate non-repetitive or variablg-gytle
waveforms. Timer2 is not connected to any extepiral It can be used as an internal timer for teaé
coding or time-delay applications. It can alsospede TimerO and Timerl or be used as a DMA request
source. The maximum rate at which each timer camatp is 10 MHz, since each timer is serviced @mnev
fourth clock cycle. Timer output takes up to slrak cycles to respond to clock or gate eventse Se
sample programsmer12.c andae _cntl.c in\ sanpl es\ ae.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eteergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. The minimum time
output cycle, therefore, is 25 ns x 6 = 150 ngl(aMHz).

Each timer has a maximum count register that defihe timer’s maximum value. Both TimerO and Timerl
have a secondary maximum count register for vagiahlty cycle output. Using both the primary and
secondary maximum count registers lets the timerrate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurmpioé signal’s high and low phases on the INT2.

3.2.6 Power-save Mode

The MD88 is an ideal core module for low power consumptipplications. The power-save mode of the
Am188ES reduces power consumption and heat digsipathereby extending battery life in portable

systems. In power-save mode, operation of the CRUimternal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automdiiaaiturns to its normal operating frequency.

3.3 Am188ES PIO lines

The Am188ES has thirty-two pins available as useg@mmmable 1/O lines. Each of these pins can bd us
as a user-programmable input or output signalgfrtbrmal shared function is not needed. A PIO diae
be configured to operate as an input or output witiwvithout a weak pull-up or pull-down, or as greo-
drain output. A pin’s behavior, either pull-uppull-down, is pre-determined as shown in Table 3.1

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries also reconfigures some of these m@issneeded for specific on-board usage. These

3-2

MD88

Chapter 3: Hardware

configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.1.

PIO Function Power-On/Reset MD@88 Pin No. MD88 Initial
status

PC Timerl in Input with pul-up J2 pin 22=101
P1 Timerl out Input with pull-down J2 pin 26=08 CLK
P2 /PCS6/A2 Input with pull-up J2 pin 17=102 RTGpckelect
p: /PCS5/A: Input with pul-up J2 pin 18=I0: /PCSt
P4 DT/R Normal J2 pin 12=107 STEP2
PE /IDEN/DS Norma J2 pin 14=I0! Input with pul-up
P€ SRDY Norma J2 pin 13=I01 Input with pul-dowr
P7 Al17 Normal Al7
PE Al8 Norma Al8
P9 Al19 Input w. pull-up J6 pin 1 Input with pull-up
P1C TimerO ou Input with pul-dowr J2 pin 27=0 Input with pul-dowr
P11 TimerQir Input with pul-up EE pin & Input with pul-up
P12 DRQO/INT5 Input with pull-up LED Output for LEBE/HWD
P1: DRQI/INTE Input with pul-up J2 pin 11=I Input with pul-up
P14 /MCSO Input with pull-up J2 pin 15=104 Inputkvpull-up
P15 /MCS1 Input with pull-up J2 pin 16=I103 Inputiwpull-up
P1e /PCS(Input with pul-up 74HC259 pin 1 74HC259 latch chip sele
P17 /PCS1 Input with pull-up J2 pin 23=1010 Inputthwpull-up
P1e CTS1/PCS Input with pul-up J2 pin 24=I0! Input with pul-up
P1¢ RTS1/PCS Input with pul-up J2 pin 25=I0:i Input with pul-up
P20 RTSO Input with pull-up J2 pin 20=1013 Inputiwpull-up
P21 CTS(Input with pul-up J2 pin 21=101 Input with pul-up
P22 TxDO Input with pull-up 232, U8 pin 10 TxDO
P2: RxDO Input with pul-up 232, U8 pin ! RxDGC
P2¢ /MCSz Input with pul-up J2 pin 28=01 Input with pul-up
P25 /MCS3 Input with pull-up J2 pin 29=011 Inputiwpull-up
pP2¢ Uzl Input with pul-up J2 pin 30=01
P27 TxD1 Input with pull-up 232, U8 pin 11 TxD1
P28 RxD1 Input with pull-up 232, U8 pin 12 RxD1
P2¢ /CLKDIV2 Input with pul-up J2 pin 31=01 Input with pul-up*
P30 INT4 Input with pull-up J2 pin 7=I3 Input wigull-up
P31 INT2 Input with pull-up J2 pin 6=I12 Input wighull-up

* Note: P26, P29 must NOT be forced low during powoe or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Three external interrupt lines are not shared RItA pins and only can be used to generate intexrupt
INTO = U14 pin 11=J2 pin 10=16
INT1 = U14 pin 12=J2 pin 9 =I5
INT3 = U14 pin 13=J2 pin 8 =14

The thirty-two PIO

lines,

P0-P31, are configurabléa two 16-bit registers,

PIODIRECTION registers. The settings are listedodews:

MODE PIOMODE reg. PIODIRECTION reg.

0

0

0

PIOMODE and

PIN FUNCTION

Normal operation

3-3

Chapter 3: Hardware MD88

1 0 1 INPUT with pull-up/pul-dowr

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

MD88 initialization on PIO pins ime_init() is listed below:

outport(0xff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1
outport(0xff76,0x0000); /l PIOM1
outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCEG€
outport(0xff70,0x1000); /l PIOMO, P12=LED

The C function in the librargie_lib can be used to initialize PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode=0-3, see the table above.

