OPS $^{\text {тм }}$

Four Low Cost Instrumentation Operational Amplifiers

Technical Manual

$19505^{\text {th }}$ Street, Davis, CA 95616, USA
Tel: 530-758-0180
Fax: 530-758-0181
Email: sales@tern.com

COPYRIGHT

OPS is a trademark of TERN, Inc.
V25 is a Trademark of NEC Electronics Inc.
Turbo C, and Borland C++ are trademarks of Borland International. Microsoft, MS-DOS and Windows are trademarks of Microsoft Corporation. IBM is a trademark of International Business Machines Corporation. Paradigm LOCATE and TDREM are trademarks of Paradigm Systems.

Version 2.00
November 2, 2010

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of TERN.
© 1993-2010 / 1 ERINC.
$19505^{\text {th }}$ Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are integrated with software and hardware that are not 100% defect free. TERN products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices, or systems, or in other critical applications. TERN and the Buyer agree that TERN will not be liable for incidental or consequential damages arising from the use of TERN products. It is the Buyer's responsibility to protect life and property against incidental failure.
TERN reserves the right to make changes and improvements to its products without providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they are provided for design reference use only.

Chapter 1: Introduction

1.1 Functional Description

Do you need a direct interface to low-voltage output sensors, such as EKG electrodes, thermocouples, or strain gauges? If so, OPS is the small analog signal conditional circuit board for you.
Measuring 2.8×2.4 inches, the OPS has 4 channels of instrumentation with high input impedance (up to $100 \mathrm{M} \Omega$) adjustable-gain (>1000) and differential inputs. The gain can be varied by a single resistor. The CMRR, ratio of differential signal gain to commonmode signal gain, is typically 70db.

A precision $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C} 2.5 \mathrm{~V}$ reference and temperature sensor are on-board. All analog input and output signals are connected via screw terminals. The OPS output can be voltage or current, with filter or without filter, by setting jumpers.

1.1.1 Features

- 2.8×2.4 inches
- Low power, 10 mA at 9 V input
- On board temperature sensor for cold-junction compensation
- $2.5 \mathrm{~V}, 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ precision reference voltage
- Four channels of instrumentation operational amplifiers
- User configurable gain up to 1000
- High gain and high input impedance
- Direct interface with thermal couples or strain gauges
- On board front end prototyping area for bridge resistors
- Jumper settings for offset, filter options
- Voltage or current output
- On board power supply for $+5 \mathrm{~V},-5 \mathrm{~V},+7 \mathrm{~V},-12 \mathrm{~V}$
- Input analog signal conditioning for ADC
- Output analog signal conditioning for DAC

1.1.2 Physical Description

Figure 1.1 Layout of OPS

1.2 Installation

You can power the OPS with unregulated +9 V to +12 V via the screw terminal.

1.3 Hardware

1.3.1 Operational Amplifiers

The analog signal conditioning circuit provides 4 channels of instrumentation operational amplifiers with high gain (>1000) and high input impedance ($>10^{12} \Omega$). The instrumentation ops allows direct interfacing to low-voltage output sensors, such as EKG electrodes, thermocouples, or strain gauges.

The high input impedance adjustable-gain differential amplifier is constructed with three operational amplifiers. Two operational amplifiers, UxD and UxC, are operated in the noninverting mode. Depending on the type of OPs used, the input impedance at each input pin of the differential amplifier is the common-mode input impedance of the OP chips. For example, the input impedance of LM324 is typically 2M, LT1014 is typical 300M.

The UxD and UxC constitute a differential buffer amplifier with a gain of $\boldsymbol{G}=\mathbf{1}+\boldsymbol{R P 1 A} \boldsymbol{R} \boldsymbol{R} \mathbf{0}$ (see schematics channel 0) for differential signals. The gain can be varied by a single resistor, R 0 . If $\mathrm{RP} 1 \mathrm{~A}=\mathrm{RP} 1 \mathrm{C}=10 \mathrm{~K}, \mathrm{R} 0=10 \mathrm{~K}$, then $\mathrm{G}=2$, as factory setting. The effects of mismatch in RP1A and RP1C is only created a gain error without affecting the CommonMode Rejection Ratio (CMRR). The CMRR, in terms of the ratio of differential signal gain to common-mode signal gain, is typically 70db for LM324, and typically 110db for LT1014. The third OP, U0A, is a differential-input to single-input converter with $\mathrm{G}=\mathrm{RP} 2 \mathrm{~A} / \mathrm{RP} 1 \mathrm{~B}=100 \mathrm{~K} / 10 \mathrm{~K}=10$ as the factory setting.
The offset voltages and the offset drifts of U0D and U0C are significant in determining the output offset. Since the output voltage drift is proportional to the differences of the voltage offsets of U0D and U0C, it is desirable to use low temperature drift OPs. For LM324 the maximum input offset voltage drift is 30 uV per ${ }^{\circ} \mathrm{C}$ and the typical offset drift is 7 uV per ${ }^{\circ} \mathrm{C}$. For LT1014, the maximum offset drift is $2.5 \mathrm{uV} / \mathrm{C}$. The typical input offset drift is $0.4 \mathrm{uV} /{ }^{\circ} \mathrm{C}$. The RP2 is 100 K and RP1 is 10 K . The second stage gain is default of 10 .

