SensorCoreA™

48 12-bit ADCs, 16-bit DAC, 100M BaseT Ethernet,2B3, and CompactFlash

- %«ggg,‘ﬂ,

Technical Manual

TTERN

INC.
1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181

Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

SensorCore, E-Engine, A-Engine86, A-Engine, A-C6r&8Core, i386-Engine, MemCard-A,
MotionC, VE232, and ACTF are trademarks of TERN., In
Am188ES and Am186ES are trademarks of Advanceddvb&vices, Inc.
Borland C/C++ is a trademark of Borland Internagilon
Microsoft, MS-DOS, Windows, Windows95, and Windo®s#e trademarks of Microsoft
Corporation.
IBM is a trademark of International Business MaelsiCorporation.

Version 2.0
October 22, 2010

No part of this document may be copied or reproduceany form or by any means without the
prior written consent of TERN, Inc.

© 1993-201¢ TER!*QI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratsystems. These systems are integrated
with software and hardware that are not 100% defeet TERN products are not designed,
intended, authorized, or warranted to be suitabte fise in life-support applications, devices, or
systems, or in other critical applications. TERENd the Buyer agree th&ERN will not be
liable for incidental or consequential damagesiragisrom the use oTERN products. It is the
Buyer's responsibility to protect life and propeatainst incidental failure.

TERN reserves the right to make changes and improventeris products without providing
notice.

Temperature readings for controllers are baseth@mesults of limited sample tests; they are
provided for design reference use only.

SensorCore-A (SCA)™ Chapter 1: Introduction

Chapter 1: Introduction

The SensorCore-ASCA™ is designed as a low-cost, low-power data loggetHfe most demanding analog data-
acquisition applications. Featuring up to 48 clesiof 12-bit ADC, 2 RS232 ports, CompactFlashrfate, and a
high performance 10/100M BaseT Ethernet, 3@ out-performs desktop-based acquisition solutionsffraction

of the price.

The SCAs unique profile allows it to be installed intdfitult-to-access physical locations, such as pipggen with
this limited real estate, tH&CAIis a full-featured, stand-alone industrial emtestidontroller.

TheSCAIis based on a high-performance C/C++ programmet86ES CPU. It integrates 3 timer/counters, 2 asyn
serial ports, external interrupts, PIOs, and &tieee clock (DS1337). The board is available wifhto 512 KB of
battery-backed SRAM, 512KB Flash, and 512 bytesi&BM for non-volatile parameter storage.

The board runs on approximately 150mA at regul&¥dand can be powered through onboard linear atgul
accepting 9-12V DC. An optional low-drop regula{@PS765) can be installed to provide a power-o#ties
allowing low voltage(5.1V) battery operation.

The SCA has two RS232 serial ports as default. H@A also features an integrated high-performance 10/10
baseT hardware TCP/IP module, which allows 100KBgeas to TCP/IP networks with minimal CPU loadmgie
implementations for thBCAallows it to be configured as a HTTP web-serva@f Berver/client, etc.

The SCA also features six 300KHz 12-bit (8-channel) ADSZ88DCs for a total of 48 channels in ADC
conversion. Each ADS7852 chip offers 8 channdlspeak single-channel output rate of ~250-300 Kldn be
achieved, with approximately at 3-4us read timeghemnel. Also available is the optional 8 chasrié-bit DAC
analog outputs.

The SCA provides an integrated CompactFlash interfaceta ban be written into CF at a sufficiently higloagh
data rate that th&CA can record sampling from all 3 chips indefinitegyen at peak sample rates. A 50-pin
CompactFlash receptacle can be installed to allosess to mass storage CompactFlash cards (up ®).2USers
can easily add mass data storage to their embegjgjgitation. C/C++ programmable software packagtudes
FAT16 file system libraries are available, this mmuoom allows more than 1 billion 24-bit sampledb®recorded

in the field on a single board.

1-1

Chapter 1: Introduction SCA

SensorCore-A
SRAM

128KB or 512 KB
16-bit U3 DS1337us i)

watchdog
FLASH 691 us [€—
512 KB 16-bitu1 enable
AmM186ES
SDL P29 R1120
EEPROMu7 |« 85&’3 D0.D15 | 12-bit ADC
512 BYTES |e > z ADS7852
SoAP2s &
DMA(2)
RS232 drivers 16-Bit Timers(gs))
Ext. Interrupts
SERO+SER1 32 1/0 lines D0-DIS 1™ oM BaseT
PWM/PWD < >
16-bit Ext. data bus E,t;,?irgzm

Low drop 5V ﬁ II

regulatorsuis+uis

or I11&J32 16-bit DAC CompactFlast|
72600 g

Linear 5V regulator
LM7805 v18

Figure 1.1 Functional block diagram of the SensorCore

The SCA supports on-board 512 KB 16-bit Flash and up t8 BB 16-bit battery-backed SRAM. The on-board
ACTF Flash has a protected boot loader and canal#yeprogrammed in the field via serial link. Useran
download a kernel into the Flash for remote deluggWith the DV-P Kit support, user application esccan be
easily field-programmed into and run out of theskla

A 512-byte serial EEPROM is included on-board. Tsesial ports from the R1120 support high-speedabid
serial communication at a rate of up to 115,200dbau

There are three 16-bit programmable timers/couratedsa watchdog timer. Two timers can be used totoor time
external events, at a rate of up to 20 MHz (forMd8z SCA), or to generate non-repetitive or variable-dutgle
waveforms as PWM outputs. Pulse Width DemodulafPWD), a distinctive feature, can be used to meatue
width of a signal in both its high and low phadésan be used in many applications, such as bae-ceading.

The CPUhas 32 user-programmable, multifunctional 1/Os.r&ithtrigger inverters are provided for six extdrna
interrupt inputs, to increase noise immunity amsh$form slowly-changing input signals into fastwfiiag and

jitter-free signals. A supervisor chip with poweildire detection, a watchdog timer, an LED, andaggon ports
are on-board.

SensorCore-A (SCA)™

Chapter 1: Introduction

Features:

*150 mA, 9-12V DC power

* Complete C/C++ programmable environment

* 48 channels of 12-bit ADC input, 0-5V

* 8 channels 16-bit DAC (0-5V), 10 TTL I/Os

* CompactFlash with FAT file system support

*80 MHz 186 CPU with 256 KW Flash, 256 KW SRAM
* 2 RS-232 serial ports; both RS232

* 3 16-bit timer/counters, PWM output, RTC, EE

* Hardware TCP/IP stack for 100M Based-T Ethernet

1.2 Physical Description

The physical layout of the SensorCore is shownigarfe 1.2.

R1120-G
0544-B-1Q
8-HLGMP

]ogeosoeoe;

||ﬂl|!m||(uh ;

Figure 1.2 Physical layout of the SensorCore

1-3

Chapter 1: Introduction SCA

(Power On or Reset)

Step 2 jumper
set?

STEP 2

Go to Application Code CS:IP
CS:IP in EEPROM:
0x10=CS high byte
O es e
ACTF menu sent out through sar0 x12=1P high byte

0x13=IP | b
at 19200 baud . X ow byte)

Figure 1.3 Flow chart for ACTF operation
The “ACTF boot loader” resides in the top protectedtor of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the BEJG kernel (EE80_115.hex) is pre-loaded
in the Flash starting at OXFAOOO, and the RED STER2mper is installed on H5 pin 1-2,
ready for Paradigm C++ debugger. User does not needownload a DEBUG kernel to start
with.

