

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

SensorCore™

48 24-bit ADCs, 100M BaseT Ethernet, RS232/485, and CompactFlash

Technical Manual

COPYRIGHT

SensorCore, E-Engine, A-Engine86, A-Engine, A-Core86, A-Core, i386-Engine, MemCard-A,
MotionC, VE232, and ACTF are trademarks of TERN, Inc.

Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.
Borland C/C++ is a trademark of Borland International.

Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of Microsoft
Corporation.

IBM is a trademark of International Business Machines Corporation.

Version 2.0

October 21, 2010

No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of TERN, Inc.

© 1993-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are integrated
with software and hardware that are not 100% defect free. TERN products are not designed,
intended, authorized, or warranted to be suitable for use in life-support applications, devices, or
systems, or in other critical applications. TERN and the Buyer agree that TERN will not be
liable for incidental or consequential damages arising from the use of TERN products. It is the
Buyer's responsibility to protect life and property against incidental failure.
TERN reserves the right to make changes and improvements to its products without providing
notice.
Temperature readings for controllers are based on the results of limited sample tests; they are
provided for design reference use only.

SensorCore(SC)™ Chapter 1: Introduction

1-1

Chapter 1: Introduction
The SensorCore(SC)™ is designed as a low-cost, low-power data logger for the most demanding analog data-
acquisition applications. Featuring up to 48 channels of 24-bit ADC, 2 RS232/RS485 ports, CompactFlash
interface, and a high performance 10/100M BaseT Ethernet, the SensorCore out-performs desktop-based acquisition
solutions for a fraction of the price.
Measuring only 2”x4.5”, the SC's unique profile allows it to be installed into difficult-to-access physical locations,
such as pipes. Even with this limited real estate, the SC is a full-featured, stand-alone industrial embedded
controller.
The SC is based on a high-performance C/C++ programmable x186ER CPU. It integrates 3 timer/counters, 2 async
serial ports, external interrupts, PIOs, and a real-time clock(RTC72423). The board is available with up to 512 KB
of battery-backed SRAM, 512KB Flash, and 512 bytes EEPROM for non-volatile parameter storage.
The board runs on approximately 150mA at regulated 5V, and can be powered through onboard linear regulator
accepting 9-12V DC. An optional low-drop regulator (TPS765) can be installed to provide Power-off feature
allowing low voltage(5.1V) battery operation. Optional 2 channels 12-bit DAC analog outputs can be installed.
The SC has two RS232 serial ports as default, and one can be configured as RS485 operation. The SC also features
an integrated high-performance 10/100-baseT hardware TCP/IP module, which allows 100KB+ access to TCP/IP
networks with minimal CPU load. Sample implementations for the SensorCore allows it to be configured as a HTTP
web-server, FTP server/client, etc.
The SC features three high-speed LTC2448 delta-sigma ADCs, interfaced through a high speed sync serial port.
Each LTC2448 chip offers 8 ch. differential or 16 ch. single-ended input channels. Variable speed/resolution settings
can be configured. A peak single-channel output rate of 8 KHz can be achieved. At a sample rate of 1.76KHz,
readings are accurate to 18+ bits in experimental conditions.
The LTC2448 works well with 500 ohm and lower impedance sensors, such as 350 ohm Strain gauges, current
shunts, RTDs, resistive sensors (500ohm an lower), and 4-20mA current loop sensors with 100 ohm sense resistors.
The SC will also work directly with thermocouples. We can install a 2.5V precision reference with temperature
sensor(LT1019) to minimize input current and providing local temperature measurement for thermocouple
applications. There are 8+ million counts of resolution in the input span. If desired, you could put a divider at the
input to increase the input range.
The SC also features an integrated CompactFlash interface. Data can be written into CF at a sufficiently high enough
data rate that the SC can record sampling from all 3 chips indefinitely, even at peak sample rates.
A 50-pin CompactFlash receptacle can be installed to allow access to mass storage CompactFlash cards (up to 2
GB). Users can easily add mass data storage to their embedded application. C/C++ programmable software package
includes FAT16 file system libraries are available, this much room allows more than 1 billion 24-bit samples to be
recorded in the field on a single board.

Chapter 1: Introduction SC

1-2

Am186ER
R1100

CPU
40/80MHz

DMA(2)
16-Bit Timers(3)
Ext. Interrupts(8)

32 I/O lines
PWM/PWD

16-bit Ext. data bus

691 U6

EEPROM U7
512 BYTES

FLASH
512 KB 16-bit U1

RS232 drivers
SER0+SER1

or
RS485 for SER1

SDA P22

SDL P29

J1 & J2

100M BaseT
Ethernet
JP1+JP2

24-bit ADC
LTC2448

 U11, U12, U13

RTC72423 U8

Low drop 5V
regulators U14+U18

Or

Linear 5V regulators
LM7805

SRAM
128KB or 512 KB

16-bit U3
J9

watchdog
enable

SensorCore

CompactFlash
U4

D0..D15

D0..D15

Figure 1.1 Functional block diagram of the SensorCore

The SC supports on-board 512 KB 16-bit Flash and up to 512 KB 16-bit battery-backed SRAM. The on-board
ACTF Flash has a protected boot loader and can be easily programmed in the field via serial link. Users can
download a kernel into the Flash for remote debugging. With the DV-P Kit support, user application codes can be
easily field-programmed into and run out of the Flash.

A 512-byte serial EEPROM is included on-board. One serial port from the Am186ER/R1100 support high-speed,
reliable serial communication at a rate of up to 115,200 baud. A SCC2691 provides the second serial port. Two
serial ports support 8-bit and 9-bit communication.

There are three 16-bit programmable timers/counters and a watchdog timer. Two timers can be used to count or time
external events, at a rate of up to 10 MHz, or to generate non-repetitive or variable-duty-cycle waveforms as PWM
outputs. Pulse Width Demodulation (PWD), a distinctive feature, can be used to measure the width of a signal in
both its high and low phases. It can be used in many applications, such as bar-code reading.

The CPU has 32 user-programmable, multifunctional I/Os. Schmitt-trigger inverters are provided for six external
interrupt inputs, to increase noise immunity and transform slowly-changing input signals into fast-changing and
jitter-free signals. A supervisor chip with power failure detection, a watchdog timer, an LED, and expansion ports
are on-board.

SensorCore(SC)™ Chapter 1: Introduction

1-3

Features:
* 2.0 x 4.5”, 160 mA, 9-24V DC power
* Complete C/C++ programmable environment
* 48 channels of 24-bit ADC input, 0-2.5V
* 2 channels 12-bit DAC (0-4.095V), 8 TTL I/Os
* CompactFlash with FAT file system support
* 40/80 MHz 186 CPU with 256 KW Flash, 256 KW SRAM
* 2 RS-232 serial ports; one can be RS232/485
* 3 16-bit timer/counters, PWM output, RTC, EE
* Hardware TCP/IP stack for 100M Based-T Ethernet

1.2 Physical Description

The physical layout of the SensorCore is shown in Figure 1.2.

Figure 1.2 Physical layout of the SensorCore

Chapter 1: Introduction SC

1-4

Figure 1.3 Flow chart for ACTF operation

The “ACTF boot loader” resides in the top protected sector of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the DEBUG kernel (RE80_115.hex) is pre-loaded
in the Flash starting at 0xFA000, and the RED STEP2 jumper is installed on J2 pin 38-40,
ready for Paradigm C++ debugger. User does not need to download a DEBUG kernel to start
with.

At power-on or RESET, the “ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the ACTF
menu will be sent out from serial port0 at 19200 baud for a 80MHz SC.
If the STEP 2 jumper is installed, the “jump address” pre-programmed in the on-board serial EEPROM, will be read
out and then jump to that address. A DEBUG kernel “RE80_115.hex” residing at “0xFA000” of the 512KB on-
board flash chip.

Power On or Reset

YES

Go to Application Code CS:IP

STEP 2

ACTF menu sent out through ser0
STEP 1

Step 2 jumper

NO

set?
CS:IP in EEPROM:

0x10=CS high byte
0x11=CS low byte
0x12=IP high byte
0x13=IP low byte

at 19200 baud

SensorCore(SC)™ Chapter 1: Introduction

1-5

1.3 SensorCore Programming Overview

Steps for product development:

 Preparation for Debugging(DONE in Factory !)
 • Connect SC to PC via RS-232 link, 19,200, 8, N, 1

• Power on SC without STEP 2 jumper installed
• ACTF menu should be sent to PC terminal
• “D”to download “c:\tern\186\rom\re\L_DEBUG.HEX”
• “G04000” to run out of SRAM
• Download “c:\tern\186\rom\re\RE80_115.HEX” to Flash
• “GFA000” to setup EEPROM and run remote debugger
• Install the STEP2 jumper (J2.1-3)
• Power-on or reset, Ready for Remote debugger

STEP 2: Standalone Field Test
8888”G08000” setup EEPROM Jump Address, points to

application code resides in battery backed SRAM
8888Install STEP2 jumper, then power on

8888Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.)

• Start Paradigm C++, run “led.ide” or “test.ide”
• Download code to target SRAM at 115,200 baud.
• Edit, compile, link, locate, download, and remote-debug

STEP 1: Debugging

STEP 3: DV-P Kit
• Generate application HEX file with DV-P and ACTF Kit
• ACTF “D” to download “L_29F40R.HEX” into SRAM
• Download application HEX file into FLASH
• Modify EEPROM jump address to 0x80000
• Set STEP2 jumper

 Production

There is no ROM socket on the SC. The user’s application program must reside in SRAM for debugging in STEP1,
reside in battery-backed SRAM for the standalone field test in STEP2, and finally be programmed into Flash for a
complete product. For production, the user must produce an ACTF-downloadable HEX file for the application,
based on the DV-P Kit. The “STEP2” jumper (J2 pins 1-3) must be installed for every production-version board.