Type J thermocouples have a thermoelectric voltage change of 4.906 mV at $93{ }^{\circ} \mathrm{C}$ (reference to $0^{\circ} \mathrm{C}$). It is about $0.0528 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. For a 12 -bit ADC with 2.5 V reference, the resolution is $1.2207 \mathrm{mV} / \mathrm{LSB}$. For a gain of 200 , the sensitivity can be 8 LSBs per ${ }^{\circ} \mathrm{C}$.

1.3.2 Terminals

See schematics for details.

1.3.3 Headers and Jumpers

H 0 to H 3 are headers for selecting the ops output.
For voltage output, a jumper on Hx pin 3-4, $\mathrm{AD} 0=\mathrm{V} 0$ and pin 5-7, G0=GND.

For current output, a jumper on Hx pin 2-4, $\mathrm{AD} 0=\mathrm{I} 0$ and pin 5-6 G0=F0.

For current output, Iout $=G x(V 1-V 2) / R 01$. where Iout is the output current at T2 AD0 pin. G is the gain of the instrument op system. V1-V2 is the voltage difference at A0+ and A0-. R01 is the current resistor.

For use filter and offset voltage output, a jumper on Hx pin 4-6, AD0 $=\mathrm{F} 0$ and pin 5-7, G0=GND.

1.3.4 Reference and Temperature Sensor

We use LT1019-2.5 (3ppm/ $\left.{ }^{\circ} \mathrm{C}\right)$ as a precision reference voltage. The LT1019 has a typical ultra low temperature drift $-3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It can sink and source up to 10 mA . The LT1019 has a TEMP pin. The voltage on this pin is directly proportional to absolute temperature (PTAT) with an approximate slope of $2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Room temperature ($295^{\circ} \mathrm{K}$) voltage is therefore approximately $2.1 \times 295{ }^{\circ} \mathrm{K}=620 \mathrm{mV}$. The TEMP pin can be used to sense chip or board temperatures in applications where the LT1019 is forced to sense ambient temperature. The typical chip temperature rise over ambient is $2^{\circ} \mathrm{C}$. In the application using thermocouples, TEMP could be used to sense the connector block temperature, if the temperature difference between block and chip is tolerable or can be calibrated out. The temperature difference between the block and chip may be reduced by a thermoconductive contact.

The TEMP voltage is connected to T 2 pin 4.

1.3.5 Power Supply

You may power the OPS with +9 V to +12 V DC. Higher than the mximum 12V DC power input will damage the TC7662 device.
OPS can support upto 5 mA from $\mathrm{REF}+, 5 \mathrm{~mA}$ from TEMP, 50 mA from +7 V , and 10 mA from -5 V .

1.3.6 Prototyping and Bridge Area.

At the front end of the instrumentation op input, there are 10 pads (RX0) for bridge resistors or prototyping. A typical bridge application may connect the RTD and bridge arm resistors as shown in Figure 1.2.

Figure 1.2 How to use the Rx0 pads for a bridge application.
As factory default, only R4=0 is installed.

1.3.7 Modifications for $\mathbf{4 - 2 0} \mathbf{m A}$ signal inputs

In order to convert $4-20 \mathrm{~mA}$ input to voltage output for ADC , a 124Ω resistor can be installed in the prototyping area at Rx 0 pin $3=\mathrm{A} 0+$ to Rx 0 pin5=A0-. The 124Ω will convert 4 mA to 0.496 V input voltage to the instrument operational amplifier.
The OPS can be setup to a Gain $=2$. It will output $1-5 \mathrm{~V}$ at AD 0 . A 10 K resister is installed in R0. The RP2A must be shorted to 0Ω. A 10 K reference resistor is in H 0.9 to H 0.10 . The jumper at $\mathrm{H} 05-7$ is not connected and leave G0 open.
4-20 mA input,
AD0 voltage
output $1-5 \mathrm{~V}$ DC
Gain=2:
$\mathrm{R} 0=10 \mathrm{~K}$,
$\mathrm{RP} 2 \mathrm{~A}=0$,
$\mathrm{G} 0=\mathrm{NC}$,
$\mathrm{Rx}=124$,
$\mathrm{AN} 0-=\mathrm{A} 0-$,

1.3.8 G2 Modifications for 0-4.095V inputs and 0-10V outputs

In order to convert DAC's $0-4.095 \mathrm{~V}$ analog signal to $0-10 \mathrm{~V}$ analog signal, modifications on the gain resistors and power supplies must be made.

