SensorCorev

48 24-bit ADCs, 100M BaseT Ethernet, RS232/485,@achpactFlash

) e

RN YC RO N
OO 60666

]

2.0
CompactFlash®

OB RN BB R

Technical Manual

TTERN

INC.
1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

SensorCore, E-Engine, A-Engine86, A-Engine, A-C6r&8Core, i386-Engine, MemCard-A,
MotionC, VE232, and ACTF are trademarks of TERN, In
Am188ES and Am186ES are trademarks of Advanceddvib&vices, Inc.
Borland C/C++ is a trademark of Borland Internagion
Microsoft, MS-DOS, Windows, Windows95, and Windo®s®e trademarks of Microsoft
Corporation.
IBM is a trademark of International Business MaelsiiCorporation.

Version 2.0
October 21, 2010

No part of this document may be copied or reproduceany form or by any means without the
prior written consent of TERN, Inc.

© 1993-201C TERIQI

1950 %" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratsystems. These systems are integrated
with software and hardware that are not 100% ddfeet TERN products are not designed,
intended, authorized, or warranted to be suitabte fise in life-support applications, devices, or
systems, or in other critical applications. TERNNnd the Buyer agree th&ERN will not be
liable for incidental or consequential damagesiragisrom the use oTERN products. It is the
Buyer's responsibility to protect life and propeaainst incidental failure.

TERN reserves the right to make changes and improventeriis products without providing
notice.

Temperature readings for controllers are baseth@mnasults of limited sample tests; they are
provided for design reference use only.

SensorCore(SC)™ Chapter 1: Introduction

Chapter 1: Introduction

The SensorCoreGQO™ is designed as a low-cost, low-power data loggertlie most demanding analog data-
acquisition applications. Featuring up to 48 cldsirof 24-bit ADC, 2 RS232/RS485 ports, CompactFlash
interface, and a high performance 10/100M BaseEia#t, the SensorCore out-performs desktop-baspdsitoon
solutions for a fraction of the price.

Measuring only 2"x4.5”, th&sCs unique profile allows it to be installed intdfidiult-to-access physical locations,
such as pipes. Even with this limited real estthte,SC is a full-featured, stand-alone industrial emkestid
controller.

The SCis based on a high-performance C/C++ programmetB6ER CPU. It integrates 3 timer/counters, 2 asyn
serial ports, external interrupts, PIOs, and &tigee clock(RTC72423). The board is availablehwifp to 512 KB
of battery-backed SRAM, 512KB Flash, and 512 b#BEE®ROM for non-volatile parameter storage.

The board runs on approximately 150mA at regul&&dand can be powered through onboard linear adgul
accepting 9-12V DC. An optional low-drop regulat@PS765) can be installed to provide Power-off feat
allowing low voltage(5.1V) battery operation. Optad 2 channels 12-bit DAC analog outputs can biliesl.

The SC has two RS232 serial ports as default, and ondeasonfigured as RS485 operation. B@also features
an integrated high-performance 10/100-baseT haevi&P/IP module, which allows 100KB+ access to TEP/
networks with minimal CPU load. Sample implemenotat for the SensorCore allows it to be configused HTTP
web-server, FTP server/client, etc.

The SCfeatures three high-speed LTC2448 delta-sigma AlD@srfaced through a high speed sync serial . port
Each LTC2448 chip offers 8 ch. differential or 16 single-ended input channels. Variable speediréso settings
can be configured. A peak single-channel outpté¢ of 8 KHz can be achieved. At a sample rate.66KHz,
readings are accurate to 18+ bits in experimewtadiitions.

The LTC2448 works well with 500 ohm and lower impede sensors, such as 350 ohm Strain gauges, tcurren
shunts, RTDs, resistive sensors (5000hm an lowead,4-20mA current loop sensors with 100 ohm sessistors.
The SC will also work directly with thermocouples. We carstall a 2.5V precision reference with temperatur
sensor(LT1019) to minimize input current and prawd local temperature measurement for thermocouple
applications. There are 8+ million counts of retioluin the input span. If desired, you could pui@der at the
input to increase the input range.

The SCalso features an integrated CompactFlash interfBeda can be written into CF at a sufficientlgthienough
data rate that th8C can record sampling from all 3 chips indefinitedyen at peak sample rates.

A 50-pin CompactFlash receptacle can be instalbedllbw access to mass storage CompactFlash capd (2
GB). Users can easily add mass data storage toeimtiedded application. C/C++ programmable softyakage
includes FATL16 file system libraries are availatthes much room allows more than 1 billion 24-katrgples to be
recorded in the field on a single board.

1-1

Chapter 1: Introduction SC

SensorCore

SRAM

128KB or 512 KB
1661 U3 RTC72423us T

tchdog
FLASH 691us |¢— @
512 KB 16-bitul enable
Am186ER
SDL P29 R1100
EEPROMu7 |« 40/%5,3”4 D0.D15 | 24-bit ADC
512BYTES |e— z LTC2448
SDA P22 <:> Ul1l, U12,U13
DMA(2)
RS232 drivers 16-Bit Timers((3))
Ext. Interrupts(8
SERO+SER1 32 1/0 lines D0.D15) 5o\ BaseT
or PWM/PWD <D Ethernet
RS485 for SER 16-bit Ext. data bus IP143P2
Low drop 5V ﬁ
regulatorsui4+uis CompactFlash

or J1&J2 U4

Linear 5V regulators
LM7805

Figure 1.1 Functional block diagram of the SensorCore

The SC supports on-board 512 KB 16-bit Flash and up t8 EB 16-bit battery-backed SRAM. The on-board
ACTF Flash has a protected boot loader and canal#yeprogrammed in the field via serial link. Useran
download a kernel into the Flash for remote deluggWith the DV-P Kit support, user application esccan be
easily field-programmed into and run out of theskla

A 512-byte serial EEPROM is included on-board. Gadal port from the Am186ER/R1100 support higheshe
reliable serial communication at a rate of up t®,200 baud. A SCC2691 provides the second seridl po/o
serial ports support 8-bit and 9-bit communication.

There are three 16-bit programmable timers/couratedsa watchdog timer. Two timers can be used tmtcor time
external events, at a rate of up to 10 MHz, ordnagate non-repetitive or variable-duty-cycle wavelk as PWM
outputs. Pulse Width Demodulation (PWD), a distircffeature, can be used to measure the width sifraal in
both its high and low phases. It can be used inymagplications, such as bar-code reading.

The CPU has 32 user-programmable, multifunctional 1/Os.r8itthtrigger inverters are provided for six extdrna
interrupt inputs, to increase noise immunity amsh$form slowly-changing input signals into fastwfiag and
jitter-free signals. A supervisor chip with powaildire detection, a watchdog timer, an LED, andaggmon ports
are on-board.

SensorCore(SC)™

Chapter 1: Introduction

Features:

*2.0x4.5”, 160 mA, 9-24V DC power

* Complete C/C++ programmable environment

* 48 channels of 24-bit ADC input, 0-2.5V

* 2 channels 12-bit DAC (0-4.095V), 8 TTL I/Os

* CompactFlash with FAT file system support

* 40/80 MHz 186 CPU with 256 KW Flash, 256 KW SRAM
* 2 RS-232 serial ports; one can be RS232/485

* 3 16-bit timer/counters, PWM output, RTC, EE

* Hardware TCP/IP stack for 100M Based-T Ethernet

1.2 Physical Description

The physical layout of the SensorCore is shownigarfe 1.2.

Figure 1.2 Physical layout of the SensorCore

1-3

Chapter 1: Introduction SC

(Power On or Reset)

Step 2 jumper
set?

STEP 2

Go to Application Code CS:IP
CS:IP in EEPROM:
0x10=CS high byte
O es e
ACTF menu sent out through sar0 x12=1P high byte

0x13=IP | b
at 19200 baud . X ow byte)

Figure 1.3 Flow chart for ACTF operation
The “ACTF boot loader” resides in the top protectedtor of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the BEIG kernel (RE80_115.hex) is pre-loaded
in the Flash starting at OXFA00O0, and the RED STER2mper is installed on J2 pin 38-40,
ready for Paradigm C++ debugger. User does not needownload a DEBUG kernel to start
with.

At power-on or RESET, the “ACTF” will check the SPR jumper. If STEP 2 jumper is not installed, A&TF
menu will be sent out from serial portO at 19200d#r a 80MHz SC.

If the STEP 2 jumper is installed, the “jump addtgee-programmed in the on-board serial EEPROM| be read
out and then jump to that address. A DEBUG kerR&80_115.hex” residing at “OXxFA000” of the 512KB-on
board flash chip.

1-4

SensorCore(SC)™ Chapter 1: Introduction

1.3 SensorCore Programming Overview

Steps for product development:

Preparation for Debugging(DONE in Factory

» Connect SC to PC via RS-232 link, 19,200, 8, N, 1

» Power on SC without STEP 2 jumper installed

» ACTF menu should be sent to PC terminal

« “D"to download “c:\tern\186\rom\re\L_DEBUG.HEX”"

* “G04000" to run out of SRAM

* Download “c:\tern\186\rom\re\RE80_115.HEX" to §ta

* “GFA000” to setup EEPROM and run remote debugger
« Install the STEP2 jumper (J2.1-3)

« Power-on or reset, Ready for Remote debugger

STEP 1 Debugging

« Start Paradigm C++, run “led.ide” or “test.ide”
» Download code to target SRAM at 115,200 baud.
« Edit, compile, link, locate, download, and remd&bug

il

STEP 2 Standalone Field Test

» "G08000" setup EEPROM Jump Address, points to
application code resides in battery backed S¥F

* Install STEP2 jumper, then power on

» Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.

!

STEP 3 Production DV-P Kit

» Generate application HEX file with DV-P and ACKR
* ACTF “D” to download “L_29F40R.HEX" into SRAM
« Download application HEX file into FLASH

* Modify EEPROM jump address to 0x80000

* Set STEP2 jumper

There is no ROM socket on the SC. The user’s agjidic program must reside in SRAM for debuggingTTEP1,
reside in battery-backed SRAM for the standalortdftest in STEP2, and finally be programmed intesk for a
complete product. For production, the user mustipce an ACTF-downloadable HEX file for the applioat
based on the DV-P Kit. The “STEP2” jumper (J2 din3) must be installed for every production-versiaard.

Step 1 settings
In order to talk to SC with Paradign C++, the SGtmueet these requirements:

1) c:\tern\186\rom\re\RE80_115.HEX or RE84_115.HMXst be pre-loaded into Flash starting addres00%fa

2) The SRAM installed must be large enough to lyoldr program.

For a 128K SRAM, the physical address is 0x00000 €
For a 512K SRAM, the physical address is 0x0000WAEk

Chapter 1: Introduction SC

3) The on-board EEPROM must have a Jump AddregbiéoREB0_115.HEX with starting address of 0xfa000.
4) The STEP2 jumper must be installed on J2 pis 1-

For further information on programming the SenseoeCorefer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

The SCworks with some of TERN expansion boards includheP50, P100, P300.