At power-on or RESET, the “ACTF” will check the SPR jumper. If STEP 2 jumper is not installed, A&TF
menu will be sent out from serial port 0 at 9600dfor a B0MHZSCA

If the STEP 2 jumper is installed, the “jump addfgee-programmed in the on-board serial EEPROMI be read
out and then jump to that address. A DEBUG ker&&l80_115.hex” residing at “OxFA000” of the 512KB-on
board flash chip.

1-4

SensorCore-A (SCA)™ Chapter 1: Introduction

1.3 SensorCore-A Programming Overview

Steps for product development:

Preparation for Debugging(DONE in Factory

» Connect SCA to PC via RS-232 link, 19,200, 81N,

» Power on SCA without STEP 2 jumper installed

» ACTF menu should be sent to PC terminal

« “D"to download “c:\tern\186\rom\AE86\L_TDREM.HEX"
* “G04000" to run out of SRAM

» Download “c:\tern\186\rom\AE86\EE80_115.HEX" tah
* “GFA000” to setup EEPROM and run remote debugger
« Install the STEP2 jumper (H5.1-2)

» Power-on or reset, Ready for Remote debugger

STEP 1 Debugging

« Start Paradigm C++, run “led.ide” or “test.ide”
» Download code to target SRAM at 115,200 baud.
« Edit, compile, link, locate, download, and remd&bug

U

STEP 2 Standalone Field Test

» "G08000" setup EEPROM Jump Address, points to
application code resides in battery backed SF

* Install STEP2 jumper, then power on

*» Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.

U

STEP 3 Production DV-P Kit

« Generate application HEX file with DV-P and ACKR
* ACTF “D” to download “L_29F400.HEX” into SRAM
« Download application HEX file into FLASH

* Modify EEPROM jump address to 0x80000 (or
where user code starts).

» Set STEP2 jumper

There is no ROM socket on tR&CA The user’s application program must reside in BRér debugging in STEP1,
reside in battery-backed SRAM for the standalortdftest in STEP2, and finally be programmed intesk for a
complete product. For production, the user musdpece an ACTF-downloadable HEX file for the applioat
based on the DV-P Kit. The “STEP2” jumper (H5 pla8) must be installed for every production-verdimard.

Step 1 settings
In order to talk t&SCAwith Paradign C++, thECAmust meet these requirements:

1) c:\tern\186\rom\AE86\EE80_115.HEX must be pradied into Flash starting address 0xfa000.
2) The SRAM installed must be large enough to lyolgr program.

Chapter 1: Introduction SCA

For a 128K SRAM, the physical address is 0x0000DEk
For a 512K SRAM, the physical address is 0x0000D#¢k

3) The on-board EEPROM must have a Jump AddreshdéoEE80_115.HEX with starting address of 0xfa000.
4) The STEP2 jumper must be installed on H5 pigs 1-

For further information on programming th&CA refer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

1-6

Sensor Core-A Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the “software_kit.pdf” technicalnual on the TERN installation CD, under
tern_docs\manual\software_kit.pdf, for informatmminstalling software.

2.2 Hardwar e Installation

Overview

» Connect PC-IDE serial cable:
For debugging (STEP 1), place IDE connector on SERQ
with red edge of cable on side closest to H3 h¢&aerFig. 2.1).
This DEBUG cable is a 10-pin IDE to DB9 cable, mage
TERN.

» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
using power jack adapter supplied with EV-P/DV-R Ki

Hardware installation consists primarily of connegtthe microcontroller to your PC.

2.2.1 Connecting the SCA tothe PC

Figure 2.1 provides the location of the debug seonat and the power jack. TI®CA is linked to the PC
via a serial cable (DB9-IDE) which is supplied witte TERN EV-P / DV-P Kits.

The SCA communicates through SERO by default. Install5x2 IDC connector on the SERO H1 pin
header. The DB9 connector should be connecteddambyour PC's COM Ports (COM1 or COM2).

See Appendix B for figures regarding the TERN debaigle.

2-1

Chapter 2: Installation Sensor Core-A

2.2.2 Powering-on the SCA

By factory default setting:

1) The RED STEP2 Jumper is installed at locationlHBS5.2. (Default setting in factory)

2) The DEBUG kernel is pre-loaded into the on-bdtash starting at address of OXFA000. (Defaultirsgt
in factory)

3) The EEPROM is set to jump address of OxFAOO@f4DIt setting in factory)

Connect +9-12V DC to the DC power terminal (T1 levadee Figure 2.1). A power jack adapter is
included with the TERN EV-P/DV-P kit. It can be ds® connect the output of the power jack adaptdr a
the SCA. Note The output of the power jack adapter is centgatiee.

The on-board LED should blink twice and remainiadijcating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for preygming and debugging.

Serial Port O

(Debug port) Step 2 Jumper

H5.1 =H5.2

uuuuuuu

ooeoeeeeeeeeme
IGGGGGGGGGGGQB

.............

mmummLa o5 9 - T1Header:

wwrn
S “00000600060800 9-12Volts
LINZIM a@oeeee@@eg_o L S

Power Jack
adapter:
Center Negative

Figure 2.1 Locations of STEP2 Jumper, LED, Power input and DEBUG port

2-2

Sensor Core-A Chapter 3: Hardware

Chapter 3: Hardware

AmM186ES/R8820/R1120 - Introduction

The Am186ES is based on industry-standard x86 tmathire. The AmM186ES controllers uses 16-bit
external data bus, are higher-performance, moegiated versions of the 80C188 microprocessorshwhic
uses 8-bit external data bus. In addition, the ABEIB has new peripherals. The on-chip system imterfa
logic can minimize total system cost. The Am186ES ltwo asynchronous serial ports, 32 PIOs, a
watchdog timer, additional interrupt pins, a pwsielth demodulation option, DMA to and from serial
ports, a 16-bit reset configuration register, ankdamced chip-select functionality.

R8820 is a drop-in replacement 5V, 40MHz chip fer AM186ES.

R1100 is a 80MHz, 3.3V chip can be installed onSEA

By default, thesCAuses 3.3V 80 MHz R1120 and low power 55-70 ns SRiit¥l battery backup.
Optional 5V 40 MHz R8820 can be installed.
At 80 MHz, the low power 55 ns SRAM with batteryckap works fine but will not be able to support
DMA operation.
A fast 10/15/25 ns SRAM (Not low power) can be usedupport zero wait state and DMA operation at 80
MHz, but the backup battery will drain in a few day
There are three pads on the PCB for battery. Odespground, and the other two pads allowing a 3V
backup lithium battery be installed in two diffet@ositions:
1) The battery’s positive lead is installed in el which is away from the RTC, supporting the RAG.
No battery backup for the SRAM.
2) The battery’s positive lead is installed in gl which is closer to the RTC, supporting both Rihd
SRAM.
In the future, when the fast (10 ns) and low stgrutibwer SRAM is available, then 80 MEBCA can have
both RTC and SRAM with battery backup plus the DNMAro wait state operation.
User can use sample progrartier n\186\samples\ee\rdc _id.c to read the ID register(0xfff4), in order to
identify RDC CPU type.

R1100=0xC5D9, R1120=0x85D9, R8820/30=0x04D9(xxD9)

AMI186ES — Features

Clock and crystal

Due to its integrated clock generation circuithe AM186ES microcontroller allows the use of a sroae
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

CLKOUTA remains active during reset and bus holdditions. The initial function ae_init(); disables
CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pi
The R8820 uses a 40 MHz crystal.
By default the 3.3V R1120 uses a 20 MHz crystak TPU speed is software programmable with the PLL.