Step 1 settings

In order to talk to SC with Paradign C++, the SC must meet these requirements:

1) c:\tern\186\rom\re\RE80_115.HEX or RE84_115.HEX must be pre-loaded into Flash starting address 0xfa000.

2) The SRAM installed must be large enough to hold your program.

For a 128K SRAM, the physical address is 0x00000-0x01ffff
For a 512K SRAM, the physical address is 0x00000-0x07ffff

Chapter 1: Introduction SC

1-6

3) The on-board EEPROM must have a Jump Address for the RE80_115.HEX with starting address of 0xfa000.

4) The STEP2 jumper must be installed on J2 pins 1-3.

For further information on programming the SensorCore, refer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

The SC works with some of TERN expansion boards including the P50, P100, P300.

SensorCore(SC)™ Chapter 1: Introduction

1-7

The LTC2448 works well with 500 ohm and lower impedance sensors, such as 350 ohm Strain gauges, current
shunts, RTDs, resistive sensors (500ohm an lower), and 4-20mA current loop sensors with 100 ohm sense resistors.

SC can work directly with thermocouples:

SensorCore Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the “software_kit.pdf” technical manual on the TERN installation CD, under
tern_docs\manual\software_kit.pdf, for information on installing software.

2.2 Hardware Installation

Hardware installation consists primarily of connecting the microcontroller to your PC.

2.2.1 Connecting the SC to the PC

Figure 2.1 provides the location of the debug serial port and the power jack. The SC is linked to the PC via
a serial cable (DB9-IDE) which is supplied with TERN’s EV-P / DV-P Kits.

The SC communicates through SER0 by default. Install the 5x2 IDC connector on the SER0 H2 pin header.
The DB9 connector should be connected to one of your PC's COM Ports (COM1 or COM2).

The following is a picture of the debug cable and its relevant pins. Only /TxD, /RxD, and GND are needed.

Overview
• Connect PC-IDE serial cable:

For debugging (STEP 1), place IDE connector on SER0 with red
edge of cable on side closest to J3 (See Fig. 2.1). This DEBUG
cable is a 10-pin IDE to DB9 cable, made by TERN.

• Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
using power jack adapter supplied with EV-P/DV-P Kit

PC Receive Data.
Connects to TERN

controller /TxD.
Floating at 0V.

PC Transmit Data.

Connects to /RxD.
Voltage = -10V

GND

Red Edge

RS-232/Debug Cable Supplied
by TERN with EV-P or DV-P

Software Kits

To PC
DB9

Chapter 2: Installation SensorCore

2-2

2.2.2 Powering-on the SC

By factory default setting:
1) The RED STEP2 Jumper is installed. (Default setting in factory)
2) The DEBUG kernel is pre-loaded into the on-board flash starting at address of 0xFA000. (Default setting
in factory)
3) The EEPROM is set to jump address of 0xFA000. (Default setting in factory)

Connect +9-12V DC to the DC power terminal. The screw terminal at the corner of the board is positive
12V input and the other terminal is GND (see figure for details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be used to connect the output of the power jack adapter and
the SC. Note that the output of the power jack adapter is center negative.

The on-board LED should blink twice and remain on, indicating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for programming and debugging.

Figure 2.1 Locations of STEP2 Jumper, LED, Power input and DEBUG port

Power Input
(Center Negative

Plug)

Step 2 Jumper

Serial Port 0
(Debug port)

SensorCore Chapter 3: Hardware

 3-1

Chapter 3: Hardware

Am186ER AND RDC R1100

The SensorCore is compatible with two different CPUs. Both offer and support the same on-board
peripherals as well as the on the CPU itself, aside from a few differences. The Am186ER, from AMD, uses
times-four crystal frequency, while the R1100, from RDC, uses times-eight. The SensorCore uses a 10MHz
system clock, giving the Am186ER a CPU clock of 40MHz and the R1100 a CPU clock of 80MHz. Both
CPUs operate at +3.3V, with lines +5V tolerant. The RDC 1100 supports the same 80C188 microprocessor
instruction set as the Am186ER, yet uses an internal RISC core architecture.

Am186ER – Introduction

The Am186ER is based on the industry-standard x86 architecture. The Am186ER controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the Am186ER has new
peripherals. The on-chip system interface logic can minimize total system cost. The Am186ER has one
asynchronous serial port, one synchronous serial port, 32 PIOs, a watchdog timer, additional interrupt pins,
DMA to and from serial ports, a 16-bit reset configuration register, and enhanced chip-select functionality.

In addition, the Am186ER has 32KB of internal volatile RAM. This provides the user with access to high
speed zero wait-state memory. In some instances, users can operate the SensorCore without external
SRAM, relying only on the Am186ER’s internal RAM.

RDC R1100 – Introduction

The RDC 1100 is based on RISC internal architecture, yet still supports the same 80C188 microprocessor
instruction set. It provides faster operation than the Am186ER, allowing it to operate at up to 80MHZ,
based a 10MHz system clock and times-eight crystal operation. The RDC R1100 does not offer internal
RAM like the Am186ER, so external SRAM is mandatory if using the RDC R1100.

Am186ER – Features

Clock

Due to its integrated clock generation circuitry, the Am186ER microcontroller allows the use of a times-
four crystal frequency. The design achieves 40 MHz CPU operation, while using a 10 MHz crystal.

The R1100 offers times-eight crystal frequency, achieving 80MHz operation based on a 10MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4, default 40 MHz. The CLKOUTB signal is not
connected in the SensorCore.

CLKOUTA remains active during reset and bus hold conditions. The SensorCore initial function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); and clkb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=J1 pin 4.

External Interrupts and Schmitt Trigger Input Buffer

There are six external interrupts: INT0-INT4 and NMI.

/INT0 is used by SCC2691 UART.

Chapter 3: Hardware SensorCore

3-2

/INT1, J2 pin 8, free for user application
INT2, is used by U12 ADC as Busy signal.
/INT3, free for user application.
/INT4, JP1 pin 2, used by Ethernet module.

NMI, U9.10

Four external interrupt inputs, /INT0-1, and /INT3-4 are buffered by Schmitt-trigger inverters (U9,
74HC14) in order to increase noise immunity and transform slowly changing input signals to fast changing
and jitter-free signals. As a result of this buffering, these pins are capable of only acting as input.

These buffered external interrupt inputs require a falling edge (HIGH-to-LOW) to generate an interrupt.

Figure 3.1 External interrupt inputs

Remember that /INT0 is used by the external UART. /INT0 should not be used by application if
SER1 is being used.

The SensorCore uses vector interrupt functions to respond to external interrupts. Refer to the Am186ER
User’s manual for information about interrupt vectors.

Asynchronous Serial Port

The Am186ER and R1100 CPU has one asynchronous serial channel. It supports the following:

• Full-duplex operation
• 7-bit, and 8-bit data transfers
• Odd, even, and no parity

U9 /INT1=J2. INT
1

= U9.8

U9

/INT0=U5.13 INT = U9.6

/INT3=U9.

/INT4=JP1. INT4 = U9.4

INT3 = U9.2
U9

U9

SensorCore Chapter 3: Hardware

 3-3

• One or two stop bits
• Error detection
• Hardware flow control
• DMA transfers to and from serial port (Am186ER ONLY)
• Transmit and receive interrupts
• Maximum baud rate of 1/16 of the CPU clock speed
• Independent baud rate generators

The software drivers for the asynch. serial port implement a ring-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the sample file s0_echo.c

An external SCC2691 UART is located in position U5. For more information about the external UART
SCC2691, please refer to the section in this manual on the SCC2691.

Note that while the Am186ER supports DMA transfers to and from its asynchronous serial port, the
R1100 does not. Despite this difference, the TERN software drivers for the asynchronous serial port
support both CPUs.

Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to four external pins:

Timer0 output = P10 = U15.4
Timer0 input = P11 = J2 pin 7
Timer1 output = P1 = J2 pin 12
Timer1 input = P0 = J2 pin 5

These two timers can be used to count or time external events, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or time-
delay applications. It can also prescale timer 0 and timer 1 or be used as a DMA request source.

Timer 0 output, P10, is used as the chip select for the DAC7612. Timer 0 should therefore not be used
by application unless the DAC7612 is not used.

The maximum rate at which each timer can operate is 10 MHz for the Am186ER and 20MHz for the
R1100, since each timer is serviced once every fourth CPU clock cycle. Timer inputs take up to six clock
cycles to respond to clock or gate events. See the sample programs timer0.c and ae_cnt0.c in the
\samples\ae directory.

PWM outputs

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both Timer0
and Timer1 have secondary maximum count registers for variable duty cycle output. Using both the primary
and secondary maximum count registers lets the timer alternate between two maximum values.

Chapter 3: Hardware SensorCore

3-4

MAX. COUNT A

MAX. COUNT B

Power-save Mode

The SensorCore is an ideal core module for low power consumption applications. The power-save mode of
the Am186ER reduces power consumption and heat dissipation, thereby extending battery life in portable
systems. In power-save mode, operation of the CPU and internal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatically returns to its normal operating frequency.