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);

pio_rd (0); return 16-bit status of PO-P15, if corresgiog pins is in input mode,

pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pins is in input mode,
Some of the I/O lines are used by MB88 system for on-board components (Table 3.2). Wegestghat
you do not use these lines unless you are sureythatare not interfering with the operation of such
components (i.e., if the component is not installed

Signal Pin Function
Pz /PCS¢ U4 RTC chip select. It can be used as 102, if RbCimstalled
P4 J6 pin 1 Step2 jumper

P11 TimerO input U7 24C04 EE data input
The EE data output can be tri-state, while disabled
P12 DRQO/INT5 Output for LED or U7 serial EE clookHit watchdog

P1e /PCS(U1l 74HC259 chip select at base I/O address 0>
P22 TxDO Default SERO debug
pP2: RxDQ Default SERO debt

Table 3.2 1/O lines used for on-board components

3.4 1/0 Mapped Devices

3.4.11/0 Space

External I/O devices can use I/O mapping for accées can access such 1/O devices witportb(port) or
outportb(port,dat). These functions will transfer one bgtewvord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000x&fD

3-4

MD88 Chapter 3: Hardware

The default I/O access time is 15 walit states. i¥ay use the function void_wait(char wait) to define the
I/0 wait states from O through 15. The system clisc&ither 25 or 50 ns, giving a clock speed diegit40

or 20 MHz respectively. Details regarding this ¢enfound in the Software chapter, and in the AmIB8E
User's Manual. Slower components, such as most l@faces, might find the maximum programmable
wait state of 15 cycles still insufficient. Duettte high bus speed of the system, some componeatsto
be attached to I/O pins directly.

For details regarding the chip select unit, pleseseChapter 5 of the Am188ES User’s Manual.

The table below shows more information about I/(ppiag.

I/O space Select Usage Location
0x0000-0x00ff /PCSO 74HC259 U11 pin 14=P16
0x010(-0x01ff /PCS: USER P17
0x0200-0x02ff /PCS2 USER CTS1
0x0300-0x03ff /PCS3 USER RTS1
0x040(-0x04ff /PCS¢ Reserve

0x0500-0x05ff /PCS5 USER J2 pin 16=P3
0x060(-0x06ff /PCSt RTC 7242, U5 pin 3=P:

3.4.2 74HC259

The 74HC259 8-bit decoder latch provides eight taltil output lines for thtMD88. The 74HC259 is
mapped in the I/O address space 0x0000. You n@gsachis device by using the following code:

out port b(0x0000 + i, wval); //i=outputpin, val = 0/1 to set or reset hatc
74HC259

DO 13fG1 out por t b(0x0000,
QYsS T1 out portb(0x0001,

IS
—
o

1
22 A Q216 T2 out port b(0x0002,
N Q37 T3 out port b(0x0003,

c Q49 T4 outportb(0x0004, x) | x=0,outputlow
Q510 T5 out portb(0x0005, x) x =1, output

PCSQ 144 G Q{11 T6 out port b(0x0006, x)
Q7|12 out port b(0x0007, x)

_‘
~

Figure 3.1 74HC259 diagram with corresponding outport addresses

3.4.3 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON,) igmapped in the 1/O address space 0x0600. It mus
be backed up with a lithium coin battery. The Ri§Gccessed via software drivets_init() or rtc_rd().
See Appendix C and the Software chapter for details

3.5 Other Devices

A number of other devices are also available onMBD$8. Some of these are optional and might not be
installed on the particular controller you are gsinFor a discussion regarding the software interfior
these components, please see the Software chapter.

3-5

Chapter 3: Hardware MD88

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, theMD88 has several functions:
watchdog timer, battery backup, power-on-reset ydefzower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

Setting a jumper on J9 of the MD88 (see Figure a@ivates the watchdog timer. The watchdog timer
provides a means of verifying proper software eteou In the user's application program, callghe
function hitwd() (a routine that toggles the P12=HWD pin of the M#®¥) should be arranged such that
the HWD pin is accessed at least once every 1énsisc If the J9 jumper is on and the HWD pimas
accessed within this time-out period, the watchtlogr pulls the WDO pin low, which asserts /RESET.
This automatic assertion of /RESET may recoverajhygication program if something is wrong. Afteeth
MD88 is reset, WDO remains low until a transition oscat the WDI pin of the MAX691. When
controllers are shipped from the factory the J9gamnis off, which disables the watchdog timer.

In addition, the AM188ES has an internal watchdimgrt This is disabled by default wigte_init().

J9

Enable watchdog
timer if jumper
installed

S7AS) @7@@@@ DDDO |

Figure 3.2 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data storédde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3V lithium battery positiy@n), and connects the one that is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atié real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last @b®uo 5 years without external power being sugplie
When the external power is on, the battery-switebraircuit will select the VCC to connect to th&&M.

3.5.2 EEPROM

A serial 512-byte EEPROM (24C04) can be installedJv. TheMD88 uses the P12=SCL (serial clock)
and P11=SDA (serial data) to interface with the RE. The EEPROM can be used to store important
data, such as a node address, calibration coefficiand configuration codes. It has typically0D,@00
erase/write cycles. The data retention lasts forenthan 40 years. EEPROM can be read and written b
simply calling function®e_rd()andee_wr(). See Appendix E for more information.

3-6

MD88 Chapter 3: Hardware

3.6 Headers and Connectors

3.6.11/0 Headers

TheMD88 has one 17x2 pin header (J2) and a 10x1-screvirtais1(J1) for user high voltage I/Os. Signals
are buffered by resistors or ULN2003, not directlyted to the Am188ES processor. The signalsdtn b
J1 and J2 are listed in Table 3.3.

J7 and J8 are 5x2 headers for SERO and SER1 R®232 morts. The signal for J7 and J8 are listed i
Table 3.4.

J1 Signal J2 Signal

12v 1 12v 1 2 K
GND 2 GND 3 4 GND
VCC 3 11 5 35 12
o7 4 13 7 33 14
06 5 15 9 10 16
05 6 17 11 12 107
04 7 106 13 14 105
03 8 104 15 16 103
02 9 102 17 18 101
01 10 1014 19 20 1013

1012 21 22 1011
1010 23 24 109
108 25 26 o8

09 27 28 010
011 28 30 01z
o1z 31 32 014

GND 33 34 GND

Table 3.3 Signals for J1 (10x1) and J2 (17x2) expansion ports

J7 or J8 Signal

/TXDO or 1
/RXDO or 1

© N Uy
=000 A~N

GND
Table 3.4 Signals for J7 (5x2) and J8 (5x2)

0 GND

3.6.2 Connectors, Headers and Jumpers

Table 3.5 lists the jumpers and connectors orMB@&8. Figure 3.3 indicates their locations. For géar
scale diagram, refer to Appendix B.