200GB
CompactFlash®

SensorCore(SC)™ Chapter 1: Introduction

The LTC2448 works well with 500 ohm and lower impade sensors, such as 350 ohm Strain gauges, tcurren
shunts, RTDs, resistive sensors (5000hm an lowad)4-20mA current loop sensors with 100 ohm sessistors.

SCcan work directly with thermocouples:

o) Lo Hif @
w4 Cl4 ==Tin
RN gip] gL |
T T —
2

........

............

SensorCore

Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the “software kit.pdf’ technical nmal on the TERN installation CD, under
tern_docs\manual\software_kit.pdf, for informatmminstalling software.

2.2 Hardware I nstallation

Overview

« Connect PC-IDE serial cable:
For debugging (STEP 1), place IDE connector on S&R0Ored
edge of cable on side closest to J3 (See Fig. Phi3.DEBUG
cable is a 10-pin IDE to DB9 cable, made by TERN.

¢ Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
using power jack adapter supplied with EV-P/DV-R Ki

Hardware installation consists primarily of contegithe microcontroller to your PC.

2.2.1 Connecting the SC to the PC

Figure 2.1 provides the location of the debug $@at and the power jack. The SC is linked to Bt via
a serial cable (DB9-IDE) which is supplied with TR EV-P / DV-P Kits.

The SC communicates through SERO by default. lInial5x2 IDC connector on the SERO H2 pin header.
The DB9 connector should be connected to one af @ COM Ports (COM1 or COM2).

The following is a picture of the debug cable asdélevant pins. Only /TxD, /RxD, and GND are ahese

PC Receive Data.
Connects to TERN

controller/ TXD.
Floating at OV.

PC Transmit Data.

Connects td RXD.
Voltage = -10V

Red Edge

ToPC
DB9

RS-232/Debug Cable Supplied
by TERN with EV-P or DV-P
SoftwareKits

2-1

Chapter 2: Installation SensorCore

2.2.2 Powering-on the SC

By factory default setting:

1) The RED STEP2 Jumper is installed. (Defaulirsgin factory)

2) The DEBUG kernel is pre-loaded into the on-bdtash starting at address of OXFA000. (Defaultirsgt
in factory)

3) The EEPROM is set to jump address of OxFAOO@f4DIt setting in factory)

Connect +9-12V DC to the DC power terminal. Theescterminal at the corner of the board is positive
12V input and the other terminal is GND (see figtoe details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be ds® connect the output of the power jack adaptdr a
the SC. Note that the output of the power jack t&tap center negative.

The on-board LED should blink twice and remain iodjcating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for preygming and debugging.

Power Input
Serial Port 0 (Center Negativd
(Debug port) Plug)

Step 2 Jumps

: = I'TA3Y YOTOZMWII OOPMOOEEE

FOOOPOeE

Figure 2.1 Locations of STEP2 Jumper, LED, Power input and DEBUG port

SensorCore Chapter 3: Hardware

Chapter 3: Hardware

Am186ERAND RDC R1100

The SensorCore is compatible with two different GPBoth offer and support the same on-board
peripherals as well as the on the CPU itself, afimte a few differences. The AM186ER, from AMD, sise
times-four crystal frequency, while the R1100, frRRC, uses times-eight. The SensorCore uses a ¥tOMH
system clock, giving the Am186ER a CPU clock of 4vand the R1100 a CPU clock of 80MHz. Both
CPUs operate at +3.3V, with lines +5V tolerant.e RDC 1100 supports the same 80C188 microprocessor
instruction set as the Am186ER, yet uses an int@&I&C core architecture.

AM186ER — Introduction

The Am186ER is based on the industry-standard x8kitacture. The Am186ER controllers are higher-
performance, more integrated versions of the 80CGt&8oprocessors. In addition, the AM186ER has new
peripherals. The on-chip system interface logic oanimize total system cost. The Am186ER has one
asynchronous serial port, one synchronous serigl 32 P10s, a watchdog timer, additional intetrpins,
DMA to and from serial ports, a 16-bit reset couofafion register, and enhanced chip-select funatitn

In addition, the Am186ER has 32KB of internal viaRAM. This provides the user with access to high
speed zero wait-state memory. In some instancess =N operate the SensorCore without external
SRAM, relying only on the Am186ER’s internal RAM.

RDC R1100 — Introduction

The RDC 1100 is based on RISC internal architectygestill supports the same 80C188 microprocessor
instruction set. It provides faster operation thha AM186ER, allowing it to operate at up to 8OMHZ,
based a 10MHz system clock and times-eight crygtakation. The RDC R1100 does not offer internal
RAM like the Am186ER, so external SRAM is mandatibnysing the RDC R1100.

AMI186ER — Features

Clock

Due to its integrated clock generation circuittye tAm186ER microcontroller allows the use of a me
four crystal frequency. The design achieves 40 NIIFXJ) operation, while using a 10 MHz crystal.

The R1100 offers times-eight crystal frequencyjedhg 80MHz operation based on a 10MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4fadé¢ 40 MHz. The CLKOUTB signal is not
connected in the SensorCore.

CLKOUTA remains active during reset and bus holdditions. The SensorCore initial function ae_init()
disables CLKOUTA and CLKOUTB with clka_en(0); aciitb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pi

External Interrupts and Schmitt Trigger Input Buffe

There are six external interrupts: INTO-INT4 and NM
/INTO is used by SCC2691 UART.

3-1

Chapter 3: Hardware SensorCore

/INT1, J2 pin 8, free for user application
INT2, is used by U12 ADC as Busy signal.
/INT3, free for user application.

/INT4, JP1 pin 2, used by Ethernet module.

NMI, U9.10

Four external interrupt inputs, /INTO-1, and /IN#3are buffered by Schmitt-trigger inverters (U9,
74HC14) in order to increase noise immunity anddfarm slowly changing input signals to fast chaggi
and jitter-free signals. As a result of this buffgr these pins are capable of only acting as input

These buffered external interrupt inputs requifelling edge (HIGH-to-LOW) to generate an interrupt

/INTO=U5.13 INT =U9.6
U9 O———
/INT1=J2. INT =U9.8
/INT3=U9. INT3 =U9.2
— U9 O
[INT4=JP1. INT4 =U9.4
U9 0

Figure 3.1 External interrupt inputs

Remember that /INTO isused by the external UART. /INTO should not be used by application if
SER1 isbeing used.

The SensorCore uses vector interrupt functionsespaond to external interrupts. Refer to the Am186ER
User’s manual for information about interrupt vesto

Asynchronous Serial Port

The Am186ER and R1100 CPU has one asynchronows skainnel. It supports the following:

* Full-duplex operation
» 7-bit, and 8-bit data transfers
e 0dd, even, and no parity

3-2

SensorCore Chapter 3: Hardware

* One or two stop bits

» Error detection

* Hardware flow control

» DMA transfers to and from serial port (Am186ER ONLY

e Transmit and receive interrupts

e Maximum baud rate of 1/16 of the CPU clock speed

* Independent baud rate generators
The software drivers for the asynch. serial poglément a ring-buffered DMA receiving and ring-taréd
interrupt transmitting arrangement. See the saffilple0_echo.c

An external SCC2691 UART is located in position B®r more information about the external UART
SCC2691, please refer to the section in this maoighe SCC2691.

Note that while the Am186ER supports DMA transfersto and from its asynchronous serial port, the
R1100 does not. Despite this difference, the TERN software drivers for the asynchronous serial port
support both CPUs.

Timer Control Unit

The timer/counter unit has three 16-bit programmaiphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to four externad:pi

Timer0 output P10 =U154

TimerO input P11 =J2pin7

Timerl output P1 =J2pinl2

Timerl input =PO =J2pin5
These two timers can be used to count or time eatezvents, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. it ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timen@tiamer 1 or be used as a DMA request source.

Timer 0 output, P10, is used asthe chip select for the DAC7612. Timer 0 should therefore not be used
by application unlessthe DAC7612 is not used.

The maximum rate at which each timer can operateisviHz for the Am186ER and 20MHz for the
R1100, since each timer is serviced once everytHdDPU clock cycle. Timer inputs take up to sigad
cycles to respond to clock or gate events. Sees#imple programsimer0.c and ae_cnt0.cin the

\ sanpl es\ ae directory.

PWM outputs

The Timer0 and Timerl outputs can also be used eteergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the t@bernate between two maximum values.

3-3

Chapter 3: Hardware SensorCore

MAX. COUNT A

MAX. COUNT B

Power-save Mode

The SensorCore is an ideal core module for low pasasumption applications. The power-save mode of
the Am186ER reduces power consumption and heapdtam, thereby extending battery life in portable
systems. In power-save mode, operation of the CRUiaternal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatiagaturns to its normal operating frequency.

The RTC72423 on the SensorCore has a VOFF sigatdddo J6 pin 2. VOFF is controlled by the battery
backed RTC72423. The VOFF signal can be progranbyesbftware to be in tri-state or to be active low.
The RTC72423 can be programmed in interrupt moddritee the VOFF pin at 1 second, 1 minute, or 1
hour intervals. The user can use the VOFF lineotdrol an external switching power supply that sutime
power supply on/off.

AmM186ER PIO lines

The Am186ER has 32 pins available as user-progrdmem#O lines. Each of these pins can be used as a
user-programmable input or output signal, if thenmal shared function is not needed. A PIO line ban
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojlzain
output. A pin’s behavior, either pull-up or pull\p, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins esded for specific on-board usage, as well. These
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.1.