1) Remove U7 LM723, and short U8 pin $1=+12 \mathrm{~V}$ and pin $3=+7 \mathrm{~V}$. The on-board +7 V becomes +12 V
2) Remove U6 LM79L05, and short U6 pin $1=-5 \mathrm{~V}$ and pin $2=-7 \mathrm{~V}$. The on-board -7 V becomes -12 V
3) Add 2 wire jumpers in the prototyping area at $\mathrm{Rx} 0-3$ pin9 $9=\mathrm{GND}$ to $\operatorname{pin} 10=\mathrm{ANx}-$, and pin 7=pin 8.
4) Replace the RP2 and RP4 from 100 K to 20 K , so the second stage Gain $=2$.
5) Install 100 K resistors in the $1^{\text {st }}$ stage gain resistor R0, R1, R2, R3.
6) The system over all gain $=(1+2 \mathrm{x}(10 / \mathbf{1 0 0})) \times 2=2.4$.
7) If you change the $\mathbf{1 0 0 K}$ resistor ($\mathrm{R} 0, \mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$) to $\mathbf{9 0 . 9 K}$, the gain will be 2.44 .
8) Power the OPS with UP TO +12 V at T 2 pin 1 and pin 2. Higher than 12 V will damage the U5 TC7662 !
9) Apply the $0-4.095 \mathrm{~V}$ DAC signal to OPS T1 pin 4=A0+, and connect the GND of DAC and OPS at T1 pin 2.
10) The T 2 pin $8=\mathrm{AD} 0$ should output $0-9.8 \mathrm{~V}$ corresponding to $0-4 \mathrm{~V}$ inputs.

1.3.9 G4 Modifications for 0-2.5V inputs and 0-10V outputs

In order to convert DAC's $0-2.5 \mathrm{~V}$ analog signal to $0-10 \mathrm{~V}$ analog signal, modifications on the gain resistors and power supplies must be made.

1) Remove U7 LM723, and short U8 pin $1=+12 \mathrm{~V}$ and pin $3=+7 \mathrm{~V}$. The on-board +7 V becomes +12 V
2) Remove U6 LM79L05, and short U6 pin $1=-5 \mathrm{~V}$ and pin $2=-7 \mathrm{~V}$. The on-board 7 V becomes -12 V .
3) Add 2 wire jumpers in the prototyping area at Rx0-3 pin9=GND to pin $10=\mathrm{ANx}-$, and $\operatorname{pin} 7=\operatorname{pin} 8$.
4) Replace the RP2 and RP4 from 100 K to 20 K , so the second stage Gain $=2$.
5) Install 20 K resistors in the $1^{\text {st }}$ stage gain resistor $R 0, R 1, R 2, R 3$.
6) The system over all gain $=(1+2 x(10 / 20)) \times 2=4$.
7)
8) Power the OPS with UP TO +12 V at T 2 pin 1 and pin 2 . Higher than 12 V will damage the U5 TC7662 !
9) Apply the $0-2.5 \mathrm{~V}$ DAC signal to OPS T1 pin 4=A0+, and connect the GND of DAC and OPS at T1 pin 2.
10) T 2 pin $8=\mathrm{AD} 0$ should output $0-10 \mathrm{~V}$ corresponding to $0-2.5 \mathrm{~V}$ inputs.

1.3.10 G1/2 Modifications for 0-10V inputs and 0-5V outputs

In order to convert DAC's $0-10 \mathrm{~V}$ analog signal to $0-5 \mathrm{~V}$ analog signal, modifications on the gain resistors and power supplies must be made.

1) Remove U7 LM723, and short U8 pin $1=+12 \mathrm{~V}$ and pin $3=+7 \mathrm{~V}$. The on-board +7 V becomes +12 V
2) Remove U6 LM79L05, and short U6 pin $1=-5 \mathrm{~V}$ and pin $2=-7 \mathrm{~V}$. The on-board -7 V becomes -12 V .
3) Add 2 wire jumpers in the prototyping area at $\mathrm{Rx} 0-3$ pin9 $9=\mathrm{GND}$ to $\mathrm{pin} 10=\mathrm{ANx}-$, and pin $7=$ pin 8.
4) Replace the RP2 and RP4 from 100K to 4.99 K , so the second stage Gain $=0.5$.
5) DO NOT install R0, R1, R2, R3.
6) The system overall gain $=(1 \times 0.5)=0.5$.
7) Power the OPS with UP TO +12 V at T 2 pin 1 and pin 2 . Higher than 12 V will damage the U5 TC7662 !
8) Apply $0-10 \mathrm{~V}$ DC signal to OPS T1 pin $4=\mathrm{A} 0+$.
9) The T 2 pin $8=\mathrm{ADO}$ should output $0-5 \mathrm{~V}$ corresponding to $0-10 \mathrm{~V}$ inputs.