3-7

Chapter 3: Hardware MD88

Name | Size Function Possible Configuration

Jl1 10x1 | Screw terminals for C-7 | 12V power inpL

J2 17x2 | High voltage 1/0s

J3 3x1 SRAM selection pin 2-3 SRAM 256K-512K
pin 1-2 SRAM 32k-128K

J4 3x1 ROM size selection pin 1-2: ROM size 32K8K2
pin 2-3: ROM size 2561-512K

J5 3x1 EPROM/FLASH pin 1-2: EPROM size 512K

selection pin 2-3 FLASH size 128K/512K, or

EPROM 32k-256K

JE 2x1 A19=P¢ Step Two Jumper witTDREM_AC ROM

J7 5x2 RS-232 SERO connecto

J8 5x2 RS-232 SER1 connecto

J9 2x1 Watchdog timer Enabled if Jumper is on
Disabled if jumper is off

Table 3.5 The size, function and possible configurations od the jumpers and
connections in the MD88.

;

Figure 3.3 Locations of jumpers and connectors on the MD88

3.6.3 Protective high voltage inputs

In order to support high voltage digital signalubpip to 30V, Darlington Transistor Arrays (ULN2G93
can be installed in U14, U5, and U15. The inputhms a resistance load of 12.7K towards the GNIL Yo
have to provide a pulled high signal input. A valighut low voltage is less than 0.8V, and a vatiguit
high voltage is higher than 3V and less than 3®kase refer to Figure 3.4 for a schematic cirdiaiggram

of a Darlington Transistor used as a protectivé higitage input.

3-8

MD88 Chapter 3: Hardware

5v
Darlington Transistor
Pt K
Digital Input upto 30V DC 27K |
AN -
| ouT Am188ES PIO
10K
m ULN2003A

= GND
Figure 3.4 Darlington Transistor used as Protective High Voltage Input.

U5 and U15 can be configured as input or outpuy. fa&tory default, U5 and U15 are sink output. They
also can be sourcing output with optional UDS29&24lled.

The user can re-install the ULN2003 in U5 and Ulithwdifferent orientation. The input and output
orientation for U5 and U15 is illustrated belowHigure 3.5. Follow these illustrations carefulbygrevent
damage to the chipdNotice that U5 and U15 can be aligned differentlyin addition, the ULN2003 chips
may be replaced with a resistor pack to providé@alignputs or outputs to the terminal blocks.

e

U5/U1E

ULN2003
installed for sink
OUTPUT

ULN2003

ubDS2982
installed for
sourceOUTPUT

DODDDDDDDDOD

ULN2003

Reversible high installed for
voltage input/sinking INPUT

niitnir

£00ZNN |

Figure 3.5 Locations of user configurable Darlington Transistor Arrays.

3.6.4 High-Voltage, High-Current Drivers

ULN2003 has high voltage, high current Darlingtoansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substraéchannels feature open-collector outputs fokiig
350 mA at 50V. They also contain integral protttdiodes for driving inductive loads. Peak inrush
currents of up to 600 mA sinking are allowed. U4 &3 are dedicated high-voltage drivers while W8 a

3-9

Chapter 3: Hardware MD88

Ul5 are configurable as high-voltage drivers. Thesguts may be paralleled to achieve high-load
capability, although each driver has a maximumiooous collector current rating of 350 mA at 50\heT
maximum power dissipation allowed is 2.20 W pepdchi 25 degrees Celsiu&3). The common substrate
G is routed to T2 GND pins. All currents sinkingritust return to the J2 or J1 GND pin. A heavy gauge
(20) wire must be used to connect the J1, or J2 GNiDinal to an external common ground return. The
signal, K, connects to the protection diodes inth&2003 chips and should be tied to highest veltag
the external load system. K can be connected tmeegulated on board +12V via J2 pin 1-2.N2003 is

a sinking driver, not a sourcing driver. An example of typical application wiring is shownFigure 3.6.

E

>>SE Solenoid +12V
>>SE Power Supply
>OSE GND/SUB

)) K +12Vv
ULN2003 TinyDrive

GND/SUB

Figure 3.6 Drive inductive load with high voltage/current drivers.

3-10

MD88 Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
Appendix G, “Software Glossary.”

Guidelines, awar eness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a sieydbw cost solution for application engineers, som
guidelines must be followed. If they are not felkx, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia#bugger can be a challenge. It is possible, hewev
to debug an interrupt handlefou do risk experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset megduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissis an I/O address space and a memory address
space. 1/O address space ranges foaB000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to 1/0 and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I/O or memory space, amd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfttions, described below:

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsign#dnsigned char data
Return value: none

These standard C functions are used to place sxbdifita at any memory space location. Jdgenent
argument is left shifted by four and added todfieet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

o

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus. Any memory-space mappimdace for this particular range of memorysedi
to activate appropriate chip-select lines and tireesponding hardware component responsible for
handling this data.

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

4-1

Chapter 4: Software MD88

These functions retrieve the data for a speciféidt@ss in memory space. Once againsggment address
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is théput over
the address bus, and the hardware component mappieat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retamdom
garbage values every time you try to peek into dloalress.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place ttata into the appropriataddressin I/O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usesch@st cases when dealing with user-configured perad
components.

D
)

When dealing with processor registers, be sureéahe correct function. Usetport if you are dealing
with a 16-bit register.

inport/inportb
Arguments. unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frommpaoments in 1/0 space. You will find that most haade
options added to TERN controllers are mapped i@cspace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For further discussion of /0 and memory mappipysase refer to the Hardware chapter of this testhni
manual.