At power-on, the on-board ACTF Flash programs tA4 R running at 20 MHz system clock, so a 9600
baud (instead 19,200 baud) is used for ACTF menu.

Two debug kernels are available:
c:\tern\186\rom\ae86\EE40_115.hex, or c:\tern\k86\ae86\EE80_115.hex

3-1

Chapter 3: Hardware SensorCore-A

The EE40_115.hex will run the R1120 at 40 MHz, #redEE80_115.hex will run the R1120 at 80 MHz.
By default, the EE80_115.hex is pre-programmedHer80 MHzSCA
User can use software to setup the CPU speed:

outport(0xfff8,0x0103); // PLLCON, 20MHz cryst&l103=40 MHz, 0107=80MHz

External Interrupts and Schmitt Trigger Input Buffe

There are eight external interrupts: INTO-INT6 aidI.
/INTO, H4 pin 1, free to use.
/INT1, H4 pin 2, free to use.
INT2, H3 pin 6, free to use
/INT3, H4 pin 3, free to use
/INT4, JP1 pin 2, used by 100M BaseT Ethernet
INT5=P12=DRQO0, used h$CAas output for LED/EEPROM/HWD
INT6=P13=DRQ1, used h$CAas serial data for RTC/EEPROM
/NMI, H4 pin 4

Some of external interrupt inputs, /INTO, 1, 3,rtldNMI, are buffered by Schmitt-trigger invertgts9,
74HC14), in order to increase noise immunity aagigform slowly changing input signals to fast cliagg
and jitter-free signals. As a result of this buffgr these pins are capable of only acting as input

These buffered external interrupt inputs requifaelling edge (HIGH-to-LOW) to generate an interrupt

The SCA uses vector interrupt functions to respond to resleinterrupts. Refer to the Am186ES User's
manual for information about interrupt vectors.

Asynchronous Serial Ports

The Am186ES CPU has two asynchronous serial chenB8&IRO and SER1. Both asynchronous serial
ports support the following:

* Full-duplex operation

e 7-bit, 8-bit, and 9-bit data transfers

e 0dd, even, and no parity

e One stop bit

» Error detection

* Hardware flow control

» DMA transfers to and from serial ports

« Transmit and receive interrupts for each port
» Multidrop 9-bit protocol support

e Maximum baud rate of 1/16 of the CPU clock speed
* Independent baud rate generators

The software drivers for each serial port implemanting-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sagrfjisss1_echo.@and sO_echo.c

Important Note: For 80MHECA DMA functions are not available when by defaalvlpower 55 ns
SRAM is installed. If install a 25 ns SRAM, 80MISLAcan have all DMA functions, but it will drain the
backup battery fast. Two battery positive padswélig the battery be installed:

1) Support both RTC and low power SRAM, or
2) Support only RTC.

3-2

Sensor Core-A Chapter 3: Hardware

Timer Control Unit

The timer/counter unit has three 16-bit programmaiphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to external pins:

Timer0 output = P10 = H3 pin 14

Timer0 input = P11 = U7 EE pin 5, RTC pin 5

Timerl output =P1=U16 pin 7

Timerl input = PO = H3 pin 13
Timer0 input P11 is used and shared by on-board=EEW and RTC, not recommended for other external
use.

The timer can be used to count or time externahsy®r can generate non-repetitive or variablg-gyitle
waveforms.

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timendtémer 1 or be used as a DMA request source.

The maximum rate at which each timer can operai® iMHz (at 40MHz clock) or 20 MHz (at 80 MHz
clock), since each timer is serviced once everytfodock cycle. Timer output takes up to six él@ycles
to respond to clock or gate events. See the sampdgramstimer02.c and ae _cntl.cin the

t er n\ 186\ sanpl es\ ae directory.

PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eteergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 Makzd 12.5ns x 6 = 75 ns (at 80 MHz w/ R1120 CPU).

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the t@bernate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measurimphe signal’s high and low phases on the /INT2=H3
pin 6.

Power-save Mode

The SCA can be used for low power consumption applicatidi®e power-save mode of the Am186ES
reduces power consumption and heat dissipatiomelilgeextending battery life in portable systems. In
power-save mode, operation of the CPU and intepeapherals continues at a slower clock frequency.
When an interrupt occurs, it automatically retwngs normal operating frequency.

3-3

Chapter 3: Hardware

SensorCore-A

AmM186ES PIO lines

The Am186ES has 32 pins available as user-progréentéD lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmad shared function is not needed. A PIO line ban
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojukeain
output. A pin’s behavior, either pull-up or pullwn, is pre-determined and shown in the table below.
After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins esdad for specific on-board usage, as well.
configurations, as well as the processor-interrgipbheral usage configurations, are listed belowable

These

3.1.
PIO | Function Power-On/Reset SensorCore-A SensorCore-A |Initial
status
Pin No. after ae_init();
function call
PO Timerl in Input with pull-up H3 pin 13 Input Wipull-up
P1 Timerl out Input with pull-down U16 pin 7, ADC’s | Input with pull-up
P2 /PCS6/A2 Input with pull-up H3 pin 7 /PCS6
P3 /PCS5/A1 Input with pull-up H3 pin 8 /PCS5
P4 DT/R Normal H5 pin 1 Input with pull-up: Step 2
P5 /IDEN/DS Normal H3 pin 3 Input with pull-up
P6 SRDY Normal H3 pin 4 Input with external pull-u
pP7 Al7 Normal N/A Al7
P8 Al18 Normal N/A A18
P9 Al19 Normal N/A Input with pull-up
P10 | TimerO out Input with pull-down H3 pin 14 Inpuith pull-down
P11 | TimerO in Input with pull-up EEPROM, RTC Inputh pull-up
P12 | DRQO Input with pull-up DAC,LED,RTC,etci Output
P13 | DRQ1 Input with pull-up H3 pin 15 Input withlpup
P14 | /MCSO Input with pull-up JP1.5 Ethernet Inpith pull-up
P15 | /MCS1 Input with pull-up H3 pin 5 Input withlpup
P16 | /PCSO Input with pull-up J1 pin 19 /PCS0
P17 | /PCS1 Input with pull-up U4 pin 4,5 Input withll-up
P18 | /PCS2 Input with pull-up N/A Input with pull-up
P19 | /PCS3 Input with pull-up N/A Input with pull-up
P20 | SCLK Input with pull-up N/A Input with pull-up
P21 | SDATA Input with pull-up N/A Input with pull-up
P22 | SDENO Input with pull-down N/A Output
P23 | SDEN1 Input with pull-down N/A Input with pudiewn
P24 | /MCS2 Input with pull-up H3 pin 11 Input withlpup
P25 | /MCS3 Input with pull-up H3 pin 12 Input wiplall-up
P26 | Uzl Input with pull-up H3 pin 19 Input with puip*
P27 | TxD Input with pull-up N/A TxDO
P28 | RxD Input with pull-up N/A RxDO
P29 | S6/CLKSEL1 | Input with pull-up H3 pin 20, DAC ut
P30 | INT4 Input with pull-up N/A Input with pull-up
P31 | INT2 Input with pull-up N/A Input with pull-up

o

* Note: P26 and P29 must NOT be forced low duriog/@r-on or reset.