PIO | Function Power-On/Reset SensorCore Pin No.| SensorCore Initial
status
after ae_init();
function call
PO Timerl in Input with pull-up J2 pin5 Input wiglull-up
P1 Timerl out Input with pull-down | J2 pin 12 Inpuith pull-up
P2 /PCS6/A2 Input with pull-up J2 pin 10 /PCS6
P3 /PCS5/A1 Input with pull-up J2 pin 9 /PCS5
P4 DT/R Normal J2 pin3 Input with pull-up: Step 3
P5 /IDEN/DS Normal ul13.2 ADC Input with pull-up
P6 SRDY Normal J2 pin 6 Input with external pull-up
pP7 Al7 Normal N/A Al7
P8 Al18 Normal N/A A18
P9 A19 Normal N/A Input with pull-up
P10 | TimerO out Input with pull-down Ul5.4 DAC Irtpwith pull-down
P11 | TimerO in Input with pull-up J2 pin7 Input tvipull-up

3-4

SensorCore

Chapter 3: Hardware

PIO | Function Power-On/Reset SensorCore Pin No.| SensorCore Initial
status
after ae_init();
function call
P12 | DRQO Input with pull-up J1 pin 26 Output
P13 | DRQ1 Input with pull-up ulil.2 ADC Input withilpup
P14 | /MCSO Input with pull-up JP1.5 Ethernet Inpith pull-up
P15 | /MCS1 Input with pull-up J2 pin4 Input withlipup
P16 | /PCSO Input with pull-up J1 pin 19 /PCS0
P17 | /PCS1 Input with pull-up N/A Input with pull-up
P18 | /PCS2 Input with pull-up u8.2 RTC Input withllpup
P19 | /PCS3 Input with pull-up U5.14 UART Input withll-up
P20 | SCLK Input with pull-up N/A Input with pull-up
P21 | SDATA Input with pull-up N/A Input with pull-up
P22 | SDENO Input with pull-down | U7.6 EEPROM Output
P23 | SDEN1 Input with pull-down Ul11.36 ADC Inpuithwvpull-down
P24 | /IMCS2 Input with pull-up Ul12.36 ADC Input tvipull-up
P25 | /MCS3 Input with pull-up U13.36 ADC Input tvipull-up
P26 | Uzl Input with pull-up U15.3 DAC Input with prup*
P27 | TxD Input with pull-up U21.10 TxDO
P28 | RxD Input with pull-up u21.9 RxDO
P29 | S6/CLKSEL1 | Input with pull-up EE,LED,WDI Output
P30 | INT4 Input with pull-up /INT4 =JP1.2 Input Wipull-up
P31 | INT2 Input with pull-up uil2.2 ADC Input withup-up

* Note: P26 and P29 must NOT be forced low duriog/@r-on or reset.

Table 3.1 I/0 pin default configuration after power-on or reset

The 32 PIO lines, PO-P31, are configurable via 1®ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

SensorCore initialization on PIO pinsaa _init() is listed below:
outport(0xff78,0xc7bc); /I PDIR1TxD, RxD, PCSO0, PCS1, P29& P22 Output

outport(0xff76,0x2040); /l PIOM1
outport(0xff72,0xee73); // PDIROA18, A17, PCS6, PCS5, P12 Output
outport(0xff70,0x1040); // PIOMO

The C function in the librarye_lib can be used to initialize P10 pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the tableabo

Example: pio_init(12, 2); will set P12 as output

3-5

Chapter 3: Hardware SensorCore

pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if corresgtiog pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,
Some of the I/O lines are used by the SensorCatersyfor on-board components. We suggest that you

not use these lines unless you are sure that yadarinterfering with the operation of such comgpus
(i.e., if the component is not installed).

Signal | Pin Function

P5 U13.2 U13 ADC Busy Line

P7 Al7 Upper address line Never use by application
P8 Al18 Upper address line Never use by application
P10 uls.4 U15 DAC Chip select line

P13 uii.2 U1l ADC Busy line

P14 JP1.5 /MCSO - Ethernet

P18 us.2 RTC Chip select

P19 U5.14 UART Enable

P20** | SCLK Synchronous Clock for U11, U12, U13, U15
pP21** | SDAT Serial Interface for U11, U12, U13, U15
P22 SDENO Interface with EEPROM

P23 SDEN1 U11.36 ADC

P24 /IMCS2 U12.36 ADC

P25 /MCS3 U13.36 ADC

P26* /CLKSEL2 Used at power-up/reset to determiystesn clock multiplier
P27 TxDO

P28 RxDO

p29* /CLKSEL1 Reserved for EEPROM, LED, RTC, andtittdog timer
P30 INT4 Interrupt used Ethernet

P31 INT2 U12.2 ADC Busy line

/INTO U5.13 UART interrupt

Table 3.2 Important Notes:

* The Am186ER CPU uses the P26 and the P29 lindstiermine the system clock multiplier at
power-up or reset. The CPU has internal pull-upthese lines to select the default multiplier of
four-times (AMD) or eight-times (RDC). It is criat that the user allow these lines to remain high
during power-up or reset. Failure to do so willuteg undesirable operation.

** The SCLK and SDAT lines are the synchronousaegrort on the Am186ER. Several devices
on theSC use these lines, including 3 LTC2448 (locations U112, U13), and the DAC7612
(locations U15). The user is free to use the SCh& 8DAT lines for their application only if the
ADCs and DACs are disabled first. This is neededssnot to have more than one device trying to
occupy the SDAT line simultaneously.

Table 3.3 /O lines used for on-board components

3-6

SensorCore

Chapter 3: Hardware

I/O Mapped

I/O Space

Devices

External I/O devices can use I/O mapping for accéss can access such 1/O devices wiortb(port) or
outporth(port,dat). These functions will transfer one bgtenvord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000xtfD

The default I/0 access time is 15 wait states. iviay use the function void_wait(char wait) to define the
I/O wait states from 0 to 15. The system clockd® s for both CPUs, while the CPU clock is 25nstie
Am186ER and 12.5ns for the R1100. Details regarthiggcan be found in the Software chapter, arttién

AmM186ER User’'s Manual.

Slower components, sucimast LCD interfaces, might find the maximum

programmable wait state of 15 cycles still insudfit. Due to the high bus speed of the systemesom
components may need to be attached to 1/0O pinstljire

For details regarding the chip select unit, pleseseChapter 5 of the AM186ER User’s Manual.

The table below shows more information about |/(piiag.

1/0 space Select Location Usage
0x0000-0x00ff | /PCSO| J1 pin 19=P16 USER*
0x0200-0x02ff | /PCS2| U8 pin2 RTC
0x0300-0x03ff | /PCS3| U5 pin 14 SCC2691
0x0400-0x04ff | /PCS4 Reserved
0x0500-0x05ff | /PCS5| J2 pin 9=P3 USER
0x0600-0x06ff | /PCS6| J2pin 10 =P2 USER

*PCSO0 may be used for other TERN peripheral boandish as FC-0, P50, P100, MM-A.

To illustrate how to interface the SensorCore vettiernal 1/0 boards, a simple decoding circuit for
interfacing to an 82C55 parallel 1/O chip is shawifrigure 3.2.

74HC138 82C55
RST)
AS 11 vol 15 NC " P00-PO7
A — T Y1| 14 /SEL20 ™
A7 310 v2| 13 /SEL40
Y3| 12 /SEL60 | /sEL20| /CS P10-P17
v4| 11 /SEL80
/PCS0 4~ G2A Y5| 10 /SELAO WR /WR
59 G2B Y| 9 /SELCO pp | /RD
_VCC 6| G1 Y77 /SELFO 520.p27
DO-D7

Figure 3.2 Interface the SensorCore to external I/O devices

The functionae_i ni t () by default initializes the /PCSO line at base IMdr@ss starting at 0x00. You
can read from the 82C55 withportb(0x020)or write to the 82C55 witlbutportb(0x020,dat) The call to
inportb(0x020)will activate /PCSO0, as well as putting the adg@s20 over the address bus. The decoder
will select the 82C55 based on address lines Adnd,the data bus will be used to read the apprepdita
from the off-board component.

3-7

Chapter 3: Hardware SensorCore

UART SCC2691

The UART SCC2691 (Signetics, U5) is mapped intoltBeaddress space at 0x0300. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, adpuple buffered receiver data register, an inggrru
control mechanism, programmable data format, setbaud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit countenéi, an on-chip crystal oscillator, and a multignse
input/output including RTS and CTS mechanism.

For more information, refer to Appendix B. The X881 on the SensorCore may be used as a RS485
network 9-bit UART (for the TERN NT-Kit). Its datsheet and sample code aE2691.pdf (in the
\tern_docs\parts\ directory) andter n\186\samples\sc\ scc_echo.c, respectively.

EEPROM

A serial EEPROM of 512 bytes (24C04) is installedU7. The SensorCore uses the P22=SCL (serial
clock) and P29=SDA (serial data) to interface vilie EEPROM. The EEPROM can be used to store
important data such as a node address, calibratefficients, and configuration codes. It typigatlas
1,000,000 erase/write cycles. The data retenianare than 40 years. EEPROM can be read and mvritte
by simply calling the functionee_rd() andee_wr ().

A range of lower addresses in the EEPROM is reseimeTERN use, 0x00 — 0x1F. The addresses 0x20 to
Ox1FF are for user application.

Other Devices

A number of other devices are also available orSesorCore. Some of these are optional, and might
be installed on the particular controller you aseng. For a discussion regarding the softwarefexte for
these components, please see the Software chapter.

On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the SensorCore has several functions:
watchdog timer, battery backup, power-on-reset ydefower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a jurmgred9 of the SensorCore. The watchdog timer desvi

a means of verifying proper software execution. the user's application program, calls to the fionct
hitwd() (a routine that toggles the P29 = WDI pin of th&X691) should be arranged such that the WDI
pin is accessed at least once every 1.6 secoridbtie 09 jumper is on and the WDI pin is not acedss
within this time-out period, the watchdog timer Iputhe WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the eafdin program if something is wrong. After the
SensorCore is reset, the WDO remains low untibasition occurs at the WDI pin of the MAX691. When
controllers are shipped from the factory the J9gamis off, which disables the watchdog timer.

The Am186ER has an internal watchdog timer. Thiisabled by default withe init().

3-8

SensorCore Chapter 3: Hardware

Watchdog jumper, J9.
The J9 header is not
populated in this
picture.

Figure 3.3 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data stordde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM ati real-time clock DS1337 are backed up. In
normal use, the lithium battery should last abeGty®ars without external power being supplied. Wi
external power is on, the battery-switch-over diraiil select the VCC to connect to the VRAM.

Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSQAM8) is mapped in the 1/0 address space 0x0200. It
must be backed up with a lithium coin battery. TREC is accessed via software drivets init() or
rtc_rds() (see Appendix C and the Software chapter for @talA sample program is provided
\tern\186\samples\sc\rtc_init.c. Its data sheet can be found in the \tern_dods\gdrectory, filename
“rtc7242xam.pdf”.

It is also possible to configure the real-time &léa raise an output line attached to an extemtetiupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervahis can be used in a time-driven applicat@rthe
VOFF signal can be used to turn on/off the controllsmg an external switching power supply. An
example of a program showing a similar applicatian be found itern\186\samples\ae\poweroff.c

Dual 12-bit DAC (DAC7612U)

The DAC7612 is a dual, 12-bit digital-to-analog weerier with guaranteed 12-bit monotonicity
performance over the industrial temperature rahtgequires a single +5V supply and contains aruinp
shift register, latch, 2.435V reference, a dual DABd high speed rail-to-rail amplifiers. For al-kdale
step, each output will settle to 1LSB withips7

The DAC7612 uses a four wire serial interface ® @PU. The CPU on the SensorCore uses four lines
from the Am186ER to drive the serial interface @#t, Clock, Chip select and Latch Data) in andlle
SOIC package. The SensorCore offers one DAC76d&iging 2 12-bit serial DAC channels. The
DAC7612 outputs can support a capacitive load 0ps0

3-9

Chapter 3: Hardware SensorCore

The DAC is located in the U15 position with anatmgputs routed to the J4 pin header, pins 10 &SE2
the schematic at the end of this technical manual.