41 AE.LIB

AE.LIB is a C library for basiéMD88 operations. It includes the following modules: 8BJ, SER0.0OBJ,
SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to liBkLMB in your applications and include the
corresponding header files. The following is adithe header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1.H Internal serial port 1

AEEE.H on-board EEPROM

4.2 Functionsin AE.OBJ

4.2.1 MD88 Initialization

ae_init

This function should be called up at the beginrohgvery program running oMD88 core controllers. It
provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

4-2

MD88 Chapter 4: Software

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects oée init are described below. For details regarding regisse, you will want to refer to the
AMD Am188ES Microcontroller User’'s manual.

< Initialize the upper chip select to support thead#fROM. The CPU registers are configured such
that:

— Address space for the ROM is from 0x80000-0xffftf (hap MemCard I/O window)
— 512K ROM Block size operation.

— Three wait state operation (allowing it to suppgotto 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you regjiricreased performance (at a risk of stability
in noisy environments). For details, see the UMGfper Memory Chip Select Register)
reference in the processor User’'s manual.

out port (0Oxffa0, 0Ox80bf); // UMCS, 512K ROM 0x80000-Oxfffff

e Initialize LCS (ower Chip Select) for use with the SRAM. It is configured so that:
— Address space starts 0x00000, with a maximum oK5RAM.
— 3 wait state operation. Reducing this value cagorawe performance.

— Disables PSRAM, and disables need for externalread
out port (0Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

e Initialize MMCS and MPCS so théd CS0 andPCS0-PCS6 (except for PCS4) are configured so:

- MCS0is mapped also to a 256K window at 0x80000. #duwith MemCard, this
chip select line is used for the 1/0O window.

- Sets upPCS5-6 lines as chip-select lines, with three wait stgderation.

out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH

¢ Initialize PACS so thaPCS0-PCS3 are configured so that:
- Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.

— The chip select lines starts at /0O address 0x0@fiB,each successive chip select line
addressed 0x100 higher in I/O space.
out port (O0xffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

e Configure the two PIO ports for default operatidXil pins are set up as default input, except for
P12 (used for driving the LED), and peripheralction pins for SERO and SER1, as well as chip
selects for the PPI.

out port (Oxff 78, 0xe73c) ; /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/] P16=PCSO, P17=PCS1=PPI

out port (Oxff 76, 0x0000) ; /1 Pl OVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, Al19, A18, A17, P2=PCS6=RTC
/1

out por t (0xf f 70, 0x1000) ; Pl OMD, P12=LED

e Configure the PPI 82C55 to all inputs, except fioed 120-23 which are used as output for the
ADC. You can reset these to inputs if not beingdufor that function.

out port b(0x0103, 0x9a) ; /1l all pins are input, 120-23 output

out port b(0x0100, 0);

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

The chip select lines are by default set to 15 staite. This makes it possible to interface witnyn
slower external peripheral components. If you negiaster I/O access, you can decrease this nuasber
needed. Some TERN components, such as the ReakJlotk, might fail if the wait state is decreased
dramatically. A function is provided for this poge.

4-3

Chapter 4: Software MD88

void io_wait
Arguments. char wait
Return value: none.

This function sets the current wait state dependimthe argumemait.

wai t=0, wait states 0, I/O enable for 100 ns
wait=1, wait states 1, 1/ 0O enable for 100+25 ns

wait=2, wait states = 2, |/O enable for 100+50 ns
wai t=3, wait states = 3, 1/0O enable for 100+75 ns
wai t=4, wait states = 5, |/O enable for 100+125 ns
wai t=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |/ O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sourcesheMD88, consisting of seven maskable interrupt pins
(INT6-INTO) and one non-maskable interruptM1). There is also an additional eight internal inipt
sources not connected to the external pins, camgisdf three timers, two DMA channels, both
asynchronous serial ports, and tiil1 from the watchdog timer. For a detailed discussiwolving the
ICUs, the user should refer to Chapter 7 of the AMD188ES Microcontroller User’'s Manual.

TERN provides functions to enable/disable all af 8 external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second is@ifin pointer that is directed to the appropriaterrupt
service routine that should be used to handlenterrupt. The TERN libraries will set up the imtest
vectors correctly for the specified external intgtrline.

At the end of interrupt handlers, the appropriateérvice bit for the IR signal currently being teed must
be cleared. This can be done using Manspecific EOl command. At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityringet will be handled
first, and a higher priority interrupt will intenoti any current interrupt handlers. So, if the ud@oses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine pestds to
issue the nonspecific EOl command to clear theectifnighest priority IR.

To send the nonspecific EOl command, you need ite WreEOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments. unsigned char i, void interrupt far (* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl&de second argument is a function pointer thitast
as the interrupt service routine. The overheatherinterrupt service routine is approximately &0

By default, the interrupts are all disabled aftatialization. To disable them again, you can edgbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiR
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());

4-4

MD88 Chapter 4: Software

void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_.isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

There are two ports of 16 1/0O pins available onNi288. Hardware details regarding these PIO lines can
be found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatiamere
you choose to use the PIO pins as input/output,wiprobably need to initialize these pins in aofethe
four available modes. Before selecting pins f@s pgurpose, make sure that the peripheral modeatiper
of the pin is not needed for a different use witthie same application.

You should also confirm the PIO usage that is deedrabove withinae init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altitledc
in some detail in the Hardware chapter of this méd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am18&Eser’'s Manual.

Please see the sample prograenpio.c in t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qgun
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingeBding on the pin
being used, it might require from 5-10 us. The imaxn efficiency you can get from the PIO pins oci€ur
you instead modify the PIO registers directly vétioutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register Bxff74 for PIO port 0, an@®xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

» 0, High-impedance Input operation

» 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned int pio_rd:

Arguments: char port

Return value: byte indicating P1O status

Each bit of the returned 16-bit value indicatesdtigent 1/0 value for the P1O pins in the selegted.

void pio_wr:
Arguments: char bit, char dat

4-5

Chapter 4: Software MD88

Return value: none

Writes the passed in dat value (either 1/0) tcstilected PIO.