The RTC72423 on the SensorCore has a VOFF signal routed to J6 pin 2. VOFF is controlled by the battery-
backed RTC72423. The VOFF signal can be programmed by software to be in tri-state or to be active low.
The RTC72423 can be programmed in interrupt mode to drive the VOFF pin at 1 second, 1 minute, or 1
hour intervals. The user can use the VOFF line to control an external switching power supply that turns the
power supply on/off.

Am186ER PIO lines

The Am186ER has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal shared function is not needed. A PIO line can be
configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-drain
output. A pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage, as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

PIO Function Power-On/Reset
status

SensorCore Pin No. SensorCore Initial

after ae_init();

function call

P0 Timer1 in Input with pull-up J2 pin 5 Input with pull-up
P1 Timer1 out Input with pull-down J2 pin 12 Input with pull-up
P2 /PCS6/A2 Input with pull-up J2 pin 10 /PCS6
P3 /PCS5/A1 Input with pull-up J2 pin 9 /PCS5
P4 DT/R Normal J2 pin 3 Input with pull-up: Step 2
P5 /DEN/DS Normal U13.2 ADC Input with pull-up
P6 SRDY Normal J2 pin 6 Input with external pull-up
P7 A17 Normal N/A A17
P8 A18 Normal N/A A18
P9 A19 Normal N/A Input with pull-up
P10 Timer0 out Input with pull-down U15.4 DAC Input with pull-down
P11 Timer0 in Input with pull-up J2 pin 7 Input with pull-up

SensorCore Chapter 3: Hardware

 3-5

PIO Function Power-On/Reset
status

SensorCore Pin No. SensorCore Initial

after ae_init();

function call

P12 DRQ0 Input with pull-up J1 pin 26 Output
P13 DRQ1 Input with pull-up U11.2 ADC Input with pull-up
P14 /MCS0 Input with pull-up JP1.5 Ethernet Input with pull-up
P15 /MCS1 Input with pull-up J2 pin 4 Input with pull-up
P16 /PCS0 Input with pull-up J1 pin 19 /PCS0
P17 /PCS1 Input with pull-up N/A Input with pull-up
P18 /PCS2 Input with pull-up U8.2 RTC Input with pull-up
P19 /PCS3 Input with pull-up U5.14 UART Input with pull-up
P20 SCLK Input with pull-up N/A Input with pull-up
P21 SDATA Input with pull-up N/A Input with pull-up
P22 SDEN0 Input with pull-down U7.6 EEPROM Output
P23 SDEN1 Input with pull-down U11.36 ADC Input with pull-down
P24 /MCS2 Input with pull-up U12.36 ADC Input with pull-up
P25 /MCS3 Input with pull-up U13.36 ADC Input with pull-up
P26 UZI Input with pull-up U15.3 DAC Input with pull-up*
P27 TxD Input with pull-up U21.10 TxD0
P28 RxD Input with pull-up U21.9 RxD0
P29 S6/CLKSEL1 Input with pull-up EE,LED,WDI Output
P30 INT4 Input with pull-up /INT4 = JP1.2 Input with pull-up
P31 INT2 Input with pull-up U12.2 ADC Input with pull-up

* Note: P26 and P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

SensorCore initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xc7bc); // PDIR1: TxD, RxD, PCS0, PCS1, P29& P22 Output
outport(0xff76,0x2040); // PIOM1
outport(0xff72,0xee73); // PDIR0: A18, A17, PCS6, PCS5, P12 Output
outport(0xff70,0x1040); // PIOM0

The C function in the library re_lib can be used to initialize PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0-3, see the table above.

Example: pio_init(12, 2); will set P12 as output

Chapter 3: Hardware SensorCore

3-6

 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pin is in input mode,

Some of the I/O lines are used by the SensorCore system for on-board components. We suggest that you
not use these lines unless you are sure that you are not interfering with the operation of such components
(i.e., if the component is not installed).

Signal Pin Function

P5 U13.2 U13 ADC Busy Line
P7 A17 Upper address line – Never use by application
P8 A18 Upper address line – Never use by application
P10 U15.4 U15 DAC Chip select line
P13 U11.2 U11 ADC Busy line
P14 JP1.5 /MCS0 - Ethernet
P18 U8.2 RTC Chip select
P19 U5.14 UART Enable
P20** SCLK Synchronous Clock for U11, U12, U13, U15
P21** SDAT Serial Interface for U11, U12, U13, U15
P22 SDEN0 Interface with EEPROM
P23 SDEN1 U11.36 ADC
P24 /MCS2 U12.36 ADC
P25 /MCS3 U13.36 ADC
P26* /CLKSEL2 Used at power-up/reset to determine system clock multiplier
P27 TxD0
P28 RxD0
P29* /CLKSEL1 Reserved for EEPROM, LED, RTC, and Watchdog timer
P30 INT4 Interrupt used Ethernet
P31 INT2 U12.2 ADC Busy line
/INT0 U5.13 UART interrupt

Table 3.2 Important Notes:

* The Am186ER CPU uses the P26 and the P29 lines to determine the system clock multiplier at
power-up or reset. The CPU has internal pull-ups on these lines to select the default multiplier of
four-times (AMD) or eight-times (RDC). It is critical that the user allow these lines to remain high
during power-up or reset. Failure to do so will result in undesirable operation.
** The SCLK and SDAT lines are the synchronous serial port on the Am186ER. Several devices
on the SC use these lines, including 3 LTC2448 (locations U11, U12, U13), and the DAC7612
(locations U15). The user is free to use the SCLK and SDAT lines for their application only if the
ADCs and DACs are disabled first. This is needed so as not to have more than one device trying to
occupy the SDAT line simultaneously.

Table 3.3 I/O lines used for on-board components

SensorCore Chapter 3: Hardware

 3-7

I/O Mapped Devices

I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port) or
outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define the
I/O wait states from 0 to 15. The system clock is 100 ns for both CPUs, while the CPU clock is 25ns for the
Am186ER and 12.5ns for the R1100. Details regarding this can be found in the Software chapter, and in the
Am186ER User’s Manual. Slower components, such as most LCD interfaces, might find the maximum
programmable wait state of 15 cycles still insufficient. Due to the high bus speed of the system, some
components may need to be attached to I/O pins directly.

For details regarding the chip select unit, please see Chapter 5 of the Am186ER User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Location Usage

0x0000-0x00ff /PCS0 J1 pin 19=P16 USER*
0x0200-0x02ff /PCS2 U8 pin 2 RTC
0x0300-0x03ff /PCS3 U5 pin 14 SCC2691
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 J2 pin 9=P3 USER
0x0600-0x06ff /PCS6 J2 pin 10 = P2 USER

*PCS0 may be used for other TERN peripheral boards, such as FC-0, P50, P100, MM-A.

To illustrate how to interface the SensorCore with external I/O boards, a simple decoding circuit for
interfacing to an 82C55 parallel I/O chip is shown in Figure 3.2.

/WR

/RD

/SEL20

A0
A1

D0-D7

/CS

/WR

/RD

82C55

RST P00-P07

P10-P17

P20-P27

1

/PCS0

A7

6VCC

4

3

2

5

A5

A6 /SEL20

/SELF0

/SELC0
/SELA0
/SEL80

/SEL60
/SEL40

14

13

12

11

10

9
7

NC15

74HC138

C

A

B

G2A

G2B
G1

Y2

Y3

Y4

Y5

Y6
Y7

Y1

Y0

Figure 3.2 Interface the SensorCore to external I/O devices

The function ae_init() by default initializes the /PCS0 line at base I/O address starting at 0x00. You
can read from the 82C55 with inportb(0x020) or write to the 82C55 with outportb(0x020,dat). The call to
inportb(0x020) will activate /PCS0, as well as putting the address 0x20 over the address bus. The decoder
will select the 82C55 based on address lines A5-7, and the data bus will be used to read the appropriate data
from the off-board component.

Chapter 3: Hardware SensorCore

3-8

UART SCC2691

The UART SCC2691 (Signetics, U5) is mapped into the I/O address space at 0x0300. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an interrupt
control mechanism, programmable data format, selectable baud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a multi-purpose
input/output including RTS and CTS mechanism.

For more information, refer to Appendix B. The SCC2691 on the SensorCore may be used as a RS485
network 9-bit UART (for the TERN NT-Kit). Its data sheet and sample code are scc2691.pdf (in the
\tern_docs\parts\ directory) and \tern\186\samples\sc\ scc_echo.c, respectively.

EEPROM

A serial EEPROM of 512 bytes (24C04) is installed in U7. The SensorCore uses the P22=SCL (serial
clock) and P29=SDA (serial data) to interface with the EEPROM. The EEPROM can be used to store
important data such as a node address, calibration coefficients, and configuration codes. It typically has
1,000,000 erase/write cycles. The data retention is more than 40 years. EEPROM can be read and written
by simply calling the functions ee_rd() and ee_wr().

A range of lower addresses in the EEPROM is reserved for TERN use, 0x00 – 0x1F. The addresses 0x20 to
0x1FF are for user application.

Other Devices

A number of other devices are also available on the SensorCore. Some of these are optional, and might not
be installed on the particular controller you are using. For a discussion regarding the software interface for
these components, please see the Software chapter.