Refer to data sheet in thern_docs\parts directory of the TERN CD and to sample code in the
tern\186\samples\sc\sc_da.c directory for additional information.

LTC2448, 24-bit ADC

The SCfeatures three high-speed LTC2448 delta-sigma A@sifaced through a high speed Sync serial
port. Each LTC2448 chip offers 8 ch. different@ 16 ch. single-ended input channels. Variable
speed/resolution settings can be configured. A paadle-channel output rate of 8 KHz can be acldeve
At a sample rate of 1.76KHz, readings are accuoais+ bits in experimental conditions.

The LTC2448 works well with 500 ohm and lower impede sensors, such as 350 ohm Strain gages,
current shunts, RTDs, resistive sensors (500ohtoveer), and 4-20mA current loop sensors with 10hoh
sense resistors. Th8C will also work directly with thermocouples. We camstall a 2.5V precision
reference with temperature sensor(LT1019) to miréminput current and providing local temperature
measurement for thermocouple applications. ThezeBarmillion counts of resolution in the input spén
desired, you could put a divider at the input twéase the input range.

A sample programssi_ad24.c can be found in the: \'t er n\ 186\ sanpl es\ sc directory. See the data
sheet]tc2448.pdf in thetern_docs\parts directory.

Compact Flash Interface

By utilizing the compact flash interface on t8€, users can easily add widely used 50-pin CF standa
mass data storage cards to their embedded apgpticath RS232, TTL I12C, or parallel interface. TERN
software supports Linear Block Address mode, 16T flash file system, RS-232, TTL 12C or parallel
communication. Users can write/read files to/frdra CompactFlash card. Users can also transfertéiles
and from a PC via a Compact Flash card readerdiganom).

This allows the user to log huge amounts of dadanfexternal sources. Files can then be accessed via
compact flash reader on a PC.

Thetern\186\samples\sc directory includes sample code, cf.c, to show reads and writes of raw data by
sector. In additionter n\186\samples\fn\fs_cmdsl.c is a simple file system demo with serial port based
user interface. Refer &.ide which has the demo built and ready for download.

100 MHz BaseT Ethernet

A WizNet™ Fast Ethernet Module can be installegtovide 100M Base-T network connectivity. This
Ethernet module has a hardware LSI TCP/IP stackmpiements TCP/IP, UDP, ICMP and ARP in
hardware, supporting internet protocol DLC and MAChas 16KB internal transmit and receiving buffer
which is mapped into host processor’s direct memdhge host can access the buffer via high speed DMA
transfers. The hardware Ethernet module releagemét connectivity and protocol processing froma th
host processor. It supports 4 independent stackemtions simultaneously at a 4Mbps protocol prangss
speed. An RJ45 8-pin connector is on-board for eoting to 10/100 Base-T Ethernet network. A sofevar
library is available for Ethernet connectivity.

3-10

SensorCore

Chapter 3: Hardware

Headers and Connectors

Expansion Headers J1 — J5

There are two 20x2 0.1 spacing headers for SenserSgansion. Most signals are directly routechéo t
Am186ER processor.

J3 Signal J1 Signal

EO1 1 2 EOO vCcC 1 2 GND
EO3 3 4 EO2 3 4 CLK
EO5 5 6 EO4 5 6 GND
EO7 7 8 EO06 7 8 DO
EO9 9 10 EO8 9 10 D1
E11l 11 12 E10 11 12 D2
E13 13 14 E12 D15 13 14 D3
E15 15 16 E14 IRST 15 16 D4
co1 17 18 C00 RST 17 18 D5
C03 19 20 Cc02 P16 19 20 D6
C05 21 22 Co4 D14 21 22 D7
co7 23 24 C06 D13 23 24 GND
C09 25 26 co8 25 26 P12
Cl1 27 28 C10 D12 27 28 A7
C13 29 30 C12 IWR 29 30 A6
C15 31 32 Cl14 /RD 31 32 A5
BO1 33 34 BOO D11 33 34 A4
B0O3 35 36 BO2 D10 35 36 A3
BO5 37 38 B04 D9 37 38 A2
GND 39 40 BO7 D8 39 40 Al

Table 3.4 Signals for J3 (ADC input) and J1 (Expansion), 20x2 ports

J2 Signal
GND 1 2 VCC
P4 3 4 P15
PO 5 6 P6
P11 7 8 /INT1
P3 9 10 P2
/INT3 11 12 P1

J4 Signal
BO8 1 2 BO6
B10 3 4 B0O9
B11 5 6 B12
B13 7 8 B14
B15 9 10 VA
GND 11 12 VB

Table 3.5 Signals for J2 (1/0) , J4 (ADC input), and J5 headers

J5 Signal
GND 1 2 GND
GND 3 4 GND
GND 5 6 GND
GND 7 8
REF 9 10 VCC

3-11

SensorCore Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a sieydbw cost solution to application engineers, some
guidelines must be followed. If they are not felexl, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renidédugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azsept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an 1/0 address space and a memory address
space. 1/O address space ranges fox@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to 1/0O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficittcess any address in I/O or memory space, amd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsign#dnsigned char data
Return value: none

These standard C functions are used to place gxbdiita at any memory space location. Jégment
argument is left shifted by four and added todfiset argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

o

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsajp place for this particular range of memoily w
be used to activate appropriate chip-select lingsthe corresponding hardware component resporfsiblg
handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifattess in memory space. Once againsdgmentaddress|
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component mappieat address should return either an 8-bit ebil6

4-1

Chapter 4: Software SensorCore

value over the data bus. If there is no componegped to that address, this function will retandom
garbage values every time you try to peek into dloalress.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tbata into the appropriataddressin /O space. It is used most often wh
working with processor registers that are mappali® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perad
components.

(D
=}

When dealing with processor registers, be sureédlue correct function. Usaitport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frommpaoments in 1/0 space. You will find that most haade
options added to TERN controllers are mapped it@ospace, since memory space is valuable and is
reserved for uses related to the code and dating U® mappings, the address is output over thkress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigase refer to the Hardware chapter of thisrtieeh
manual.

4.1RE.LIB

RE.LIB is a C library for basic SC operations. itludes the following modules: AE.OBJ, SER0.0OBJ,
SER1R.OBJ, and AEEE.OBJ. You need to link to RE.LI your applications and include the
corresponding header files in your source code.folb@wing is a list of the header files:

Include-file name | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0, from CPU

SER1R.H External UART SCC26C92

AEEE.H on-board EEPROM

Not all functions in the above modules will appiythe SC. For example, “ae.h” was originally crddte
the A-Engine. Therefore, “ae.h” will include rowmfor the TLC2543 (for example), not installedtioa
SC. The user will need to include the header 82l to provide routines for the SC devices. Altho
“ae.h” was created for a different controller, ithstill be needed for a variety of routines ussdthe SC,
such as timers, interrupts, and others. Refera@ttual header file itself to determine whichegded for a
certain application.

SensorCore Chapter 4: Software

4.2 Functions in AE.OBJ

4.2.1 SensorCore I nitialization

ae_init

This function should be called at the beginningeeéry program running on SC controllers. It pregd
default initialization and configuration of the i@us I/O pins, interrupt vectors, sets up expardés 1/0,
and provides other processor-specific updates wegitihe beginning of every program.

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects ofe_init are described below. For details regarding regisse, you will want to refer to the
AMD Am186ER Microcontroller User's manual.

< Initialize the upper chip select to support thebmard flash. The CPU registers are configured
such that:

— Address space for the Flash is from 0x80000-0x(t6ifmap Memcard 1/0O window)
- 512K ROM Block size operation.

— Three wait state operation (allowing it to suppgrtto 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you regjinicreased performance (at a risk of stability
in noisy environments). For details, see the UMGfper Memory Chip Select Register)
reference in the processor User’'s manual.

out port (Oxffa0, 0x80bf); // UMCS, 512K ROV| 0x80000-Oxfffff

e Initialize LCS (ower Chip Selegtfor use with the SRAM. It is configured so that:
— Address space starts 0x00000, with a maximum oK5RAM.
— Three wait state operation. Reducing this valueiggrove performance.

— Disables PSRAM, and disables need for externalread
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

e Initialize MMCS and MPCS so thsdCS0 andPCSO0-PCS6except for PCS4) are configured so:

- MCSO0is mapped also to a 256K window at 0x80000. #dusith MemCard, this
chip select line is used for the 1/0O window.

- Sets upPCS5-6lines as chip-select lines, with three wait stgderation.
out port (Oxffa8, OxaObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH
¢ Initialize PACS so thaPCS0-PCS3are configured so that:

— Sets upPCSO0-3lines as chip-select lines, with fifteen wait staperation.

— The chip select lines starts at /0O address 0x0@fiB,each successive chip select line
addressed 0x100 higher in I/O space.

out port (O0xffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

« Configure the two PIO ports for default operatidvost pins are set up as default input, except for
P29 (used for driving the LED), pins for SERO, atiders.

out port (0Oxff 78, Oxc7bc); /1 PDIRL, TxD, RxD, PCS0, PCS1, P29&P22 Qut put
out port (Oxff 76, 0x2040) ; /1 PIOWVL

out port (Oxff 72, Oxec7b); // PDI RO, A18, Al7, PCS6, PCS5, P12 Qut put
out por t (Oxff 70, 0x1000) ; /1 PIOWD

« Configure the PPI 82C55 to all inputs. You caretelsese by writing to the command register.

out port b(0x0103, 0x9a) ; /1 all pins are input, |20-23 output
out por t b(0x0100, 0) ;
out port b(0x0101, 0) ;

4-3

Chapter 4: Software SensorCore

out port b(0x0102, 0x01); /1 120 high

The chip select lines are set to 15 wait statesldigult. This makes it possible to interface witany
slower external peripheral components. If you negiaster I/O access, you can modify this numimavrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for thpsirpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state dependmthe argumemwait.

wait=0, wait states = 0, |/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100450 ns
wait=3, wait states = 3, |/O enable for 100+75 ns
wait=4, wait states = 5, |/O enable for 100+125 ns
wait=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, |/O enable for 100+225 ns
wait=7, wait states = 15, |1/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to six external interrupt sourceshenSC, consisting of five maskable interrupt piNsT@-
INTO) and one non-maskable interruptM|). There are also an additional eight internarintpt sources
not connected to the external pins, consistinduade timers, two DMA channels, both asynchronousise
ports, and thé&iMI from the watchdog timer. For a detailed discus$iwolving the ICUs, the user should
refer to Chapter 9 of the AMD Am186ER MicrocontesllUser's Manual - or the R1100 user’'s manual,
both available on the CD under thend_docsdirectory. Remember, DMA channels to and from the
serial port not available on the R1100.)