4.2.4 Timer Units

The three timers present on 88 can be used for a variety of applications. Atet timers run at %
of the processor clock rate, which determines thgimum resolution that can be obtained. Be awaae t
if you enter power save mode, that means the timidreperate at a reduced speed as well.

These timers are controlled and configured throaighode register, which is specified using the saftw
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’'s Manual.

Pulse width demodulation is done by setting the PhitDn theSY SCON register. Before doing this, you
will want to specify your interrupt service routdjewvhich are used whenever the incoming digitahalig
switches from high to low, or low to high.

The timers can be used to time execution of yoaer defined code by reading the timer values bedoc:
after execution of any piece of code. For a sarfidedemonstrating this application, see the saiibd
timer.c in the directorytern\186\samples\ae.

Two of the timers,TimerO and Timerl can be used to do pulse-width modulation with dabde duty
cycle. These timers contain two max counters, ahbe output is high until the counter counts up to
maxcount A before switching and counting up to naaxd B.

It is also possible to use the outpuflofner2 to pre-scale one of the other timers, since 1@dsiblution at

the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. Sample files demonstrating this tnger02.c and timerl2.c in the MD88 sample file

directory.

The specific behavior that you might want to impéeris described in detail in chapter 8 of the AMD
AM188ES User’'s Manual.

void t0_init

void t1_init

Arguments:. int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Both of these timers have two maximum counters (MXUNTA/B) available. These can all be specified
usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

The interrupt service routine isr specified here is called whenever the full cosnteached, with othelr
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments. int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer 2 behaves like the other timers, except it only dv@s max counter available.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timég) is connected, the functidritwd() must be called every 1.6
seconds of program execution. If this is not exetbecause of a run-time error, such as an iefioitp or
stalled interrupt service routine, a hardware regiébccur.

4-6

MD88 Chapter 4: Software

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to thé&re ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usinghterdace functions.

There is a common data structure used to accesssanobth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten mnute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nmonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}TIM

intrtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the timaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret O on success and returns 1 in case of etrcn, as
the clock failing to respond.

Void rtc_init
Arguments. char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tadekday, year10, year1, month10, month1, day10, dayl, hour10,
hour1, minutelO, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

4-7

Chapter 4: Software MD88

unsigned char t[14] = { 5, 9, 8 0, 6, 0, 5, 1, 3, 5, 5 3, 0};

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspee
well as interrupt latency. The code is functiopédlentical to:

VWhile(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments. unsigned int

Return value: none

This function is similar to delayO, but the pasgedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentapon the processor speed.

unsigned int crcl6
Arguments. unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaeay ofcount size pointed to byptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedofor
any reason. Depending on the current hardwaredgroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgetyin the header filser0.h andser1.h in the directory
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits fommunication with the PC. As a result, you will
not be able to debug code directly written foragport 0.

Two asynchronous serial ports are integrated inAmM88ES CPU: SERO and SER1. Both ports have

baud rates based on the 40 MHz clock, and can wpara maximum of 1/16 of that clock rate.

4-8

MD88 Chapter 4: Software

By default, SERO is used by the DEBUG ROM for aggdiion download/debugging in STEP 1 and in
STEP 2. We will use SER1 as the example in th@efig discussion; any of the interface functionatth
are specific to SER1 can be easily changed intotifum calls for SERO. While selecting a serialtdor
use, please realize that some pins might be shaitbdother peripheral functions. This means thmat i
certain limited cases, it might not be possibleuse a certain serial port with other on-board caer
functions. For details, you should see both chab@eof the Am188ES Microprocessor User’'s Manual an
the schematic of thelD88 provided at the end of this manual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Ioflhe processor frequency.

The following table shows the function argumentat texpress each baud rate to be used in TERN
functions. These are based on a 40 MHz systenk:.céo20 MHz system clock would have half the baud
rates.

Function Argument | Baud Rate
110

150

300

600

1200
2400
4800
9600
19,200 (default)
38,400
57,600
115,200
250,000
500,000
15 1,250,000

© 00 N o o B~ W N P

A i =
A w N P O

Table 4.1 Baud rate values

After initialization by callings1 i nit (), SER1 is configured as a full-duplex serial paort & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autboadly store the receiving
serial data stream into the memory by DMAL operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohs to check the buffer status witar hi t 1() and, if
there is any present, take out the data from tHtebwith get ser 1() . The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Thensmit operation, however, is interrupt-driven.

Chapter 4: Software MD88

ibuf in_tail in_head ibuf+isiz

voovv v
[T[]

1 |

Figure 4.1 Circular ring input buffer

The input buffer ipuf), buffer size idiz), and baud ratebfud) are specified by the user wistl_i ni t ()

with a default mode of 8-bit, 1 stop bit, no parifter s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRedbister
(SPOCT/SP1CT) if necessary, as described in chdpterf the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andip@ssffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtanif you are receiving data at 9600 baud, a 4bdBer
will be able to store data for approximately foacands.

It is always important, however, to take out daaalyefrom the input buffer, before the ring buffiels
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates aata is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after evaggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalyphardware reset &1_cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsimg buffer,s1_out buf, at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthasiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeufIf there

is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out buffery transmit. After you cajput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘' charadte?.” The translated HEX file is then transtedt out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be initad.

There is a data structure containing importanas@ort state information that is passed as argtiteetihe
TERN library interface functions. TheOM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #®rial communication ports more practical. Siitce
allows you to monitor the current value of the bufnd associated pointer values, you can watch the
transmission process.