On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the SensorCore has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J9 of the SensorCore. The watchdog timer provides
a means of verifying proper software execution. In the user's application program, calls to the function
hitwd() (a routine that toggles the P29 = WDI pin of the MAX691) should be arranged such that the WDI
pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the WDI pin is not accessed
within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the application program if something is wrong. After the
SensorCore is reset, the WDO remains low until a transition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

The Am186ER has an internal watchdog timer. This is disabled by default with ae_init().

SensorCore Chapter 3: Hardware

 3-9

Figure 3.3 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock DS1337 are backed up. In
normal use, the lithium battery should last about 3-5 years without external power being supplied. When the
external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSON, U8) is mapped in the I/O address space 0x0200. It
must be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or
rtc_rds() (see Appendix C and the Software chapter for details). A sample program is provided
\tern\186\samples\sc\rtc_init.c. Its data sheet can be found in the \tern_docs\parts directory, filename
“rtc7242xam.pdf”.

It is also possible to configure the real-time clock to raise an output line attached to an external interrupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or the
VOFF signal can be used to turn on/off the controller using an external switching power supply. An
example of a program showing a similar application can be found in tern\186\samples\ae\poweroff.c.

Dual 12-bit DAC (DAC7612U)

The DAC7612 is a dual, 12-bit digital-to-analog converter with guaranteed 12-bit monotonicity
performance over the industrial temperature range. It requires a single +5V supply and contains an input
shift register, latch, 2.435V reference, a dual DAC, and high speed rail-to-rail amplifiers. For a full-scale
step, each output will settle to 1LSB within 7µs.

The DAC7612 uses a four wire serial interface to the CPU. The CPU on the SensorCore uses four lines
from the Am186ER to drive the serial interface (Data In, Clock, Chip select and Latch Data) in an 8-lead
SOIC package. The SensorCore offers one DAC7612, providing 2 12-bit serial DAC channels. The
DAC7612 outputs can support a capacitive load of 500pF.

Watchdog jumper, J9.
The J9 header is not

populated in this
picture.

Chapter 3: Hardware SensorCore

3-10

The DAC is located in the U15 position with analog outputs routed to the J4 pin header, pins 10 & 12. See
the schematic at the end of this technical manual.

Refer to data sheet in the tern_docs\parts directory of the TERN CD and to sample code in the
tern\186\samples\sc\sc_da.c directory for additional information.

LTC2448, 24-bit ADC

The SC features three high-speed LTC2448 delta-sigma ADCs, interfaced through a high speed Sync serial
port. Each LTC2448 chip offers 8 ch. differential or 16 ch. single-ended input channels. Variable
speed/resolution settings can be configured. A peak single-channel output rate of 8 KHz can be achieved.
At a sample rate of 1.76KHz, readings are accurate to 18+ bits in experimental conditions.

The LTC2448 works well with 500 ohm and lower impedance sensors, such as 350 ohm Strain gages,
current shunts, RTDs, resistive sensors (500ohm an lower), and 4-20mA current loop sensors with 100 ohm
sense resistors. The SC will also work directly with thermocouples. We can install a 2.5V precision
reference with temperature sensor(LT1019) to minimize input current and providing local temperature
measurement for thermocouple applications. There are 8+ million counts of resolution in the input span. If
desired, you could put a divider at the input to increase the input range.

A sample program ssi_ad24.c can be found in the c:\tern\186\samples\sc directory. See the data
sheet, ltc2448.pdf in the tern_docs\parts directory.

Compact Flash Interface

By utilizing the compact flash interface on the SC, users can easily add widely used 50-pin CF standard
mass data storage cards to their embedded application via RS232, TTL I2C, or parallel interface. TERN
software supports Linear Block Address mode, 16-bit FAT flash file system, RS-232, TTL I2C or parallel
communication. Users can write/read files to/from the CompactFlash card. Users can also transfer files to
and from a PC via a Compact Flash card reader. (sandisk.com).

This allows the user to log huge amounts of data from external sources. Files can then be accessed via
compact flash reader on a PC.

The tern\186\samples\sc directory includes sample code, sc_cf.c, to show reads and writes of raw data by
sector. In addition, tern\186\samples\fn\fs_cmds1.c is a simple file system demo with serial port based
user interface. Refer to sc.ide which has the demo built and ready for download.

100 MHz BaseT Ethernet

A WizNet™ Fast Ethernet Module can be installed to provide 100M Base-T network connectivity. This
Ethernet module has a hardware LSI TCP/IP stack. It implements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAC. It has 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memory. The host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releases internet connectivity and protocol processing from the
host processor. It supports 4 independent stack connections simultaneously at a 4Mbps protocol processing
speed. An RJ45 8-pin connector is on-board for connecting to 10/100 Base-T Ethernet network. A software
library is available for Ethernet connectivity.

SensorCore Chapter 3: Hardware

 3-11

Headers and Connectors

Expansion Headers J1 – J5

There are two 20x2 0.1 spacing headers for SensorCore expansion. Most signals are directly routed to the
Am186ER processor.

 J3 Signal

E01 1 2 E00
E03 3 4 E02
E05 5 6 E04
E07 7 8 E06
E09 9 10 E08
E11 11 12 E10
E13 13 14 E12
E15 15 16 E14
C01 17 18 C00
C03 19 20 C02
C05 21 22 C04
C07 23 24 C06
C09 25 26 C08
C11 27 28 C10
C13 29 30 C12
C15 31 32 C14
B01 33 34 B00
B03 35 36 B02
B05 37 38 B04
GND 39 40 B07

J1 Signal

VCC 1 2 GND
 3 4 CLK
 5 6 GND
 7 8 D0
 9 10 D1
 11 12 D2
D15 13 14 D3
/RST 15 16 D4
RST 17 18 D5
P16 19 20 D6
D14 21 22 D7
D13 23 24 GND
 25 26 P12
D12 27 28 A7
/WR 29 30 A6
/RD 31 32 A5
D11 33 34 A4
D10 35 36 A3
D9 37 38 A2
D8 39 40 A1

Table 3.4 Signals for J3 (ADC input) and J1 (Expansion), 20x2 ports

 J2 Signal

GND 1 2 VCC
P4 3 4 P15
P0 5 6 P6
P11 7 8 /INT1
P3 9 10 P2
/INT3 11 12 P1

J4 Signal

B08 1 2 B06
B10 3 4 B09
B11 5 6 B12
B13 7 8 B14
B15 9 10 VA
GND 11 12 VB

J5 Signal

GND 1 2 GND
GND 3 4 GND
GND 5 6 GND
GND 7 8
REF 9 10 VCC

Table 3.5 Signals for J2 (I/O) , J4 (ADC input), and J5 headers

SensorCore Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

Guidelines, awareness, and problems in an interrupt driven environment

Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff , or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory will
be used to activate appropriate chip-select lines and the corresponding hardware component responsible for
handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment address
is shifted left by four bits and added to the offset to find the 20-bit address. This address is then output over
the address bus, and the hardware component mapped to that address should return either an 8-bit or 16-bit

Chapter 4: Software SensorCore

4-2

value over the data bus. If there is no component mapped to that address, this function will return random
garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often when
working with processor registers that are mapped into I/O space and must be accessed using either one of
these functions. This is also the function used in most cases when dealing with user-configured peripheral
components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most hardware
options added to TERN controllers are mapped into I/O space, since memory space is valuable and is
reserved for uses related to the code and data. Using I/O mappings, the address is output over the address
bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 RE.LIB
RE.LIB is a C library for basic SC operations. It includes the following modules: AE.OBJ, SER0.OBJ,
SER1R.OBJ, and AEEE.OBJ. You need to link to RE.LIB in your applications and include the
corresponding header files in your source code. The following is a list of the header files:

Include-file name Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SER0.H Internal serial port 0, from CPU
SER1R.H External UART SCC26C92
AEEE.H on-board EEPROM

Not all functions in the above modules will apply to the SC. For example, “ae.h” was originally created for
the A-Engine. Therefore, “ae.h” will include routines for the TLC2543 (for example), not installed on the
SC. The user will need to include the header file “sc.h” to provide routines for the SC devices. Although
“ae.h” was created for a different controller, it will still be needed for a variety of routines used by the SC,
such as timers, interrupts, and others. Refer to the actual header file itself to determine which is needed for a
certain application.

SensorCore Chapter 4: Software

4-3

4.2 Functions in AE.OBJ

4.2.1 SensorCore Initialization

ae_init

This function should be called at the beginning of every program running on SC controllers. It provides
default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded DOS I/O,
and provides other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind, the
basic effects of ae_init are described below. For details regarding register use, you will want to refer to the
AMD Am186ER Microcontroller User’s manual.

• Initialize the upper chip select to support the on-board flash. The CPU registers are configured
such that:

− Address space for the Flash is from 0x80000-0xfffff (to map Memcard I/O window)

− 512K ROM Block size operation.

− Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you require increased performance (at a risk of stability
in noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)
reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

• Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

− Address space starts 0x00000, with a maximum of 512K RAM.

− Three wait state operation. Reducing this value can improve performance.

− Disables PSRAM, and disables need for external ready.
outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

• Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

− MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

− Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

• Initialize PACS so that PCS0-PCS3 are configured so that:

− Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.