3-4

Table 3.1 I/O pin default configuration after power-on or reset

Sensor Core-A

Chapter 3: Hardware

The 32 PIO lines, PO-P31, are configurable via 1&ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

SensorCore initialization on PIO pinsaa _init() is listed below:

outport(0xff78,0xc7bc);
outport(0xff76,0x2040);
outport(Oxff72,0xee73);
outport(0xff70,0x1040);

The C function in the librarge_lib can be used to initialize PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the tableabo

Example:

/ PDIR1TxD, RxD, PCSO0, PCS1, P29& P22 Output
/ PIOM1

// PDIROA18, Al7, PCS6, PCS5, P12 Output

/ PIOMO

pio_init(12, 2); will set P12 as output

pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if correggiag pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,

Some of the I/O lines are used by BEA system for on-board components. We suggest thahgt use

these lines unless you are sure that you are tefening with the operation of such components (if the
component is not installed).

Signal | Pin Function

P1 U10-U15.30 ADC Clock Line

P7 Al7 Upper address line Never use by application
P8 Al8 Upper address line Never use by application
P11 U5.5,uU7.5 RTC & EEPROM data line

P12 J5.2,U7,U5,L1| LED, WDI, EEPROM, RTC

P14 JP1.5 /IMCSO - Ethernet

P17 u4.45 U4 HC138

P26* /CLKSEL2 Used at power-up/reset to determiysgesn clock multiplier
P27 TxDO

P28 RxDO

pP29* /CLKSEL1 Reserved for DAC

P30 INT4 Interrupt used Ethernet

Table 3.

21/0 lines used for on-board components

3-5

Chapter 3: Hardware SensorCore-A

Important Notes:

* The Am186ES CPU uses the P26 and the P29 lindstermine the system clock multiplier at
power-up or reset. The CPU has internal pull-upthese lines to select the default multiplier of
four-times (AMD) or eight-times (RDC). It is critat that the user allow these lines to remain high
during power-up or reset. Failure to do so willuteg undesirable operation.

I/O Mapped Devices

I/O Space

External I/O devices can use I/O mapping for accésa can access such /O devices wiiortb(port) or
outporth(port,dat). These functions will transfer one bgtevord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000xtfD

The default I/O access time is 15 wait states. May use the function void_wait(char wait) to define the
I/0 wait states from 0 to 15. The system clockd8 hs for both CPUs, while the CPU clock is 25nstle
Am186ES and 12.5ns for the R1120. Details regartlirggcan be found in the Software chapter, arttién
Am186ES User's Manual. Slower components, sucmast LCD interfaces, might find the maximum
programmable wait state of 15 cycles still insudfit. Due to the high bus speed of the systemesom
components may need to be attached to 1/0O pinstljire

For details regarding the chip select unit, plessseeChapter 5 of the Am186ES User's Manual.

The table below shows more information about |/(piiag.

1/0 space Select Location Usage
0x0000-0x00ff | /PCSO| J1 pin 19=P16 USER*
0x0100-0x01ff | /PCS1| U4.10-15 ADC'’s
0x0200-0x02ff | /PCS2| N/A N/A
0x0300-0x03ff | /PCS3| N/A N/A
0x0400-0x04ff | /PCS4| N/A Reserved
0x0500-0x05ff | /PCS5| H3 pin 8=P3 USER
0x0600-0x06ff | /PCS6| H3 pin 7=P2 USER

*PCSO0 may be used for other TERN peripheral boandsh as FC-0, P50, P100, MM-A.

To illustrate how to interface tHRCA with external 1/0 boards, a simple decoding ciréoii interfacing to
an 82C55 parallel 1/0 chip is shown in Figure 3.11.

3-6

Sensor Core-A Chapter 3: Hardware

74HC138 82C55
RST)
A5 1 | A vo| 15 NC = P00-P0O7
A6 210 Y1| 14 /SEL20 ™
A7 31 . v2| 13 /SEL40
v3| 12 /SEL6O | ysE120| [CS P10-P17
Y4 11 /SEL80
/PCSO 4 G2A vs| 10 /SELA0 DMR 1 /WR
59 G2B Y69 ISELCO grp IRD
veC 6| c1 vy7lz /SELFO]]
I L DO-D7 P20-P27

Figure 3.1 Interface the SensorCore to external I/O devices

The functionae_i ni t () by default initializes the /PCSO0 line at base l/@@ss starting at 0x00. You
can read from the 82C55 withportb(0x020)or write to the 82C55 witbutportb(0x020,dat) The call to
inportb(0x020)will activate /PCS0, as well as putting the addi@s20 over the address bus. The decoder
will select the 82C55 based on address lines A&nd,the data bus will be used to read the apprepdita
from the off-board component.

EEPROM

A serial EEPROM of 512 bytes (24C04) is installedJi7. TheSCA uses the P12=SCL (serial clock) and
P11=SDA (serial data) to interface with the EEPROWhe EEPROM can be used to store important data
such as a node address, calibration coefficiemtd, @nfiguration codes. It typically has 1,000,000
erasel/write cycles. The data retention is mora #ayears. EEPROM can be read and written by simpl
calling the functionge rd() andee wr ().

A range of lower addresses in the EEPROM is resefme TERN use, 0x00 — Ox1F. The addresses 0x20 to
Ox1FF are for user application.

Other Devices

A number of other devices are also available onS& Some of these are optional, and might not be
installed on the particular controller you are gsinFor a discussion regarding the software interfeor
these components, please see the Software chapter.

On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, theSCA has several functions:
watchdog timer, battery backup, power-on-reset yjef@ower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a jungoed5 of the SensorCore. The watchdog timer pgesvi
a means of verifying proper software execution. tHa user's application program, calls to the fiomct
hitwd() (a routine that toggles the P12 = WDI pin of théX691) should be arranged such that the WDI
pin is accessed at least once every 1.6 secorfdke U5 jumper is on and the WDI pin is not acedss
within this time-out period, the watchdog timer Isuthe WDO pin low, which asserts /RESET. This

3-7

Chapter 3: Hardware SensorCore-A

automatic assertion of /RESET may recover the egfitin program if something is wrong. After tBEA
is reset, the WDO remains low until a transitiorurs at the WDI pin of the MAX691. When controllers
are shipped from the factory the J5 jumper iswffich disables the watchdog timer.

The Am186ES has an internal watchdog timer. Thiisabled by default withe init().

Watchdog jumper, J5.
The J5 header is not
populated in this
picture

Figure 3.2 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atie real-time clock DS1337 are backed up. In
normal use, the lithium battery should last abegty&ars without external power being supplied. Wit
external power is on, the battery-switch-over diraiil select the VCC to connect to the VRAM.

Real-time Clock DS1337

The DS1337 serial real-time clock is a low-powenc&lcalendar with two programmable time-of-day
alarms and a programmable square-wave output. Addrad data are transferred serially via a 2-wire,
bidirectional bus. The clock/calendar provides selsp minutes, hours, day, date, month, and year
information. The data at the end of the month tematically adjusted for months with fewer thandzlys,
including corrections for leap year. The clock @tes in either 24-hour or 12-hour format with AM/PM
indicator.

The RTC is accessed via software drivacd_init() andrtcl rds(), which have been specifically written
for this chip. Refer to sample code in the tern\186\samples\&ctry for fn_rtc.c

It is also possible to configure the real-time &loa raise an output line attached to an extemtaliupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervahis can be used in a time-driven applicataythe
VOFF signal can be used to turn on/off the controllEng an external switching power supply.

Eight channel 16-bit DAC (LTC2600)

The LTC2600 is an eight channel 16-bit digital-tatvg converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output amgificapable of driving up to 15mA. It uses a 3-whel
compatable serial interface and has an output rah@eREF volts, making 1 LSB equal to REF/65535 V.
The reference voltage input is by default shorte®€C (via PCB trace). The DAC outputs are routed
the J4 pin header, pins 1-8 (found beneath therigh®odule).