4-10

MD88 Chapter 4: Software

The two serial ports have similar software integfac Any interface that makes reference to eitbeor
ser0 can be replaced witsl or ser1, for example. Each serial port should use its @@M structure, as

defined inae.h.

typedef struct ({
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* I nput buffer size */

int in_crcnt; /* lnput <CR> count */

unsi gned char in_nt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out _nt; /* Qutput buffer MI */

unsi gned char tnso; /1 transmit nacro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsigned int in_segm /* input buffer segment */

unsigned int in_offs; /* input buffer offset */

unsi gned i nt out_segm /* output buffer segment */

unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */
} com
sn_init

Arguments. unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢

Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value show

in Table 4.1. Argumentiduf andisiz specify the input-data buffer, aebuf andosiz specify the location

and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 staih no parity communication.

=)

There are a couple different functions used fandmaission of data. You can actually place dathiwithe
output buffer manually, incrementing the head aildbuffer pointers appropriately. If you do natllcone

of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedis BHflows you to control when you wish the transios

of data within the outbound buffer to begin. Ottlee interrupts are enabled, it is dangerous to pogatie

the values of the outbound buffer, as well as tidaes of the buffer pointer.

4-11

Chapter 4: Software MD88

putsern
Arguments. unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate Sepiart. The return value
returns one in case of success, and zero in aey o#ise.

putsersn
Arguments. char* str, COM *c
Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferser hitn() should be called befor
trying to retrieve data.

1%

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments the_tail pointer. Once again, this
function assumes thagr hitn has been called, and that there is a charactezmirgsthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callggabser, and will block untillen bytes are retrieved. The retwaue
indicates the number of bytes that were placedthedouffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means thaxetimight actually be multiple null charactershia byte
array, and the returnadlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yowheck and set the value of these I/O pins appatepfor

whatever form of flow control you wish to implemerBefore using these functions, you should onaérag

4-12

MD88 Chapter 4: Software

be aware that the peripheral pin function you aiagimight not be selected as needed. For depddlase
refer to the AM188ES User’s Manual.

char sn_cts(void)
Retrieves value € TS pin.

void sn_rts(char b)
Sets the value ®®TStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Hefau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délvenhardware as well as disabling the interrupt.

clean_sern
Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial I/O ports available orAimd 88ES Processor have many other features thdat mig
be useful for your application. If you are truhterested in having more control, please read @hdytt of
the User’s manual for a detailed discussion of of&tures available to you.

4.4 Functionsin AEEE.OBJ

The on-board 512-byte serial EEPRORACO04) provides easy storage of non-volatile progranapesters.
This is usually an ideal location to store impottaanfiguration values that do not need to be chdng
often. Access to the EEPROM is quite slow, comgp@mememory access on the rest of the controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addresseg€x00 to Ox1f on the EEPROM is reserved for system use, incudomfiguration information
about the controller itself, jump address for Xepnd other data that is of a more permanent@&atur

The rest of the EEPROM memory spa@e?0 to Ox1ff, is available for your application use.

ee wr
Arguments:. int addr, unsigned char dat
Return value: int status

This function is used to write the passedah to the specifiedddr. The return value is 0 in success.
ee rd
Arguments:. int addr

Return value: int data

This function returns one byte of data from thec#fjeel address.

4-13

MiniDrive88 Appendix A: mechanical dimensions

Appendix A: Mechanical dimensions of MiniDrive88

N\

'%

(3.0,2.5)

O

™~ (295,23

(0.1, 1.96) © o

(-2 -]

o o

o9 (2.95, 2.1)

(-2 -]
(-2 -]
[- 2K -]
(-2 -]
(-2 -]
(-2 -]
(-2 -]
(-2 -]

oo
oo B3
A
2o] 22
oo /A
oo LK 2N 2K 2K J

o I]
) 7

Jo ¢J¢ eJefo e]eJo o]e

L 2K 2B JBK JNK K K JBK 2N K BN JNK JNK K N 4
L 23K 2B 2BK JNK JNK K JBK JBK K I JNK JNK K K B 4

O

ju;

C
C)

00000000/)})

!

(3.0,0.1)

(0, 0) (0.15, 0.15) (1.6,0.1) (1.6,0.3)

A-1

J1

'l' l’ l' l' l' l’l' (1 l' l'
U U U U\ W,

Appendix B: Layout

Appendix B: Layout

MiniDrive88

J7

J8

A-1

MiniDrive88 Appendix C: RTC72421/ 72423

Appendix C: RTC72421 / 72423

Function Table

Address Data

Az | A, | A; | Ay | Register | 3 D, D, Do Count Remarks
Value

0 (0 0 |0 |9 S3 S S S 0~9 1-second digit register

0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register

0 (0 1 ({0 | My mig | miy miy, [mig 0~-9 1-minute digit register

0 (O 1|1 Mk Migq Misg | Migg | 0~5 10-minute digit register

0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register

0 |1 |0 |1 | Hg PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1

0 |1 110] dg dy d, d; 0~9 1-day digit register

0 |1 1 (1 Do dgy | dig 0-~3 10-day digit register

1]0 0 |0 | MQ mog | mo, mo, [mo, | 0~9 1-month digit register

1]0 0 |1 MQg mo | 0~1 10-month digit register

1 0 1 0 Y Ys Y4 Yo Y1 0~9 1-year digit register

1 |0 1]1 Yo Yso | Yao Yoo | Y10 0~9 10-year digit register

1 |1 0|0 | W vy W, Wy 0~6 Week register

1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D

Adj | Flag
1 |1 110 Reg E qt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test 24/12 Stop Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse
2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)
Data bit| PM/AM INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

C-1

MiniDrive88 Appendix D: Serial EEPROM Map

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations aesl Uy system software. Application programs mustuse
these locations.

0x00 Node Address, for networking
0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC
0x02
0x03
0x04 SERO_receive, used by ser0.c
0x05 SERO_transmit, used by ser0.c
0x06 SER1_receive, used by serl.c
0x07 SER1_transmit, used by serl.c
0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™
0x18 MM page register O
0x19 MM page register 1
Oxla MM page register 2
Ox1b MM page register 3

D-1

MiniDrive88 Appendix E: Software Glossary

Appendix E: Software Glossary

The following is a glossary of library functions fine MD88.

void ae_init(void) ae.h

Initializes the AM188ES processor. The followisghe source code fae_init()
outport(0xffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, 0 wait states

outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS1/0
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffad,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(0Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

clkb_en(0);

enabl e();

Reference: led.c

void ae_reset(void) ae.h

Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ae.h

Toggles P12. Used for the LED.

