SerialDrive™

C/C++ Programmable, 32/64 MHz 32-bit Controllertwit
11 RS-232/RS-485, 70 1/0s, 10BaseT Ethernet

Technical Manual

Trery

1950 &' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://mwww.tern.com

COPYRIGHT

SerialDrive, A-Engine86, A-Engine, A-Core86, A-Cpig86-Engine, V25-Engine,
MemCard-A, MotionC, MotionC2140, P100, VE232, NTgkand ACTF are trademarks
of TERN, Inc.
Intel386EX and Intel386SX are trademarks of Intetgdration.
Borland C/C++ is a trademark of Borland Internaion
MS-DOS, Windows, Windows95/98/2000/NT are tradermarkMicrosoft Corporation.
IBM is a trademark of International Business MaelsiiCorporation.

Version 2.0

October 28, 2010

No part of this document may be copied or reproduceny form or by any means
without the prior written consent of TERN, Inc.

© 1993-201C TERIQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitilmages arising from
the use ofTERN products. It is the Buyer's responsibility to it life and property
against incidental failure.

TERN reserves the right to make changes and improventerts products without
providing notice.

Temperature readings for controllers are baseth@mesults of limited sample tests; they
are provided for design reference use only.

SerialDrive Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

Measuring 6.1 x 4.5 x 0.3 inches, tBerialDrive(SD) is a C/C++ programmable microprocessor module
based on a 32/64 MHz oscillator, and a 32-bit CB86EX, Intel). Features such as its low cost, etée
interface, surface-mount flash, dual quad UARTSl eliability make theSD ideal for industrial process
control and applications requiring multiple simukésus serial links. It is designed for embedded
applications that require high reliability and mdssa transfer over serial communication.

The SerialDrive (SD) integrates an Intel386EX CRIith a 16-bit external data bus to support 16-bit
memory devices. Unique features of the SD includénareased PCB thickness for additional durability
as well as support for up to 11 communication padsulting in an unlimited amount of configuraton
for user applications.

1 1 SCC2691
SRAM SerialDrive ooz
256 KW 16-bit
U1l
J9
i386EX watchdog
FLASH CPU 4_ enabl
256 KW 16-bitu3 32/64MHz
11 ch. 12-bit Quad UART
ADC P2543u12 [¢ » 16-8it Timers(3) K@EEED| TL16C754
Ext. Interrupts(10) u20
24 1/0 lines
ROM/Flash Cont.
v @ ‘;’S*FTS Quad UART
2 ch. S12Dvt Watchdog Timer TL182%754
. - y e
12-bit EEPROM |€—P Interupt Controller
DAC Us l
LT1446
uos ‘ \4
8 channels RS-232
l U23-U31
4 PPI (8255)
| J6 | 24 TTL /O
uos H6
10-baseT
J7 Ethernet
8-pin [*® cs8900 HO5
RJ-45 u22
J1 & J2 Address/Data Bus, CPU I/O

Figure 1.1 Functional block diagram of the SerialDrive

1-1

Chapter 1: Introduction SerialDrive

The SerialDrive boots up from on-board 256KW ACTIRdR, and supports up to 256KW battery-backed
SRAM and two DMA channels for data transfer betwesemory and 1/0. SDRAM or PCI is not
supported. The on-board Flash has a protectedlbadér and can be easily programmed in the fiedd vi
serial link. Users can download a kernel into thesk for remote debugging. With the DV-P and ACTF
Flash Kit support, user application codes can Iséyefield-programmed into and run out of the Flash

A real-time clock (RTC72423) provides information the year, month, date, hour, minute, and secand.
supervisor chip is standard on-board to monitorchatdg, power-fail, and reset. A 512-byte EEPROM is
installed for non-volitile storage of special paeters such as calibration constants, node addrestses
TERN reserves a small section for jump addressestémd alone mode and production boards.

Two industry-standard UARTSs support high-speedabét serial communication at a rate of up to 1.152
M baud via RS-232 drivers. One synchronous sentdriace (SSI) supports full-duplex bi-directional
communication. An optional UART SCC2691 may be adoeorder to have a third UART on-board. All
three serial ports support 8-bit and 9-bit commatian.

In addition, two QUAD UARTs (TI16C754) and eight 32 drivers provide the user with eight
additional asynchronous serial ports, yielding <of up to 11 serial ports all together. Thegghte
additional ports support 8-bit and 9-bit commurimatwith full handshaking capabilities while TERN’s
software drivers allow for complete efficient implentation.

The i386EX offers 3 16-bit timers/counter which adack or count external events. With a 32/64 MHz
oscillator, the CPU with operate at 16/32 MHz. T0feU requires four clocks to drive the timer output
to respond to an external event, yielding a maxinofid/8 MHz for timer output or external clock.

The SerialDriveprovides 24 user-programmable, multifunctional pi@s from the CPU. Most of the PIO
lines share pins with other functions. In additiong PPI (8255) chip is installed to provide anitoical
24 TTL level user-programmable bi-directional li@es. In conjunction with additional I/O providdy
the Quad UARTS, up to 70 I/O lines can be avail&btaiser application.

An optional 12-bit serial ADC (P2543) has 11 chdsrod analog inputs with sample-and-hold and a 5V
reference that facilitate ratiometric conversiocalgg, and isolation of analog circuitry from logand
supply noise, supporting conversion up to a samgike of approximately 10 KHz. An optional 2-channel
12-bit serial DAC (LT1446) that provides 0-4.095Wadog voltage outputs, yielding millivolt resolutio
capable of sinking or sourcing 5mA are also avédlat®verall theSD can support up to 2 analog outputs
and 11 analog inputs.

1.2 Features

» Dimensions: 6.1 x 4.5 x 0.3 inches

» 32/64 MHz 32-bit CPU (Intel386EX), Intel 80x86 cpatible

 Easy to program in C/C++

e 200/350 mA at 12V full operation at 32/64 MHz alto

» Power input: +5V regulated DC, or
+ 9V to +12V unregulated DC with Linear Regulator
+ 9V to + 35V with Switching Regulator*

» 256 KW SRAM, 256 KW ACTF Flash

2 channels serial 12-bit DAC (LT1446), 10 KHz *

e 11 channels serial 12-bit ADC (P2543), 10 KHz *

* Up to 340 MB memory expansion ViiashCore-0 0

» 10-baseT Ethernet Interface with 8-pin RJ-45 (B9

» 2 CPU serial ports support 8-bit or 9-bit asyndlones communication

1-2

SerialDrive Chapter 1: Introduction

¢ 1 asynchronous serial port (SCC2691) with RS-232%-485 that support 8-bit or 9-bit
asynchronous communication *

« 8 serial ports (2 Quad UARTSs (TL16C754B, TI)) wRl$-232 configuration

« 10 external interrupts with programmable priority

e 70+ multifunctional TTL I/O lines from Intel386EXPI(82C55), and QUART modem lines
* 512 Byte EEPROM(Atmel 24C04S), Supervisor (69)dower failure, reset and watchdog
« Real-time clock (RTC72423), lithium coin battery*

* optional

1.3 Physical Description

The physical layout of the SerialDrive is showrFigure 1.2.

