R-Engine™

16-bit Controller with 16-bit SRAM & Flash, 300 KH¥DC & DAC,
16-bit ADC
Based on the 40MHz Am186ER or 80MHz RDC R1100

O & D
L i O o0
—ralhipiolo:

Qe

odouuu.:rl;}'o

Technical Manual

TrEry

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

R-Engine, A-Engine, A-Core86, A-Core, i386-EngiMemCard-A, MotionC, VE232,
and ACTF are trademarks of TERN, Inc.
AmM186ER is a trademark of Advanced Micro Devices, |
Paradigm C/C++ is a trademark of Paradigm Systems.
Microsoft, MS-DOS, Windows, Windows95/98/2000/NT//KP are trademarks of
Microsoft Corporation.
IBM is a trademark of International Business MaelsiiCorporation.

Version 3.0

October 20, 2010

No part of this document may be copied or reproduceny form or by any means
without the prior written consent of TERN, Inc.

© 2010 TERPQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedh® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitEimages arising from
the use ofTERN products. It is the Buyer's responsibility to jadtlife and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@nasults of limited sample tests; they
are provided for design reference use only.

R-Engine Chapter 1: Introduction

Chapter 1. Introduction

1.1 Technical Manual Organization

This technical manual will require special orgatiato accommodate the possibility of configuritihg
R-Engine with two different CPUs. The CPUs are veimilar, yet they do have a few differences. For
purposes of organization, it will be assumed thetughout this technical manual, all informatiomegi is
accurate for both CPUs, unless otherwise stategeeral, it will be written referring to the Am1BR, but
will implicitly apply to the R1100. When informatiomay deviate between CPUs, it will be explicitly
shown.

1.2 Functional Description

The R-Engine™ (RE) is a high performance, low cost, C/C++ programimaipntroller, and the first
TERN controller based on the Am186ER CPU (40 MHEpit CPU, AMD). It is intended for industrial
process control and high-speed data acquisitiahgapecially ideal for OEM applications.

The RE has 32KB internal RAM, which fulfills many embedd®EM products SRAM requirement. No
external SRAM would be required for an OEM versminthe RE ith AM186ER CPU only). This
increases system reliability, while decreasing pose&sumption and cost.

TheRE features fast execution times through 16-bit ACTask (256 KW) and battery-backed SRAM

(256 KW); it also includes 3 timers/counters, PWBI2,P10s, 24 PPIs, 512-byte serial EEPROM, an
internal UART, a synchronous serial port, and echebg timer.

R-Engine SCC2692
64KVSV§$'\E§I6 KW Dual UART
16-bit RTC SER1
SER2
FLASH 9
. AMI186ER
256 KW 16-bit WatCthg
CPU MAX691 atchdo
40MHz
EERROM DMA() 8 ch. 12-bit

512 BYTES | ADC L

16-Bit Timers(3)

AD7852

Ext. Interrupts(6)

11-ch. 16-bit 32 1/0 lines
ADC > PWM 4 ch. 12-bit

<>
16-bit Ext. data bus <:> DAC DA7625
2 ch.[*7 2 ch.
12-bit| | 12-bit A i
DAC DAC v
J18&J2 PPI REF
uUs U13

J4 Expansion Header PPI 1/O lines, Analog 1/O

Figure 1.1 Functional block diagram of the R-Engine

1-1

Chapter 1: Introduction R-Engine

The three 16-bit timers can be used to count og gxternal events, up to 10 MHz, 20MHz with the &1,1
or to generate non-repetitive or variable-duty-eywhveforms as PWM outputs. The 32 PIO pins froen th
Am186ER are multifunctional and user programmable.

A serial real time clock (DS1337, Dallas) is a Ipewer clock/calendar with two time-of-day alarmsl an
programmable square-wave output. A Dual UART (SCZBHCprovides two channels of full-duplex
asynchronous receivers and transmitters; this aoeshivith a single port available from the proce$ésoan
total of three RS-232 serial ports. (This differsni most other cor&ngine controllers, offering 2 ports
through the processor.) The receivers are quadiugdfered to minimize the potential of receiver oue

or to reduce interrupt overhead. The UARTSs incoap®©9-bit mode for multi-processor communications.
Each UART also offers 7 TTL inputs and 8 TTL outpufthe PPI (82C55) provides an additional 24 user
programmable bi-directional I/Os. The PPI chip aaterface to another processor module, or to an LCD
and keypad(s).

The DAC (DAC7612) supports two channels of 12-®it1.095V analog voltage outputs capable of sinking
or sourcing 5 mA. Two of these are available tarstalled on the R-Engine. A high-speed, up to 300K
samples per second, 8-channel, 12-bit parallel ARQ7852) can be installed. This ADC includes sample
and-hold and precision internal reference, andarmasput range of 0-5 V. ThRBE also supports a 4-
channel, high-speed parallel DAC* (DA7625, 0-2.200KHz).

An optional 16-bit serial ADC (ADS8344, 100KHz) sessive approximation converter, offering 8 single-
ended input or 4-differential inputs, is also aahié.

TheR-Engine can be installed on TERN controllers, such as?b@, P100, or MotionCTERN also offers
custom hardware and software design, based dR-teegine or other TERN controllers.

1.3 Features

* Dimensions: 3.6 x 2.3 x 0.3 inches
* 40 MHz, 16-bit CPU (AmM186ER), Intel 80x86 comp&ilOR
» 80 MHz, 16-bit CPU (R1100)
» 32KB internal RAM, Am186ER ONLY
» Easy to program in C/C++
» Power consumption: 160 mA at 5V
» Power-save mode: 20 mA at 5V
e Power input: +5V regulated DC ONLY
+ 9V to +12V unregulated DC with 1/O Expansionn€€& 100, P50, MC)*
* Up to 256 KW 16-bit SRAM, 256 KW 16-bit Flash *
 8-channel 300 KHz parallel 12-bit ADC (AD7852) wid-5V analog input*
* 4-channel 200 KHz parallel 12-bit DAC (DA7625) wid-2.5V analog output*
* 4-channels serial 12-bit DAC (DAC7612), 7us segtliime*
« 8-channel serial 16-bit ADC (ADS8344) with 0-5V winput*
« 16-bit external data bus expansion port
* Up to 340 MB memory expansion dashCore-00

* 3 serial ports (1 from Am186ER, plus two from S€82 UART) support full-duplex 7, 8 or 9-bit
asynchronous communication (only SCC2692 suppebit) 9

* 2 high-speed PWM outputs

* 6 external interrupt inputs, 3 16-bit timer/couste
32 multifunctional I/O lines from Am186ER

* 24 bi-directional I/O lines from 82C55 PPI

» 512-byte serial EEPROM

1-2

R-Engine Chapter 1: Introduction

« Supervisor chip (691) for reset and watchdog
* Real-time clock (DS1337), lithium coin battery*
* = optional

1.4 Physical Description
The physical layout of the R-Engine is shown inurégl.2.

SCC2692 Flash & SRAM
Dual UART Watchdog Up to 256KW of each EEPROM

+3.3V Regulator 512-byte

Step 2 Jumper
J2 pins 38 & 40

J1 Header
Address / Data
Expansion Bus

J2 Header
Interrupts, PIOs

P . ‘ e
Dual 2-ch. SR 2 . HERH
12-bit DAC % it =EN _

8-ch. 12

a-ch. 12-pit ADC 300KHz

DAC 200KHz
J4 Header

24 bi-directional ADC, DAC, PPI/O

TTL level I/Os

Figure 1.2 Physical layout of the R-Engine

1-3

Chapter 1: Introduction R-Engine

(Power On or Reset)

Step 2 jumper
set?

STEP 2

Go to Application Code CS:IP
CS:IP in EEPROM:

0x10=CS high byte
STEP1 0x11=CS low byte

ACTF menu sent out through s¢r0 0x12=IP high byte
at 19200 baud (__ Ox13IP lowbyte)

Figure 1.3 Flow chart for ACTF operation

The “ACTF boot loader” resides in the top protecsedtor of the 256KW on-board Flash chip (29F400).

At power-on or RESET, the “ACTF” will check the SPR jumper. If STEP 2 jumper is not installed, the
ACTF menu will be sent out from serial port0 at @9Daud. If STEP 2 jumper is installed, the “jump
address” located in the on-board serial EE (see Epmvill be read out and the CPU will jump to that
address. A DEBUG kernel “re40_115.hex” (re80_11%\ken using the 80MHz version) can be
downloaded to a starting address of “OxFA000"haf 2556KW on-board flash chip.

1-4

R-Engine

Chapter 1: Introduction

1.5 R-Engine Programming Overview

Preparing for Debug M ode

1. Connect RE to PC with RS-232 link at 19,2008 N1

2. Power on RE with step 2 jumper removed (J2.88, 4
3. ACTF menu sent to hyper terminal

4..Type ‘D’, <enter>. Send tern\186\rom\re\l_deneg.

5. Type ‘G04000” to run |_debug.hex

6. Send tern\86\rom\re\re40_115.hex (re80_115.hx w
80MHz version). Starts at 0OxXFA000

7. Type ‘GFA000’, <enter>

8. On-board LED blinks twice then stays on.

9. Debug kernel running, ready to download

Step 1: Debug M ode

. Launch Paradigm C/C++

. Open “re.ide” in the tern\186 directory

. Run samples

. Use samples to build application in C/C++

. Single step, set breakpoints, debug code

. Debug kernel must be running each time to doadlo

. If LED does not blink twice then stay on, repstaps
1-3 and -10 of above sectio

~NOoO b~ WNBRE

Step 2: Standalone M ode

1. Run standalone mode, away from PC. Applicatesides
in battery-backed SRAM. Set CS:IP to point to agadlon.
2. Power on RE without step 2 jumper set.

3. See menu at hyper terminal. 19,200, N, 8, 1

4. Type ‘G08000’ to jump to and execute code in SRA
5. Set step 2 jumper, cycle power. Will executeeciod
SRAM at every power-up.