TERN provides functions to enable/disable all & fhmaskable external interrupts. The user cdrangl
of the interrupt init functions listed below forishpurpose. The first argument indicates whether t
particular interrupt should be enabled, and theorsgéds a function pointer to an appropriate intptru
service routine that should be used to handlenterrupt. The TERN libraries will set up the imtest
vectors correctly for the specified external intgtrline.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dksd must
be cleared. This can be done using Menspecific EOl command At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityringet will be handled
first, and a higher priority interrupt will intenpti any current interrupt handlers. So, if the udeoses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine jpuestds to
issue the nonspecific EOl command to clear theectifnighest priority IR.

To send the nonspecific EOl command, you need ite WreEOI register word with 0x8000.
out port (Oxff22, 0x8000);

See Chapter 9 of AM186ER technical manual (terns)dioc additional details. Sample code is also
available in thaern\186\samples\aalirectory, intx.c’.

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any dribeexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwapter). The first argumenindicates whether this

4-4

SensorCore Chapter 4: Software

particular interrupt should be enabled or disabl€He second argument is a function pointer, whith
act as the interrupt service routine. The overtwathe interrupt service routine, when executedpiout
20 ps.

By default, the interrupts are all disabled aftetialization. To disable them again, you can eggke call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiiR
return on interrupt.

voi d
voi d

void intO_init(unsigned char
void intl_init(unsigned char nterrupt far(* intl_isr

interrupt far(* intO_isr)());
I ’
void int2_init(unsigned char void interrupt far(* int2:i srg8 g:
i)())
i)(O))

IY
iy
iy
void int3_init(unsigned char i, void interrupt far(* int3_isr
void int4_init(unsigned char i, void interrupt far(* int4_isr
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

Two ports of 16 1/0O pins each are available onS Hardware details regarding these PIO linesbean
found in the Hardware chapter.

Several functions are provided for access to ti@ IPles. At the beginning of any application whgoa
choose to use the PIO pins as input/output, iiitahe appropriate pins in one of the four avddabodes.
Before selecting pins for this purpose, make souaéthe peripheral mode operation of the pin isnesded
for a different use within the same applicatioExgmple, if using the DAC7612, P10 is needed ashiie
select, so it will be unavailable for any othergmsge while the DAC is being used).

You should also confirm the PIO usage that is deedrabove withinae_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexldor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this méd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 14 of the AMD Am1B8Eser's Manual. Also see Table 3.2 in this manual.

Please see the sample program pio.cin t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qgun
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PI1O pingebBding on the pin
being used, it might require from 5-10 us. The imaxn efficiency you can get from the PIO pins ocifur
you instead modify the PIO registers directly vathoutport instruction Performance in this case will be
around 1-2 us to toggle any pin. Refefr speed.c’for the fastest possible access.

The data register Bxff74 for PIO port 0, an@xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.
e 0, normal operation

e 1, input with pullup/down

e 2, output
e 3, input without pull

4-5

Chapter 4: Software SensorCore

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesatient 1/0 value for the P1O pins in the seleqted.
void pio_wr:
Arguments: char bit, char dat

Return value: none

Writes the passed in dat value (either 1/0) test#Hected PIO.

4.2.4 Timer Units

The three timers present on the SC can be useal ¥ariety of applications. All three timers runva of
the processor clock rate, which determines the mmaxi resolution that can be obtained. Be awareithat
you enter power save mode, the timers will opesaitereduced speed as well.

These timers are controlled and configured throaginode register that is specified using the softwar
interfaces. The mode register is described inildatahapter 10 of the AMD AM186ER User’s Manual.

The timers can be used to time execution of yoer-defined code by reading the timer values befmct
after execution of any piece of code. For a sarfidedemonstrating this application, see the saiid
timer.c in the directoryttern\186\samples\ae.

Two of the timersTimer0 andTimerl can be used for pulse-width modulation with aafale duty cycle.
These timers contain two max counters, where theubuis high until the counter counts reaches marto
A before switching and counting to maxcount B.

It is also possible to use the outpuflirfher2 to pre-scale one of the other timers, since 1@dsiblution at
the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. The sample filésner02.c andtimer12.c, located intern\186\samples\ae, demonstrate this.

The specific behavior that you might want to impdenis described in detail in chapter 10 of the AMD
AM186ER User’s Manual.

void t0_init

void t1_init

Arguments: int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Both of these timers have two maximum counters (MXUNTA/B) available. These can all be specified
usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

—

The interrupt service routirteisr specified here is called whenever the full cosmeached if the interrup
bit in the TOCON/T1CON is set, with other behavior possible dependingtenvalue specified for th
control register. If the interrupt bit is not stte user can poll the status if thiC bit in the timer control
registers. Polling th®IC bit offers a way to monitor timer status withostng interrupts.

void t2_init

Arguments: int tm, int ta, void interrupt far(*t_isr)()

Return values: none.

Timer2 behaves like the other timers, except it onlydr@es max counter available, and no 1/O pins.

11%

SensorCore Chapter 4: Software

4.2.5 Analog-to-Digital Conversion

Delta-Sigma ADC LTC2448

The 3 LTC2448 ADC units (at locations Ul11, U12, YhBovide 48 channels of 0-2.5V analog single-
ended (24 differential) inputs (or 0-1.25V inputtwi2.5V reference chip). For details regarding the
hardware configuration, see the Hardware chapter.

The following functions will drive the 24-bit ADC3.he order of functions given here should be foddw
in actual implementation.

void ad24_init(void);
void ad24_setup(unsigned char chip, unsigned int atrol_byte);
void ad24_ssi_rd(unsigned char* raw);
The control bytecontrol_bytedrives the LTC2448 in 16 channel single-ended nwitle value 0xb000.
In code, the control byte is calculated this way:
ch_sel=0; //select channel
control_byte=control_byte+speed[10]; //adpeed desired to 0xb000
control_byte=control_byte+(ch_sel<<8); //addhannel selection w/ 8 bit left shift

NOTE: “ch_s€l and the desired channel signal do not match ogtebd use this scheme to select the
desired signal on the board:

ch_sel Uil U1z uUi3
0 BOO C00 EOO
1 BO2 Cco2 EO2
2 BO4 co4 EO4
3 BO6 C06 EO6
4 BO8 co8 EO8
5 B10 C10 E10
6 B12 Ci12 E12
7 B14 Ci4 E14
8 BO1 co1 EO1
9 BO3 Cco3 EO3
10 BO5 C05 EO5
11 BO7 co7 EO7
12 BO9 C09 EO9
13 B11 Ci11 E11
14 B13 C13 E13
15 B15 C15 E15

The LTC2448 also supports 8 channel differentiatiendr his can be achieved by changing the contrig by
passed to the ‘ad24_setup’ routine to 0xa0000 (sped channel selection is added on the same wialy as
single-ended mode). See the LTC2448 data sheetddétails on how to define the control byte,
‘LTC2448.pdf in thetern_docs\partsdirectory.

For a sample file demonstrating the use of the Apl€ase sessi_ad24.dnt er n\ 186\ sanpl es\ sc.

This sample is also included in the.idetest project in théern\186 directory.

Chapter 4: Software SensorCore

4.2.6 Digital-to-Analog Conversion

Dual DAC7612

The dual DAC7612 uses a serial interface with@RJ for operation. Four control lines are used, #CS
P10, CLK = SCLK(P20), SDI = SDAT(P21), and LD=PXach PIO lines must be initialized as output
(mode 2) for operation. The user defined functisn_ta” is provided to give a one statement interface
with the device. The function can be found in thample file, sc_ da.c, in the directory
\tern\186\samples\sc

Note: Three 24-bit ADC LTC2448 chips can beinstalled, but they all must be disabled while using DAC.

void sc_da
Arguments: unsigned int dat
Return value: none

This function drives the DAC at position U15, outpare VA & VB. The argumentat determines which
channels are to be written to as well as the valhe.values fodat are calculated as follows:

dat=0x2000|(0x0fff&dac); for CHA
dat=0x3000|(0x0fff&dac); for CHB

where 0 < dat < Oxfff

See the data sheet. From the root of the instail&@D, \tern_docs\parts\dac7612.pdf.

4.2.7 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timéB) jumper is set, the functidmitwd() must be called every 1.6
seconds of program execution. If this is not ei@tibecause of a run-time error, such as an iefiaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to théue ofledd.

Real-Time Clock

The real-time clock can be used to keep track af time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingnterdace functions. See \tern\186\samples\relcec r
for a sample program. There is a common data steictsed to access and use both interfaces.

4-8

SensorCore Chapter 4: Software

typedef struct{
unsi gned char secl; One second digit.
unsi gned char secl0; Ten second digit.
unsi gned char minl;, One mnute digit.
unsi gned char m nl0; Ten minute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl0; Ten day digit.
unsi gned char nonl; One nmonth digit.
unsi gned char nmonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}PTIM

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrcin, as
the clock failing to respond.

int rtc_rds
Arguments: char* realTime
Return value: int error_code

This function is slightly different from the rtc_fdnction. It places the current value of the t&ak clock
into a character string instead of the TIM struetumaking it a more convenient function than rtc_rd

This function places the current value of the taé clock in the char* realTime. The string hasr=nat

of “week year10 yearl month10 monthl dayl10 dayXi®bhourl min10 minl second10 secondl”. The
rtc_rds function also places a null terminating characteéhe end of the time string. It is important tdeno
that you must be sure to make the destination cteratring long enough to hold the real time cleakie
plus the null character. A destination characténgthat is too short will result in the data inufisely
following the character string in memory to be awétten, causing unknown results.

For example “3040503142500\0” represents Wedneltiay3, 2004 at 02:25.00 pm. There are only tW
positions for the year, so the user must decide tbatetermine the hundreds and thousands digiteof t
year. Here we just assume “04” correlates to tlze 2604.

The length of char * realTime must be at leasthdracters, 13 plus one null terminating character.
This function returns 0 on success and returnschse of error, such as the clock failing to respon
Void rtc_init

Arguments: char* t

Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

Chapter 4: Software SensorCore

The byte array should correspond tevdekday, year10, year 1, month10, monthl, dayl10, dayl, hour10,
hour1, minutelO, minutel, secondl10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is Friday June 6, 2003, 10:5%80 the
byte array would be initialized to: unsigned cHasat={5,0, 3,0,6,0,6, 1,0, 5, 5, 3, 0};

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should useliware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspee
well as interrupt latency. The code is functiopadientical to:
while(t) { t--;}

Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a katieay ofcount size pointed to bwptr . I

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoimr
any reason. Depending on the current hardwaregroation, this might either start executing coctef
the ACTF Boot Utility or from some other address.

4-10

SensorCore Chapter 4: Software

4.3 Functions in SER0.0OBJ

The functions described in this section are prgety in the header filser0.h in the directory
tern\ 186\ i ncl ude.