The DAC is installed on th8CA at location U18 and uses P29 as the chip seléet.synchronous serial
interface is used to send data to the device. Reftre sample code, \tern\186\samples\sca\sca.ad@6

3-8

Sensor Core-A Chapter 3: Hardware

an example on driving the DAC. The sample is alscluded in the pre-built sample project
\tern\186\samples\sca\sca.ide.

Refer to the DAC data sheet for additional speaifans; \tern_docs\parts\ltc2600.pdf.

AD7852, 300KHz 12-bit ADC

Six AD7852 chips can be installed on tBEA, giving the option of 48 possible ADC channelhe
AD7852 is a 100 ksps, sampling parallel 12-bit AJ@nverter that draws only 55 mW from a single 5V
supply. This device includes 8 channels with sarapi@-hold, precision 2.5V internal reference, sinétt
capacitor successive-approximation A/D, and usesxgarnal clock: P1 (timer 1 output).

The input range of the AD7852 is 0-5V. Maximum Bgecs include2.0 LSB INL and 12-bit no missing
codes over temperature. The ADC has a 12-bit datallpl output port that directly interfaces to foé
12-bit data bus D15-D4 for maximum data transféez.ra

The AD7852 requires 16 ADC clocks (or 3.2 us) cosiom time to complete one conversion, based on a 5
MHz ADC clock. The busy signal has an 3.2 ps lowiqukindicating that conversion is in progress. In
order to achieve the 300 KHz sample rate, $@A must use polling method, not interrupt operatian,
acquire data. A sample prograoa_ad.c can be found in the: \ t er n\ 186\ sanpl es\ sca directory.

g anannand
B

Figure 3.3 AD7852 (12-bit 8-channel ADC)

Compact Flash Interface

By utilizing the compact flash interface on tBEA users can easily add widely used 50-pin CF standa
mass data storage cards to their embedded apgpticath RS232, TTL I12C, or parallel interface. TERN
software supports Linear Block Address mode, 16-BiT flash file system, RS-232, TTL 12C or parallel
communication. Users can write/read files to/frdra CompactFlash card. Users can also transfertéles
and from a PC via a Compact Flash card readerdiganom).

This allows the user to log huge amounts of dadanfexternal sources. Files can then be accessed via
compact flash reader on a PC.

The tern\186\samples\sca directory includes sample build sca_cf (utilizingrh\186\samples\ee\ee_cf.c),
to show reads and writes of raw data by sectaadftition,ter n\186\samples\fn\fs_cmdsl.c is a simple file
system demo with serial port based user interface.

100 MHz BaseT Ethernet

A WizNet™ Fast Ethernet Module can be installegtovide 100M Base-T network connectivity. This
Ethernet module has a hardware LSI TCP/IP stackmpiements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAiChas 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memdhge host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releagemét connectivity and protocol processing frora th
host processor. It supports 4 independent stackemtions simultaneously at a 4Mbps protocol prangss
speed. An RJ45 8-pin connector is on-board for eoting to 10/100 Base-T Ethernet network. A sofevar
library is available for Ethernet connectivity.

3-9

Chapter 3: Hardware

SensorCore-A

Headers and Connectors

Expansion Header J1 / PIO Header H3

There is one 20x2 0.1 spacing headers for Senser&qransion. Most signals are directly routed o th

CPU.

Voo

"
n '.Ull—-

=]

5 Do

elelely

VOFF &

alelole
b
.

10 D1

11 o
D15 13

JEEST 15

1z D2

~ 14 D13
1s T4

T

'-':l'?o

Pl 19 o
D14 21 o

i

15
20 D&
22 D7

D13 23 o
25

~ 24 GHD
26 A7

27
[WE 25 o
fERD 21

R

o O

28

EX
S
o e—

34]
C'4

D10 35 O:

Hed el e el
28] (R [[y

:36;

Do 27
D3 39 4

EERNNE
C—20 A

¥

Table 3.3

ADC / DAC Headers

Two headers, 0.1 spacing, are reserved for theo48ible ADC inputs J2 andJ3). One 4x2 headed4)
is reserved for ®AC inputs.

3-10

L

H3 oo
| AVl
|R—to ot

= —
FlE 5 o o B _IHNT2
bz 7 A B B3

/OTE81 O 10 /RETE1
Pod 11 D: C: 1z Pzt
ED iE 14 P10
pls 1t D: C: 16 _zg0
JOTS0 17 18 /ETS0
Pee Lo g CC ELFE]

J1 (Expansion) 20x2 port; H3 (PIO) Header

Voo 2 T3
Q4 Nez 1 2 NWel
SND L Tea = - 3% ne-
, c: : Neo © g & Jes
R EE 2 N&a
— 4 O O

_ - ez © To mel
g s Noa 1l = O 1T nes
— s o O -
—- TES 15 Td TEe
d [ic7 15 15 pyca
' 2 Waz 17 = = 18 N4l
— = Haiiio O == g
—q 10 2210 o o2 e
—] 11 ---‘#-G i)
wl d | === S
NZz N4 27 28 N33
TFERE Wet o = S50 mee

RLEER, Y= =22 & o—=
o = ENEER RN TER)
Wao 15 Mo 30 = ©53 1oa
— 17 — e —
IE 3. NIlst 5 o 36 qiz
N13 14 27 38 N1G
Wi 4 1° Wi o - S 30 wis
s - EEEE S L

J4
m—o Q—w
=1
DR2 3 o O 4 DAhd
= 5 5
DAL = O o _Dhe
Da7 7 o O 8 DAB

Table 3.4 Signals for J2 & J3 (ADC headers); Signals for J4 (DAC outputs)

Sensor Core-A Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix C.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not feled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissis an I/O address space and a memory address
space. /O address space ranges foaf000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwareplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I1/O or memory space, amnd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments. unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3dgenent
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

o

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsajp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

Chapter 4: Software Sensor Core-A

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédtess in memory space. Once againsggment address
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component méppeat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retandom
garbage values every time you try to peek into dlclalress.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tbeta into the appropriataddressin I/O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perid
components.

When dealing with processor registers, be sureédle correct function. Useatport if you are dealing
with a 16-bit register.

inport/inportb
Arguments. unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and dating U® mappings, the address is output over thkress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigase refer to the Hardware chapter of thisrtieeh

manual.

41 AE.LIB
AE.LIB is a C library for basicSCA operations. It includes the following modules: 8BJ, SER0.OBJ,

SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to liBkLMB in your applications and include the

corresponding header files. The following is adithe header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEE.H on-board EEPROM

4-2

Sensor Core-A Chapter 4: Software

4.2 Functionsin AE.OBJ

4.2.1 SCA Initialization

ae init
This function should be called at the beginningewéry program running o8CA core controllers. It

provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects oée init are described below. For details regarding regisse, you will want to refer to the
AMD Am186ES Microcontroller User’s manual.

Initialize the upper chip select to support theadefROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xffttf (hap MemCard /O window)

512K ROM Block size operation.

Three wait state operation (allowing it to suppgrtto 120 ns ROMs). With 70 ns ROMSs, this can
actually be set to zero wait state if you requira@éased performance (at a risk of stability in
noisy environments). For details, see the UMCSp@dpMemory Chip Select Register)
reference in the processor User’'s manual.

out port (Oxffal0, 0x80bf); // UMCS, 512K ROM 0x80000-Oxfffff

Initialize LCS (Cower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum oK5RAM.
Three wait state operation. Reducing this valueicgrove performance.