6. Test application.

7. Return to Step 1 as necessary

Step 3: Production

1. Generate application HEX file with Paradigm C#yased
on field tested source code.

2. Power on board with step 2 jumper removed. Seeum

3. Use ‘D’ command to download |_29f400.hex in the
tern\186\rom\re directory. Will prepare flash.

4. Send application HEX file.

5. Use ‘G’ command to modify CS:IP to point to dpgtion in
flash, type ‘G80000’ at menu.

6. Set step 2 jumper.

1-5

Chapter 1: Introduction R-Engine

There is no ROM socket on the RE. The user’s agfitin program must reside in SRAM for debugging in
STEP1, reside in battery-backed SRAM for the sthmaafield test in STEP2, and finally be programmed
into Flash for a complete product. For productitwe, user must produce an ACTF-downloadable HEX file
for the application, based on the DV-P Kit. The EFPR” jumper (J2 pins 38-40) must be installed for
every production-version board.

Step 1 settings
In order to talk to RE with Paradigm C++, the REstnmeet these requirements:

1) RE40_115.HEX (re80_115.hex with 80MHz version)sinbe pre-loaded into Flash starting address
0xfa000.

2) The SRAM installed must be large enough to lyolgr program.

For a 64 KW SRAM, the physical address is 0x0000Q1fff
For a 256 KW SRAM, the physical address is 0x000RQ7ffff

3) The on-board EE must have a Jump Address foaRE®WD 115.HEX with starting address of 0xfa000.
4) The STEP2 jumper must be installed on J2 piré®B8

For further information on programming the R-Engirefer to the Software chapter.

1.6 Minimum Requirementsfor RE System Development

1.6.1Minimum Hardware Requirements

e PC or PC-compatible computer with serial COMx pbat supports 115,200 baud

* R-Engine controller

* TERN I/O Expansion Card (P100, MotionC) or VE-282 IRS-232 and Voltage Regulator

» PC-V25 serial cable (RS-232; DB9 connector for RiMCport and IDE 2x5 connector for controller)
» center negative wall transformer (+9V, 500 mA)

1.6.2Minimum Software Requirements

« TERN EV-P Kit installation CD and a PC running: Waws 95/98/NT/ME/2000/XP

With the EV-P Kit, you can program and debug th&mjine in Step One and Step Two, but you cannot
run Step Three. In order to generate an applicdfiash file and complete a project, you will nebd t
Development Kit (DV-P Kit).

1-6

R-Engine Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/@evelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN EV-P/DV-P CD-ROM gtins important information about the
installation and evaluation of TERN controllers.

2.2 Hardware I nstallation

Overview

« Install RE on TERN expansion board (P50, P100) 6232

¢ Connect Debug-serial cable:
For debugging (STEP 1), place IDE connector on S&R0red
edge of cable at pin 1

* Connect wall transformer:
Connect 9V wall transformer to power and plug iptover jack
adapter, which installs into green screw terminal

Hardware installation for the R-Engine consistsmarily of installing the RE onto another TERN
expansion board or the VE232, which then needstodmnected to your PC and to power. The primary
purpose for using the expansion board (or the VEZ3f supply the RE with VCC and RS232 drivers to
interface a PC for debugging. As a result, the pase@nection and serial cable connections will [zElen
directly to the expansion board. TERN expansionrd®aP50, or MotionC for example) also offer
additional hardware capability. The serial cabld power connections vary based on expansion bdard.
few common examples will be covered in the subsesections.

2.2.1 Connecting the VE232 to the R-Engine
H1lpin1l J2 pin 40

New location
of STEP2
jumper, H2. |

Chapter 2: Installation R-Engine

The above picture shows the RE and the VE232. $wlinthe VE232 onto the RE, align Pin 1 of the H1

header on the VE232 with Pin 40 of J2 of the RE mmodint the VE232 onto the RE. After installing the

VE232 onto the RE, J2.38 and J2.40 will be blodkedVE232 socket. The location for the STEP2 jumper
will become H2 on the VE232 (see above picturentow location of STEP 2 jumper).

2.2.2 Connecting the P100 to the R-Engine
The RE can also be installed onto one of sever&N Expansion cards. For this example, the P100 is
used. Other possible expansion boards include 8 MotionC2140, and MotionC-P (details for these

boards can be found in their respective manualsg HBelow picture shows the P100 and the RE before
installation.

J2

J2p

To install the RE onto the P100, simply align J& piof the socket on the P100, with J2 pin 1 onREe
The same alignment can be made with J1 pin 1.

2-2

R-Engine Chapter 3: Hardware

Chapter 3: Hardware

3.1 Am186ERAND RDC R1100

The R-Engine is compatible with two different CPBsth offer and support the same on-board perifphera
as well as the on the CPU itself, aside from a défferences. The Am186ER, from AMD, uses times-four
crystal frequency, while the R1100, from RDC, utisges-eight. The R-Engine uses a 10MHz system
clock, giving the Am186ER a CPU clock of 40MHz ahéd R1100 a CPU clock of 80MHz. Both CPUs
operate at +3.3V, with lines +5V tolerant. The RREO0 supports the same 80C188 microprocessor
instruction set, but uses an internal RISC corhitacture.

3.2 AM186ER — Introduction

The Am186ER is based on the industry-standard x8kitacture. The Am186ER controllers are higher-
performance, more integrated versions of the 80CGt&8oprocessors. In addition, the AM186ER has new
peripherals. The on-chip system interface logic oanimize total system cost. The Am186ER has one
asynchronous serial port, one synchronous serigl 32 P10s, a watchdog timer, additional intetrpins,
DMA to and from serial ports, a 16-bit reset couofgfion register, and enhanced chip-select funatitn

In addition, the Am186ER has 32KB of internal viaRAM. This provides the user with access to high
speed zero wait-state memory. In some instancess @sn operate the R-Engine without external SRAM,
relying only on the Am186ER’s internal RAM.

3.3 RDC R1100 — Introduction

The RDC 1100 is based on RISC internal architectwtéle still supporting the same 80C188
microprocessor instruction set. It provides fasigeration than the Am186ER, allowing it to operateip

to 80MHZ, based a 10MHz system clock and timesteaigystal operation. The RDC R1100 does not offer
internal RAM like the AM186ER, so external SRAMnisindatory if using the RDC R1100.

3.4 Am186ER — Features

Clock

Due to its integrated clock generation circuittye tAm186ER microcontroller allows the use of a me
four crystal frequency. The design achieves 40 NIIFX) operation, while using a 10 MHz crystal.

The R1100 offers times-eight crystal frequencyjedhg 80MHz operation based on a 10MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4fadé¢ 40 MHz. The CLKOUTB signal is not
connected in the R-Engine.

CLKOUTA remains active during reset and bus holddittons. The R-Engine initial function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); aciitb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pi

External Interrupts and Schmitt Trigger Input Buffe

There are six external interrupts: INTO-INT4 and NM
/INTO, J2 pin 8, is used by SCC2692 UART.

3-1

Chapter 3: Hardware R-Engine

/INT1, J2 pin 6

/INT2, J2 pin 19
INT3, J2 pin 21
/INT4, J2 pin 33

/NMI, J2 pin 7

Four external interrupt inputs, /INTO-2 and /INTte buffered by Schmitt-trigger inverters (U9, 74HJ,
in order to increase noise immunity and transfolowly changing input signals to fast changing aitte -
free signals. As a result of this buffering, thpses are capable of only acting as input.

These buffered external interrupt inputs requifalling edge (HIGH-to-LOW) to generate an interrupt

/INT4=J2.33 INT4=U2.52
U9A O
/INT0=J2.8 INTO=U2.5€
uaC O
/INT1=J2.6 INT1=U2.55
u9D o
= VA
/INT2=J2.19 INT2=U2.5
U9E 0

Figure 3.1 External interrupt inputs

The R-Engine uses vector interrupt functions tqoesl to external interrupts. Refer to the Am186ER
User’'s manual for information about interrupt vesto

Asynchronous Serial Port

The Am186ER and R1100 CPU has one asynchronows skannel. It support the following:

* Full-duplex operation

e 7-bit, and 8-bit data transfers

e 0dd, even, and no parity

» One or two stop bits

» Error detection

* Hardware flow control

» DMA transfers to and from serial port (Am186ER ONLY
e Transmit and receive interrupts

e Maximum baud rate of 1/16 of the CPU clock speed

* Independent baud rate generators

3-2

R-Engine Chapter 3: Hardware

The software drivers for the asynch. serial poglément a ring-buffered DMA receiving and ring-taréd
interrupt transmitting arrangement. See the saffilple0_echo.c

An external SCC26C92 UART is located in position. Bér more information about the external UART
SCC26C92, please refer to the section in this mamuthe SCC26C92.

Timer Control Unit

The timer/counter unit has three 16-bit programmaiphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to four externas:pi
TimerO output =P10 =J2pin12

TimerO input =P11 =J2pinl4
Timerl output =P1 =J2 pin 29
Timerl input =P0 =J2pin20

These two timers can be used to count or time extezvents, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timen@timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operateQisviHz for the Am186ER and 20MHz for the
R1100, since each timer is serviced once everyHdDPU clock cycle. Timer inputs take up to sigad
cycles to respond to clock or gate events. Seeséimple programsimerO.c and ae_cnt0.cin the

\ sanpl es\ ae directory.

PWM outputs

The Timer0 and Timerl outputs can also be used etoergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the tatbernate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Power-save Mode

The R-Engine is an ideal core module for low poa@nsumption applications. The power-save mode of
the Am186ER reduces power consumption and heapdtam, thereby extending battery life in portable

systems. In power-save mode, operation of the CRUimternal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatiagaturns to its normal operating frequency.

The DS1337 on the R-Engine has a VOFF signal rotdetll pin 9. VOFF is controlled by the battery-
backed DS1337. The VOFF signal can be programmexsbityare to be in tri-state or to be active loweT

DS1337 can be programmed in interrupt mode to ditreeVOFF pin at 1 second, 1 minute, or 1 hour
intervals. The user can use the VOFF line to coraroexternal switching power supply that turns the

3-3

Chapter 3: Hardware R-Engine

power supply on/off. More details are availabletie sample filepoweroff.cin the 186\ sanpl es\ ae
sub-directory.