The Am186ER only provides one asynchronous seol ffhe SC comes standard with the SCC2691,
providing one additional asynchronous port. Thébsport on the Am186ER will be called SERO, ahd t
UART from the SCC2691 will be referred to as SCC.

This section will discuss functions ger0.honly, as SERO pertains to the Am186ER.

By default, SERO is used by the DEBUG kernel (rd8®%.hex) for application download/debugging in
STEP 1 and STEP ZThe following examples that will be used, show funions for SERO, but since it

is used by the debugger, you cannot directly debu§ERO. This section will describe its operation and
software drivers. The following section will dissuSCC, which pertain to the external SCC2691 UART.
SCC will be easier to implement in applications,itasan be directly debugged in the Paradigm C/C++
environment.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Iofléhe processor frequency.

The following table shows the function argumentatthxpress each baud rate, to be used in TERN
functions forSERO ONLY. SCC has baud rate based upon different arguniEnése are based on a 40
MHz CPU clock (80MHz boards will have all baud stlubled).

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000
16 28,800

Table 4.1 Baud rate values for ser0 only

4-11

Chapter 4: Software SensorCore

As of January 25, 2004, the function argument “i&s added for initializing SERO. This new rate
provides a baud rate of 28,000 for 40MHz boardd, /600 for 80MHz boards.

After initialization by callingsO_i ni t (), SERO is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 0_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAO operatio terms of receiving, there is no software bead
or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status witer hi t 0() and
take out the data from the buffer wiglet ser 0() , if any. The input buffer is used as a circulagrbuffer,
as shown in Figure 4.1. However, the transmit djm@ras interrupt-driven.

ibuf in_tail in_head ibuf+isiz

v v
[L[]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size i6iz), and baud rateb@ud) are specified by the user wistd i ni t ()
with a default mode of 8-bit, 1 stop bit, no parifter sO_i nit () you can set up a new mode with
different numbers for data-bit, stop bit, or pafity directly accessing the Serial Port 0 ControfjiRter
(SPOCT) if necessary, as described in chapter #2e0Am186ER manual for asynchronous serial ports.

Due to the nature of high-speed baud rates andipessffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 0() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyde buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4kEer
will be able to store data for approximately foacands.

However, it is always important to take out datayetom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for réegiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhit0() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates aata is available in the buffer.

You can usgyet ser 0() to get the serial input data byte by byte usingd-ffom the buffer. The in_talil
pointer will automatically increment after eveget ser 0() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oaljphardware reset &0_cl ose() can stop this
receiving operation.

For transmission, you can ugait ser O() to send out a byte, or ugrut sers0() to transmit a
character string. You can put data into the trahsimg buffer,s0_out _buf, at any time using this
method. The transmit ring buffer addresvyf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeufIf there

is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othase, it will
continue to take out the data from the out buffex] transmit. After you caput ser 0() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

4-12

SensorCore Chapter 4: Software

Software Interface
Before using the serial ports, they must be inzéd.

There is a data structure containing importanias@ort state information that is passed as argtiteetihe
TERN library interface functions. TheOM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #e&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufind associated pointer values, you can watch the
transmission process.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;

unsi gned char ifl ag; /[* interrupt status */
unsi gned char *in_buf; /* Input buffer */

int in_tail; /* Input buffer TAIL ptr */
int in_head; /* I nput buffer HEAD ptr */
int in_size; /* Input buffer size */

int in_crcnt; /* I nput <CR> count */

unsi gned char in_nt; /* Input buffer FLAG */

unsi gned char in_full; /[* input buffer full */

unsi gned char *out _buf; /* Qut put buffer */

int out_tail; Qut put buffer TAIL ptr */
int out_head; /* CQut put buffer HEAD ptr */
int out_size; /* Qutput buffer size */
unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /[* Qutput buffer MI */

unsi gned char tnso; /* transmit macro service operation */

unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */
unsi gned char sl ave;
unsigned int in_segm /* input buffer segnment */
unsi gned int in_offs; /* input buffer offset */
unsi gned i nt out_segm /* output buffer segment */
unsi gned int out_offs; /* output buffer offset */
unsi gned char byte_delay; /* V25 macro service byte delay */

} covm

sn_init
Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO with the sifiecl parametersb is the baud rate value shown in Tabje
4.1. Argumentsbuf andisiz specify the input-data buffer, aethuf andosiz specify the location and size
of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 staih no parity communication.

There are a couple different functions used fangmaission of data. You can place data within thigat
buffer manually, incrementing the head and taifdrupointers appropriately. If you do not call arfethe

4-13

Chapter 4: Software SensorCore

following functions, however, the driver interrufatr the appropriate serial-port will be disabledieh
means that no values will be transmitted. Thisvedl you to control when you wish the transmissibdaia
within the outbound buffer to begin. Once the fintpts are enabled, it is dangerous to manipulage t
values of the outbound buffer, as well as the \&abfehe buffer pointer. The following functionseahown
as putsern’, wheren is the serial port in use. This section applidy tm SERO, thusputserQ.

putsem
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate sepiart. The return valug
returns one in case of success, and zero in aey o#ise.

putsers

Arguments: char* str, COM *c

Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferserhitn() should be called befor
trying to retrieve data.

1%

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsen
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments thia_tail pointer. Once again, this
function assumes thaerhitn has been called, and that there is a charactesmirgsthe buffer.

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffstr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callgytetser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedthdouffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means thaxetimight actually be multiple null charactershia byte
array, and the returnedlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetsersandputsersfunctions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

4-14

SensorCore Chapter 4: Software

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yowheck and set the value of these I/O pins appatepfor
whatever form of flow control you wish to implemerBefore using these functions, you should onaérag
be aware that the peripheral pin function you a&iagumight not be selected as needed. For depddase
refer to the Am186ES User's Manual.

char sn_cts(void)
Retrieves value oETS pin.

void sn_rts(char b)
Sets the value ®RTS tob.

Completing Serial Communications

After completing your serial communications, yowun ga-initialize the serial port with sO_init(); teset
default system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délvenhardware as well as disabling the interrupt.

The asynchronous serial /0O port available on th&lB6ER processor has many other features that might
be useful for your application. If you are intdessin having more control, please read Chapteofitbe
manual for a detailed discussion of other feataraslable to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are profmy insc.hin thet er n\ 186\ i ncl ude directory.

The SCC is a component that is used to provideird #synchronous port. It uses an 8 MHz crystal,
different from the system clock speed, for driviegrial communications. This means the divisors and
function arguments for setting up the baud rateHisr second port are different than for SERO.

The SCC2691 component has its own 8 MHz crystaligiag the clock signal. By default, this is set t
8 MHz to be consistent with earlier TERN controliizsigns. The highest standard baud rate is 194400
shown in the table below. If your application reqs a higher standard baud rate (115,200, for pigit

is possible to replace this crystal with a custaf884 MHz crystal. A sample file demonstrating hitne
software would be changed for this applicatioads_echo.cfound in theern\186\samples\sctlirectory.

Function Argument | Baud Rate

110
150
300
600
1200
2400

o o~ WN PP

4-15

Chapter 4: Software SensorCore

Function Argument | Baud Rate

7 4800

8 9600 (default)
9 19,200

10 31,250

11 62,500

12 125,000

13 250,000

Unlike the other serial ports, DMA transfer is mgtd to fill the input buffer for SCC. Instead,iaterrupt-
service-routine is used to place characters ingoirtput buffer. If the processor does not respanthé
interrupt—because it is masked, for example—theriopt service routine might never be able to cetepl
this process. Over time, this means data mighbd&tan the SCC as bytes overflow.

Special control registers are used to define hav3BC operates. For a detailed description of texgis
MR1 and MR2, please seest.h’. In most TERN applications, MR1 is set@57, and MR2 is set to
0x07. This configures the SCC for no flow control (RTGT'S not used/checked), no parity, 8-bit, normal
operation. Other configurations are also possiteyiding self-echo, even-odd parity, up to 2 sbifg, 5

bit operation, as well as automatic hardware flowtml.

Initialization occurs in a manner otherwise simiarSERO. ACOM structure is once again used to hold
state information for the serial port. The in-bdwmnd out-bound buffers operate as before, and brist
provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned charsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue ba as defined in the table above. The valuesirand
m2 specify the values to be stored ilrM&®1 andMR2. As discussed above, these values are normallyj
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, armif andosiz define the output buffer.

After initializing the serial port, you must alsetaup the interrupt service routine. The SCC26%RU
takes up external interrupfNTO on the CPU, and you must set up the appropridterupt vector to
handle this. An interrupt service routing;c_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

intO_init(1l, scc_isr);
By default, the SCC is disabled for bdtansmitandreceive Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmitandreceivefunctions should both be enabled. Once this
is done, you can transmit and receive data as deedgou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomaledile showing RS232 full duplex communications,
please seae_scc.dn the directoryt er n\ 186\ sanpl es\ ae.

RS485 is slightly more complex to use than RS2B%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i8Br installed on another TERN peripheral board,
you will need to disableeceivewhile transmitting. While transmitting, you wallso need to place the

4-16

SensorCore Chapter 4: Software

RS485 driver in transmission mode as well. Thiddee by usingcc_rts(1) This uses pin MPO (multi-
purpose output) found on the J1 header. While areureceiving data, the RS485 driver will need¢o b
placed in receive mode usimgc_rts(0) For a sample file showing RS485 communicatideage see
ae_rs485.dn the directoryt er n\ 186\ sanpl es\ ae.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallysha
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofetbe
functions are disabled by default. If you are gdR8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send andvedenction of the SCC2691. One major use ofe¢hes
functions is to disablgansmitandreceive If you are using RS485, you will need to uss feature when
transitioning from transmission to reception, @mfrreception to transmission.

Transmission and reception of data using the SQCr®st ways identical to SERO. The functionsduse
transmit and receive data are similar. For detaggrding these functions, please refer to theique
section.

putser_scc
See: putsern

putsers_scc
See: putsersn

getser_scc
See: getsern

getsers_scc
See: getsersn

Flow control is also handled in a mostly similastfeon. The CTS pin corresponds to the MPI pincivtis
not connected to either one of the headers. Tt it corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SERO.

4-17

Chapter 4: Software SensorCore

scc_close

See: sn_cl ose
serhit_scc

See: sn_hit
clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to cheekstate of the SCC for information regarding extbat
might have occurred. By callirggc_err, you can check for framing errors, parity errofpérity is
enabled), and overrun errors.

4.5 Functions in AEEE.OBJ

The 512-byte serial EEPROM4CO04) provided on-board allows easy storage of nontilelgprogram
parameters. This is usually an ideal locationtémesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slowmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addresse€x00 to Ox1f on the EEPROM is reserved for system use, incudonfiguration information
about the controller itself, jump address for Skeyp, and other data that is of a more permaneniraat

The rest of the EEPROM memory spa@e?0to 0x1ff, is available for application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedan to the specifiedddr. The return value is 0 in success.
ee_rd

Arguments: int addr
Return value: int data

This function returns one byte of data from thec#fjeel address.