− The chip select lines starts at I/O address 0x0000, with each successive chip select line
addressed 0x100 higher in I/O space.

outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

• Configure the two PIO ports for default operation. Most pins are set up as default input, except for
P29 (used for driving the LED), pins for SER0, and others.

outport(0xff78,0xc7bc); // PDIR1, TxD,RxD,PCS0,PCS1,P29&P22 Output
outport(0xff76,0x2040); // PIOM1
outport(0xff72,0xec7b); // PDIR0, A18,A17,PCS6,PCS5, P12 Output
outport(0xff70,0x1000); // PIOM0

• Configure the PPI 82C55 to all inputs. You can reset these by writing to the command register.
outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);

Chapter 4: Software SensorCore

4-4

outportb(0x0102,0x01); // I20 high

The chip select lines are set to 15 wait states, by default. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number down
as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is decreased
too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sources on the SC, consisting of five maskable interrupt pins (INT4-
INT0) and one non-maskable interrupt (NMI). There are also an additional eight internal interrupt sources
not connected to the external pins, consisting of three timers, two DMA channels, both asynchronous serial
ports, and the NMI from the watchdog timer. For a detailed discussion involving the ICUs, the user should
refer to Chapter 9 of the AMD Am186ER Microcontroller User’s Manual - or the R1100 user’s manual,
both available on the CD under the amd_docs directory. (Remember, DMA channels to and from the
serial port not available on the R1100.)

TERN provides functions to enable/disable all of the 5 maskable external interrupts. The user can call any
of the interrupt init functions listed below for this purpose. The first argument indicates whether the
particular interrupt should be enabled, and the second is a function pointer to an appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled must
be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be handled
first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user chooses to
clear the in-service bit for the interrupt currently being handled, the interrupt service routine just needs to
issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

See Chapter 9 of Am186ER technical manual (tern_docs) for additional details. Sample code is also
available in the tern\186\samples\ae directory, ‘intx.c’.

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this

SensorCore Chapter 4: Software

4-5

particular interrupt should be enabled or disabled. The second argument is a function pointer, which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 µs.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

Two ports of 16 I/O pins each are available on the SC. Hardware details regarding these PIO lines can be
found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, initialize the appropriate pins in one of the four available modes.
Before selecting pins for this purpose, make sure that the peripheral mode operation of the pin is not needed
for a different use within the same application. (Example, if using the DAC7612, P10 is needed as the chip
select, so it will be unavailable for any other purpose while the DAC is being used).

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 14 of the AMD Am186ER User’s Manual. Also see Table 3.2 in this manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur if
you instead modify the PIO registers directly with an outport instruction Performance in this case will be
around 1-2 us to toggle any pin. Refer to ‘re_speed.c’ for the fastest possible access.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

• 0, normal operation
• 1, input with pullup/down
• 2, output
• 3, input without pull

Chapter 4: Software SensorCore

4-6

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the SC can be used for a variety of applications. All three timers run at ¼ of
the processor clock rate, which determines the maximum resolution that can be obtained. Be aware that if
you enter power save mode, the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register that is specified using the software
interfaces. The mode register is described in detail in chapter 10 of the AMD AM186ER User’s Manual.

The timers can be used to time execution of your user-defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used for pulse-width modulation with a variable duty cycle.
These timers contain two max counters, where the output is high until the counter counts reaches maxcount
A before switching and counting to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution at
the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this down
even further. The sample files timer02.c and timer12.c, located in tern\186\samples\ae, demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 10 of the AMD
AM186ER User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be specified
using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON mode
registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached if the interrupt
bit in the T0CON/T1CON is set, with other behavior possible depending on the value specified for the
control register. If the interrupt bit is not set, the user can poll the status if the MC bit in the timer control
registers. Polling the MC bit offers a way to monitor timer status without using interrupts.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available, and no I/O pins.

SensorCore Chapter 4: Software

4-7

4.2.5 Analog-to-Digital Conversion

Delta-Sigma ADC LTC2448

The 3 LTC2448 ADC units (at locations U11, U12, U13) provide 48 channels of 0-2.5V analog single-
ended (24 differential) inputs (or 0-1.25V input with 2.5V reference chip). For details regarding the
hardware configuration, see the Hardware chapter.

The following functions will drive the 24-bit ADCs. The order of functions given here should be followed
in actual implementation.

 void ad24_init(void);

 void ad24_setup(unsigned char chip, unsigned int control_byte);

 void ad24_ssi_rd(unsigned char* raw);

The control byte, control_byte, drives the LTC2448 in 16 channel single-ended mode with value 0xb000.

In code, the control byte is calculated this way:

 ch_sel=0; //select channel

 control_byte=control_byte+speed[10]; //add speed desired to 0xb000

 control_byte=control_byte+(ch_sel<<8); //add channel selection w/ 8 bit left shift

NOTE: “ch_sel” and the desired channel signal do not match up. Instead use this scheme to select the
desired signal on the board:

ch_sel U11 U12 U13
0 B00 C00 E00
1 B02 C02 E02
2 B04 C04 E04
3 B06 C06 E06
4 B08 C08 E08
5 B10 C10 E10
6 B12 C12 E12
7 B14 C14 E14
8 B01 C01 E01
9 B03 C03 E03
10 B05 C05 E05
11 B07 C07 E07
12 B09 C09 E09
13 B11 C11 E11
14 B13 C13 E13
15 B15 C15 E15

The LTC2448 also supports 8 channel differential mode. This can be achieved by changing the control byte
passed to the ‘ad24_setup’ routine to 0xa0000 (speed and channel selection is added on the same way as in
single-ended mode). See the LTC2448 data sheet for details on how to define the control byte,
‘LTC2448.pdf’ in the tern_docs\parts directory.

For a sample file demonstrating the use of the ADC, please see ssi_ad24.c in tern\186\samples\sc.

This sample is also included in the sc.ide test project in the tern\186 directory.

Chapter 4: Software SensorCore

4-8

4.2.6 Digital-to-Analog Conversion

Dual DAC7612

 The dual DAC7612 uses a serial interface with the CPU for operation. Four control lines are used, /CS =
P10, CLK = SCLK(P20), SDI = SDAT(P21), and LD=P26. Each PIO lines must be initialized as output
(mode 2) for operation. The user defined function “sc_da” is provided to give a one statement interface
with the device. The function can be found in the sample file, sc_da.c, in the directory
\tern\186\samples\sc.

Note: Three 24-bit ADC LTC2448 chips can be installed, but they all must be disabled while using DAC.

void sc_da
Arguments: unsigned int dat
Return value: none

This function drives the DAC at position U15, outputs are VA & VB. The argument dat determines which
channels are to be written to as well as the value. The values for dat are calculated as follows:

 dat=0x2000|(0x0fff&dac); for CHA

 dat=0x3000|(0x0fff&dac); for CHB

where 0 < dat < 0xfff

See the data sheet. From the root of the installation CD, \tern_docs\parts\dac7612.pdf.

4.2.7 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) jumper is set, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop or
stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions. See \tern\186\samples\re\re_rtc.c
for a sample program. There is a common data structure used to access and use both interfaces.

SensorCore Chapter 4: Software

4-9

typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

int rtc_rds
Arguments: char* realTime
Return value: int error_code

This function is slightly different from the rtc_rd function. It places the current value of the real time clock
into a character string instead of the TIM structure, making it a more convenient function than rtc_rd.

This function places the current value of the real time clock in the char* realTime. The string has a format
of “week year10 year1 month10 month1 day10 day1 hour10 hour1 min10 min1 second10 second1”. The
rtc_rds function also places a null terminating character at the end of the time string. It is important to note
that you must be sure to make the destination character string long enough to hold the real time clock value
plus the null character. A destination character string that is too short will result in the data immediately
following the character string in memory to be overwritten, causing unknown results.

For example “3040503142500\0” represents Wednesday May 3, 2004 at 02:25.00 pm. There are only two
positions for the year, so the user must decide how to determine the hundreds and thousands digit of the
year. Here we just assume “04” correlates to the year 2004.

The length of char * realTime must be at least 14 characters, 13 plus one null terminating character.

This function returns 0 on success and returns 1 in case of error, such as the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

Chapter 4: Software SensorCore

4-10

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is Friday June 6, 2003, 10:55:30 am, the
byte array would be initialized to: unsigned char t[14] = { 5, 0, 3, 0, 6, 0, 6, 1, 0, 5, 5, 3, 0};

Delay

In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use hardware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

while(t) { t--;}

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr .

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the ACTF Boot Utility or from some other address.

SensorCore Chapter 4: Software

4-11

4.3 Functions in SER0.OBJ

The functions described in this section are prototyped in the header file ser0.h in the directory
tern\186\include.

The Am186ER only provides one asynchronous serial port. The SC comes standard with the SCC2691,
providing one additional asynchronous port. The serial port on the Am186ER will be called SER0, and the
UART from the SCC2691 will be referred to as SCC.

This section will discuss functions in ser0.h only, as SER0 pertains to the Am186ER.

By default, SER0 is used by the DEBUG kernel (re80_115.hex) for application download/debugging in
STEP 1 and STEP 2. The following examples that will be used, show functions for SER0, but since it
is used by the debugger, you cannot directly debug SER0. This section will describe its operation and
software drivers. The following section will discuss SCC, which pertain to the external SCC2691 UART.
SCC will be easier to implement in applications, as it can be directly debugged in the Paradigm C/C++
environment.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These baud
rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions for SER0 ONLY. SCC has baud rate based upon different arguments. These are based on a 40
MHz CPU clock (80MHz boards will have all baud rates doubled).

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

16 28,800

Table 4.1 Baud rate values for ser0 only

Chapter 4: Software SensorCore

4-12

As of January 25, 2004, the function argument “16” was added for initializing SER0. This new rate
provides a baud rate of 28,000 for 40MHz boards, and 57,600 for 80MHz boards.