Var: i- Led on or off

Reference: led.c

E-1

Appendix E: Software Glossary MiniDrive88

void delayO(unsigned int t) ae.h

Software loop delaywhile (t--);

Var: m — Delay in number of iterations

Reference:

void pwr_save en(int i) ae.h

Enables power save mode, which reduces clock spEieakrs and serial ports will be effected.
Disabled by external interrupt.

Var: i— 1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h
void clkb_en(int i)

Enables output clock ‘a’ and ‘b’ respectively.

Var: i — turns clock on/off.

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.
void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 - 31
Mode — above mode select

Reference: ae_pio.c

E-2

MiniDrive88 Appendix E: Software Glossary

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be incariput mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0-31
dat — 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16-bit PIO port.

Var: port—0: PIOO0- 15
1: PIO16-31

Reference: ae pio.c

void outport(int portid, int value) dos.h

Writes 16-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — /O address
value — 8 bit value

Reference: ae ppi.c

int inport(int portid) dos.h
Reads from an 1/O addrepsrtid. Returns 16-bit value.
Var: portid — 1/0 address

Reference: ae_ppi.c

E-3

Appendix E: Software Glossary

MiniDrive88

int inportb(int portid)
Reads from an 1/O addrepsrtid. Returns 8-bit value.
Var: portid — /O address

Reference: ae_ppi.c

dos.h

int ee wr(int addr, unsigned char dat)

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae ee.c

aeee.h

int ee rd(int addr)

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae ee.c

aeee.h

void io_wait(char wait) ae.h

Set up I/0O wait states for 1/O instructions.

Var: wait — wait duration {0...7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, /O enable for 100+175 ns
wait=6, wait states = 9, /O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

E-4

MiniDrive88 Appendix E: Software Glossary

void rtc_init(unsigned char * time) ae.h

Sets real-time clock date and time.

Var: time —time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = mon10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = secl10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtc_rd(TIM *r) ae.h

Reads from the real-time clock.

Var: *r— Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, min10, hounlr1@o
unsigned char dayl, day10, monl, monl0, yearIl@ea
unsigned char wk;
}TIM;

Reference: rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual
ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.

Reference: timer.c, timer 1.c, timer 02.c, timer 2.c, timer 0.c timer 12.¢

void interrupt far t2_isr(void); ae.h
void interrupt far t1_isr(void);

E-5

Appendix E: Software Glossary MiniDrive88

void interrupt far tO_isr(void);

Timer 0, 1, 2 interrupt service routine.

Var: None.
*not e: End of interrupt must be issued in ISR to reset i nterrupt.
See AMD CPU Manual page 7-27 for EOQ register.

Reference: timer.c, timer 1.c, timer 02.c, timer 2.c, timer 0.c timer 12.¢

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void intO_init(unsigned char i, void interrupt far (*intO_isr)());
void intl init(unsigned char i, void interrupt far (*intl_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMNI¢n-Maskable Interrupt).

Var: i—1: enable, O: disable.
int #_isr — pointer to interrupt service.

Reference: intx.c

void interrupt far nmi_isr(void); ae.h
void interrupt far intO_isr(void);
void interrupt far intl_isr(void);
void interrupt far int2_isr(void);
void interrupt far int3_isr(void);
void interrupt far int4_isr(void);
void interrupt far int5_isr(void);
void interrupt far int6_isr(void);

Interrupt service routine for int0 — int6 and NMI.
Var: None.

*not e: End of interrupt must be issued in ISR to reset i nterrupt.
See AMD CPU Manual page 7-27 for EQ register.

Reference: intx.c

E-6

MiniDrive88 Appendix E: Software Glossary

void S0_init(unsigned char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c¢) (void);
void sl _init(unsigned char b, unsigned char* ibuf, intisiz, serl.h

unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b - baud rate. Tabl e bel ow for 40MH#z and 20MHz O ocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0siz — ouput buffer size

C — pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) | baud (20MHz)
1 110 55

2 |150 110

3 |300 150

4 600 300

5 |1200 600

6 [2400 1200

7 4800 2400

8 9600 4800

9 [19200 9600

10 [38400 19200

11 |57600 38400

12 115200 57600

13 23400 115200

14 460800 23400

15 (921600 460800

Reference: S0_echo.c, s1_echo.c, sl 0.c

int putserO(unsigned char ch, COM *¢); ser0.h
int putser1(unsigned char ch, COM *¢); serl.h

Output 1 character to serial port. Charactervéllsent to serial output with interrupt isr.

Var: ch — character to output
¢ — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c¢); ser0.h
int putsersl(unsigned char *str, COM *c); serl.h

Output a character string to serial port. Charaestitbe sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure

E-7

Appendix E: Software Glossary MiniDrive88

Reference: serl sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h

Checks input buffer for new input characters. Retd if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure

Reference: S0_echo.c, sl_echo.c, sl 0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getser 1(COM *c¢); serl.h

Retrieve 1 character from the input buffer. Asssitimatserhit routine was evaluated.

Var: ¢ — pointer to serial port structure

Reference: S0_echo.c, s1_echo.c, sl 0.c

int getsersO(COM *c¢, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h

Retrieves a fixed-length character string fromittpit buffer. If the buffer contains less charaster
than the length requestestk, will contain only the remaining characters frora thuffer. Appends
a ‘\0’ character to the end dff. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure
len — desired string length
str — pointer to output character string

Reference: serl.h, ser0.h for source code.