4.6 Other Sample code

The following is a list of other sample code aualida for the SC. Each will show an example
implementation of the specific hardware and aratied in the tern\186\samples\sc directory. Mostaitan
be found in thesc.idetest project.

tern\186\samples\sc\rtc_init.c /I Real Time clock

tern\186\samples\sc\sc_cf.c /I file system demo

4-18

SensorCore Chapter 4: Software

4.6.1 File system support

TERN libraries support FAT file system for the Caap Flash interface. Refer to Chapter 4 of the
FlashCore technical manual (tern_docs\manualstitagtpdf) for a summary of the available routingse
libraries and header files are as follows:

fileio.h
filegio.h
filesy16.lib
mm16.lib

4-19

SC Layout SensorCore

Appendix A: Sensor Core(SC) Layout

All dimensions are in inches.

1.908, 1.942 4.092, 1.958

0.792, 1.958 4.40, 1.70
1.158, 1.942 2.842, 1.858 \ 450, 2.00
= = ——————————— =&
u—l M _.JI.E H — Life-]
% J3 = E— J1
5) | o -
o - CPU] FLASH | 2
o =
5 w LR S485
= E 2 pRS485] =
mm F2 (T —| LI2, H] u3 E
[3w) E SCC E
PN A Gl | T Ve
JP1
I+ H | L £=H r_r| 4
/ 0.292, 0.058 4.40, 0.40
0.00, 0.00

SensorCore Appendix B: UART SCC2691

Appendix B: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
ICEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

AO0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

XUCLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TxD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bit6 | Bit5 | Bit4 HETE [Bit2 [Bit1 [Bito
RxRTS RXINT Error __ ParityMode___ Parity Type Bits per Character
0=no 0=RxRDY 0 =char 00 = with parity 0=Even 00=5
l=vyes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0 =Data
1=Addr

Appendix B: UART SCC2691 SensorCore
MR2 (Mode Register 2):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
Tx (add 0.5 to cases 0-7 if channel is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0.625 5=0875 9=1625 D=1.875
10 = Local loop 2=0688 6=0938 A=1688 E=10938
11 = Remote loop 3=0.750 7=1.000 B=1750 F=2.000
CSR (Clock Select Register):
[Bit7 [Bit6 [Bit5 [Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] =0:
0= 50 1=110 2=1345 3=200 0= 50 1=110 2=1345 3=200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=38.4k D=Timer E=MPI-16x F=MPI-1x C=38.4k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A=7200 B = 1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
Miscellaneous Commands Disable Enable Disable Enable
Tx TX Rx Rx
0 = no command 8=gart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=vyes 1=yes 1=vyes 1=yes
2 =reset receiver A = assert RTSN
3 =reset transmitter B = negate RTSN
4 =reset error status C=reset MPI
5 = reset break change change INT
INT D =reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are
reset when the corresponding data character is read from the FIFO.

SensorCore Appendix B: UART SCC2691

ACR (Auxiliary Control Register):

[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode
0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rateset 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)
transmitter 1= off 4 =RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (x2/CLK) 6 =TxXRDY
see CSR 4 =timer, MPI pin 7 =RxXRDY/FFULL
bit format 5 =timer, MPI pin divided by
16
6 = timer, crystal or external
clock (x1/CLK)
7 =timer, crystal or external
clock (x1/CLK) divided by 16

ISR (Interrupt Status Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes

IMR (Interrupt Mask Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n

CTUR (Counter/Timer Upper Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |

| cTag | crpa | crpyy | otz | otqa | otlig | cm9 | cmrg |
CTLR (Counter/Timer Lower Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |

[T | cmiel | cmis) | crg | orig) | cm2 | cry [oo I

Appendix C: RTC72421/ 72423 SensorCore

Appendix C: RTC72421 / 72423

Function Table

Address Data

Az | A, | A; | Ay | Register | 3 D, D, Do Count Remarks
Value

0 (0 0 |0 |9 S S S S 0~-9 1-second digit register

0 (O 0 |1 | $ S10 S0 | Sio 0~-5 10-second digit register

0 |0 11]0 Mk Mig | Miy mi, | mig 0~9 1-minute digit register

0 |0 1]1 Mko Miyg Misg | Miyg | 05 10-minute digit register

0 |1 0 |0 | H hg hy h, hy 0~9 1-hour digit register

0 |1 |0 |1 | H PM/AM | hyg | hyg 0-2 | PM/AM, 10-hour digit
or register
0-1

0 |1 1 ({0 | Q dg dy d, d; 0~-9 1-day digit register

0 |1 1 (1 Do dgo | dig 0-~3 10-day digit register

1]0 0 |0 [MQ mog | mo, mo, [mo, | 0~9 1-month digit register

1 |0 0|1 MQq mo, | 0~-1 10-month digit register

1 0 1 0 Y Vs \Z Yo Y1 0~9 1-year digit register

1]0 1 (1 | Y Yso | Yao Yoo | Y10 0~9 10-year digit register

1)1 0 |0 | W vy Wy Wy 0~6 Week register

1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D

Adj Flag
1)1 1 |0 | RegE gt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test 24/12 Sto Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rese
2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)
Data bit| PM/AM INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

C-1

Appendix D: Software Glossary Sensor Core

Appendix D: Software Glossary

The following is a glossary of library functions fine SensorCore.

void ae_init(void) ae.h

Initializes the Am186ES processor. The followisaghe source code fae_init()
outport(0xffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, 0 wait states

outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS1/0
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffad,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(0Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

enabl e();

Reference: led.c

void ae_reset(void) ae.h

Resets Am186ES processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ae.h

Toggles P12 used for led.

Var: i- Led on or off

Reference: led.c

SensorCore Appendix D: Software Glossary

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple f or loop up to t.

Reference:

void pwr_save en(int i) ae.h

Enables power save mode which reduces clock spBieters and serial ports will be effected.
Disabled by external interrupt.

Var: i—1 enables power save only. Does not disa ble.

Reference: ae pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peeigth use.

Var: i — 1 enables clock output, O disables (saves current when
disabled).
Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0-31
Mode — above mode select

Reference: ae_pio.c

Appendix D: Software Glossary

SensorCore

void pio_wr(char bit, char dat)

Writes a bit to a PIO line. PIO line must be incariput mode

mode=0, Normal operation

mode=1, Input with pullup/down

mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0-31
dat — 1/0

Reference: ae_pio.c

ae.h

unsigned int pio_rd(char port)

Reads a 16 bit PIO port.

Var: port—0: PIOO0- 15
1: PIO16-31

Reference: ae pio.c

ae.h

void outport(int portid, int value)

Writes 16-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 16 bit value

Reference: ae_ppi.c

dos.h

void outportb(int portid, int value)

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — /O address
value — 8 bit value

Reference: ae ppi.c

dos.h

int inport(int portid)

Reads from an 1/O addrepsrtid. Returns 16-bit value.

Var: portid — I/O address

Reference: ae_ppi.c

dos.h

SensorCore

Appendix D: Software Glossary

int inportb(int portid)

Reads from an I/O addregsrtid. Returns 8-bit value.

Var: portid — /O address

Reference: ae ppi.c

dos.h

int ee_wr(int addr, unsigned char dat)

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

aeee.h

int ee_rd(int addr)

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae ee.c

aeee.h

Appendix D: Software Glossary Sensor Core

void io_wait(char wait) ae.h

Setup /O wait states for I/O instructions.

Var: wait — wait duration {0...7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, |/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtc_init(unsigned char * time) ae.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = mon10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = secl10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtc_rd(TIM *r) ae.h

Reads from the real time clock.

Var: *r— Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, minl10, hounlr1p
unsigned char dayl, day10, monl, monl0, yearIl@ea
unsigned char wk;
}TIM;

Reference: rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h

SensorCore Appendix D: Software Glossary

void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual
ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.
Reference: timer.c, timer 1.c, timer02.c, timer 2.c, timer0.c timer 12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*intO_isr)());
void intl init(unsigned char i, void interrupt far (*intl_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMil¢gn-Maskable Interrupt).

Var: i—1: enable, O: disable.
int #_isr — pointer to interrupt service.

Reference: intx.c

void sO_init(unsigned char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b — baud rate. Tabl e bel ow for 40MH#z and 20MHz C ocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)

1 110 55

2 150 110

3 300 150

4 600 300

5 1200 600

6 2400 1200

7 4800 2400

8 9600 4800

9 19200 9600

10 |38400 19200

11 |57600 38400

Appendix D: Software Glossary Sensor Core

b baud (40MHz) | baud (20VHz)
12 |115200 57600
13 [23400 115200
14 |460800 23400
15 921600 460800
Reference: s0_echo.c
void scc_init(unsigned char m1, unsigned char m2, unsigned char b, sc.h

unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1

m2 = SCC691 MR2
b — baud rate. T abl e bel ow for 8MHz O ock.
ibuf — pointer to input buffer array

isiz — input buffer size

obuf — pointer to output buffer array
0siz — ouput buffer size
¢ — pointer to serial port structure. See AE.H for COM
structure.

Definition

(RXRTS) receiver request-to-send control, 0=no, 1 =yes
(RxINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
(Error Mode) Error Mode Select, 0 = Char., 1=Bloc k

Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
(Parity Type), 0=Even, 1=0dd

bits) 00=5, 01=6, 10=7, 11=8

A

o w

I—\I\)-JI>U1CD\I

=

Definition

Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
(TXRTS) Transmit RTS control, 0=No, 1= Yes

(CTS Enable Tx), 0=No, 1=Yes

Stop bit), 0111=1, 1111=2

|
»

(fJ-bU‘l\l
o

baud (8Mz)

ooo~NoOU~WNER T
(2]
o
o

12 |125000
13 |250000

Reference: scc_echo.c

SensorCore Appendix D: Software Glossary

int putserO(unsigned char ch, COM *¢); ser0.h
int putser_scc(unsigned char ch, COM *c¢); sc.h

Output 1 character to serial port. Characterbéllsent to serial output with interrupt isr.

Var: ch — character to output
¢ — pointer to serial port structure

Reference: s0_echo.c

int putsersO(unsigned char *str, COM *c); ser0.h
int putsers_scc(unsigned char ch, COM *c); sc.h

Output a character string to serial port. Charaestitibe sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure

int serhitO(COM *c); ser0.h
int serhit_scc(COM *c); sc.h

Checks input buffer for new input characters. Retu if new character is in input buffer, else 0.
Var: ¢ — pointer to serial port structure

Reference: s0_echo.c

unsigned char getserO(COM *c¢); ser0.h
unsigned char getser_scc(COM *c¢); sc.h

Retrieve 1 character from the input buffer. Asssitimatserhit routine was evaluated.