Disables PSRAM, and disables need for externalyread
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so thid CS0 andPCS0-PCS6 (except for PCS4) are configured so:

M CS0 is mapped also to a 256K window at 0x80000. ddueith MemCard, this
chip select line is used for the 1/0O window.

Sets upPCS5-6 lines as chip-select lines, with three wait stgieration.
out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, O0x81ff); // CSOMSKH

Initialize PACS so thaPCS0-PCS3 are configured so that:

Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.
The chip select lines starts at I/O address 0x0@fih,each successive chip select line addressed
0x100 higher in 1/0O space.
out port (Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

Configure the two PIO ports for default operatidkll pins are set up as default input, except fb2 P
(used for driving the LED), and peripheral funatjins for SERO and SER1, as well as chip
selects for the PPI.

out port (Oxff 78, 0xe73c); /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/] P16=PCSO, P17=PCS1=PPI
out port (O0xff 76, 0x0000) ; /1 Pl OVL
out port (Oxff 72, Oxec7hb); /1 PDI RO, P12, A19, A18, Al7, P2=PCS6=RTC
out port (0xff 70, 0x1000) ; /1 PIOWD, P12=LED

Configure the PPI 82C55 to all inputs, except fioes 120-23 which are used as output for the ADC.
You can reset these to inputs if not being usedhatr function.

out port b(0x0103, 0x9a) ; /1 all pins are input, 120-23 output
out port b(0x0100, 0) ;
out port b(0x0101, 0);

4-3

Chapter 4: Software Sensor Core-A

out port b(0x0102, 0x01); /1 120=ADCS hi gh

The chip select lines are by default set to 15 sfaites. This makes it possible to interface witmy
slower external peripheral components. If you negfaster I/O access, you can modify this numlmvrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for tipsirpose.

void io_wait
Arguments. char wait
Return value: none.

This function sets the current wait state dependmthe argumemwait.

wai t=0, wait states 0, I/O enable for 100 ns
wait=1, wait states I/ O enable for 100+25 ns
wait=2, wait states O enabl e for 100+50 ns
wai t=3, wait states enabl e for 100+75 ns
wai t=4, wait states for 100+125 ns
wai t=5, wait states enabl e for 100+175 ns
wai t=6, wait states enabl e for 1004225 ns
wait=7, wait states / O enabl e for 100+375 ns

PO~NTWNE
S
0000

@

>

@

=8

o

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sourcesherSCA, consisting of seven maskable interrupt pins
(INT6-INTO) and one non-maskable interruptM). There are also an additional eight internatrintpt
sources not connected to the external pins, camgisdf three timers, two DMA channels, both
asynchronous serial ports, and tiil1 from the watchdog timer. For a detailed discussiwolving the
ICUs, the user should refer to Chapter 7 of the AMD186ES Microcontroller User’'s Manual.

TERN provides functions to enable/disable all & #ight external interrupts. The user can call@rype
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isieitin pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriateérvice bit for the IR signal currently being tked must
be cleared. This can be done using Manspecific EOl command. At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityringet will be handled
first, and a higher priority interrupt will intenoti any current interrupt handlers. So, if the ud@oses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine pestds to
issue the nonspecific EOl command to clear theectifnighest priority IR.

To send the nonspecific EOl command, you need ite WreEOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments. unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwaapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€de second argument is a function pointer whighaet
as the interrupt service routine. The overheatherinterrupt service routine, when executed, @ua0

us.

By default, the interrupts are all disabled aftgtialization. To disable them again, you can eggbe call
but pass in 0 as the first argument.

4-4

Sensor Core-A Chapter 4: Software

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultw#R
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

Two ports of 16 I/O pins each are available onS64A. Hardware details regarding these PIO lines can be
found in the Hardware chapter.

Several functions are provided for access to ti@ IPles. At the beginning of any application whgoa

choose to use the PIO pins as input/output, younsid to initialize these pins in one of the fauailable
modes. Before selecting pins for this purpose,aralce that the peripheral mode operation of thesi
not needed for a different use within the sameiegtibn.

You should also confirm the PIO usage that is desdrabove withinae init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this méxdd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am18&Eser’'s Manual.

Please see the sample prograenpio.c in t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-apnfe
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingeBding on the pin
being used, it might require from 5-U8. The maximum efficiency you can get from the BIs occur if
you instead modify the PIO registers directly véathoutport instruction Performance in this case will be
around 1-2us to toggle any pin.

The data register Bxff74 for PIO port 0, an@xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.

» 0, High-impedance Input operation
e 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P10 status

4-5

Chapter 4: Software Sensor Core-A

Each bit of the returned 16-bit value indicatesdtigent 1/0 value for the P1O pins in the selegted.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) tcstilected PIO.

4.2.4 Timer Units

The three timers present on tB€A can be used for a variety of applications. Afee timers run at 1/4 of
the processor clock rate (10MHz based on 40MHzeaystlock, or one timer clock per 100ns), which
determines the maximum resolution that can be péthi Be aware that if you enter power save maus, t
means the timers will operate at a reduced speealas

These timers are controlled and configured thromghode register which is specified using the saftwa
interfaces. The mode register is described inildatahapter 8 of the AMD AmM186ES User’'s Manual.

Pulse width demodulation is done by setting the PhitDn theSY SCON register. Before doing this, you
will want to specify your interrupt service routdjewvhich are used whenever the incoming digitahalig
switches from high to low, and low to high. It leportant to note the the interrupt latency generatethe
ISRs that handle a signal transition will define thme resolution the user will be able to achieve.

The timers can be used to time execution of yoaer defined code by reading the timer values bedoc:
after execution of any piece of code. For a sarfidedemonstrating this application, see the saniid
timer.c in the directorytern\186\samples\ae.

Two of the timers,TimerO and Timerl can be used to do pulse-width modulation with datde duty
cycle. These timers contain two max counters, ehbe output is high until the counter counts up to
maxcount A before switching and counting up to naaxd B.

It is also possible to use the outpufTafner2 to pre-scale one of the other timers, since 1@dsiblution at
the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. The sample filésner02.c andtimer12.c, located irtern\186\samples\ae, demonstrate this.

The specific behavior that you might want to impéeris described in detail in chapter 8 of the AMD
AmM186ES User's Manual.

void t0_init

void t1_init

Arguments:. int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Both of these timers have two maximum counters (MXUNTA/B) available. These can all be specified
usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

The interrupt service routine isr specified here is called whenever the full cosntgached, with other
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments. int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer 2 behaves like the other timers, except it only dv@s max counter available.

Sensor Core-A Chapter 4: Software

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timéb) jumper is set, the functidmitwd() must be called every 1.6
seconds of program execution. If this is not ei@tibecause of a run-time error, such as an iefiaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to théue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingterdace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama roll-over in digits in the year 2000. Onéusion
might be to store an offset value in non-volatttrage such as the EEPROM.

There is a common data structure used to accesssanabth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl0; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten minute digit.
unsi gned char hourl1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nmonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

intrtcl rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the timaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret O on success and returns 1 in case of etrci, as
the clock failing to respond.

Chapter 4: Software Sensor Core-A

Void rtcl _init
Arguments. char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tevdekday, year 10, year 1, month10, month1, day10, dayl, hour10,
hour1, minutel0, minutel, secondl10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8 0, 6, 0, 5, 1, 3, 5, 5 3, 0};

Delay

In many applications it becomes useful to pauserkegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delayO
Arguments. unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspee
well as interrupt latency. The code is functiopadientical to:

while(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments. unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoafp
iterations. Again, this function is highly depentapon the processor speed.

unsigned int crcl6
Arguments. unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a katieay ofcount size pointed to bwptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedofor
any reason. Depending on the current hardwaregroation, this might either start executing cocenf
the DEBUG ROM or from some other address.