Location of STEP 2 HO5 header,
H1 header, jumper, J5 pins 25-26 TTL level I/Os
SERO, debug H3 header,

serial por SERl\
piLl

5x2 header
- RS-232 or RS-484
" from UART 2691 (U8)

i

J1 20x2
Expansion header
Address, Data Bus

Ethernet

J2 20x2
Expansion
header
CPU PIOs

(2) Quad
UARTS, and 16 8x2 header J4, power input
(8) RS-232 H6 20x2 header ADC, DAC lines

Drivers 8 RS-232 ports

Figure 1.2 Physical layout of the SerialDrive

1-3

RJ45 for 10-baseT

Chapter 1: Introduction SerialDrive

Power On or R@et]
[(STEP2)

Go to application
code CS:IP in
EEPROM
0x10 = CS high byte
0x11 = CS low byte
0x12 = IP high byte

STEP1 =
ACTF menu sent out through ser0 0x13 = IP low byte
at 9600 baud _ Y,

Step 2 jumper
set?

Figure 1.3 Flow chart for ACTF operation

The “ACTF boot loader” resides in the 256KW on-lib&tash chip (29F400). At power-on or RESET, the
“ACTF” will check the STEP 2 jumper. If STEP 2 juerpis not installed, the ACTF menu will be sent out
from serial portO at 9600 baud. If STEP 2 jumpensgalled, theSD will fetch the jump address stored in
the EEPROM and jump to that address for immedigteion.

1-4

SerialDrive Chapter 1: Introduction

1.4 SerialDrive Programming Overview

Steps forSD-based product development:

Preparation for Debugging

* Connect SD to PC via RS-232 link, 9,600, 8, N, 1

« Power on SD without STEP 2 jumper installed

* ACTF menu should be sent to PC terminal

¢ Use “D” command to download “I_debug.HEX” in SRAM
« Use “G” command to run “l_debug”

« Download “3860_115.HEX” to Flash starting at 0xF0®

¢ Use “G” command to set jump address and run dgérug

« Install the STEP2 jumper (J5.25-26)

« Power-on or reset SD, Ready for Remote debugger

STEP 1: Debugging

» Write your application program in C
* Build project in Paradigm C++
« Edit, compile, link, locate, download, and remd&bug

U

STEP 2: Standalone Field Test

' Setup Jump Address(default 0x08000), points to your
program in SRAN

* Power off, install STEP2 jumper, Power on

’ application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions})

!

STEP 3: Production (DV-P+ACTF Kit only’'

* Generate application HEX file with [-P and ACTF Ki
* Download “L_29F400.HEX” into RAM and Run it

» Download application HEX file into FLASH

» Modify jump address to 0x80000

» Set STEP2 jumper

There is no ROM socket on tI8D. The user’s application program must reside in BRAr debugging

in STEP1, reside in battery-backed SRAM for thend#done field test in STEP2, and finally be
programmed into Flash for a complete product. Fardpction, the user must produce an ACTF-
downloadable HEX file for the application, basedtbe DV-P+ACTF Kit. The “STEP2” jumper (J5 pins

25-26) must be installed for every production-vemnsboard.

Chapter 1: Introduction SerialDrive

Step 1 settings

In order to correctly download a program in STERthWwaradigm C++ Debugger, ti8® must meet these
requirements:

1) 360_115.HEX must be pre-loaded into Flash stgriiddress 0xFA000

2) The EEPROM must have the correct jump addresgipg at 3860_115.HEX, which is the address
O0xFA000.

4) The STEP2 jumper must be installed on J5pin2&5-

For further information on programming tBerialDrive, refer to the Software chapter.

1.5 Minimum Requirementsfor SerialDrive System Development

1.5.1 Minimum Hardware Requirements

e PC or PC-compatible computer with serial COMx pbét supports 57,600 baud

» SerialDrive controller

» PC-V25 serial cable (RS-232; DB9 connector for RiMCport and IDE 2x5 connector for controller)
» Center negative wall transformer (+9V, 500 mA)

1.5.2 Minimum Software Requirements

* TERN EV-P/DV-P installation CD-ROM and a PC runniigindows 95/98/2000/NT/XP

With the EV-P, you can program and debug the Jeriad in Step One and Step Two, but you cannot run
Step Three. In order to generate an applicatioshFfde and complete a project, you will need btite
Development Kit (DV-P Kit) and the ACTF Flash Kit.

1-6

SerialDrive Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical Manual for tR#C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV-P/DV-P disk caihs important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

Overview

» Connect PC-V25 cable:
For debugging (Step One), place ICD connector off$HR0) with
red edge of cable at pin 1

» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack on
SD (2-pin screw terminal J4)

Hardware installation for the SerialDrive consiptanarily of connecting the microcontroller to yoBC

and to power. The debug serial cable must be Iegté an open COMx port on the PC side and then to
the debug serial port of you SD, SERO, which isated at H1. Confirm that the red edge of the cable
points to pin 1 of the H1 header.

2.2.1 Connecting the SerialDrive to the PC

The following diagram (Figure 2.1) illustrates tbennection between the SerialDrive and the PC. The
SerialDrive is linked to the PC via a serial cafi?€-Vv25).

2-1

Chapter 2: Installation SerialDrive

Pin1 -
Debug Port
corresponds t
red edge of
cable

J

To COMXx
on PC side at|
9600 Baud

Figure 2.1 Serial connection between the SerialDrive and the PC for debugging (Step
One)

2.2.2 Powering-on the SerialDrive

Before connecting any power source to the SerialDre, make sure to verify that the polarity of the
input power source matches the polarity of the poweinput jack of the SerialDrive. Connect a wall
transformer +9V DC output to the SD DC power jadkjgter. There one location for the unregulated
power input, J4 (2-pin screw terminal).

The on-board LED should blink twice and remain fterathe SerialDrive is powered on or reset (Figure
2.2).

SerialDrive Chapter 2: Installation

Output from
wall
transforme

DC Power
Jack adapte

Figure 2.2 Location of J4 power jack for +9V DC input

CAUTION: The CPU and the power regulator on the SerialDcauve becomeery hot
while the power is connected.

SerialDrive™ Chapter 3: Hardware

Chapter 3. Hardware

3.1Intel386EX Processor

The Intel386EX is based on the Intel386SX. Thishhigntegrated device retains PC functions that are
useful in embedded applications and adds periphéhat are typically needed in embedded systems. Th
Intel386EX has new peripherals and an on-chip sysitgerface logic that can minimize total systerstco
The Intel386EX has two asynchronous serial ports,synchronous serial port, 24 1/0s, a watchdogtim
interrupt pins, three 16-bit timers, DMA to andrfreserial ports, and enhanced chip-select functignal
The SerialDrive provides a PC-compatible developgméatform optimized for embedded applications.