Var: c — pointer to serial port structure

Reference: s0_echo.c, s1_0.c

int getsersO(COM *c, int len, unsigned char *str); ser0.h
int getsers scc(COM *c¢, int len, unsigned char *str); sc.h

Retrieves a fixed length character string fromitmpaut buffer. If the buffer contains less charaster
than the length requestedt; will contain only the remaining characters frore thuffer. Appends
a ‘\0’ character to the end dfr. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string length
str — pointer to output character string

Reference: ser0.h for sour ce code.

N[NNI ol {12 | = 1= 1] =] = 12
BN | O] ©| 00| NI O | U 2| O]©| 00| N | UT| | W[N[=

P23 GND P24 GND P25 GND J3 J5 J2 VCC J1
SDAT | [AL9 SDAT | [A19 SDAT | [AL9 E01 1 2 E00 G\p 1 2 G\D 1 2 Vo) vec 1 2
o O P Lo o2 LGP0 1L 5 o2 o O
SCLK GND SCLK GND SCLK GND E03 3 E02 3 2 P23 1P 3
Eos 5 2 & E04 = H& P52 &6 P6 530 <
EEEEREENVEL A3 w2 3330313133 uis for 72 & = 728 S s P11 73 & nwn — 73 8
5/ 7]6/5[4(3)2 7l6[5/4l32 3/716(5(4(32 £ o O £ —0 o2 Bl L5 o8 o O
09 0 8 S 10 F08 REFC 9 Q S 10 vec P39 3 SI0 P2 9 3 §I0 oL
SSCF SGG SSCFSGG SSCF SGG E1111 2 E /[TNTSIL 12 P1 1o 2 D2
G\D 1 31 G\D G\D 1 31 GND GND 1 31 G\D E13 13 E HDRD10 D1513
P13 2] SK830P S50t 1Ntz 2] $¥8°°P 3ot P 2] SK8°0P O30t E15 15 E14 HDRD10 HDRD12 /RST 15 2
AP 3 Ext RF+ [29 REF GNP 3] Bxt RE+ [29 REE. GNP 3] pxr R [29 rer 0117 00 HDRD12 RST 17
4 28 VCC 4 28 VCC 4 28 VCC 03 19 20 002 P16 10 20 D6
518 VC 57 51 ¢ VC 157 5] G VC 5 0521 2 S22 o4 2 2o
—2 G MXO- —21 G MXO- G MXO- 250 z
6 26 3 26 6 26 0723 24006 Ja 323 24_G\ND
- S1G A- 28 L 61 iy G A 2 K723 5 - . o2 G\
7 25 7 25 7 25 09 25 26 O B08 1 2 B 25 26 P12
L1 cov Al+ 2> L_7{ com A+ 22 _ com Al+ 22 B B 220 o—28 Pl
BOO 8 24 00 8 24 E00_8 24 C1127 28 C BLO 3 B D12 27 28 A7
B A0 MXOH |22 A0 MKO+ (22 E A0 MO+ |22 Qial 5 o2 B B D227 5 & 2
BO1 9| a7 s |23 BI5 01 o) Als [23 C15 E01 9] Al 23 E15 C1329 3 530 Cl2 BIL 5 3 o 68 TWR29 5 S 30 A6
B02 10 22 Bl4 <0210 22 Ci4 E0210 22 El4 C15 31 32 Cl4 BI3 7 B RD31 2 S 32 A5
5 A2 Al4 5 2 AL4 2 A2 Al4 3 < o O S = o O S O
BO3 11| g 321 BI3 Q03113 321 CI3 E03 11| s 3 [21E13 B0I 33 & S34 Bo0 BIS 93 T 1133 O 973
504 12 ﬁéz 20 Bl2 0412 S [20 Cl» Fo0a1z 3 [P0 E2 B03 35 36_BO2 e 12 ve 10 35 36 A3
AAAAAA AAAAAA ANAAAA BOS 37 8 g 38 BO4 o O 37 8 g 38 Ao
5678901 5678901 5678901 535 o BoT % HDRD12 5% oA
LTC2449 LTC2449 LTC2449 HDRD12
UHYEIHAE LTC2440 HEYAS LTC2449 UAEEIHAE LTC2440 HDRD40 HDRD40
BOS5 B11 5 211 E05 211
BO6 BIO 06 Ci0 E06 ET0
B07| | |B09 o7 | |coo £07] | |E09
BOS @ EO8
JpP1 ap2
s V3 /1INT4 GND / RST
1 2p 1 2 p—~4Ral
o e @b e] i R
A15 AL6 [Zo— 4 aa —5| D3 DLl |5] 5 6pb—&o owo—95 6p—
s RYEe T2 a9 Meram —a| B Do us vee us w21 vee AT3 & Bl O -
ALS OD7E- —51AL A Es —H 1R DS Ee S pp s 240 VOFE 1 24 VRAM C5+ 1 69 AT J%, IS —a —9%. 15—
Al2 DI5 g3~ —H A2 A3 75 — D6 D432 LB /R0 vociS3Y o AFEL{sTD voc |53 YRAM St Zicie voc H2 o o e 1112 p—E = 1112 b—
All D7 5o —={ A3 [CEle— ——{D7 DI5 |53 RXD /WR /CS X2 [V+ G\D (2 gD di1314p G g 1314 p—SD
43 5 20 7 32 1IXD 3 22 DO 3 22 G- 3 4/ TXD A9 AB DL D0
ALD D14 | 45— —21Ad /B |22 Tl /cE1CE2 |22~ TXD DO ~S1NC X1 C1- T10 15 16 p 15 16 p—20-
22 6 39 8 33 WMPO 4 21 DL Voot 21 Cor 4 3 [RXD A7 A D3 D2
A9 D6 22— —8l/cs /B2 —8f At0/vs1 |o3- MPO DI [= YL 41 ALE NC 2+ C2+ Rl 17 18 p 17 18
a1 7 38 9 34 5 0 AL 5 0 /RST ©- 5 2 A5 A D
A8 D13 o~ —L D0 D15 [2S- —21/cE /RD oA —21{ el D2 A0 CS1 C2- RIO 19 20 o = D 19 20
20 8 37 10 35 A3 6 9 6 5] V- 6 1T A3 A2 7
Ne o Dorme —o| X Dl A IWime 142 Bras TN D0 100 7] Vo 12l [T0°T Al J21220Gpb @b _g2l22P v
NC D12 8= —751 D2 D13 35~ —751A8 [VE[=ZZ— AT g|AL D4 75 g AL NC 57— TRXDO 8] 120 T2I 9 RXDO 23 24 0——y5 - — 92324 p—
/R pa138 29ib3 D12 (32 351 A7 ROY 3L £2-81A0 D5 Az—a NC NC Moy R2I R2O —q 25 26 p—2 —d 25 26 p—
IRST VCC |35 —3{VeC G35 —33 VCC VCC [35- 32—21 X1 D6 o A2 DL Bt D —d 27 28 p— —d 2728 p—
NG DBllfss 13| 9P VOO I35- —15146 (a0 mstiil 2, B pro 7RDIL| S, 22 03 MAX232D 028 28
(34~ "14 31 16 41 GWD12 3 /INTO GNDI2 3 VR
RY D10 D5 D10 A4 RST GND /INT G / IR
33 _15 30 _17 42 XTAL2
NC D235 6|6 DO 5e- —TE|AS IW 3 SCC2691 72423 x3 X4
Al7 Do (22 1817 D8 oo <81 M2 /IP|F>-
31 17 28 19 24 SCC2691S 72423S og,__| C9 HO HL
A7 ol 2t L /w nNe28 L2 A1 /REG|aa- 3. 68MZ
30 18 27~ 20 25 +12VI +12V1
A6 o8 |50 181 a5 a2 2L 2% a0 BV2 22— 10PF 1 1
29 19 26 21 26 10PF
X ooy Al R Bl u1s uL0 92 92
rm 1oE28 2907 a10 |22~ 221pD1 D8 |4l
27 21 24~ 23 48~ SDAT 1 8 VB 1 8 NV R N/ 12
A3 GNDI5E 27148 Mo 2412 Mi7e- sark P VA7 wec v+ 2 NG NCI—7 u23 vee
A2 /CE A6 AL7 W DIO CK 5V IN HEAT ——
25 25 50_ P26 3 6 G\D 00 3 6 REF RXD 1 80 u17
AL A0 22 co2 G 29 (D G TEMP ouT |2 REE RO VCC
RANVAZ P10 4] o2 5[5 va 1 y amls D2 o5 [T 485 LM805
OB — — — wo 3| FF Breasss L2 vee
DAC761 TXD 4] BF b5 +12vi AJA 412V 1|, oo L3
LT1236XCN8- 5 - T G
ue LT1019- 2. 5V [TCA85 c8 c10
RL L1 10UF35V 10UF35V
VBAT 1l\m ger |16 vee LC PR P29 2
VRAM 2] Vo ; Rat [A15_/RST Re VCC Vi G\D
VCC 3 680 LED C5+ 485+
VCC WDO 485+ 0 1
G\D &b el [E3 LGS 33| 10K c37
5| gon Geo | L2 /RAM J9 0. 1UF w G\ND| 0. 1UF
[S 1 1 2 P29 C5- 220
s PAC N sz se R 485- R4 c38 +12V
8| &5 P [9veT 2 T OVKVQ v- | o 1UF
34 RS
VAX691 0. 1UF 1M
c2- J6 RESV
G\ND 1 8 vcc 1 2 [VoFF
2] 2 VoS oo REF REF ?O
3 6 P22 Vi ui4 V3 V3 vCcC HDRD2
A2 saL P22
G\D__4 5 P29 1 8 vcC G fai [cis
VSS SDA o 12 N svi-B _cis
Zlpe sv|
240045 23 feVolmmen PV
w vee RNL VorE 4] S\° oy 512y
[INT3 1[5] 249 8 /INT1
INT3 2|79 oA [13 /RST 7 [INTO TPS765
TINTZ 3] 3% 0 A2 RS % u16 TPS765 B1
TNTZ 3% X [ELTPFO 5 SDAT GND 1[G u18 T2
/1INTO 5 NI [INT4 V32 4 v3 1 8 vcc G 1]
INto 6] 34 S [INT1 3 /INT3 Vee 3| YO0 21 NS VI 3l VBAT
2137 4A 2 LL Vi PG 5V +
G 4Y 8 INT1 2 P6 G\ND__ 3| GND 9V 6 STE/ TERN
; 1 VCeC BBI117 Vorr 4] 2P oV [[5j+12v BTHL
7ARCIA 10K RNBSL rT Title
Thares SENSCR CORE
Si ze [Docunment Numnber REV|
B SC- MAN. SCH
Dat e: March 7, 2006 [Sheet 1 of 1