After initialization by calling s0_init(), SER0 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser0_in_buf (whose size is specified by the user), will automatically store the receiving
serial data stream into the memory by DMA0 operation. In terms of receiving, there is no software overhead
or interrupt latency for user application programs even at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user only has to check the buffer status with serhit0() and
take out the data from the buffer with getser0(), if any. The input buffer is used as a circular ring buffer,
as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s0_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s0_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0 Control Register
(SP0CT) if necessary, as described in chapter 12 of the Am186ER manual for asynchronous serial ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user does
not take out the data from the ring buffer with getser0() before the ring buffer is full, new data will
overwrite the old data without warning or control. Thus it is important to provide a sufficiently large buffer
if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4-KB buffer
will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit0() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser0() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser0() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s0_close() can stop this
receiving operation.

For transmission, you can use putser0() to send out a byte, or use putsers0() to transmit a
character string. You can put data into the transmit ring buffer, s0_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If there
is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise, it will
continue to take out the data from the out buffer, and transmit. After you call putser0() and transmit
functions, you are free to do other tasks with no additional software overhead on the transmitting operation.
It will automatically send out all the data you specify. After all data has been sent, it will clear the busy flag
and be ready for the next transmission.

SensorCore Chapter 4: Software

4-13

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; /* transmit macro service operation */
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 with the specified parameters. b is the baud rate value shown in Table
4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the location and size
of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the

Chapter 4: Software SensorCore

4-14

following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of data
within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate the
values of the outbound buffer, as well as the values of the buffer pointer. The following functions are shown
as ‘putsern’, where n is the serial port in use. This section applies only to SER0, thus ‘putser0’.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return value
returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns one
in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are working
with byte arrays, the single-byte versions of these functions are probably more appropriate.

SensorCore Chapter 4: Software

4-15

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once again
be aware that the peripheral pin function you are using might not be selected as needed. For details, please
refer to the Am186ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, you can re-initialize the serial port with s0_init(); to reset
default system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

The asynchronous serial I/O port available on the Am186ER processor has many other features that might
be useful for your application. If you are interested in having more control, please read Chapter 12 of the
manual for a detailed discussion of other features available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are prototyped in sc.h in the tern\186\include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses an 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this second port are different than for SER0.

The SCC2691 component has its own 8 MHz crystal providing the clock signal. By default, this is set to
8 MHz to be consistent with earlier TERN controller designs. The highest standard baud rate is 19,200, as
shown in the table below. If your application requires a higher standard baud rate (115,200, for example), it
is possible to replace this crystal with a custom 3.6864 MHz crystal. A sample file demonstrating how the
software would be changed for this application is scc_echo.c, found in the tern\186\samples\sc\ directory.

Function Argument Baud Rate

1 110
2 150
3 300
4 600
5 1200
6 2400

Chapter 4: Software SensorCore

4-16

Function Argument Baud Rate

7 4800
8 9600 (default)
9 19,200
10 31,250
11 62,500
12 125,000
13 250,000

Unlike the other serial ports, DMA transfer is not used to fill the input buffer for SCC. Instead, an interrupt-
service-routine is used to place characters into the input buffer. If the processor does not respond to the
interrupt—because it is masked, for example—the interrupt service routine might never be able to complete
this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see ‘sc.h’. In most TERN applications, MR1 is set to 0x57, and MR2 is set to
0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no parity, 8-bit, normal
operation. Other configurations are also possible, providing self-echo, even-odd parity, up to 2 stop bits, 5
bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SER0. A COM structure is once again used to hold
state information for the serial port. The in-bound and out-bound buffers operate as before, and must be
provided upon initialization.

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c
Return value: none

This initializes the SCC2691 serial port to baud rate b, as defined in the table above. The values in m1 and
m2 specify the values to be stored in to MR1 and MR2. As discussed above, these values are normally
0x57 and 0x07, as shown in TERN sample programs.

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INT0 on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:

 int0_init(1, scc_isr);

By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once this
is done, you can transmit and receive data as needed. If you do need to do limited flow control, the MPO
pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex communications,
please see ae_scc.c in the directory tern\186\samples\ae.

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to the
SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral board,
you will need to disable receive while transmitting. While transmitting, you will also need to place the

SensorCore Chapter 4: Software

4-17

RS485 driver in transmission mode as well. This is done by using scc_rts(1). This uses pin MPO (multi-
purpose output) found on the J1 header. While you are receiving data, the RS485 driver will need to be
placed in receive mode using scc_rts(0). For a sample file showing RS485 communication, please see
ae_rs485.c in the directory tern\186\samples\ae.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of these
functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functions is to disable transmit and receive. If you are using RS485, you will need to use this feature when
transitioning from transmission to reception, or from reception to transmission.

Transmission and reception of data using the SCC is in most ways identical to SER0. The functions used to
transmit and receive data are similar. For details regarding these functions, please refer to the previous
section.

putser_scc

See: putsern

putsers_scc

See: putsersn

getser_scc
See: getsern

getsers_scc

See: getsersn

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which is
not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER0.

Chapter 4: Software SensorCore

4-18

scc_close
See: sn_close

serhit_scc
See: sn_hit

clean_ser_scc
See: clean_sn

Occasionally, it might also be necessary to check the state of the SCC for information regarding errors that
might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

4.5 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.6 Other Sample code

The following is a list of other sample code available for the SC. Each will show an example
implementation of the specific hardware and are located in the tern\186\samples\sc directory. Most can also
be found in the sc.ide test project.

tern\186\samples\sc\rtc_init.c // Real Time clock

tern\186\samples\sc\sc_cf.c // file system demo

SensorCore Chapter 4: Software

4-19

4.6.1 File system support

TERN libraries support FAT file system for the Compact Flash interface. Refer to Chapter 4 of the
FlashCore technical manual (tern_docs\manuals\flashcore.pdf) for a summary of the available routines. The
libraries and header files are as follows:

 fileio.h

 filegio.h

 filesy16.lib

 mm16.lib

SC Layout SensorCore

1

Appendix A: SensorCore(SC) Layout

All dimensions are in inches.

0.00, 0.00
0.292, 0.058 4.40, 0.40

2.842, 1.858

1.908, 1.942 0.792, 1.958

0.
09

2,
 1

.9
58

4.50, 2.00
4.40, 1.70

1.158, 1.942

4.092, 1.958

SensorCore Appendix B: UART SCC2691

 1

Appendix B: UART SCC2691
1. Pin Description
 D0-D7 Data bus, active high, bi-directional, and having 3-State
 /CEN Chip enable, active-low input
 /WRN Write strobe, active-low input
 /RDN Read strobe, active-low input
 A0-A2 Address input, active-high address input to select the UART registers
 RESET Reset, active-high input
 INTRN Interrupt request, active-low output
 X1/CLK Crystal 1, crystal or external clock input
 X2 Crystal 2, the other side of crystal
 RxD Receive serial data input
 TxD Transmit serial data output
 MPO Multi-purpose output
 MPI Multi-purpose input
 Vcc Power supply, +5 V input
 GND Ground

2. Register Addressing

A2 A1 A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR

Note:
 ACR = Auxiliary control register
 BRG = Baud rate generator
 CR = Command register
 CSR = Clock select register
 CTL = Counter/timer lower
 CTLR = Counter/timer lower register
 CTU = Counter/timer upper
 CTUR = Counter/timer upper register
 MR = Mode register
 SR = Status register
 RHR = Rx holding register
 THR = Tx holding register

3. Register Bit Formats

MR1 (Mode Register 1):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RxRTS

 0 = no
 1 = yes

 RxINT

0=RxRDY
1=FFULL

 Error

 0 = char
1 = block

 ___Parity Mode___

 00 = with parity
 01 = Force parity
 10 = No parity
 11 = Special mode

Parity Type

 0 = Even
 1 = Odd

In Special
 mode:
 0 = Data
 1 = Addr

 Bits per Character

 00 = 5
 01 = 6
 10 = 7
 11 = 8

Appendix B: UART SCC2691 SensorCore

2

MR2 (Mode Register 2):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Channel Mode

 TxRTS CTS Enable
Tx

 Stop Bit Length
(add 0.5 to cases 0-7 if channel is 5 bits/character)

 00 = Normal
 01 = Auto echo
 10 = Local loop
 11 = Remote loop

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = 0.563 4 = 0.813 8 = 1.563 C = 1.813
 1 = 0.625 5 = 0.875 9 = 1.625 D = 1.875
 2 = 0.688 6 = 0.938 A = 1.688 E = 1.938
 3 = 0.750 7 = 1.000 B = 1.750 F = 2.000

CSR (Clock Select Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Receiver Clock Select Transmitter Clock Select

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

 when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

CR (Command Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Miscellaneous Commands Disable

 Tx
 Enable
 Tx

 Disable
 Rx

 Enable
 Rx

0 = no command 8 = start C/T
1 = reset MR pointer 9 = stop counter
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C = reset MPI
5 = reset break change change INT
 INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

SR (Channel Status Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Received
 Break

 Framing
 Error

 Parity
 Error

 Overrun
 Error

 TxEMT TxRDY FFULL RxRDY

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

Note:
* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are
reset when the corresponding data character is read from the FIFO.