3.2Intel386EX I/O Lines

The Intel386EX has 24 1/O lines in three 8-bit If@rts: P1, P2, and P3. The 24 1/O pins on the
Intel386EX are multiplexed with peripheral pin feions, such as serial ports, timer outputs, ang-chi
select lines. Each of these pins can be used agrapuogrammable input or output signal if the nalrm
shared peripheral pin function is not needed. Ay line can be configured to operate as a high-

impedance input, open-drain output, or complemgraatput.

After power-on or reset, the I/O pins default toiwas configurations. The initialization routineopided

by TERN libraries reconfigures some of these pm#i@eded for specific on-board usage as well. &hes

configurations, as well as the processor-intereaipheral usage configurations, are listed in T&ole

PIO Peripheral Power-On/Reset SerialDrive Pin No. SerialDrive I nitial
P10 DCDO# weak pullup ADC U12.16 Input with pullup
P11 RTSO# weak pullup u16.11, U18.3 Output

P12 DTRO# weak pullup J5 pin 5 Input with pullup
P13 DSRO# weak pullup J5 pin 6 Input with pullup
P14 RIO# weak pullup J5 pin7 Input with pullup
P15 LOCK# weak pullup EE U5.5 I/O with pullup
P16 HOLD Input with pulldown J5 pin 8 Input with [Elown
P17 HLDA Output with pulldown J5 pin 9 Input withuldown
P20 CSO# Output with pullup LT691 U6.13 SRAM select
P21 CS1# Output with pullup 74HC138 U01.4 Output

P22 CS2# Output with pullup ul3.4 Latch data foratker
P23 CS3# Output with pullup J5 pin 12 Input withlppi
P24 CS4# Output with pullup J5 pin 10 Input withlppi
P25 RXDO Input with pulldown J2 pin 32 RXDO

P26 TXDO Output with pulldown J2 pin 34 TXDO

P27 CTSO# Input with pullup RS-232 U16.12 Inputhapullup
P30 TOUTO Output with pulldown J5 pin 20 Input wighlldown
P31 TOUT1 Output with pulldown J5 pin 19 Input wighlldown
P32 INTO Input with pulldown J5 pin 23 Input withildown
P33 INT1 Input with pulldown J5 pin 24 Input withilpdown
P34 INT2 Input with pulldown PAL U32.16 Input wighulldown
P35 INT3 Input with pulldown PAL U32.17 Input wighulldown
P36 PWDOWN Input with pulldown J5 pin 13 Input wighlldown
P37 COMCLK Input with pulldown J5 pin 15 Input wigulldown

Table 3.1 I/O pin default configuration after power-on or reset

3-1

Chapter 3: Hardware SerialDrive™

The 24 PIO lines, P10-P17, P20-P27, and P30-P3Coarfigurable via 8-bit registers, PnDIR and PnLTC.
The value settings are listed as follows:

Pin Configuration Desired Pin State PnDIR PnLTC
High-impedance input high impedance 1 1
Open-drain output 0 1 0
Complementary Output 1 0 1
Complementary Output 0 0 0

Table 3.2 Value settings for PIO lines

TERN libraries can be used to manipulate these il8 for you. C functions provided in the library
i e.lib and found in the header filee. h can be used to initialize these PIO pins at roreti Details
for these can be found in the Software chapter.

Some of the 1/O lines are used by the SerialDriygtesn for on-board components (Table 3.3). We
suggest that you do not use these lines unlesangsure that you are not interfering with the afien of
such components (i.e., if the component is notifed).

Signal Pin Function

P22 =/CS2 | (N/A) U13 74H138 decoder for RTC, SCEI, 2S8900 chip select
/CS5 (N/A) U10 74HC259, internal signals TO to T7

RI1 J5.25 STEP 2 jumper

P15 U5.5 EEPROM SDA

P20 =/CS0O (N/A) U6.13 for SRAM chip select, basermory address 0x0000
P26 =TxD0O | J2.34 SERO transmit for default debudvRO

P25 =RxD0| J2.32 SERO receive for default debug ROM

/INT5 J2.8 SerialDrive U8 SCC2691 UART interrupt.

P10 Ul12.16 ADC DOUT

/CS1 uo1.4 U01 decoder for Quad UART I/O mapping

Table 3.3 Functions of reserved /O lines on the SerialDrive

At reset, the internal PC/AT-compatible peripherate mapped into DOS /O space, of which only
1 Kbyte is used. The DEBUG ROM ande_i nit() enables Expanded I/O space. The registers
associated with the integrated peripherals are ethppthe address range of 0f000 to 0f8ffh.

There are two additional external interrupt linB$T®, INT7) which are not shared with PIO pins. eBl
are active-high-only lines

The specifications for these 1/O pins state thay ttan sink up to 8 mA.

If you need further details regarding the Inputf@utPorts, please refer to Chapter 16 of the IB&IEX
Embedded Microprocessor User's Manual in the Imntets directory from the root of the TERN CD.

3.3 External Interrupts

There are 10 external interrupt inputs that the oaa adapt for his/her own use.

The master interrupt controller 82C59A supports f>IVE HIGH pins on the headdb:
INTO = P32 = J5.23, vector=0x41
INT1 = P33 = J2.24, vector=0x45
INT8 = P31 = J5.19, vector=0x43 share with SIO1
INT9 = P30 = J5.20, vector=0x44 share with SIO0

3-2

SerialDrive™ Chapter 3: Hardware

The slave interrupt controller 82C59A has two pi€TIVE HIGH atJ5 header:

INT6 = J2.6, vector=0x4c
INT7 = J2.15, vector=0x4e

The WDTOUT (Watchdog Timer) interrupt uses vectoe) and the NMI (Non-Maskable Interrupt) at
pin J5.16 uses vector=0x2. The NMI interrupt can lme disabled by software, and is raised on agisi
edge. /INT5 is used by the on-board optional SGL2A6ART if installed.

You must provide a low-to-high (rising) edge to geate an interrupt for the ACTIVE HIGH interrupt
inputs and a high-to-low (falling) edge to genematanterrupt for the ACTIVE LOW interrupt inputs.

A spurious interrupt is defined as an interruptt tisa"Not Valid." A spurious interrupt on any IRng
generates the same vector number as an IR7 reduessspurious interrupt, however, does not seirthe
service bit for IR7. Therefore, an IR7 interruptviee routine must check the interrupt service irgait
register to determine if the interrupt source ithesi a valid IR7 (the in-service bit is set) orpuous
interrupt (the in-service bit is cleared).

The SerialDrive uses vector interrupt functionsrésponse to external interrupts. Please refer ¢o th
Intel386EX User’'s Manual for detailed informatiobaat interrupt vectors, and to the Software chapter
this manual (Chapter 4) on how to associate that&rupt vectors with your own interrupt service
routine.

3.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaidunters: timer0, timerl, and timer2. They can be
driven by a pre-scaled value of the processor ctodky external timers. The counters support sifecént
operating modes. Only mode2 and mode3 are perindites, in which the counters are reloaded with the
user-selected count value when they reach ternsimaht. For details regarding the modes in whiah th
timers operate, please refer to Chapter 10 ofrited386EX manual.