3.5 Am186ER PIO lines

The Am186ER has 32 pins available as user-progrdmem#O lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO line ban
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojleain
output. A pin’s behavior, either pull-up or pullw, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins eeded for specific on-board usage, as well. These
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.1

PIO | Function Power-On/Reset R-Engine Pin No. R-Engine Initial
status
after ae_init();
function call
PO Timerl in Input with pull-up J2 pin 20 Input tvipull-up
P1 Timerl out Input with pull-down J2 pin 29 UseClack for AD7852
P2 /PCS6/A2 Input with pull-up U11 pin 23 DAC7628ext
P3 /PCS5/A1 Input with pull-up U4 pin 39 SCC269kest
P4 DT/R Normal J2 pin 38 Input with pull-up Step 2
P5 /IDEN/DS Normal J2 pin 30 Input
P6 SRDY Normal J2 pin 35 Input
P7 Al7 Normal N/A Al7
P8 Al18 Normal N/A Al18
P9 A19 Normal J2 pin 10 Al19
P10 | TimerO out Input with pull-down| J2 pin 12 Inpuith pull-down
P11 | TimerOin Input with pull-up J2 pin 14 Inputtvpull-up
P12 | DRQO Input with pull-up J1 pin 26 Output
P13 | DRQ1 Input with pull-up J2 pin 11 Input withllpup
P14 | /MCSO Input with pull-up J2 pin 37 Input witblup
P15 | /MCS1 Input with pull-up J2 pin 23 Input witblup
P16 | /PCSO Input with pull-up J1 pin 19 /PCSO
P17 | /PCS1 Input with pull-up N/A Output for PPI
P18 | /PCS2 Input with pull-up Ul2 pin 31 Input wiithll-up
P19 | /PCS3 Input with pull-up J2 pin 31 Input withllpup
P20 | SCLK Input with pull-up J2 pin 5 Input with pulp
P21 | SDATA Input with pull-up J2 pin 3 Input with lpbup
P22 | SDENO Input with pull-down J3 pin 2 Output
P23 | SDEN1 Input with pull-down J2 pin9 Input wighll-up
P24 | /IMCS2 Input with pull-up J2 pin 17 Input witblup
P25 | /MCS3 Input with pull-up J2 pin 18 Input witblup
P26 | Uzl Input with pull-up J2 pin 4 Input with pulp*
P27 | TxD Input with pull-up J2 pin 28 TxD1
P28 | RxD Input with pull-up J2 pin 26 RxD1
P29 | S6/CLKSEL1 | Input with pull-up J3 pin 3 Inputthvpull-up*

3-4

R-Engine Chapter 3: Hardware

PIO | Function Power-On/Reset R-Engine Pin No. R-Engine Initial

status o
after ae_init();

function call
P30 | INT4 Input with pull-up J2 pin 33** Input withull-up
P31 | INT2 Input with pull-up J2 pin 19** Input withull-up

* Note: P6, P26 and P29 must NOT be forced lowrdpgdower-on or reset.

** Note: The Schmitt-trigger inverter at locatio®Wvill invert the logic on the associated pins

Table 3.1 I/O pin default configuration after power-on or reset

The 32 PIO lines, PO-P31, are configurable via 1@ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

R-Engine initialization on PIO pins e _init() is listed below:

outport(0xff78,0xc7bc); /Il PDIR1, TxDO, RxDO, TxD1, RxDR16=PCSO0, P17=PCS1=PPI
outport(0xff76,0x2040); /l PIOM1

outport(0xff72,0xec73); // PDIRO, P12,A19,A18,A17,P2=PC8A€
outport(0xff70,0x1040); // PIOMO, P12=LED

The C function in the librarge_lib can be used to initialize P10 pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the tableabo

Example: pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgtiog pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,

Some of the I/O lines are used by the R-Engineesygor on-board components (Table 3.2). We suggest
that you not use these lines unless you are sateytiu are not interfering with the operation o€tflsu
components (i.e., if the component is not installed

You should also note that the external interru@ Bins INT0-2, and 4 are not available for useaput

because of the inverters attached. The inpuegadd these P10 interrupt lines will also be ingdrfor the

same reason. As a result, callipg_rd to read the value of P31NT2) will return 1 when pin 19 on
header J2 is pulled low, with the result reverdele pin is pulled high.

3-5

Chapter 3: Hardware R-Engine
Signal | Pin Function
P1 Timerl output | 5MHz U12 ADC clock
P2 /PCS6 U11 DAC7625 chip select at base 1/0 addhe3600
P3 /PCS5 U4 SCC2692 UART chip select at base |desd 0x0500
P4 /DT Step Two jumper
P17 /PCS1 U5 PPI 0x100
P18 /PCS2 Chip select for AD7852
P20 SCLK Synchronous Clock for 16-bit ADC at looatiu14
P21 SDAT Serial Interface for 16-bit ADC at locatio14
/INTO | J2pin8 U4 SCC2692 Dual UART interrupt.
P27 J2 pin 34 TxDO
P28 J2 pin 32 RxDO
P29 J3 pin 3 Reserved for EEPROM, LED, RTC, andcWixg timer

Table 3.2 1/0 lines used for on-board components

3.6 I/0 Mapped Devices

I/O Space

External I/O devices can use I/O mapping for accées can access such 1/O devices wiiortb(port) or
outporth(port,dat). These functions will transfer one bgtenvord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000xtfD

The default I/0 access time is 15 wait states. ivay use the function void_wait(char wait) to define the
I/O wait states from 0 to 15. The system clockd® s for both CPUs, while the CPU clock is 25nstfe
Am186ER and 12.5ns for the R1100. Details regarthiggcan be found in the Software chapter, arttién
Am186ER User's Manual. Slower components, sucimast LCD interfaces, might find the maximum
programmable wait state of 15 cycles still insudfit. Due to the high bus speed of the systemesom
components need to be attached to I/O pins directly

For details regarding the chip select unit, pleseseChapter 5 of the AM186ER User’'s Manual.

The table below shows more information about |/(piiag.

1/0 space Select | Location Usage
0x0000-0x00ff | /PCSO| J1 pin 19=P16 USER*
0x0100-0x01ff | /PCS1| J2 pin 13=P17 PPI
0x0200-0x02ff | /PCS2| J2 pin 22=P18 ADC
0x0300-0x03ff | /PCS3| J2 pin 31=P19 USER
0x0400-0x04ff | /PCS4 Reserved
0x0500-0x05ff | /PCS5| J2 pin 15=P3 SCC26C92
0x0600-0x06ff | /PCS6| J2 pin 24=P2 DAC7625

*PCSO0 may be used for other TERN peripheral boandish as FC-0, P50, P100, MM-A.

To illustrate how to interface the R-Engine withteral 1/0 boards, a simple decoding circuit for
interfacing to an 82C55 parallel I/O chip is shawifigure 3.2.

3-6

R-Engine Chapter 3: Hardware

74HC138 82C55
RST)
A5 1 | A vo| 15 NC = P00-P0O7
A6 210 Y1| 14 /SEL20 ™
A7 31 . v2| 13 /SEL40
v3| 12 /SEL6O | ysE120| [CS P10-P17
Y4 11 /SEL80
/PCSO 4 G2A vs| 10 /SELA0 DMR 1 /WR
59 G2B Y69 ISELCO grp IRD
veC 6| c1 vy7lz /SELFO]]
I L DO-D7 P20-P27

Figure 3.2 Interface the R-Engine to external /O devices

The functionae_i ni t () by default initializes the /PCSO line at base IMdr@ss starting at 0x00. You
can read from the 82C55 withportb(0x020)or write to the 82C55 witlbutportb(0x020,dat) The call to
inportb(0x020)will activate /PCSO0, as well as putting the adg@s00 over the address bus. The decoder
will select the 82C55 based on address lines Adnd,the data bus will be used to read the apprepdita
from the off-board component.

Programmable Peripheral Interface (82C55A)

U5 PPI (82C55) is a low-power CMOS programmablealpelr interface unit for use in microcomputer
systems. It provides 24 1/O pins that may be iitliglly programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be progred in sets of 4 and 8 pins to be inputs or outputs
In MODE 1, each of the two groups of 12 pins carpbegrammed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshakimpiaterrupt control signals. MODE 2 is a strobed b
directional bus configuration.

3-7

Chapter 3: Hardware R-Engine
CT T T T T T 1
L] GROUP 1
Port 2 0 Output
(Lower)
1 Input
Port 1 0 OQutput
1 Input
Mode 0 Mode O
1 Mode 1
GROUP 2
Port 2 0 Output
(Upper)
1 Input
Port 0 0 Output
1 Input
Mode 00 Mode O
01 Mode 1
1X Mode 2
Command 0 Bit
Select manipulatior
1 Mode
Selec
Figure 3.3 Mode Select Command Word
The R-Engine maps U5, the 82C55/uPD71055, at B@saddress 0x100.
The ports/registers are offsets of this I/O baskress.
The command register = 0x106; Port 0 = 0x100;t Per0x102; Port 2 = 0x104.

The following code example will set all ports tatjput mode:
outportb(0x106,0x80); // mode 0 output, all pins
outportb(0x100,0x55); // Port 0, alternating higtv/ on pins
outportb(0x1020,0x55); // Port 1, alternating Higiv on pins
outportb(0x104,0x55); // Port 2, alternating higiv/ on pins

To set all ports to input mode:

outportb(0x106, 0x9b); // mode 0O input, all pins

3-8

R-Engine Chapter 3: Hardware

You can read the ports with:
inportb(0x100); // port0
inportb(0x102); // port1
inportb(0x104); // port 2
This returns an 8-bit value for each port, withtebit corresponding to the appropriate line ongbs.

All PPI lines are routed to the J4 pin header.liA#s from port O have pull-up resistors tied terthfor the
optional use of the TERN Keypad-10.