E-8

ull

ulo0

XTALL A WE/ VB AL7P=VCC CE2=VRAM VOEE 1 18 VRAM
10PF x2 X1 1OPF 13 T0 P2 7| 51D VRAM 17
H4) ¢ D @ 2 b ICS0 X2 [Ee-
cs J5 HDRS3 J4 HDRS3 J3 HDRS3 o 3| A X1 | L6
16MZ A0 1 P 70 5/ RST
so & I A0 cs1
Al__2 3 AL 5
s1 8 T Al Do |4
3 9 T4 A6 3 DL
1l 1 le 1| S2 Ao Ts A3 7] "2 DL 5o
A8 v Voo Ri7 VRAM A1z P16_14] % 176 (ro—B| M. E2Mies
VB voC VRA TRSTIS] G g & T2 17 G _9| (KB, D8 10
74HC259 72421
74HC259S
P4
D u16
LM7805
voe
12v 1|, yoel3gvee DL VoC RL 1 RNL VCC
o 12vi_ AR 12v ve R|A P12 M 11, ol209
c13 o6 5 211 ST1ome
10UF35V 10UF35V IN5817 680 LED 3 3 =
> 318 14
2 74515 17 TRTS1
u3 G\D 2 5 5 TNT3
516 (L6
BL 061338 a5 TNTL
2 RST 7 CTS1
—vep vec 22 il I 8] 4713 [13 PO
2 31 3| vBAT P13 9 2 Pil
—3| A6/ PAMI=5- + P26 10| 212 [I1 P20
—2las P22 1a1
| As NCog Us BTHAL us vce
—2 A7 m3f28 - Clr 1Moy voc 169 10K
B ag |2 VBAT_1l\p Ror |28 RST V- 21 aup @D RN768
7 26 VRAM 2 5 /RST cl-__3 4/ TXDL ci+ c2+
—as a9 (28 VO /RST Cl- T10
8 25 VoC 3 Z ©r 4 3 TRXDL C
o Alor Qb4 Y€ WO 3 7Tes - 5| &+ Rl RXDL o) c1o0
—=2- A3 | OE 52— G\D CEl = = C2- R1O =%
10 23 5 2 JRAM J9 V- 6 1 TxD1 ci-] caPNe o] CaPne
A01A> alo |22 —21BON CEO V- TLI
11 22 6 T 1 2 p12] TXD0 7 0T J8
12|Al TCEaT 7]/LL WO H57pr0 © © TRXD0 8 120 T2! ™9 Rxpo 1 2
A0 b7 oSl PFO R2l R2O o—2
131489 o7 20~ B &L oo wT vee [TXOT 3R 7
—I7] (19~ - I\ VAXZ3ZA RO R &5
TI5| % D5 15— NAXGOT 10k R — TR e
D2 o4 18
—TI6] 17 MAX691S Vi ap~ 9L S0
GN\D D3 —— _,__ ECL0 TR TSN .
5 PROVIOZ4 c11 HDRD10
NB2 G\D] CAPNP HDRD10
w
pL__ 1 16 _c8 u7 c12
plo 2| B 1¢I5 D 1 8 voc V- CAPNP
2B 2C 20 vee -8 Yec
2431 2B 2C A o10 GND 2 9 4 B A
uL 25 4 3 oLl b3 6 Pio 37
P26 5] 2B 4C T o) 2] 82 SA 5 FT 1 2
5B 5C VSs SDA [=Pll 1o c—2
P29 6] op o [1L 013 c1 e} / TXD0 3 7
I T 8 S Pt FE T RS Sy
—21a16 Als 3L G K —t o o—5-
3 30 CAPNP CAPNP GaD 9 10
—i1 Al4 CE2 =g~ ; o—
Z 29 UCNZ003
—Ala2 rRwHEE
510" a2 ULN2003 HDRD10
6] o7 HDRD10
7148 A8 56 us u13
—Las no |25 _
R AR 101 o Li8_GD 0 105 o) L6 Ol 32
—9] 24 p3 — 7] 7 12 5 ¢ 12vi 1 2 K
—91A3 soE[A 2112 2 TL 21582C 2
10 23 P23 6 ICp 2 3 4 08 G\D__3 4 _GD
29 a0 (23 2 13 a8 [0 2 38 3C |14 > 3o 0 5 n
I /Rl T 7 5]/ 7 51 4B4C 15 T Z
) D7 1506 5B 5C —0 O 1
—I3] (20~ 5 3T 5 T 5 5
Ll D6 16 06 T 6B 6C o O 2
17 (19 6 21T 7 0 or 7 11 216
1dlm D5 [+ 17 o7 7B 7C o O / 3
15 18 P48 1 10or 8 9 K %13 2106
A5 D4 (48 18 08 G K 4
6] 2, Rz o, 9112 B0 o415 5 TG 2
. UCNZ003 L7 8 TOL :
RANE 71024 UD52982 ULN2003 | 014 190 0 TO13 °
NEMB2S o2 21 22 [OL1 :
uL4 1010 23 2 S22 100
A2 < — 9
uis 11 6 _NM Toe2s Q €56 G
1B 1C [-48 1825 5 & 10
8 G\D 7 2 5 > ® 27 28 010
11 0L 2B 2C D258
| RTST 2 7 108 33 4 OLT 29 30 o2 710
12 3B 3C I Q129 5 &
[crsi 3])2 L6 1o 44 3B3C T3 3 o331 3 32 o T10
PI7_ 4|, 5 & [@51al0 5 51 gp ac [12 INTL G\D_ 33 34_G\D
/ RST VRAM 05112 1 66135 2 [T TNTO
] 7CTS0 6] | 2 L 3 2 77158 6C 10 HDRD34
cr c8 rRrso 7115 &£ Mz Tas 8] B¢ Tovee HDRD34
CAPNP CAPNP Ao 8|4 i1 cia ?
9lvs GlLo 8::%883 TERN STE
i? UD52982 Title
M NI DRI VE- 88
Si ze |[Docunment Numnber
B MD88- MAN. SCH
Dat e: August 27, 1999][Sheet 1 of