The timers provided can be used in several applicat They can be used to act as counters, generat
interrupts, and to output repeating pulses wittlr-specified widths.

Timers can generate pulse outputs at the J5 header:

Timer 0 output=TOUTO0=P30=J5 pin 20

Timer 1 output=TOUT1=P31=J5 pin 19
Timers can use internal or external clock as cliogkits, only Timer 2 Clock In is routed to a heafter
external access.

Timer 2 clock in=TCLK2=J2 pin 9

These timers can be used to count or time extevsaits.

To use the timers to generate interrupts, a fedemiht options are available. Timer 1 has its outp
signal, OUT1, connected to IR2 of the slave 82C59. The Timeuthut,OUT2, is connected to IR3 of
the slave 82C59. The Timer 0 outpOtJTO, is connected to IR0 of the master 82C59.

The maximum external pulses input rate is 4 MHzMB2 default system clock => 16MHz CPU
operation, 4 CPU clocks to respond to externahewe 4MHz maximum external input) . Please see the
sample programi mer . ¢ andcounterO.cin t er n\ 386\ sanpl es\ i e for details regarding the timers,
counters, and their applications.

3.5Clock

With an on-board 32/64 MHz oscillator (CLK2) (defiais 32 MHz), the SerialDrive operates at 16/32
MHz processor clock speed (CKO). The processorkcleaised by serial ports and timers. The default
SERCLK for serial ports is 8 MHz, and the defaulegcaled PSCLK for the timers is 8 MHz. The

Chapter 3: Hardware SerialDrive™

maximum timer output is 4 MHz. For details regagdhow to change the PSCLK pre-scale register, see
the sample programs ner. ¢ andcount er 0. c in\ 386\ sanpl es\i e.

3.6 Serial Ports

The Intel386EX has two asynchronous serial chanfié¢iey can operate in full-duplex communication
mode. The SERO and SER1 use DMA for receiving amdriterrupt-driven transmit. With the DEBUG
ROM kernel residing in the on-board flash (3860_.HESX downloaded into flash at address OxFAQ000 by
default at factory), the internal serial port SER@sed by the SerialDrive for DEBUG programmingdhwi
the PC. It uses 57,600 Baud rate, as default, fagramming. It is possible to use both SERO and1SEER
applications. The user can use SERO to debug alicaippn program for SER1, and then convert the
SER1 code to SERQO, since they are identical. Tipdicgtion programs can be combined and downloaded
via SERO in STEP1, and then run in STEP2. Applacatrograms can use both SERO and SER1 at the
same time, but it cannot be debugged over SERtatame time.

Complete interrupt/DMA-driven software serial pdrivers are included in the EV-P/DV-P Kit. Please
refer to Chapter 4 (Software) for more details rdgay the implementation of the serial port driveas
well as their application.

The SerialDrive also supports a SCC2691 UART, iditawh to two TI16C754 Quad UARTS. Please refer
to additional sections in this chapter for discasgin these UARTS.

3.7 Power-Save-Mode

The SerialDrive is an ideal core module for low powonsumption applications. The power-save mode of
the Intel386EX processor reduces power consumgiehheat dissipation, thereby extending batteey lif
in portable systems. In power-save mode, operaifothe CPU and internal peripherals continues at a
slower clock rate. When an interrupt occurs, ibautically returns to its normal operating rate.

The RTC72423 on the SerialDrive has a VOFF sigoated to J1 pin 9. The VOFF is controlled by the
battery-backed RTC72423. It will be in tri-state fhe external power-off and become active-lowhat t
programmed time interrupt. The user may use the W@fe to control an external switching power
supply that turns the power supply on/off.

3.8 Memory Map for RAM/ROM

The Intel386EX supports a memory space of up tMB4with 26 address lines (A0-A25).

At power-on, the SerialDrive operates in Real-moghich offers only 1 MB of memory space using
segmentation. The DEBUG ROM kernel operates ir-Rexmle as well, and does not use A20-A25.

The lower memory chip select /CS0 is mapped intoorg space of 0x00000 to Ox7ffff. This is used for
up to 256KW of SRAM. The default wait state on 8RAM is set to 3 cycles, but can be shortened if
desired.

The upper memory chip select /UCS is mapped intmamg space of 0x80000 to Oxfffff and is used for
the 256KW of surfaced-mounted ACTF Flash. The defaait state for this component is two cycles.
For details regarding how these components ar@liai#éd ini e_init() with these specifications,
please refer to the chapter on Software.

In certain applications, you might also choosedeanap the memory address space differently to other
chip select lines. This might become useful if yamyve off-board memory components you also wish to
access usingoke/peek. Please see the sample file csl6.c in tern/386/samples/iefor an example of
this application.

3-4

SerialDrive™ Chapter 3: Hardware

During development, your code and data segments b&ilmapped to specific locations within this
memory space. Details regarding how this is donend product development can be found in the
Technical Manual of the Evaluation/Development Kit.

3.91/0 Mapped Devices

3.9.11/0O Space

External 1/0O devices can use I/O mapping for accéss can access such 1/O devices viithortb(port)
or outportb(port,dat). These functions will transfer one byte of datéht specified 1/0 address.

The external I/O space size is 64KB, ranging frot®@0DO0 to Oxffff.

The default /0 access time is 15 wait states. May modify the wait states by re-programming thé€h
select Low Address register from 0-15 cycles. TiR&J@lock speed is 16 MHz. Details regarding tlais ¢
be found in the Software chapter, and in the I®#@EBX Embedded Microprocessor User's Manual.
Slower components, such as most LCD interfaceshinfiigd the maximum programmable wait state of 15
cycles still insufficient.

For details regarding the chip select unit, please Chapter 14 of the Intel386EX Embedded
Microprocessor User's Manual.

The table below shows more information about I/(Qopiag:

I/0 space Select Signal Location Usage

0x8000-0x80ff /CS6 J1 pin 19 = /CS6 User

0xa090-0xa09f /ICS2 Ul3.4 = P22 chip select decoder

0xb000-0xbOff /ICS5 None (J10- Internal Usage (TO-T7)
74HC259)

Not mapped /CSO N/A SRAM

0xe000-0xeO0ff /CS1 J2 pin 37 = P21, Onboard QUART

Not mapped /CS3 J2 pin 10 = P23 Reserved for futuréERN use

Not mapped /CS4 J5 pin 10 = P24 User

A total of eight pre-decoded chip-select linesarailable on the SD. These include the UCS (uppgr
select), and signals CS0-6. The upper chip sedattdicated for boot-up ROM use. Some othersisee
for on-board internal usage and not available ¥ mappings, but there are several available fer us
expansion components.

To use one of the chip select lines, you must rhapappropriate line to a free base 1/0 addresgerAf
configuring the PIO pin appropriately for this gsreral function (normal-mode operation), you can
directly outport to that address with appropriate data. The addbes and data bus should then be
connected to your I/O component if needed.

To illustrate how to interface the SerialDrive wigkternal 1/0 boards, a simple decoding circuit for
interfacing to an external 82C55 I/O chip is shown.