Real-time Clock DS1337

The DS1337 serial real-time clock is a low-powencklcalendar with two programmable time-of-day
alarms and a programmable square-wave output. Addxad data are transferred serially via a 2-wire,
bidirectional bus. The clock/calendar provides selsp minutes, hours, day, date, month, and year
information. The data at the end of the month tematically adjusted for months with fewer thandziys,
including corrections for leap year. The clock @tes in either 24-hour or 12-hour format with AM/PM
indicator.

The RTC is accessed via software drivacsinit() andrtc_rds(). Refer to sample code in the samples\re
directory for re_rtc.c

It is also possible to configure the real-time &léa raise an output line attached to an extemtatiupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervahis can be used in a time-driven applicatathe
VOFF signal can be used to turn on/off the controllsm@ an external switching power supply. An
example of a program showing a similar applicationrcan be found in

t er n\ 186\ sanpl es\ ae\ powerof f. c.

UART SC26C92

The dual UART (SC26C92, Phillips, U4) is a 44-pinde chip. The SC26C92 includes two independent
full-duplex asynchronous receiver/transmitters, umdyuple buffered receiver data register, an infrr
control mechanism, programmable data format, shetbaud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit countenéi, an on-chip crystal oscillator, and a multignse
input/output including RTS and CTS mechanism.

A 3.6864 MHz external crystal is installed as tleéadlt crystal for the dual UART.

For more detailed information, refer to the SC26@8fa sheets (Phillips Semiconductors) or on therCD
thetern_docs\partsdirectory.

Sample programs for the SC26C92 can be found inthé er n\ 186\ sanpl es\ r e directory.

3.7 Other Devices

A number of other devices are also available orRitiengine. Some of these are optional, and mighbao
installed on the particular controller you are gsinFor a discussion regarding the software interfeor
these components, please see the Software chapter.

On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the R-Engine has several functions:
watchdog timer, battery backup, power-on-reset ydefzower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

3-9

Chapter 3: Hardware R-Engine

Watchdog Timer

The watchdog timer is activated by setting a junged9 of the R-Engine. The watchdog timer provide
means of verifying proper software execution. e user's application program, calls to the fumctio
hitwd() (a routine that toggles the P29 = WDI pin of th&X691) should be arranged such that the WDI
pin is accessed at least once every 1.6 secoridbtie 09 jumper is on and the WDI pin is not acedss
within this time-out period, the watchdog timer Iputhe WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the egipdin program if something is wrong. After the
R-Engine is reset, the WDO remains low until a ¢idon occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9gamnis off, which disables the watchdog timer.

The Am186ER has an internal watchdog timer. Thigliggabled by default witlae init(). Refer to the
diagram on page 1-3 of this manual for the locatibwatchdog jumper.

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atie real-time clock DS1337 are backed up. In
normal use, the lithium battery should last abeGty®ars without external power being supplied. Wi
external power is on, the battery-switch-over diraiil select the VCC to connect to the VRAM.

EEPROM

A serial EEPROM of 512 bytes (24C04) is be insthlin U7. The R-Engine uses the P22=SCL (serial
clock) and P29=SDA (serial data) to interface vilie EEPROM. The EEPROM can be used to store
important data such as a node address, calibratefficients, and configuration codes. It typigdtlas
1,000,000 erase/write cycles. The data retenianare than 40 years. EEPROM can be read and nvritte
by simply calling the functionee_rd() andee_wr ().

A range of lower addresses in the EEPROM is reskimeTERN use, 0x00 — Ox1F. The addresses 0x20 to
Ox1FF are for user application.

ADS8344, 16-bit ADC

The ADS8344 is an 8-channel, 16-bit, sampling ADighwynchronous serial interface. In single channel
operation a 25KHz sampling rate can be achievele ADC can accept input voltages in the range of
0-Vref volts. All eight input channels, Vref andD® signals are routed to the J4 pin header to aesgss

to the device. The R-Engine employs a varietywboard signals to interface the ADC. It uses ZJout
lines from the SCC26C92 to drive the Dataln (DIMgland the chip select line (/CS). It also uses @i
the inputs of the SCC26C92 as the Busy (BSY) sigmalkaddition, the synchronous serial port on the
Am186ER is used to clock (SCLK) the ADC and reagl #DC conversion results using the SDAT line.
TERN provides three software drivers for this ADChis de-coupling of instructions to drive the ADC
achieves a greater sampling rate when in singlar@damode, as you do not have to wait for the dp-ch
multiplexer to settle, or delay associated witheotlcontrol logic on the ADC. The following table
summarizes the signals to and from the ADC. Plea$er to the sample code in tli86\samples\re
directory (re_ad16.c)

Dual 12-bit DAC (DAC7612U)

The DAC7612 is a dual, 12-bit digital-to-analog weerier with guaranteed 12-bit monotonicity
performance over the industrial temperature rahtgequires a single +5V supply and contains aruinp
shift register, latch, 2.435V reference, a dual DABd high speed rail-to-rail amplifiers. For al-&dale
step, each output will settle to 1LSB withias7

The DAC7612 uses a three wire serial interfaceheo@PU. The CPU on the R-Engine uses three output
lines from the SCC26C92 to drive the serial inteef§Data In, Clock, and Latch Data) in an 8-leadGO

3-10

R-Engine Chapter 3: Hardware

package. The R-Engine offers up to two DAC7612yvigling a possible 4 12-bit serial DAC channels.
The DAC7612 outputs can support a capacitive |d&D0OpF.

Refer to data sheet in the tern_docs/parts dingctdrthe TERN CD and to sample code in the
tern/186/samples/re directory for additional infatian.

AD7852, 300KHz, 12-bit ADC

One AD7852 chip can be installed on RE. The AD7852 is sampling parallel 12-bit A/D congrthat
draws only 55 mW from a single 5V supply. This a@eviincludes 8 channels with sample-and-hold,
precision 2.5V internal reference, switched capaaticcessive-approximation A/D, and needs an mexter
clock.

The input range of the AD7852 is 0-5V. Maximum Bgacs include2.0 LSB INL and 12-bit no missing
codes over temperature. The ADC has a 12-bit datallpl output port that directly interfaces to fiad
12-bit data bus D15-D4 for maximum data transféez.ra

The AD7852 requires 16 ADC clocks (or 3.2 us) cosiom time to complete one conversion, based on a 5
MHz ADC clock. The busy signal has an 3.2 ps lowiqueindicating that conversion is in progress. In
order to achieve the 300 KHz sample rate, the AB86t use polling method, not interrupt operatian, t
acquire data. A sample programm ad.c can be found in the: \ t er n\ 186\ sanpl es\ r e directory

DA7625, 200KHz 12-bit DAC

The DA7625 is a parallel 12-bit D/A converter. Thigvice includes 4 voltage output channels with an
output range of 0-2.5V. It accepts 12-bit pardhglut data and has double-buffered DAC input logic.

The R-Engine uses pins D15 to D4 to directly irsteefto the DAC'’s full 12-bit data bus for maximuatal
transfer rate.

The DA7625 has an average settling time of 5 pu#h & maximum settling time of 10us. Additional
information is available in the tern_docs\partsediory of the CD. A sample prograre _da.c may be
found in thec: \ t er n\ 186\ sanpl es\ r e directory.

3.8 Headers and Connectors

Expansion Headers J1 and J2
There are two 20x2 0.1 spacing headers for R-Engipansion. Most signals are directly routed to the
Am186ER processor.

These signalsare +3.3V signals, but are +5V tolerant. Any

voltages above +5V will certainly damagethe board. Jpini

3-11

Chapter 3: Hardware R-Engine

RLLLTT

[immmismognn

i ::? :'_i'. ;

-
~
-
-

J2pinl

Figure 3.4 Pin 1 locations for J2 and J1

3-12

R-Engine Chapter 3: Hardware

J2 Signal J1 Signal

GND 40 39 VCC VCC 1 2 GND
P4 38 37 P14 OP1 3 4 CLK
IPO 36 35 P6 RxDB 5 6 GND
TXDO 34 33 /INT4 TxDB 7 8 DO
RxDO 32 31 P19 VOFF 9 10 D1
P5 30 29 P1 /BHE 11 12 D2
TxDA 28 27 OPO D15 13 14 D3
RxDA 26 25 oP2 IRST 15 16 D4
IP1 24 23 P15 RST 17 18 D5
P2 22 21 INT3 P16 19 20 D6
PO 20 19 /INT2 D14 21 22 D7
P25 18 17 P24 D13 23 24 GND
IP3 16 15 IP4 25 26 P12
P11 14 13 OoP7 D12 27 28 A7
P10 12 11 P13 /WR 29 30 A6
A19 10 9 P23 /RD 31 32 A5
/INTO 8 7 NMI D11 33 34 Ad
/INT1L 6 5 SCLK D10 35 36 A3
P26 4 3 SDAT D9 37 38 A2
GND 2 1 D8 39 40 Al

Table 3.3 Signals for J2 and J1, 20x2 expansion ports

J4 Connector for PPI, ADC

0] Us L] [
RS ge__Op
0 g =)
u7
AM186ES Flash
v u4
J

RNL vz .
Uz

e SRAM

PPl

[& ofie

ADC

DAC 7625

% 10

SCCE91
UART &

s

+
o as © 2 L u [a) o o < o 0O o« ©
Z Z2Z2Z20ULuUa<mZ0oNZZZZod4daugcgLcIsT<L<oON~NZAO00A0
T < << 0xxe>3>0>>00008ddNAAQ0NO0O0dZ20<<<I<<
® & 6 o & o o o o o o o o o o o o o o o oo o o o o o o o o o

,]4}7\.oooooo.oo.oooooo.oo.ooo.oo.o
M O N~NAQO QO O U SO N SO NN O WU I MO A N M T~ O QO A MW N~
ZZ2ZzZzz002eeeeoeceeeeoddNddNNANAbA4Add4ddddZzOoaoaa0
< << <O > o< < <<

J4 connector

The pin layout for the J4 30x2 pin header on therigine is as follows:

3-13

Chapter 3: Hardware

R-Engine

J4 Signal
AN1 1 2 ANO
AN3 3 4 AN2
ANS5 5 6 AN4
AN7 7 8 ANG6
GND 9 10 COM
vVCC 11 12 REF+
107 13 14 REF
106 15 16 VA
105 17 18 VB
104 19 20 GND
103 21 22 VvC
102 23 24 VD
101 25 26 GND
100 27 28 GND
127 29 30 GND
126 31 32 GND
125 33 34 120
124 35 36 121
123 37 38 122
110 39 40 DA1
111 41 42 DA2
112 43 44 DA4
113 45 46 DA3
114 47 48 115
116 49 50 117
GND 51 52 GND
AD1 53 54 ADO
AD3 55 56 AD2
AD5 57 58 AD4
AD7 59 60 AD6

Table 3.4 Signals for J4, 30x2 header

3-14

R-Engine Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/CBevelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

An IDE project for the R-Engine has been pre-builtfor your convenience. It is located in the
\tern\186\samples\re directory. The filename is “retest.ide”. It includes sample code linked to the
correct libraries, ready to run and access RE hardware.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not felexl, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset megduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissisf an I/O address space and a memory address
space. 1/O address space ranges fox@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficittcess any address in I/O or memory space, amd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsign#dnsigned char data
Return value: none

These standard C functions are used to place gxbdiita at any memory space location. Jégment
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsajp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

Chapter 4: Software R-Engine

These functions retrieve the data for a specifédt@ss in memory space. Once agains#gmentaddress
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component méppeat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retamdom
garbage values every time you try to peek into diclalress.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

(D
=}

This function is used to place tbata into the appropriataddressin /O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usexh@st cases when dealing with user-configured perid
components.

When dealing with processor registers, be sureédle correct function. Usaitport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipiEsase refer to the Hardware chapter of thisrtieeh
manual.

4.1 Programming Overview

The ACTF loader in the RE 512KB Flash will perfotiie system initialization and prepare for new
application code download or immediately run the-jpaded code. A remote debugger kernel can be
loaded into the Flash located starting Oxfa000.ugging at baud rate of 115,200 (re40_115.HEX fer th
Am186ER and re80_115.HEX for the R1100) are avkilat loader file “|_debug.hex” and both debugger
files re40_115.hex and re80_115.HEX, are included the EV/DV disk under the
c:\tern\ 186\ rom re\ directory.

A functional diagram of the ACTF (embedded in tHe) & shown below:

4-2

R-Engine Chapter 4: Software

[Power on or Reset }

SEND out MENU over SERO at 19200, N, 8, 1 to
Hyperterminal of Windows95/98

STEP2 Jumper on ?
2 pin 38=P4=GND 2

Text command or download new codes

v

Process Commands }

See ACTF-kit and Functions for detail

Read EE for the jump address CS:IP [

[RUN the program starting at the CS:IP }

The C function prototypes supporting Am186ER hamiwean be found in header fil@é.H, in the
c:\tern\186\i ncl ude directory.

Sample programs can be found in thec: \tern\ 186\ sanpl es\ ae and
c:\tern\ 186\ sanpl es\r e directories.

Chapter 4: Software

R-Engine

4.1.1 Stepsfor RE based product development

Preparation for Debugging

* Connect RE to PC via RS-232 link, 19,200, 8, N, 1

« Power on RE without STEP 2 jumper installed

* ACTF menu should be sent to PC terminal

* Use “D” command to download “I_debug.HEX” in SRAM
« “G04000" to run “I_debug.”

« Download “re40_115.HEX" to Flash starting at (08

« “GFAQ00” to setup EE and run debug kernel

« Install the STEP2 jumper (J2.38-40)

« Power-on or reset RE, Ready for Remote debugger

STEP 1: Debugging
« Start ParadigmC++, open tern\186\samples\re'stide

« Download code to target SRAM.
« Edit, compile, link, locate, download, and remd&bug

U

STEP 2: StandaloneField Test
» "G08000" setup EE Jump Address, points to applicatode
resides in battery backed SRAM
* Install STEP2 jumper, then power

» Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.

U

STEP 3: Production DV-P

» Generate application HEX file with C-P

* ACTF “D” to download “L_29F40R.HEX" into SRAM
» Download application HEX file into FLASH

» Modify EE jump address to 0x80000

* Set STEP2 jumper

into Flash for a complete product.

The on-board Flash 29F400BT has 256K words of 164dach. It is divided into 11 sectors, compriséd o
one 16KB, two 8KB, one 32KB, and seven 64KB sectdise top one 16KB sector is pre-loaded with

There is no ROM socket on the RE. The user’s agfitin program must reside in SRAM for debugging in
STEP1, reside in battery-backed SRAM for the sthmaafield test in STEP2, and finally be programmed

ACTF boot strip, the one 8KB sector starting Oxfa@ for loading remote debugger kernel, and tisetre

all sectors are free for application use.
The top 16KB ACTF boot strip is protected.

Two utility HEX files, “|_debug.HEX" and “L_29F40RIEX", are designed for downloading into SRAM

starting at 0x04000 with ACTF-PC-HyperTerminal. Uke “D” command to download, and use the “G”

command to run.

4-4

R-Engine Chapter 4: Software

“L_DEBUG.HEX" will erase the 8KB sector and load ‘@e40_115.HEX" or “re80_115.HEX".
“L_29F40R.HEX” will erase the remaining sectors @mwnloading your application HEX file.

1 ACTE | OXFFFFF
Utility
OxFC000
Debug
Kernel
Flash | 40115 | 6.ra000
! 0x80000
0x20000
f
512K SRAM 128K SRAM
Beginning of
0x08000 *——gapplication in
STEP 1& 2
! 0x00000 |}

For production, the user must produce an ACTF-doaadble HEX file for the application, based on the
DV-P. The application HEX file can be loaded inte bn-board Flash starting address at 0x80000.

The on-board EE must be modified with a “G80000femand while in the ACTF-PC-HyperTerminal
Environment.

The “STEP2” jumper (J2 pins 38-40) must be instaftar every production-version board.

Step 1 settings

In order to correctly download a program in STEPithwParadigm C/C++, the RE must meet these
requirements:

1) re40_115.hex must be pre-loaded into Flashisfpatddress 0xfa000.

2) The SRAM installed must be large enough to lyolgr program.

For a 128K SRAM, the physical address is 0x00000Q€fk
For a 512K SRAM, the physical address is 0x0000D#¢

3) The on-board EE must have a correct jump addi@sthe re40_115.HEX with starting address of
0xfa000.

4) The STEP2 jumper must be installed on J2 piré®B8

4-5

Chapter 4: Software R-Engine

4.2RE.LIB

RE.LIB is a C library for basic R-Engine operatioris includes the following modules: AE.OBJ,
SERO0.0OBJ, SER1R.OBJ, and AEEE.OBJ. You need toREKL.IB in your applications and include the
corresponding header files in your source code.folb@wing is a list of the header files:

Include-file name | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1R.H External UART SCC26C92

AEEE.H on-board EEPROM

4.3 Functions in AE.OBJ

4.3.1 R-Engine Initialization

ae_init

This function should be called at the beginningweéry program running on R-Engine core controlldts.
provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects ofe_init are described below. For details regarding regisse, you will want to refer to the
AMD Am186ER Microcontroller User's manual.

< Initialize the upper chip select to support thead#fROM. The CPU registers are configured such
that:

— Address space for the ROM is from 0x80000-0xffftf (hap MemCard I/O window)
— 512K ROM Block size operation.

— Three wait state operation (allowing it to suppgrtto 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you regjiricreased performance (at a risk of stability
in noisy environments). For details, see the UMGfper Memory Chip Select Register)
reference in the processor User’'s manual.

out port (Oxffa0, 0x80bf); // UMCS, 512K ROV, 0x80000-Oxfffff
¢ Initialize LCS (ower Chip Select) for use with the SRAM. It is configured so that:
— Address space starts 0x00000, with a maximum oK5RAM.
— Three wait state operation. Reducing this valueiggrove performance.
— Disables PSRAM, and disables need for externalread
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000
e Initialize MMCS and MPCS so thsdCS0 andPCSO0-PCS6except for PCS4) are configured so:

- MCSO0is mapped also to a 256K window at 0x80000. #dusith MemCard, this
chip select line is used for the 1/0O window.

— Sets upPCS5-6lines as chip-select lines, with three wait stgieration.

out port (Oxffa8, OxalObf); // s8, 3 wait states
out port (Oxffa6, O0x81ff); // CSOMSKH

4-6

R-Engine Chapter 4: Software

e Initialize PACS so thaPCS0-PCS3are configured so that:
— Sets upPCSO0-3lines as chip-select lines, with fifteen wait staperation.

— The chip select lines starts at /0 address 0x0@fiB,each successive chip select line
addressed 0x100 higher in I/O space.

out port (Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

« Configure the two PIO ports for default operatiddl pins are set up as default input, except for
P29 (used for driving the LED), and peripheralction pins for SERO, as well as chip selects for
the PPI.

out port (Oxff 78, 0xe73c); /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/1 P16=PCSO, P17=PCS1=PPI

out port (Oxff 76, 0x0000) ; /1 Pl OVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, A19, A18, Al7, P2=PCS6=RTC
/1

out port (Oxff 70, 0x1000) ; Pl OMD, P12=LED

e Configure the PPI 82C55 to all inputs. You caretélsese to inputs.

out port b(0x0103, 0x9a) ; /1 all pins are input, 120-23 output
out port b(0x0100, 0) ;

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120 high

The chip select lines are set to 15 wait statesldigult. This makes it possible to interface witany
slower external peripheral components. If you negfaster I/O access, you can modify this numtmvrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for tipsirpose.

void io_wait

Arguments: char wait

Return value: none.