Sensor Core-A Chapter 4: Software

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgetyin the header filser0.h andser1.h in the directory
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funatigmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P softwares kidr communication with the PC. As a result, you
will not be able to debug code directly written $arial port 0.

Two asynchronous serial ports are integrated inAmd86ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can wpata maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggtion download/debugging in Step One and Step
Two. We will use SER1 as the example in the follmyviliscussion; any of the interface functions wtsich
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial portidse,
please realize that some pins might be shared atliter peripheral functions. This means that irtager
limited cases, it might not be possible to useréageserial port with other on-board controllendtions.

For details, you should see both chapter 10 of Ah&l86ES Microprocessor User's Manual and the
schematic of th&CA provided on the CD in thiern_docs\schs directory.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Iofléhe processor frequency.

The following table shows the function argumentattbhxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systenk.cloc

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1_i ni t (), SER1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAL operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status withr hit 1() and
take out the data from the buffer wiglet ser 1() , if any. The input buffer is used as a circulagrbuffer,

as shown in Figure 4.1. However, the transmit dj@ras interrupt-driven.

4-9

Chapter 4: Software Sensor Core-A

ibuf in_tail in_head ibuf+isiz

vy J
[T T]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size iz), and baud rateb@ud) are specified by the user wisti_i ni t ()

with a default mode of 8-bit, 1 stop bit, no parifter s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRegister
(SPOCT/SP1CT) if necessary, as described in chdfterf the Am186ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andhp@sffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer witht ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyde buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4b<Ber
will be able to store data for approximately foacands without overwrite.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for récgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and retbhmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates data is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_talil
pointer will automatically increment after evaggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @l _cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsimg buffer,s1_out buf, at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthasiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othase, it will
continue to take out the data from the out bufferd transmit. After you cajput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every *’ charadte ?’. The translated HEX file is then transted out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be inzéd.

There is a data structure containing importanias@ort state information that is passed as argtitoethe
TERN library interface functions. TheOM structure should normally be manipulated only BRN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufnd associated pointer values, you can watch the
transmission process.

4-10

Sensor Core-A Chapter 4: Software

The two serial ports have similar software integfac Any interface that makes reference to eitheor
ser0 can be replaced witsll or serl, for example. Each serial port should use its @@M structure, as
defined inae.h.

typedef struct ({
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* I nput buffer size */

int in_crcnt; /* lnput <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /[* Qutput buffer MI */

unsi gned char tnso; /1 transmit nacro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsigned int in_segm /* input buffer segment */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segment */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */
} com

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz,igned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value show
in Table 4.1. Argumenit®uf andisiz specify the input-data buffer, aebuf andosiz specify the location
and size of the transmit ring buffer.

=)

The serial ports are initialized for 8-bit, 1 staip and no parity communication.

There are a couple different functions used fangmaission of data. You can place data within thigat
buffer manually, incrementing the head and taifdrupointers appropriately. If you do not call arfethe
following functions, however, the driver interrufatr the appropriate serial-port will be disablechieh
means that no values will be transmitted. Thisvedl you to control when you wish the transmissibdaia
within the outbound buffer to begin. Once the linipts are enabled, it is dangerous to manipulage t
values of the outbound buffer, as well as the \abfehe buffer pointer.

putsern
Arguments. unsigned char outch, COM *c

4-11

Chapter 4: Software Sensor Core-A

Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate sepiart. The return valug
returns one in case of success, and zero in aey o#ise.

putsersn

Arguments. char* str, COM *c

Return value: int return_value

This function places a null-terminated charactengtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferser hitn() should be called befor
trying to retrieve data.

1%

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments the_tail pointer. Once again, this
function assumes thagr hitn has been called, and that there is a charactesmirgsthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffeir with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callggtbser, and will block untillen bytes are retrieved. The retwaue
indicates the number of bytes that were placedthedouffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means thaxetimight actually be multiple null charactershia byte
array, and the returnadlue is the only definite indicator of the number otdésyread. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appatgpfor
whatever form of flow control you wish to implemerBefore using these functions, you should onaérag
be aware that the peripheral pin function you a&iagimight not be selected as needed. For depddase
refer to the AM186ES User’s Manual.

4-12

Sensor Core-A Chapter 4: Software

char sn_cts(void)
Retrieves value € TS pin.

void sn_rts(char b)
Sets the value ®®TStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Hefau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délwenhardware as well as disabling the interrupt.

clean_sern
Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial I/O ports available orAima86ES Processor have many other features thdat mig
be useful for your application. If you are truhterested in having more control, please read @hdytt of
the AM186ES manual for a detailed discussion oéofbatures available to you.

4.4 Functionsin AEEE.OBJ

The 512-byte serial EEPROM4CO04) provided on-board allows easy storage of nontilelgprogram
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slowmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use sptifi for this purpose.

Addressegx00 to Ox1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, jump address for Ske, and other data that is of a more permanenteat

The rest of the EEPROM memory spa@e?0 to Ox1ff, is available for your application use.

ee wr
Arguments:. int addr, unsigned char dat
Return value: int status

This function is used to write the passedlat to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:. int addr
Return value: int data

This function returns one byte of data from thec#fjeel address.

4-13

SCA Layout SensorCore-A

Appendix A: Sensor Core-A L ayout

Contact TERN for details.

Serial Port Cables

Sensor Core-A

Appendix B: Tern Serial Port Cables

Note: Almost all Kits (DV-P/EV-P) will contain v2.8able, unless there is a size
restriction on the controller’s serial port header.

PC Receive Data.
Connectsto TERN
controller /TXD.

Floating at OV.
PIN 3

PC Transmit Data.

Connectsto /RXD.

Floating at -10V
PIN 5

GND
PIN 9

GND
PIN 9

PC Transmit Data.

Connectsto /RXD.

Floating at -10V
PIN 5

PC Receive Data.
Connectsto TERN

controller / TXD.
Floating at OV.
PIN 3

Red Edge

ToPC
DB9

ToPC
DB9

Tern RS232 Debug Cablev2.0

Red Edge [V-pattern]

Appendix C: Software Glossary Sensor Core-A

Appendix C: Software Glossary

The following is a glossary of library functions fine SensorCore.

void ae_init(void) ae.h

Initializes the Am186ES processor. The followisaghe source code fae_init()
outport(0xffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, 0 wait states

outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS1/0
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffad,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(0Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

enabl e();

Reference: led.c

void ae_reset(void) ae.h

Resets Am186ES processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ae.h

Toggles P12 used for led.

Var: i- Led on or off

Reference: led.c

Sensor Core-A Appendix C: Software Glossary

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple f or loop upto t.

Reference:

void pwr_save en(int i) ae.h

Enables power save mode which reduces clock spBieters and serial ports will be effected.
Disabled by external interrupt.

Var: i— 1 enables power save only. Does not disa ble.

Reference: ae pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peeigth use.

Var: i — 1 enables clock output, O disables (saves current when
disabled).
Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 - 31
Mode — above mode select

Reference: ae_pio.c

Appendix C: Software Glossary

SensorCore-A

void pio_wr(char bit, char dat)

Writes a bit to a PIO line. PIO line must be incariput mode

mode=0, Normal operation

mode=1, Input with pullup/down

mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 - 31
dat - 1/0

Reference: ae_pio.c

ae.h

unsigned int pio_rd(char port)

Reads a 16 bit PIO port.