3-5

Chapter 3: Hardware SerialDrive™

74HC138 82C55
RST
Ad 1| volis /89 P00-P07
A AO/BLE]
A6 a{? volus RIC Al
Y3 /SCf ISELAOCC | /cs P10-P17
. Y4
/CS2=P2: GoA Y5 ISC? MR | /WR
50 G2B YG_Q% kD __| RD
AT slG1 Y7z_[PPI P20-P27
DO-D7 |

Figure 3.1 Interface SerialDrive to external I/O devices

The functioni e_i ni t () by default initializes the /CS2 line at base IMdiess starting at 0OxA090 (Y1),
so Y4 in this example will correspond to 1/0 addr@AO0CO. You could read from the 82C55 in this
example withinportb(OxAOCO) or write to the 82C55 witloutportb(OXxAOCO,dat). The call toinportb
will activate /CS2, as well as putting the addr@s8090 over the address bus. The decoder wiltt#ie
82C55 based on address lines A4-6, and the dataibiuse used to read the appropriate data fromotifie
board component. Signals /SC1 - /SC4 are not rastedternal pins on the SerialDrive. Use of thiases
for selecting 1/0 peripherals requires user to asdme directly from the UO1 decoder.

3.9.2 Ethernet

The Ethernet controller is mapped into I/O spacé»080. This Ethernet LAN Controller on the
SerialDrive is the CS8900 from Crystal Semicondu€orporation (512-445-7222). The CS8900 includes
on-chip RAM and 10BASE-T transmit and receive fidteThe CS8900 directly interfaces to the TERN
controller’s data bus, providing a high-speed, fluplex operation. The SD interface to the Etheimeta

a standard RJ45 8-pin connector (J3). The CS896#sof broad range of performance features and
configuration options. Its unique PacketPage aechitre automatically adapts to changing networffi¢ra
patterns and available system resources. The CS888#11 SD can increase system efficiency and
minimize CPU overhead in a 10BASE-T network. The ®Bh CS8900 provides a true full-duplex
Ethernet solution, incorporating all of the analagd digital circuitry needed for a complete C/C++
programmable Ethernet node controller.

3.9.3 Quad UART TL16C754

The TL16C754 is a quad asynchronous UART with 6#&HyFOs, automatic hardware/software flow
control, with a maximum input clock of 48MHz, supfog data rates up to 3 Mbps. The UART transmits
data sent to it from the peripheral 8-bit bus oa TX signal and receives characters on the RX §igna
while supporting 5,6,7, or 8 bit communication. IFmhndshaking is supported using TERN software
drivers for CTS and RTS signals. Each channel enQbiad UART is selected by an 8:1 decoder (U01,
74HC138). It supports even, odd, or no parity, wlifi..5, or 2 stop bits. All signals for the QuadRI's
(U20 and U21) are routed to header H6. The UART gemerate its own desired baud rate based upon a
programmable divisor and its input clock. Header ¢tivthe SD allows for the user to select from two
clock frequencies for the input clock to the UARBy. hardware default (H7.2 = H7.3) the input cladk
the UART is tied to the outclock of the CPU whishli6/32 MHz, based on half of the 32/64MHz system
clock. If the default system clock of 32MHz is desl, but a faster UART clock than 16MHz, the user

cut the trace between H7.2 and H7.3 and short HHT.2 to route the 32MHz system clock directly to
the UART clock input.NOTE: THE MAXIMUM INPUT CLOCK ALLOWED BY THE QUAD

3-6

SerialDrive™ Chapter 3: Hardware

UARTs IS 48MHz, THUS WHEN THE 64MHz SYSTEM CLOCK IS INSTALLED, THE USER
SHOULD NOT ATTEMPT TO ROUTE THE 64MHz CLOCK DIRECTL Y TO THE UART.

Refer to Chapter 4: Software, Section 4.6 forarichn the baud rate available for these UARTS.
The two Quad UARTSs are mapped into 1/0O space staeatOXE08Q

Table 3.4 1/0O Mapping for UARTs 2-9

UART 1/0 Map

OxEO080 — OxXE087
0XxEQ90- 0XE097
OXEOAO — OXEOA7
OxXEOBO — OXEOB7
OxXEOCO — OXEOC7
O0xEODO — OXxEOD7
OXEOEO — OXEOE7
OXEOFO — OXEOF7

© 00 N o o b~ W N

In the 1/0O map for each UART there correspondsexific register at each address. The followingéeabl
illustrates which registers correspond to eacheskdr

Offset from base | Register, Read mode Register, Write mode

0 RHR, receive holding register THR, transmit holding register
DLL, divisor latch low byte

1 IER, interrupt enable register DLH, divisor lattigh byte

2 IIR, interrupt identification register FCR, FIFgntrol register

3 LCR, line control register LCR, line control rstgr

4 MCR, modem control register MCR, modem contrgister

5 LSR, line status register

6 MSR, modem status register

7 SPR, scratch register

FIFO ready register

Example: To access the line control register forRTA6, use the function catlutportb(OXEOCS3, data);
wheredata is you command word. Note that this is not a coneplisting of the registers associated with
the QUAD UARTSs. Refer théern_docs/parts/quart_tl16c754b.pdffrom the root of the CD-ROM for
more information.

Chapter 3: Hardware SerialDrive™

3.9.4 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON,) i#mapped in the I/O address sp8ga0a0 It must
be backed up with a lithium coin battery. The RMay be accessed via software drivexs init() or
rtc_rd(); (see Chapter 4, Software for details).

3.9.5 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped intolteaddress space @a09Q The SCC2691 has a
full-duplex asynchronous receiver/transmitter, adyuple buffered receiver data register, an inggrru
control mechanism, programmable data format, ssdetbaud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit countenéi, an on-chip crystal oscillator, and a multifpase
input/output including RTS and CTS mechanism.

For more detailed information, refer to Appendix Bhe SCC2691 on the SerialDrive may be used as a
network 9-bit UART (for the TERNNT-Kit).

The RxD (J1 pin 5) and TxD (J1 pin 7) lines are T&lel signals. User can select either an RS-232 or
RS-485 driver to be configured with the UART whedering. The SerialDrive supports full handshaking

in RS-232 mode. By hardware configuration, MPOsedito drive RTS and MPI is used to read CTS. All

signals are routed to header H2.

Refer to the sample code, 386_scc.c, in the c\88samples\SD directory for a sample on the UART
SCC2691.

3.9.6 Programmable Peripheral I nterface (82C55A)

UO5 PPI (82C55) is a low-power CMOS programmableltel interface unit for use in microcomputer
systems. It provides 24 1/O pins that may be iliglly programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be progreed in sets of 4 and 8 pins to be inputs or outputs
In MODE 1, each of the two groups of 12 pins carplmgrammed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshakimgimterrupt control signals. MODE 2 is a strobed b
directional bus configuration.