This function sets the current wait state dependmthe argumemwait.
wai t =0, wait states 0, 1/0O enable for 100 ns

wait=1, wait states = 1, |/O enable for 100+25 ns
wait=2, wait states = 2, |/O enable for 100+50 ns
wai t=3, wait states = 3, |1/O enable for 100+75 ns
wai t=4, wait states = 5, |/O enable for 100+125 ns
wai t=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |/ O enable for 100+375 ns

4.3.2 External Interrupt Initialization

There are up to six external interrupt sourceshenR-Engine, consisting of five maskable interrpipis
(INT4-INTO) and one non-maskable interruptMI). There are also an additional eight internatrintpt
sources not connected to the external pins, camgistf three timers, two DMA channels, both
asynchronous serial ports, and k!l from the watchdog timer. For a detailed discussivolving the
ICUs, the user should refer to Chapter 7 of the AMB186ER Microcontroller User's Manual. Or the
R1100 user’s manual, both available on the CD untieramd_docs directory. Remember, DMA
channels to and from the serial port not availableon the R1100.)

TERN provides functions to enable/disable all af th external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isieitun pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

4-7

Chapter 4: Software R-Engine

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dksd must
be cleared. This can be done using Menspecific EOl command At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityrimg will be handled
first, and a higher priority interrupt will intenpti any current interrupt handlers. So, if the udeoses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine puestds to
issue the nonspecific EOl command to clear theectitnighest priority IR.

To send the nonspecific EOl command, you need i@ WreEOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwaapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€de second argument is a function pointer, whith
act as the interrupt service routine. The overtwathe interrupt service routine, when executedbiout
20 ps.

By default, the interrupts are all disabled aftatialization. To disable them again, you can edgbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiR
return on interrupt.

voi d
voi d

void intO_init(unsigned char
void intl init(unsigned char
void int2_init(unsigned char
void int3_init(unsigned char void interrupt far(*
void int4_init(unsigned char void interrupt far(*

i, nterrupt far(*
Ia
i,
i,
ia
void nm _init(void interrupt far (* nm _isr)());

i i nt) ()
interrupt far(* intl_isr)()
void interrupt far(* int2_isr)()
i i nt) ()
i i nt) ()

N e e

4.3.3 /O Initialization

Two ports of 16 1/0O pins each are available onRhENngine. Hardware details regarding these PIGsline
can be found in the Hardware chapter.

Several functions are provided for access to tl@ IfPles. At the beginning of any application whgoe
choose to use the PIO pins as input/output, youprdlbably need to initialize these pins in onehaf four
available modes. Before selecting pins for thigppae, make sure that the peripheral mode operafion
the pin is not needed for a different use withie $ame application.

You should also confirm the PIO usage that is desdrabove withinae_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexldor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this mézdd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 14 of the AMD Am1B68Eser's Manual.

Please see the sample program pio.cin t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qgun
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingeBding on the pin
being used, it might require from 5-10 us. The imaxn efficiency you can get from the PIO pins oci€ur
you instead modify the PIO registers directly véathoutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

4-8

R-Engine Chapter 4: Software

The data register @xff74 for PIO port 0, an@xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
moderefers to one of four modes of operation.
e 0, normal operation

e 1, input with pullup/down

e 2, output

« 3, input without pull

unsigned int pio_rd:

Arguments: char port

Return value: byte indicating P10 status
Each bit of the returned 16-bit value indicatesatent 1/0 value for the P1O pins in the seleqted.
void pio_wr:

Arguments: char bit, char dat

Return value: none

Writes the passed in dat value (either 1/0) test#ected PIO.

4.3.4 Timer Units

The three timers present on the R-Engine can be fosea variety of applications. All three timetm at
%, of the processor clock rate, which determinesnthgimum resolution that can be obtained. Be aware
that if you enter power save mode, the timers oypkrate at a reduced speed as well.

These timers are controlled and configured throaginode register that is specified using the softwar
interfaces. The mode register is described inildatahapter 10 of the AMD AM186ER User’s Manual.

The timers can be used to time execution of yoer-defined code by reading the timer values befmt
after execution of any piece of code. For a sarfidedemonstrating this application, see the sanfid
timer.c in the directorytern\186\samples\ae.

Two of the timers,TimerO and Timerl can be used to do pulse-width modulation with datde duty
cycle. These timers contain two max counters, ehbe output is high until the counter counts up to
maxcount A before switching and counting up to noaxtd B.

U12 AD7852 uses Timerl output (P1=J2.29) as ADClclap to 5SMHz.

It is also possible to use the outpufTafer2 to pre-scale one of the other timers, since 1@dsiblution at
the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. The sample filésner02.c andtimer12.c, located intern\186\samples\ae, demonstrate this.

The specific behavior that you might want to impdenis described in detail in chapter 10 of the AMD
AM186ER User’s Manual.

void t0_init

void t1_init

Arguments: int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Chapter 4: Software R-Engine

Both of these timers have two maximum counters (MMOUNTA/B) available. These can all be specified
usingta andtb. The argumentm is the value that you wish placed into tTheCON/T1CON mode
registers for configuring the two timers.

The interrupt service routing isr specified here is called whenever the full cosnteached, with othelr
behavior possible depending on the value spedifiethe control register.
void t2_init

Arguments: int tm, int ta, void interrupt far(*t_isr)()

Return values: none.

Timer2 behaves like the other timers, except it only dv@s max counter available.

4.3.5 Analog-to-Digital Conversion

Parallel ADC AD7852

The high-speed AD7852 ADC unit (U12) is mapped i@ space starting at 0x0200. To start a ADC
conversion on channel ??, an 1/O write, outportbg®0+??,0); will start a new ADC conversion on the
ADC channel ??. The ADC busy signal is routed to ¢Pthe SCC26C92. It goes low for 16 ADC clocks
indicating busy. A 16-bit I/O read, inport(0x020®ill return the previous ADC conversion resultttwi
only upper 12-bit data D15-D4 valid. A sample peogre_ad.c demonstrating the use of the AD7852 is
included int er n\ 186\ sanpl es\re.

Serial ADC ADS8344

The ADS8344 ADC unit (U14) provides 8 channels oflag inputs based on the reference voltage
supplied toREF+. For details regarding the hardware configuratsae the Hardware chapter.

To increase sampling speed on the 16-bit ADC, #neessary operations to read channels have been de-
coupled into three user-defined functions, insteadne function that does everything. This de-cigpl
allows for the by-passing of propagation delaymtdrnal control logic, multiplexers, etc.

The following functions will drive the 16-bit ADQMaximum speed recorded is about 25 KHz, over two
times faster than its earlier 12-bit predecessbhne order of functions given here should be folldvie
actual implementation.

unsigned char single_con_byte (char ch);
unsigned int ad16(unsigned char k);
unsigned int format_data(unsigned int ad);

For a sample file demonstrating the use of the Apl€ase seee_adl6.cint er n\ 186\ sanpl es\re.

4.3.6 Digital-to-Analog Conversion

Parallel DAC7625

The high-speed DAC DA7625 (U11) is mapped in Ox@x6Mx0606.

Use outport(0x0x600, dac); to write upper 12-bibEN4 data into DAC channel 1, J4 pin 40
Use outport(0x0602, dac); to write upper 12-bit 14 data into DAC channel 2, J4 pin 42
Use outport(0x0604, dac); to write upper 12-bit 14 data into DAC channel 3, J4 pin 46

4-10

R-Engine Chapter 4: Software

Use outport(0x0606, dac); to write upper 12-bit Ellb data into DAC channel 4, J4 pin 44

Details regarding hardware, such as pin-outs anidqeance specifications, can be found in the Hardw
chapter.

A sample program demonstrating the DAC can be fouind re_da.c in the directory
tern\ 186\ sanpl es\re.

Serial DAC DAC7612

Two DAC7612 chips are available on the R-Enginep@sitionsU15 and U17 The chips offer two
channels, A and B, for digital-to-analog conversi@etails regarding hardware, such as pin-outs and
performance specifications, can be found in thediware chapter.

A sample program demonstrating the DAC can be fouind re_da.c in the directory
tern\ 186\ sanpl es\re.

void re_dal
Arguments: int dac
Return value: none

This function drives the DAC at position U15, outpare VA and VB

The argument dac contains two pieces of informatiom value to be converted and the channel toubittp
on. The argument dac must be constructed in thewiwig format:

dac = 0x2000 | (OXOFFF & dac); /l channel VA,184
dac = 0x3000 | (OXOFFF & dac); /I channel VB,184.

These argument values should range from 0-4098,wmiits of millivolts. This makes it possible tove a
maximum of 4.906 volts to each channel.

void re_da2
Arguments: int dac
Return value: none

This function drives the DAC at position U17, outpare VC and VD

The argument dac contains two pieces of informatiom value to be converted and the channel toubittp
on. The argument dac must be constructed in thewivlg format:

dac = 0x2000 | (OXOFFF & dac); /I channel VC,224
dac = 0x3000 | (OXOFFF & dac); /I channel VD, 244.

These argument values should range from 0-40985, witts of millivolts. This makes it possible towe a
maximum of 4.905 volts to each channel.

4-11

Chapter 4: Software R-Engine

4.3.7 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timéB) jumper is set, the functidmitwd() must be called every 1.6
seconds of program execution. If this is not ei@tibecause of a run-time error, such as an iefiaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to théue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

There is a common data structure used to accesssanobth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten mnute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}TIM

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrci, as
the clock failing to respond.

int rtc_rds
Arguments: char* realTime
Return value: int error_code

4-12

R-Engine Chapter 4: Software

This function is slightly different from the rtc_fdnction. It places the current value of the téak clock
into a character string instead of the TIM struetumaking it a more convenient function than rtc_rd

This function places the current value of the teaé clock in the char* realTime. The string hasr=nat

of “week year10 yearl month10 monthl dayl10 dayX®bhourl min10 minl second10 secondl”. The
rtc_rds function also places a null terminating characteéhe end of the time string. It is important tdeno
that you must be sure to make the destination cteratring long enough to hold the real time cloakie
plus the null character. A destination characténgthat is too short will result in the data inufetely
following the character string in memory to be awétten, causing unknown results.

For example “3040503142500\0” represents Wedneltigy3, 2004 at 02:25.00 pm. There are only two
positions for the year, so the user must decide thatetermine the hundreds and thousands digiteof t
year. Here we just assume “04” correlates to tlze 2604.