Var: port—0: PIOO - 15
1: PIO16-31

Reference: ae pio.c

ae.h

void outport(int portid, int value)

Writes 16-bitvalue to 1/0 addresgortid.

Var: portid — /O address
value — 16 bit value

Reference: ae_ppi.c

dos.h

void outportb(int portid, int value)

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 8 bit value

Reference: ae ppi.c

dos.h

int inport(int portid)

Reads from an 1/O addrepsrtid. Returns 16-bit value.

Var: portid — 1/0 address

Reference: ae_ppi.c

dos.h

Sensor Core-A

Appendix C: Software Glossary

int inportb(int portid)

Reads from an I/O addregsrtid. Returns 8-bit value.

Var: portid — 1/0 address

Reference: ae ppi.c

dos.h

int ee_wr(int addr, unsigned char dat)

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

aeee.h

int ee_rd(int addr)

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae ee.c

aeee.h

Appendix C: Software Glossary Sensor Core-A

void io_wait(char wait) ae.h

Setup /O wait states for I/O instructions.

Var: wait — wait duration {0...7}

wait=0, wait states = 0, /O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, /O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, /O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtcl_init(unsigned char * time) fn.h

Sets real time clock date, year and time.

Var: time —time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = monl10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hourl0
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = sec10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtcl rd(TIM *r) fn.h

Reads from the real time clock.

Var: *r — Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, minl10, hounlr1p
unsigned char dayl, day10, monl, monl0, yearIl@ea
unsigned char wk;
}TIM;

Reference: rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h

Sensor Core-A Appendix C: Software Glossary

void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual
ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer 02.c, timer 2.c, timer0.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void intO_init(unsigned char i, void interrupt far (*int0_isr)());
void intl init(unsigned char i, void interrupt far (*intl_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMNI¢n-Maskable Interrupt).

Var: i—1: enable, O: disable.
int #_isr — pointer to interrupt service.

Reference: intx.c

void sO_init(unsigned char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b — baud rate. Tabl e bel ow for 40MH#z and 20MHz C ocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size

c — pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)

1 110 55

2 150 110

3 300 150

4 600 300

5 1200 600

6 2400 1200

7 4800 2400

8 9600 4800

9 19200 9600

10 (38400 19200

11 57600 38400

Appendix C: Software Glossary Sensor Core-A

b baud (40MHz) baud (20MHz)
12 [115200 57600
13 [23400 115200
14 |460800 33400
15 |921600 460800
Reference: s0_echo.c
int putserO(unsigned char ch, COM *¢); ser0.h

Output 1 character to serial port. Character élisent to serial output with interrupt isr.

Var: ch — character to output
¢ — pointer to serial port structure

Reference: s0_echo.c

int putsersO(unsigned char *str, COM *c); ser0.h

Output a character string to serial port. Charaestitbe sent to serial output with interrupt isr.

Var: str — pointer to output character string
¢ — pointer to serial port structure

int serhitO(COM *c); ser0.h

Checks input buffer for new input characters. Retu if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure

Reference: s0_echo.c

unsigned char getserO(COM *c¢); ser0.h

Retrieve 1 character from the input buffer. Asssitimatserhit routine was evaluated.

Var: c — pointer to serial port structure

Reference: s0_echo.c, s1_0.c

int getsersO(COM *c¢, int len, unsigned char *str); ser0.h

Retrieves a fixed length character string fromitpait buffer. If the buffer contains less charaster
than the length requestedt; will contain only the remaining characters frore thuffer. Appends
a \0’ character to the end dfr. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string length
str — pointer to output character string

Reference: ser0.h for sour ce code.

R

T
O@m\lg(ﬂ EN[N [N

|

:
%E&E%QBEE%éSBESéE&BE%S

ol
O

5 INIEN

~|[O
O|©| 00|

2ls =28

3
N}
=

>
[=
Iy
N
N

>
[=
o

==

N [6) o]

ININININ

py)
O

'

>~

G'N'w's ol T

[0)|w)|w]

=R
o

00| O O = | N[W] [U1| O [~ 00| ©O| Of =[N W &

™| Nl ool o] ol col ol vl co | eof ol ¢

NNNNﬂ
[N/EN[3 BN
| B> >[>
0 O'RN'W

29F800

N

72535555888 RRERE [

512

19

(=] (S](¢

|33 3> 351> 3> 3>

\\
a5 |

thpppml «
4

> | >l E
BRI I
ommq

ERERXEBIZ

3

R
N
N

2

R

Al6
/1 BY
G\D
D15
D7
D14
D6
D13

D5
D12

D4
vCcC
D11

28853

375R88

2

C

~~|~|~
3
W

ulg

T1

GN\ND d1 D1

Vi dJd 2 Vi ’)) I\
HDRD2 DI ODE

uo1l

NC 5V

feNomen Ja A

G\D 9V

VOFF4d EN 9v

=(N]C

INFNINFNINININININ

o (9| @ (O 9] |9
o] &l =0 [K o[S| ol B[S o

=

=l

P

BKJLJO

[3/{ep) BN/ foe! [{e) [@) [2g | N} ¥

NNNNF,,“,,,,”,,
P Jm)

EN[&[N]7

(&) F [V [N] g

wowmwbmp

~N|o|u | wN|-

GNDvCC
Vi V8
V2 v7

TPS765

—= NC 5V

V3 V6
V4 V5

REF/ CR

SCKSDI

LTC260

DA7 7

(SN[
0w>» &

O| R [Nfw[A(ur

i

R

i

T
e

IN
9
N
e

N>

~| =] ~|—|~

EQ4D

0]

I o]

32K XTAL3

X5

Fx6—7]

WIFf

=

D
7 RS

5 P11

9V

L

<00
10UF35V

vce
cC

Cli
10UF35V

&

mwp4:mwu
(0]

.
;

e ol
Q
2

o] R ()] [§3] B [¢N] N o

&
=

g
g

i
Il

9

<
9
hl
of~[on
e}
0]

9
5

1
:

lv)|v)lw)w)]
|

Q
4ﬁ

U
&

NININ

¢
NN
|U

=2
O

NIIIIT\
N

:
5

O|+|
[[[[R) 1
© [~ U1 | =[O N U7 G | © | NI 01| W -
BRIREE

R|B8|=2|=)
o

o]

g8
v)
g
F

O] 00| | 0| UT| | W N 2| © [0] 00| | | U | | W N[=

SEBBERERE

g3
98
6o

N
[ey

N

mﬁrmpow

308

' AIWIN'E

38 VCC

i

N TS N T TN e e P

owwﬂqmﬂqwﬂqw
3

ENNN

HDRD20
HDRD20

G\D
D6
7
(o=
All
/ RD
Al0
A
Al
VCC
A7
A6
A5
A2
Al
il
GND 24

JP1

1 2 .

3 4 i

5 6

7 8p—3G

9 10

11 12 p—HL

13 14

15 16

17 18

19 20

21 22

23 24

%) =) [[N R N T

Cl+ WIZ—-E
V+ GN\D
Cl- T10
C2+ R1l
C2- R10O
V- Ti1l
T20 T2I
R2I R20O
MAX232D

/ RST

L
TT??E

i

SENSORCORE- A

Nunber
SCA- MAN. SCH

27 28 p—
HD28
Title
Si ze
B
Dat e:

January 12, 2007 [Sheet 1 of