3-8

SerialDrive™ Chapter 3: Hardware

[O N A
I—J GROUP 1
Port 2 0 OQutput
(Lower)

1 Input

Port 1 0 OQutput

1 Input

Mode 0 Mode 0

1 Mode 1

GROUP 2

Port 2 0 Output

(Upper)

1 Input

Port 0 0 Output

1 Input

Mode 00 Mode O

01 Mode 1

1X Mode 2

Command 0 Bit
Select manipulatior
1 Mode

Selec!

Figure 3.2 Mode Select Command Word

The SerialDrive maps U11, the 82C55 at base I/@essdxAOFO.
The ports/registers are offsets of this I/O basiresk.
The Command Register = 0XAOF3; Port 0 = OXAOFO0t Bar 0XAOF1; and Port 2 = OXAOF2.

The following code example will set all ports totput mode:
out port b(0xAOF3, 0x80); /* Mode O all output selection. */
out port b(0xAOFO0, 0x55); /* Sets port 0 to alternating high/low /O pins. */
out port b(0xAOF1, 0x55); /* Sets port 1 to alternating high/low /O pins. */
out port b(0xAOF2, 0x55); /* Sets port 2 to alternating high/low /O pins. */
To set all ports to input mode:
out port b(OxAOF3, 0x9f) ; /* Mode 0 all input selection. */

You can read the ports with:

i nportb(O0xAOFQ); /* Port 0 */
i nportb(OxAOF1); /* Port 1 */
i nportb(OxAOF2); /* Port 2 */

This returns an 8-bit value for each port, withrehit corresponding to the appropriate line onghbs.

3.100ther Devices

A number of other devices are also available orgalDrive. Some of these are optional, and migtt
be installed on the particular controller you aseng. For a discussion regarding the softwarefiate for
these components, please see the Software chapter.

Chapter 3: Hardware SerialDrive™

3.10.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the SerialDrive has several functions
watchdog timer, battery backup, power-on-reset ydefgower-supply monitoring, and power-failure
warning. These will significantly improve the systeeliability.

Watchdog Timer

J3
Location of
Watchdog

Jumper.

Figure 3.3 Location of watchdog timer enable jumper

The watchdog timer is activated by setting a jungred3 of the SerialDrive. The watchdog timer pdeg

a means of verifying proper software execution.the user's application program, calls to the fiomct
hitwd () (a routine that toggles the T6=HWD pin of thelp8hould be arranged so that the HWD pin is
accessed at least once every 1.6 seconds. |Bthenper is on and the HWD pin is not accessedimwith
this time-out period, the watchdog timer pulls #W@®O pin low, which asserts /RESET. This automatic
assertion of /RESET may recover the applicatiorgram if something is wrong. After the SerialDrivge i
reset, the WDO remains low until a transition oscair the WDI pin of 691. When controllers are skipp
from the factory the J3 jumper is off, which dissbthe watchdog timer.

The Intel386EX has an internal watchdog timer. Taidisabled by default witke_init().

Power-failure Warning and Battery Backup

When power failure is sensed by the on-board sig@rehip 691, it will reset the board if the VCEless
than 4.5V. The battery-switchover circuit compav€C to VBAT (+3 V lithium battery positive pin), &@n
connects whichever is higher to the VRAM (power &AM and RTC). Thus, the SRAM and the real-
time clock RTC72423 are backed up. In normal ubke, lithium battery should last about 3-5 years
without the external power being supplied. Whenekternal power is on, the battery-switch-over wirc
will select the VCC to connect to the VRAM.

3-10

SerialDrive™ Chapter 3: Hardware

3.10.2 EEPROM

A serial EEPROM of 512 bytes (24C04, default) orb@t€s (24C16) can be installed in U5. The
SerialDrive uses the T7=SCL (serial clock) and FABA (serial data) to interface with the EEPROM.
The EEPROM can be used to store important datdy as@ node address, calibration coefficients, and
configuration codes. It has typically 1,000,00@serwrite cycles. The data retention is more #@n
years. EEPROM can be read and written by simplincafunctionsee_rd) andee_wi().

A range of lower addresses in the EEPROM is resefwe TERN use. Details regarding which addresses
are reserved, and for what purpose, can be fouAghpendix D of this manual.

3.10.3 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, susiesapproximation, 11-channel, serial interface,
analog-to-digital converter. Three output linesnfraJ10 74HC259 are used to handle the ADC, with
/CS=TO0; CLK=T2; and DIN=T1.

The ADC digital data output communicates with athtbsough a serial tri-state output (DOUT=P10). If
TO=/CS is low, the TLC2543 will have output on P15T0=/CS is high, the TLC2543 is disabled and
P15 is free. The TLC2543 has an on-chip 14-chiamuétiplexer that can select any one of 11 inputs
any one of three internal self-test voltages. Tam@e-and-hold function is automatic. At the end of
conversion, the end-of-conversion (EOC) output dughk to indicate that conversion is complete. ts
SerialDrive, this output is not connected.

TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingda
isolation of analog circuitry from logic and suppipise. A switched-capacitor design allows low-erro
conversion over the full operating temperature eafidne analog input signal source impedance shmaild
less than 5Q and capable of slewing the analog input voltage én60 pF capacitor.

A reference voltage less than VCC (+5V) can be iplexy for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +8W be used for this purpose, and connected to the
REF+ pin (J6.2 REF+ is shorted to VCC at the factory by default butasnplete user selectable).

The CLK signal to the ADC is toggled through theH2R59 (U10), and serial access allows a conversion
rate of up to approximately 10 KHz.

In order to operate the TLC2543, five 1/O lines ased, as listed below:

Pin Label Description

ADO-AD10 11 analog signal inputs. The signal source impeglamould be less than G0
and capable of slewing the analog input voltage @160pF capacitor.

/CS Chip select = TO, high to low transition enablesUDQ DIN and CLK, low to
high transition disables DOUT, DIN and CLK.

DIN T1, serial data input

DOUT P15 of Intel386EX, 3-state serial data output.

EOC Not Connected, End of Conversion, high indisatenversion complete and data
is ready

CLK I/O clock = T2

REF+ Upper reference voltage (normally VCC, J6e2ts VCC by default)

REF- Lower reference voltage (tied to ground byigigs

VCC Power supply, +5 V input

GND Ground

3-11

Chapter 3: Hardware SerialDrive™

The analog inputs ADO to AD10 are available at leealb, and can be connected to your signal sources
from there. REF+, GND, VCC are also available atdsz J6.

3.10.4 Dual 12-bit DAC

The LTC1446 is a dual 12-bit digital-to-analog certers (DACs) in an SO-8 package. It is completd wi
a rail-to-rail voltage output amplifier, an intefmaference and a 3-wire serial interface. The L4€4
outputs a full-scale of 4.096V, making 1 LSB equal mV.

The buffered outputs can source or sink 5 mA. Titputs swing to within a few millivolts of supptsil
when unloaded. They have an equivalent outputteggis of 4@ when driving a load to the rails. The
buffer amplifiers can drive 1000pf without goingadroscillation.