The length of char * realTime must be at leasthdracters, 13 plus one null terminating character.
This function returns 0 on success and returnschse of error, such as the clock failing to respon
Void rtc_init

Arguments: char* t

Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tevdekday, year10, year 1, month10, monthl, dayl10, dayl, hour10,
hour1, minutelO, minutel, secondl10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8 0, 6, 0, 5, 1, 3, 5, 5 3, 0};

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applieatibat require precision timing, you should useliware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Tawual time that it waits depends on processordspee
well as interrupt latency. The code is functiopadientical to:

VWhile(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int
Return value: none

4-13

Chapter 4: Software R-Engine

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoafp
iterations. Again, this function is highly depentdapon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr .

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing cocerf
the DEBUG ROM or from some other address.

4.4 Functions in SER0.0BJ

The functions described in this section are prgety in the header filser0.h in the directory
tern\ 186\ i ncl ude.

The Am186ER only provides one asynchronous seoidl ffhe R-Engine comes standard with the
SCC26C92, providing two additional asynchronougspof he serial port on the Am186ER will be called
SERO, and the two UARTSs from the SCC26C92 will &femred to as SER1 and SER2.

This section will discuss functions sr0.honly, as SERO pertains to the Am186ER.

By default, SERO is used by the DEBUG kernel (rédib.hex) for application download/debugging in
STEP 1 and STEP 2. The following examples thatlvél used, show functions for SERO, but since it is
used by the debugger, you cannot directly debug0SHRis section will describe its operation and
software drivers. The following section will dissliISSER1 and SER2, which pertain to the external
SCC26C92 UART. SER1 and SER2 will be easier to émgnt in applications, as they can be directly
debugged in the Paradigm C/C++ environment.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Iofléhe processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions forSERO ONLY. SER1 and SER2 have baud rated based upon differguments. These are
based on a 40 MHz CPU clock.

Function Argument | Baud Rate

1 110
2 150
3 300

4-14

R-Engine Chapter 4: Software

Function Argument | Baud Rate
4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000
16 28,800

Table 4.1 Baud rate values for ser0O only

As of January 25, 2004, the new baud rate 28,0@0asded. The corresponding functional argumengis 1
(0x10). If the 80Mhz RE is used, the baud rate kéitome 57,600.

After initialization by callingsO_i ni t (), SERO is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 0_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAO operatio terms of receiving, there is no software bead
or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status withr hi t 0() and
take out the data from the buffer wilet ser 0() , if any. The input buffer is used as a circulagrbuffer,
as shown in Figure 4.1. However, the transmit dj@ras interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy ¥
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size i6iz), and baud rateb@ud) are specified by the user wistd i ni t ()
with a default mode of 8-bit, 1 stop bit, no parifter sO_i nit () you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0 ControgiBter
(SPOCT) if necessary, as described in chapter #2e0Am186ER manual for asynchronous serial ports.

Due to the nature of high-speed baud rates andipessffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer witht ser 0() before the ring buffer is full, new data will
overwrite the old data without warning or controlhus it is important to provide a sufficientlyde buffer

4-15

Chapter 4: Software R-Engine

if large amounts of data are transferred. For gienif you are receiving data at 9600 baud, a 4HGEer
will be able to store data for approximately foacands.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for réegiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitO() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates awata is available in the buffer.

You can usgyet ser 0() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after evaggt ser 0() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @0_cl ose() can stop this
receiving operation.

For transmission, you can ugait ser O() to send out a byte, or ugrut sers0() to transmit a
character string. You can put data into the trahsng buffer,sO_out _buf, at any time using this
method. The transmit ring buffer addresvyf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out bufferd transmit. After you cajput ser 0() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘.’ charadte‘?’. The translated HEX file is then transimit out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ae.

Software Interface
Before using the serial ports, they must be initad.

There is a data structure containing importanas@ort state information that is passed as argtiteetihe
TERN library interface functions. TheOM structure should normally be manipulated only BRN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufnd associated pointer values, you can watch the
transmission process.

typedef struct ({
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;
unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */
int in_head; /* I nput buffer HEAD ptr */
int in_size; /* Input buffer size */
int in_crcnt; /* Input <CR> count */
unsi gned char in_nt; /* Input buffer FLAG */
unsi gned char in_full; /[* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */
int out_tail; /* Qutput buffer TAIL ptr */
int out_head; /* Qutput buffer HEAD ptr */
int out_size; /* Qutput buffer size */
unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /[* Qutput buffer MI */
unsi gned char tnso; /1l transmit macro service operation

4-16

R-Engine Chapter 4: Software

unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */
unsi gned char sl ave;

unsi gned int in_segm /* input buffer segment */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */
unsi gned char byte_del ay; /* V25 macro service byte delay */
} COM
sn_init

Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO with the sified parametersb is the baud rate value shown in Table
4.1. Argumentsbuf andisiz specify the input-data buffer, antbuf andosiz specify the location and size
of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stoiy no parity communication.

There are a couple different functions used fangmaission of data. You can place data within thigat
buffer manually, incrementing the head and taifdrupointers appropriately. If you do not call cofethe
following functions, however, the driver interrufatr the appropriate serial-port will be disabledieh
means that no values will be transmitted. Thisved| you to control when you wish the transmissibdaia
within the outbound buffer to begin. Once the fintpts are enabled, it is dangerous to manipulage t
values of the outbound buffer, as well as the \abfahe buffer pointer.

putsem
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate sepiart. The return valug
returns one in case of success, and zero in aey o#ise.

putsers
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferserhitn() should be called befor
trying to retrieve data.

1%

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

4-17

Chapter 4: Software R-Engine

getsen
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again, this
function assumes thaerhitn has been called, and that there is a charactezmirgsthe buffer.

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffstr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callgytetser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedthdouffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means thaxetimight actually be multiple null charactershia byte
array, and the returnedlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetsersandputsersfunctions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appatgpfor
whatever form of flow control you wish to implemerBefore using these functions, you should onaérag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to the AM186ES User’s Manual.

char sn_cts(void)
Retrieves value € TS pin.

void sn_rts(char b)
Sets the value ®RTS to b.

Completing Serial Communications

After completing your serial communications, yown ga-initialize the serial port with s1_init(); teset
default system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délvenhardware as well as disabling the interrupt.

4-18

R-Engine Chapter 4: Software

The asynchronous serial /0 port available on the&l86ER processor have many other features thatt migh
be useful for your application. If you are truhterested in having more control, please read @hdya of
the manual for a detailed discussion of other festavailable to you.

4 .5 Functions in SER1R.OBJ

The functions found in this object file are profmtyg inserlr.hin thet er n\ 186\ i ncl ude directory.

The SCC26C92 is a component that is used to proxitleo additional asynchronous ports. It uses a
3.6864 MHz crystal, different from the system clageed, for driving serial communications. Thisame
the divisors and function arguments for settinghgbaud rate for SER1 and SER 2 are different than
SERO.

The SCC26C92 component has its own 3.6864 MHzarpsoviding the clock signal. This allows for the
generation of industry standard baud rates.

Function Argument | Baud Rate
6 28,800

7 4,800

8 9,600

9 19,200

10 38,400

11 57,600

12 115,200

Table 4.2 Baud rate values for SER1 and SER 2

Unlike the other serial ports, DMA transfer is mgtd to fill the input buffer for SCC. Instead,iaterrupt-
service-routine is used to place characters ingoirtput buffer. If the processor does not respanthé
interrupt—because it is masked, for example—therinpt service routine might never be able to cetepl
this process. Over time, this means data mighbd&tan the SCC as bytes overflow.

Initialization occurs in a manner otherwise simil@rSERO. ACOM structure is once again used to hold
state information for the serial port. The in-bdwand out-bound buffers operate as before, and brist
provided upon initialization.

sl _init
Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes SER1 with the specifiedrametersb is the baud rate value shown in Table 4.2
Argumentsibuf andisiz specify the input-data buffer, antbuf andosiz specify the location and size of th
transmit ring buffer.

)

s2_init

Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ca,
COM * cb

Return value: none

4-19

Chapter 4: Software R-Engine

This function initializes SER2 with the specifiedrpmetersb is the baud rate value shown in Table 4.1
Argumentsibuf andisiz specify the input-data buffer, antuf andosiz specify the location and size of the
transmit ring buffer.

NOTE: The only difference between functions for SER and SER2 is that SER2 functions requires
both COM arguments.

As a part of initializing the serial port, the fuion call also sets up the interrupt service rautimat handles
the data transfer between the SCC26C92 and the AFR8 The SCC26C92 UART takes up external
interrupt/INTO on the CPU. As a part of tliserlr.h”, s1_isr(); has been created to automatically handle
the need for an interrupt service routine. Sincth behannels on the SCC26C92 use the same interrupt
there is no need for an ISR for SER2.

By default, the SCC26C92 is enabled for btdmsmit andreceive. This will allow for the use of an
RS-232 in full-duplex mode. Once this is done, yam transmit and receive data as needed. If you d
need to do limited flow control, the MPO pin orethl header can be used for RTS. For a sample file
showing RS232 full duplex communications, pleasee see_scc.c in the directory
tern\ 186\ sanpl es\re.

RS485 is slightly more complex to use than RS2&%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i8Br installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you willso need to place the
RS485 driver in transmission mode as well. Whde gre receiving data, the RS485 driver will neeté
placed in receive mode.

sn_send_e/s_rec_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC26C92 UART for channel wheren can be ‘1’
or '2'. After initialization, both of these funcins are disabled by default. If you are using FES48ly one
of these two functions should be enabled at anytiome

Transmission and reception of data using the S@Cn®ost ways identical to SERO. The functionsduse
transmit and receive data are similar. For detagsrding these functions, please refer to theique
section.

put sern

put sersn

getsern

get sersn

4-20

R-Engine Chapter 4: Software

The above functions work for both SER1 and SERRitye still important to remember that any functi
call to SER2 must pass both COM arguments. Reftretdull definition ofs2_init() for the format that
must be followed for all calls to SER2

Flow control is also handled in a mostly similasti'on. The follow table summarizes the flow cohtro
signals.