SensorCore Appendix B: UART SCC2691

 3

ACR (Auxiliary Control Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BRG Set
 Select

 Counter/Timer Mode and Source

 Power-
 Down
 Mode

 MPO Pin Function Select

0 = Baud
rate set 1,
see CSR
bit format

1 = Baud
rate set 2,
see CSR
bit format

 0 = counter, MPI pin
 1 = counter, MPI pin divided by
 16
 2 = counter, TxC-1x clock of the
 transmitter
 3 = counter, crystal or external
 clock (x1/CLK)
 4 = timer, MPI pin
 5 = timer, MPI pin divided by
 16
 6 = timer, crystal or external
 clock (x1/CLK)
 7 = timer, crystal or external
 clock (x1/CLK) divided by 16

 0 = on,
 power
 down
 active
 1 = off
 normal

 0 = RTSN
 1 = C/TO
 2 = TxC (1x)
 3 = TxC (16x)
 4 = RxC (1x)
 5 = RxC (16x)
 6 = TxRDY
 7 = RxRDY/FFULL

ISR (Interrupt Status Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI Pin
 Change

 MPI Pin
 Current
 State

 Not Used Counter
 Ready

 Delta
 Break

 RxRDY/
 FFULL

 TxEMT TxRDY

 0 = no
 1 = yes

 0 = low
 1 = high

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

IMR (Interrupt Mask Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI
 Change
Interrupt

 MPI
 Level
 Interrupt

Not Used

 Counter
 Ready
 Interrupt

 Delta
 Break
 Interrupt

 RxRDY/
 FFULL
 Interrupt

 TxEMT
 Interrupt

 TxRDY
 Interrupt

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

CTUR (Counter/Timer Upper Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [15] C/T [14] C/T [13] C/T [12] C/T [11] C/T [10] C/T [9] C/T [8]

CTLR (Counter/Timer Lower Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [7] C/T [6] C/T [5] C/T [4] C/T [3] C/T [2] C/T [1] C/T[0]

Appendix C: RTC72421 / 72423 SensorCore

C-1

Appendix C: RTC72421 / 72423

Function Table

 Address Data
A3 A2 A1 A0 Register D3 D2 D1 D0 Count

Value
 Remarks

0 0 0 0 S1 s8 s4 s2 s1 0~9 1-second digit register

0 0 0 1 S10 s40 s20 s10 0~5 10-second digit register

0 0 1 0 MI1 mi8 mi4 mi2 mi1 0~9 1-minute digit register

0 0 1 1 MI10 mi40 mi20 mi10 0~5 10-minute digit register

0 1 0 0 H1 h8 h4 h2 h1 0~9 1-hour digit register

0 1 0 1 H10 PM/AM h20 h10 0~2
or
0~1

PM/AM, 10-hour digit
register

0 1 1 0 D1 d8 d4 d2 d1 0~9 1-day digit register

0 1 1 1 D10 d20 d10 0~3 10-day digit register

1 0 0 0 MO1 mo8 mo4 mo2 mo1 0~9 1-month digit register

1 0 0 1 MO10 mo10 0~1 10-month digit register

1 0 1 0 Y1 y8 y4 y2 y1 0~9 1-year digit register

1 0 1 1 Y10 y80 y40 y20 y10 0~9 10-year digit register

1 1 0 0 W w4 w2 w1 0~6 Week register

1 1 0 1 Reg D 30s
Adj

IRQ
Flag

Busy Hold Control register D

1 1 1 0 Reg E t1 t0 INT/
STD

Mask Control register E

1 1 1 1 Reg F Test 24/ 12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;

 2) Mask AM/PM bit with 10's of hours operations;

 3) Busy is read only, IRQ can only be set low ("0");

 4)

Data bit PM/AM INT/STD 24/12
 1 PM INT 24
 0 AM STD 12

 5) Test bit should be "0".

Appendix D: Software Glossary SensorCore

1

Appendix D: Software Glossary
The following is a glossary of library functions for the SensorCore.

void ae_init(void) ae.h

 Initializes the Am186ES processor. The following is the source code for ae_init()
 outport(0xffa0,0xc0bf); // UMCS, 256K ROM, 3 wait states, disable AD15-0

outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states
outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS I/O
outport(0xffa6,0x81ff); // MMCS, base 0x80000
outport(0xffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high
clka_en(0);
enable();

Reference: led.c

void ae_reset(void) ae.h

 Resets Am186ES processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m – Delay in approximate ms

Reference: led.c

void led(int i) ae.h

Toggles P12 used for led.

Var: i - Led on or off

Reference: led.c

SensorCore Appendix D: Software Glossary

 2

void delay0(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m – Delay using simple for loop up to t.

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i – 1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: i – 1 enables clock output, 0 disables (saves current when
disabled).

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 Mode – above mode select

Reference: ae_pio.c

Appendix D: Software Glossary SensorCore

3

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 dat – 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16 bit PIO port.

Var: port – 0: PIO 0 - 15
 1: PIO 16 – 31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid – I/O address
 value – 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid – I/O address
 value – 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an I/O address portid. Returns 16-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

SensorCore Appendix D: Software Glossary

 4

int inportb(int portid) dos.h

Reads from an I/O address portid. Returns 8-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr – EEPROM data address
 dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr – EEPROM data address

Reference: ae_ee.c

Appendix D: Software Glossary SensorCore

5

void io_wait(char wait) ae.h

Setup I/O wait states for I/O instructions.

Var: wait – wait duration {0…7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtc_init(unsigned char * time) ae.h

Sets real time clock date, year and time.

Var: time – time and date string
 String sequence is the following:

time[0] = weekday
time[1] = year10
time[2] = year1
time[3] = mon10
time[4] = mon1
time[5] = day10
time[6] = day1
time[7] = hour10
time[8] = hour1
time[9] = min10
time[10] = min1
time[11] = sec10
time[12] = sec1

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

int rtc_rd(TIM *r) ae.h

Reads from the real time clock.

Var: *r – Struct type TIM for all of the RTC data

typedef struct{
 unsigned char sec1, sec10, min1, min10, hour1, hour10;
 unsigned char day1, day10, mon1, mon10, year1, year10;
 unsigned char wk;

} TIM;

Reference: rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h

SensorCore Appendix D: Software Glossary

 6

void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void t0_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm – Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual

ta – Count time a (1/4 clock speed).
tb – Count time b for timer 0 and 1 only (1/4 clock).

Time a and b establish timer duty cycle (PWM). See
hardware chapter.

 t #_isr – pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer02.c, timer2.c, timer0.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void int1_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMI (Non-Maskable Interrupt).

Var: i – 1: enable, 0: disable.

 int #_isr – pointer to interrupt service.

Reference: intx.c

void s0_init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h
 unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b – baud rate. Table below for 40MHz and 20MHz Clocks.
 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)

1 110 55
2 150 110
3 300 150
4 600 300
5 1200 600
6 2400 1200
7 4800 2400
8 9600 4800
9 19200 9600
10 38400 19200
11 57600 38400

Appendix D: Software Glossary SensorCore

7

b baud (40MHz) baud (20MHz)

12 115200 57600
13 23400 115200
14 460800 23400
15 921600 460800

Reference: s0_echo.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b, sc.h
unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: m1 = SCC691 MR1

m2 = SCC691 MR2
b – baud rate. T able below for 8MHz Clock.

 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

m1 bit Definition

7 (RxRTS) receiver request-to-send control, 0=no, 1 =yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Bloc k
4-3 (Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
2 (Parity Type), 0=Even, 1=Odd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8

m2 bit Definition

7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
5 (TxRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bit), 0111=1, 1111=2

b baud (8MHz)

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 31250
11 62500
12 125000
13 250000

Reference: scc_echo.c

SensorCore Appendix D: Software Glossary

 8

int putser0(unsigned char ch, COM *c); ser0.h
int putser_scc(unsigned char ch, COM *c); sc.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch – character to output
 c – pointer to serial port structure

Reference: s0_echo.c

int putsers0(unsigned char *str, COM *c); ser0.h
int putsers_scc(unsigned char ch, COM *c); sc.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str – pointer to output character string
 c – pointer to serial port structure

int serhit0(COM *c); ser0.h
int serhit_scc(COM *c); sc.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else 0.

Var: c – pointer to serial port structure

Reference: s0_echo.c

unsigned char getser0(COM *c); ser0.h
unsigned char getser_scc(COM *c); sc.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_0.c

int getsers0(COM *c, int len, unsigned char *str); ser0.h
int getsers_scc(COM *c, int len, unsigned char *str); sc.h

Retrieves a fixed length character string from the input buffer. If the buffer contains less characters
than the length requested, str will contain only the remaining characters from the buffer. Appends
a ‘\0’ character to the end of str. Returns the retrieved string length.

Var: c – pointer to serial port structure

len – desired string length
str – pointer to output character string

Reference: ser0.h for source code.