Three outputs from the U10 decoder drive the LT@&1448 = CK, T1 = Data In, and T4 = Latch Data.
The DAC is installed in U14 on the SerialDrive. Tdwputs are routed to headirpins 2 and 4.
Refer to TERN’s CD-ROM under the root directoryerttern_docs/partsfor the technical data sheet.

3.11Headers and Connectors

3.11.1 Expansion Headers J1 and J2

There are two 20x2, 0.1 spacing headers for Setia@xpansion. Most signals are directly routetht®
Intel386EX processor. These signals are 5V onlg,any out-of-range voltages will most likely damage
the board.

J1 Signal J2 Signal
VCC 1 2 GND GND 40 39 VCC
3 4 TOUT2 RI2 38 37 CD2
RxD 5 6 GND RI3 36 35 DSR2
XD 7 8 DO TXDO 34 33 CD3
VOFF 9 10 D1 RxDO 32 31 DSR3
PFI 11 12 D2 RI4 30 29 CD4
GND 13 14 D3 TxXD1 28 27 DSR4
/IRST 15 16 D4 RxD1 26 25 DTR3
RST 17 18 D5 RI5 24 23 CD5
/CS6 19 20 D6 DSR5 22 21 RI6
21 22 D7 CD6 20 19 DSR6
23 24 GND RI7 18 17 CD7
25 26 A7 DTR4 16 15 DSR7
27 28 A6 RI8 14 13 CD8
IWR 29 30 A5 DSR8 12 11 RI9
/RD 31 32 A4 CS6 10 9 DTR5
33 34 A3 DTR6 8 7 DTR7
35 36 A2 CD9 6 5 DTR9
37 38 Al DCD1 4 3 DSR9
39 40 BLE GND 2 1 DTR8

Table 3.5 J1 and J2, 20x2 expansion ports

Signal definitions for J1:

VCC +5V power supply
GND Ground
TOUT2 Intel386EX pin 91, timer2 output, 4 MHz maxim

3-12

SerialDrive™ Chapter 3: Hardware

RxD data receive of UART SCC2691, U8

TxD data transmit of UART SCC2691, U8

PFI

VOFF real-time clock output of RTC72423 U4, opetexior

A1-A7 Intel386EX lower address lines

IRST reset signal, active low

RST reset signal, active high

/CS6 /CSB6, Intel386EX pin 2, ie_init(); set it upl&O chip select line at
address 0x8000

DO - D7 Intel386EX data lines

BLE Intel386EX pin 39, low byte enable

/WR Intel386EX pin 35, active low when write opéoat

/RD Intel386EX pin 34, active low when read operati

Signal definitions for J2:

VCC +5V power supply, < 300 mA
GND ground
R/W inverted from Intel386EX pin 30, W/R
TxDO Intel386EX pin 131, transmit data of seriahnhel 0
RxDO Intel386EX pin 129, receive data of serialrafe 0
TxD1 Intel386EX pin 112, transmit data of seriahohel 1
RxD1 Intel386EX pin 118, receive data of serialrotel 1
DSRx, DCDx, Serial Handshake lines

RIX, DTRX

3-13

SerialDrive Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@evelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pramgming tools.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not falkxd, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Reniaébdugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrecing problems. Most problems occur in multi-inigt-
driven situations. Because the remote kernel rugnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the intérrup
controller for longer than the remote debuggeraagept, the debugger will time-out. As a resultjny®@C
may hang-up. In extreme cases, a power reset megduired to restart your PC.

For your reference, be aware that our system istekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an /O address space and a memory address
space. 1/O address space ranges foo®000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. ah@ memory mappings are done in software to define
how translations are implemented by the hardwdmeplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expjiciticess any address in I1/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in 1/O space) or non-mapped orgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigngdnsigned char data
Return value: none

These standard C functions are used to place sgxbdéta at any memory space location. 3égment
argument is left shifted by four and added todffset argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space mibanshe appropriate address and data are placted o
the address and data-bus, and any memory-spacengap place for this particular range of memory
will be used to activate appropriate chip-selewdi and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifeidt@ss in memory space. Once againsggment
address is shifted left by four bits and addedémffsetto find the 20-bit address. This address is thep
output over the address bus, and the hardware amenpoapped to that address should return eitBer 4

Chapter 4: Software SerialDrive

bit or 16-bit value over the data bus. If theraégscomponent mapped to that address, this funetitbn
return random garbage values every time you tpetek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tdata into the appropriataddressin I/O space. It is used most often
when working with processor registers that are redppto I/O space and must be accessed using either
one of these functions. This is also the functiead in most cases when dealing with user-confijure
peripheral components.

inport/inport
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/O space. You will find that most
hardware options added to TERN controllers are redppto 1/0O space, since memory space is valuable
and is reserved for uses related to the code atad dising 1/0 mappings, the address is output thwer
address bus, and the returned 16 or 8-bit valtleiseturn value.

For a further discussion of I/O and memory mappipisase refer to the Hardware chapter of this
technical manual.

4.11E.LIB

IE.LIB is a C library for basic SerialDrive opematis. It includes the following modules: IE.OBJ,
SERO0.0BJ, SER1.0BJ, SCC.OBJ, and IEEE.OBJ. You needihk IE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-file name | Description

IE.H P10, timer/counter, ADC, DAC, RTC, Watchdog,
SERO.H internal serial port O

SER1.H internal serial port 1

SCC.H external UART SCC2691

IEEE.H on-board EEPROM

4.2 Functions in IE.OBJ

4.2.1 SerialDrive I nitialization

ie_init

This function should be called at the beginningeeéry program running on SerialDrive core contrslle

It provides default initialization and configuraticof the various 1/0O pins, interrupt vectors, sats
expanded DOS I/0, and provides other processoifgpepdates needed at the beginning of every
program.

There are certain default pin modes and interrafitrgys you might wish to change. With that in thin
the basic effects aé_init are described below. For details regarding regisse, you will want to refer to
the Intel386EX Embedded Processor User’'s manual.

Initialize the upper chip select to support theadtfROM. The CPU registers are configured suelt: th

4-2

SerialDrive Chapter 4: Software

Address space for the ROM is from 0x80000-0xfffff.

512K ROM operation (this works for the 32K ROM piaed, also)

Two wait state operation (allowing it to supporttopl20 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state.

out port (0xf43a, 0x0008); // UCSADH, 0x80000-0xfffff, 512K ROM
out port (0xf438, 0x0102); // UCSADL, bs8, 2 wait states

out port (0xf43e, 0x0007); // UCSMSKH
out port (0xf43c, O0xfc0l); // UCSMSKL, enable UCS

Initialize CSO for use with the SRAM. It is condiged so that:

Address space starts 0x00000, with a maximum oKFRAM.
8 bit operation with 3 wait states. Once agaimn gan set the same register to a lower wait state i
you desire faster operation.
out port (0xf 402, 0x0000); // CSOADH, base Mem address 0x0000
out port (Oxf 400, 0x0103); // CSOADL, bs8, 3 wait states
out port (0xf 406, 0x0007); // CSOMSKH
out port (Oxf 404, Oxfc0l); // CSOMSKL, 512K, enable CSO for RAM

Initialize the chip select used for RTC and SCC RIA.