Channel Flow control line | SCC name | Location on RE
SER1 RTS OPO J2 pin 27
SER1 CTS IPO J2 pin 36
SER2 RTS OP1 J1pin3
SER2 CTS IP1 J2 pin 24

unsigned char s1_cts (void); /I reads IPO = J2.36
void s1_rts (charb); // drives OPO = J2.27

unsigned char s2_cts (void); /I reads IP1 =J2.24
void s2_rts (char b); /l drives OP1 =J1.3

Other SCC functions are similar to those for SER® SER1.

sn_cl ose
serhitn

clean_sen

4.6 Functions in AEEE.OBJ

The 512-byte serial EEPROMA4CO04) provided on-board allows easy storage of nontilelgprogram
parameters. This is usually an ideal locationtémesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite stmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addresse€x00 to Ox1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, jump address for Ske, and other data that is of a more permanenteat

The rest of the EEPROM memory spa@e20to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

4-21

Chapter 4: Software R-Engine

This function is used to write the passedan to the specifiedddr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from thec#fjeel address.

4-22

T 199ys[200z 9T AinC 9 1ed
HOS NWA = g 19/0va 19/0va
laqunN 1uaunoog|az IS YTOHYV L VYTOHV .
Ep—— aaXL N DA G M> nw_n._v Y O VA S M> nw_n._v Pr oo
L o IO 9 17 jp[e 8D OB 9 15, 3, [e 9D
a1l €0 BT oo TN K- = WA 7= oMo oY NN K-t = A 7 o) ZT €T OINT 9 S OINT/
SO 0d 1 an 8 T e ©A 8 T e
ais L0l le Ll blsls L7 7N SN 46N o8N
YTOHYL YTOHYL
T[T o [
aan 089 TV
2 Y Y a 55558985 38 2 STa = ZINT ot TRINT/ Tisd ¥ € 1sd7/
62d o 1 3O ¥ ¥ ¥ g 8T | ;0 0000X X777 [[_ev vig ao
T ™ o) 2o 61 6T | &9 L4 Ty G TdT JelrlEQe 3en g6n
0z 59 A - z58.av YTOHVL YTOHVL
70 1c € td1
L€ edl 010129 +9
o _zg | N N PIVVIN IV
ec| N, @e9mos [T @dd RE’ iINT 8 GTINT/ VINT 2 T VINT/
810 80 o) 110 € 0INT7 vz Y7 0N €10 7 a 8 X
se | m vl ey y zta er]| & N [_oav aen ven
va ad | d 1a Sv
i i9a WVaA 0N A €A 92179 .08 ¥ od[ers TId 61 &9 oV [9aav
L] 89 9rzod d. 4399 [Tra 01 0z &g Y s wav TS8Nd
TH1g 0a 8¢ 0 2d 50 1c v_eav T
0000 INHXXd 7 va v
van 1€ | * p——" g o & A v m Tav A T
I B
|_v 434 aHS sloltlzlelrlsloligle 2a10¥57asA OV
+ T = I 568 oo LA CEEE[EEEEEEE «a ve| T dawdoglds [T 0V d<
z ONg T aJo av 18 0 VIN I/
e AOLEL| 5 oqw [B—ANY o &d slo| BBl Tz S
/O 12 TL 2 ¢INT/ g
& noa sav === cle|cleleefele
as a1 799 FV e N FZ) X 79
od 1 91| NS5 B [0D EX a 0N MOT OINI/ /
[=e) O zav NV vaxy vaxd A0% ¥a 8Td TINT/ 8
£0 8150 S [E_aw INVEA A Vi @ / AN ™
09aMaH TS 2on oy e N sd SdT id €d
oauaH ON 02 T ONV ££TSa MV
7N MOT dNdVO
sy 99 6S P—ay 62d s | YISO [y MZE ZdvoTY
% 985S 48 P—cqy Zdvo v zed 0 | P°Y PgIon 4not
av 9 9S 5§ P JN0T eINT7 298, &¥ [—ox ™ ! _H_ X 91 120 ZHNOT
qvses P—ay €20 A s LN X T ex £TVIX el o)
Yo zg 15 p—HIT 2auaH o1 60 _H_ Yo _H_
d 05 67 N o O)| 8N 4dot "X €X 4d0T OON 4doT ™X X 4d
9 a3 2 T OA 0N dNAVO ZIVIX TIVIX
4Ll g gy v o
v ™ 02 S8aN ZdvOv
L d o gr L
£ 521 [Z2] ozz 4ot
qQry ey z SZ v 2
D oz T
va T Zo vzo VeI a7 20A 2 €N
YD o op 6
0 oz | aD ,11188 N
—Z=—q 8¢ L€
Al 34 a3 A TT) 7Td STEOXWN
Ter 9 9ese ve 9lsrle(e|Lol6[8|L T6IXW e 5OR
—=—0 v€ €€ & S Idd TIT[T[T[TT{T[E O®A
< R EN v Z __ENn
2E 1€ 5528 Idd oA 6] |3d SO g OO [T—ane SYoove
ot 6z p—2& L I10r590.01dS 2AuH odd 10
Le 222¢22ZN2ZVVND Odd/ 0 L 91N Svoove
82 L2 p—5&T zzd @i/ o O an 11/ Fe—
0T 221 8T ddddd d 97 5 aa/ 62d 2 T T o
9Z 52 p——=0 £zd 00d 030 Nog vas SsA
a 10 €21 61 S 00 60 WVA/ 2 S 62d S 2
B2 dvzez 0Td T0d 2 = Ao e =& 5 | ps v
Z 0T 1 02 v 10 O/ € v oo Z2d 9 € __awo
—A__dzz1z 1Td z0d OGN J0A W v
€ TI1 1c € 20 MWt € _OOA aNo /. Z__ao
Ao 0z 6T 1] 214 €0d 1SH / OA 20N ov
3) 0 ZT 1 22 Z__ €0 iS4/ S PRI 20N 8 T Ao
58T /T ¥ <N N HE— Saop 1sd - an (ER =
A 9T 5T = = e 0d g S
qrI el 701 0I0]910 10 Gz | 71d S0d 'y 56 N
d z1 11 p—~4L! 4 STd 90d
0 0N JON 0N Z Zv_90
dor 6 =4 551 9Td g | 20d [£L20
o8 £ 5 TTT 59 £Td QL9SYOEZT0S ¥\ / [Gr—gn7 A
do s Adaddndddas ov v
NY PHAY w_sz vZ oV
g7 ¢ ENY a0 6lotlelelr|slollsle €S IV 9TV 9% Re v e v
TNV zleleEEkeleElelele € 81V €2 v v Zcc LIV [\ WA EY] P YA A4
vC vI0[110 s 62d o _ve| o % [tcev aH /82| o0 A A=
A EA O TIS9 ¢ Zed V62| 1Y &V [ozsv od 62| 9 & [oz_ov
ovaHaH OvaHaH G oa anD ZIV_9¢ 617V Bd_0¢ 61 /Y
zr 3 IV v & {1a ng
T er €W L] S i [BIv W@ __te|.g N [8l_av
v 6E T Z _"ao 20 8z | o [LT_an7 ze |59 ¥ [L18TY
z 2 = < d < a2
v 88 o Q18 6 V35 € S+_ged 7a € 8d 6¢] o o [eT_og m ee |0, WET
3 GE O Sos ¢ 2 TIN T/ 529/0va 0 T 01a S
£ o o3& o O Slota « rE e ON -
£ETT AN/ OIN 1/ TSOTNY 0Ia 1 Z o1 _
£ o O—LE o O @a «a S111a va |2 Sftta oN
SV ¢ TEad £2d 6 0 v 119 S YT O 30T 110 2 110 €
& o oK o C ea <« <€lon aeo S 1oon 1sd 7/
v Sz, £1d T Zl_0ld FATaC) € INVRIA ZI_aD AL 21 Isa 7/
o o C &a ta Slao oA Slva Tans
IV 8¢ Jzz1d IO € AT €10/ P 1IVas o ao_ve TT NVEA va__se Y
LY S o o-£LC 01 € L ZZ1z1d € “{za ON [+
ZTd_o¢ S vdT 6 9T &d 12 8 TT L 00T 6 Z S 0 Z2ld 6 0
110 za 2 =310 za sa onN 2
aD_te A ved /. 8T Ged 19 6 To1 8 €10 9 6 o 6
L o o8l Lima 1a 0 d 9¢)10 1a €10 8v
10 22 Tew ZINI/ 6 0z _ 0d o 0z Z0 1 L vIa 2 8 €10 _1v 8 6V
L o5 o-0c__0 v od 0 d L8 1519 oa oa 6v
619 EINI T2 Ze2d | v 1z €01 9 S1q_8 ,__/a Zv I 0TY
O O d el 1c o o ccedl siov a1 0 cla1/ so/ ¥ y1a otv
sa 8 /T 15y STd_£c vz 1d | v_ze YS) Y01 G Ov_6E 9 v1d £V 9 11V
e 2 o oo —¥ 2950 IsH P =2Elan; w2 QI s
ST I1Sd 7 20 oz 9z vOxd Zd_€¢ 5 17 SOl ¢ 0 v 7G “ z
<IN aw D/ &V vV f51a z1v <
€1 51d 00 /2 82 VAX1 Z S 901 € Qa7 1 e SId_Sv ETV
OO L o o 8¢ ¥AX S .'aan SSA 2 eV ov L aNo ETV [Z
Z 1T g/ Td_6¢ 0€_od DAz | JIN SEA T 101 ¢ vV ev| Sy W [E v o oy | ElY v
10 0T 3 Q 6--OA 61d 1€ Sz¢ oo 2N o [Ewa 0N T STV Ev | dny v [&Y o oY A=V AR A1
od g 3 Foeaxl vINI/ €8 0000 £ 0aXL eva g | 2N, 5 [eeva Y oV bv T 1v IV 8y T 9TV
9 % s od 5g 8 g 9e 0dI da® 8z T 3 Bl 0osd6z N
MO ¥ € 10 YTd /¢ € vd TN
5 © ST oA oA 68 © O Tor e

-
=
g