Date: March 7, 2006 Sheet 1 of 1

Size Document Number REV

B SC-MAN.SCH

Title

SENSOR CORE

STE/TERN

D4
D3
D2
D1
D0

GND 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

HDRD40

D15

VCC

GND
CLK

/RST

GND VCC
P15P4

P0

P1

P6
/INT1

VCC

P11

/INT3
P2

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12

J2

HDRD12
HDRD12

P3

E00
E02
E04
E06
E08
E10
E12
E14

GND

VCCREF

 1 2
 3 4
 5 6
 7 8
 9 10

J5

HDRD10
HDRD10

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J3

HDRD40

E01
E03
E05
E07
E09
E11
E13
E15

P25

GND

GND

SDAT
GND
A19

G 1

BY 2

EXT 3

G 4

G 5

G 6

COM 7

A0 8

A1 9

A2 10

A3 11

A4 12

S
K

3
8

S
D
O

3
7

C
S

3
6

F
0

3
5

S
D
I

3
4

G

3
3

G

3
2

G 31

RF- 30

RF+ 29

VCC 28

MXO- 27

AI- 26

AI+ 25

MXO+ 24

A15 23

A14 22

A13 21

A12 20
A
5

1
3

A
6

1
4

A
7

1
5

A
8

1
6

A
9

1
7

A
1
0

1
8

A
1
1

1
9

U13

LTC2449
LTC2449

P5

GND

GND

GND
A19

GND

SCLK

INT2

GND

GND

A19

GND

SCLK
SDAT

G 1

BY 2

EXT 3

G 4

G 5

G 6

COM 7

A0 8

A1 9

A2 10

A3 11

A4 12

S
K

3
8

S
D
O

3
7

C
S

3
6

F
0

3
5

S
D
I

3
4

G

3
3

G

3
2

G 31

RF- 30

RF+ 29

VCC 28

MXO- 27

AI- 26

AI+ 25

MXO+ 24

A15 23

A14 22

A13 21

A12 20
A
5

1
3

A
6

1
4

A
7

1
5

A
8

1
6

A
9

1
7

A
1
0

1
8

A
1
1

1
9

U12

LTC2449
LTC2449

P24P23

GND

SCLK
SDAT

GND

G 1

BY 2

EXT 3

G 4

G 5

G 6

COM 7

A0 8

A1 9

A2 10

A3 11

A4 12

S
K

3
8

S
D
O

3
7

C
S

3
6

F
0

3
5

S
D
I

3
4

G

3
3

G

3
2

G 31

RF- 30

RF+ 29

VCC 28

MXO- 27

AI- 26

AI+ 25

MXO+ 24

A15 23

A14 22

A13 21

A12 20
A
5

1
3

A
6

1
4

A
7

1
5

A
8

1
6

A
9

1
7

A
1
0

1
8

A
1
1

1
9

U11

LTC2449
LTC2449

P13

B00
B01
B02
B03
B04

GND

B12
B13
B14
B15

VCC
REF GND

C00
C01
C02
C03
C04

VCC
REF

E00
E01
E02
E03
E04

GND

C12
C13
C14
C15

E12
E13
E14
E15

VCC
REF C01

C03
C05
C07
C09
C11
C13
C15
B01
B03
B05
GND

C00
C02
C04
C06
C08
C10
C12
C14

B07

B00
B02
B04

B06B08
B10

B12
B14

B09
B11
B13
B15

VB
VA

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12

J4

HDRD12
HDRD12

GND GND

/TXD0
/RXD0

/TXD
/RXD

485+

485-

1
2
3
4
5

H3

HDRS5

1
2
3
4
5

H2

HDRS5

D7
D6
D5

A1
A2

GND

/WR
/RD

P16

A3
A4
A5
A6
A7

D14
D13

D12

D11
D10
D9
D8

P12

RST

GND

GND

GND
/RST1 2

3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP2

HD28

V3

GND
A13 A14

/WR /RD
RST

/INT4

P14

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP1

HD28

A15

C1+ 1

V+
 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O
 7

R2I 8

VCC 16

GND
15

T1O 14

R1I 13

R1O 12

T1I 11

T2I
10

R2O 9

U21

MAX232D
MAX232D

STD 1

/CS
 2

NC 3

ALE 4

A0 5

NC 6

A1
 7

NC 8

A2 9

A3 10

/RD 11

G
 12

VCC 24

X2
23

X1 22

NC 21

CS1 20

D0 19

NC
18

NC 17

D1 16

D2 15

D3 14

/WR
13

U8

72423
72423S

E06
E07 E09

E10
E11

E08

/RD 1

RXD
 2

TXD 3

MPO 4

MPI 5

A2 6

A1
 7

A0 8

X1 9

X2 10

RST 11

GND
 12

VCC 24

/WR
23

D0 22

D1 21

D2 20

D3 19

D4
18

D5 17

D6 16

D7 15

/EN 14

/INT
13

U5

SCC2691
SCC2691S

E05

C08
C09
C10
C11

A0 1

A1 2

A2 3

A3
 4

A4 5

/CS 6

D0 7

D1 8

D2
 9

D3 10

VCC 11

GND 12

D4 13

D5
 14

D6 15

D7 16

/WR 17

A5 18

A6
 19

A7 20

A8 21

A16 22

A15 44

A14 43

A13 42

/OE
41

/UB 40

/LB 39

D15 38

D14 37

D13
36

D12 35

GND 34

VCC 33

D11 32

D10
31

D9 30

D8 29

NC 28

A12 27

A11
26

A10 25

A9 24

A17 23

U3

RAM44

GND 1

D3 2

D4 3

D5 4

D6 5

D7
 6

/CE1 7

A10 8

/OE 9

A9 10

A8
 11

A7 12

VCC 13

A6 14

A5 15

A4
 16

A3 17

A2 18

A1 19

A0 20

D0
 21

D1 22

D2 23

WP 24

CD2 25

CD1 26

D11 27

D12 28

D13 29

D14 30

D15
31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE
36

RDY 37

VCC 38

/CS 39

VS2 40

RST
41

/WT 42

/IP 43

/REG 44

BV2 45

BV1
46

D8 47

D9 48

D10 49

GND 50

U4

CFB

B09
B10
B11 C05

C06
C07

A15 1

A14 2

A13 3

A12 4

A11
 5

A10 6

A9 7

A8 8

NC 9

NC
 10

/WR 11

/RST 12

NC 13

NC 14

RY
 15

NC 16

A17 17

A7 18

A6 19

A5
 20

A4 21

A3 22

A2 23

A1 24

A16 48

/BY 47

GND 46

D15 45

D7
44

D14 43

D6 42

D13 41

D5 40

D12
39

D4 38

VCC 37

D11 36

D3 35

D10
34

D2 33

D9 32

D1 31

D8 30

D0
29

/OE 28

GND 27

/CE 26

A0 25

U1 29F800

B05
B06
B07

B08

GND

/RD

MPO

RXD
TXD

X3
X4
RST

A1
A2
A3

P18

P19

A1

A2

A3
A4

VOFF

GND
/RD

VCC

VCC

/WR

/INT0

D7
D6
D5
D4
D3
D2
D1
D0

/TXD0
/RXD0

C5+

C5-
C2+
C2-

V+

V-

VRAM

/RST
D0

D1
D2
D3
/WR

VCC

GND

TXD0
RXD0

TXD
RXD
/RXD
/TXD

GND

GND

A11
A10

A9

A12

A7 A6
A5 A4
A3 A2

A8

A1
V3

V3

GND

GND

GND

D4D5
D6D7

D0D1
D2D3

I 1

G

2

VCC 3

U17
LM7805

1
2

H1

T2

1
2

H0

HDRD2

+12VI

L2

+12VI

X3 X4
C6

10PF

XTAL2

3.68MHZ
C9

10PF

VCC

485-
485+

RO 1

/RE
 2

DE 3

DI 4

VCC 8

B
 7

A 6

GND 5

U23

LTC485

MPO
GND
RXDREF

NC 1

IN 2

TEMP 3

GND
 4

NC 8

HEAT 7

OUT 6

TRIM
 5

U10

GND
VCC

VA

VB
V+
C00P26

DI 1

CK 2

LD 3

CS
 4

VA 8

5V 7

G 6

VB
 5

U15

DAC7612

SDAT
SCLK

P10

VRAM
VBAT

GND
VCC

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI 9

U6

MAX691

VCC

/RST

WDI
/RAM

WDO

/PFO

/LCS

 1 2
J9

HDRD2

P29

VCC
R1

680

LC
L1

LED

P29

LT1236xCN8-5
LT1019-2.5V

C5-

C5+

C2+

TXD

GND

V+

V-
C38
0.1UF

C37
0.1UF

485+
VCC

485-

485-485+
C33

0.1UF

R2

10K
R3

220R4

10K

+12V+12VI

C8
10UF35V

GND

VCC

C10
10UF35V

R5
1M
RESV

+12V

VOFF 1 2
J6

HDRD2V3V3
C15C11C3
VCC

C34
0.1UF

C2-

+12V

VCCNC 1

PG 2

GND 3

EN 4

5V 8

5V 7

9V 6

9V 5

U14

TPS765
TPS765

V+

C23 GND
VOFF

VCC
GND

/INT0
/INT1

P22
P29

VCC

/RST

REF

 8
 7
 6
 5
 4
 3
 2
 1

RN1

10K RN8S1

C12

REF

C2
GND
GND
GND
GND

1A 1

1Y 2

2A 3

2Y 4

3A 5

3Y
 6

G 7

V 14

6A 13

6Y 12

5A 11

5Y 10

4A
 9

4Y 8

U9

74HC14

INT3

A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U7

24C04S

/INT3

INT0
/INT0
INT4
/INT4 RST

INT1
/INT1

P6

NMI

VCC

/INT3
/INT4
SDAT/PFO GND

VCC
V3

GNG 1

VO 2

VI
 3 VO 4

U16

BB1117

V3

GND
VOFF

GND

+12V

VCCNC 1

PG
 2

GND 3

EN 4

5V 8

5V
 7

9V 6

9V 5

U18

TPS765
TPS765

VBAT
- 1 + 2

+
 3

B1

BTH1