The I/O Address for the RTC is at 0xa0a0. (Seepdas\ie\rtc_init.c and rtc.c for RTC usage.
The 1/0O Address for the SCC is at 0xa090. (See &stip\ie_scc.c).
These are initialized to 16 wait states.
out port (0xf412, 0x0280); // CS2ADH, RTC/ SCC I/ O addr=0xa0a0/ 0xa090
out port (0xf410, 0x000f); // CS2ADL, 0x000f=16 wait
out port (0xf 416, 0x0003); // CS2MSKH
out port (0xf 414, O0xfc0l); // CS2MsSKL, 32 enabl e CS2=RTC/ SCC

Initialize chip select U9, which is used for intahsignals TO-T7.

I/O address is 0xb000.
out port (0xf42A, 0x02c0); // CS5ADH, 259 base |/ O address 0xb000
out port (0xf 428, 0x0001); // CS5ADL, 0x0001=1 wait
out port (Oxf 42E, 0x0003); // CS5MSKH
out port (0xf42C, O0xfc01); // CS5MSKL, 256 enabl e CS5=259

This chip select line, CS6, is provided for therissese. Many users choose to attach peripheral
boards to the headers provided on the controlliris. possible to attach a 74HC259 decoder, for
example, which could then be used to select a nuofhaff-board user components. This line is
at pin 19 of header J1. For details regardingdhis the other chip select line, refer to the
Hardware chapter of this manual.

I/O address for this is 0x8000. A wait-state offz® been set initially for easier interface with
slower devices. This value can be decreased ddywehanging the value of the register.
out port (0xf 432, 0x0200); // CS6ADH, base |/ O address 0x8000
out port (0xf 430, 0x001f); // CS6ADL, 0x001f=32 wait
out port (0xf 436, 0x0003); // CS6MSKH
out port (0xf434, Oxfc0l); // CS6MSKL, 256 enabl e CS6

Configure the three PIO ports for default operation

out port b(0xf 820, 0x00); // P1CFG
out port b(0xf822, 0x65); // P2CFG TXD0, RXDO, CS2=P22=RTC/ SCC, 0=RAM
out port b(0xf824, 0x00); // P3CFG

Configure serial port 1, DMA, interrupts, timers.

out port b(0xf826, Ox1f); // PINCFG CS5, CTS1, TXD1, DTR1, RTS1
out port b(0xf 830, 0x00); // DMACFG

out port b(0xf832, 0x00); // INTCFG

out port b(0xf834, 0x00); // TMRCFG

out port b(0xf836, 0x01); // SICCFG SI Q0 use SERCLK

4-3

Chapter 4: Software SerialDrive

Configure PIO ports as input

out port b(0xf862, Oxff); // P1LTC
out port b(0xf864, Oxff); // P1D R
out port b(0xf86a, Oxff); // P2LTC
out port b(0xf86c, Oxff); // P2D R
out port b(0xf872, Oxff); // P3LTC
out portb(0xf874, Oxff); // P3D R

4.2.2 External Interrupt Initialization

The SerialDrive offers two cascaded interrupt coligrs to handle internal and external interrupEach
interrupt controller is functionally identical to&C59A. Combined, the cascaded interrupt comrsl|
can handle up to 10 external interrupts, and digiernal interrupts. For a detailed discussiorolaing

the ICUs, the user should refer to Chapter 9 ofitiel386EX Embedded Microprocessor User’'s Manual.
Figure 9-1, in particular, shows interrupts that share thmesdR and thus cannot be used at the same
time.

You should note that if an IR on the slave 82C58dsvated, IR2 on the master must also be activate
before the interrupt handler is called.

TERN provides functions to enable/disable all af f0 external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiqdar

interrupt should be enabled, and the second isieifin pointer to an appropriate interrupt serviogtine

that should be used to handle the interrupt. TBBRN libraries will set up the interrupt vectors remtly

for the specified external interrupt line.

If you are dealing with external interrupts, youghii need to disable the particular interrupt béiagdled
while processing within the interrupt service roeti The interrupt control unit is sensitive totagr non-
qualified external interrupts that come from sogreeich as mechanical switches. In such a sityation
repeated interrupts (in the thousands) might beigeed, crashing the system. Disabling such amrunt

for a length of time will make sure that you iselauch interrupts.

At the end of interrupt handlers, the appropriateervice bit for the IR signal currently being bkad

must be cleared. This can be done using\biespecific EOl command At initialization time, interrupt
priority was placed inFully Nested mode. This means the current highest priority ringgt will be

handled first, and a higher priority interrupt wilterrupt any current interrupt handlers. Théishé user
chooses to clear the in-service bit for the intetrourrently being handled, the interrupt servioatine

just needs to issue the nonspecific EOl commartktar the current highest priority IR.

On the SerialDrive, the overhead of executing ttierfupt service routine is approximately 3 using a
32 MHz controller.

To send the nonspecific EOl command, you need ttewie OCW2 word with 0x20 (se€&igure 9-14in
the Intel386EX manual for details regarding thismooand word).

To clear the master 82C59, you will need to do:
out port b(0xf 020, 0x20);

If the IR that has just been handled is on theesBRC59, you must clear its in-service bit firéffiter this,

you must also send another Nonspecific EOl comnaritie master 82C59, since the slave interrupt was
only transmitted to the core after IR2 on the ma8®&C59 was raised. So, you will need to have code
similar to:

out port b(0xf 0a0, 0x20) ;
out port b(0xf 020, 0x20) ;

4-4

SerialDrive Chapter 4: Software

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any drte@external interrupt channels (for pin locai@nd
other physical hardware details, see the Hardwaapter). The first argumentndicates whether this
particular interrupt should be enabled or disabl€te second argument is a function pointer whidh w
act as the interrupt service routine.

By default, the interrupts are all disabled aftetialization. To disable them again, you can edghe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultwslR
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_.isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
ar

void nm _init(void interrupt f (* nm _isr)());

4.2.31/O Initialization

There are three ports of 8 I/0 pins available anSkrialDrive. Hardware details regarding these IR€s
can be found in the Hardware chapter.

There are several functions provided for accest@oPIO lines. At the beginning of any application
where you choose to use the PIO pins as input/6ugpu will probably need to initialize these pinsone

of the four available modes. Before selecting gorsthis purpose, make sure that the peripheraleno
operation of the pin is not needed for a diffenesg within the same application.

You should also confirm the PIO usage that is dlesdrabove withinie_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not availabledar y
application. There are several PIO lines that aeglifor other on-board purposes. These are altitiesc
in some detail in the Hardware chapter of this técdl manual. For a detailed discussion towarditBe
ports, please refer to Chapter 16 of the Intel38&&¥edded Processor User’'s Manual.

Please see the sample programpio.c in t er n\ 386\ sanpl es\i e. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-cqunt
the PIO lines.

The functionpio_wr andpio_rd can be slower when accessing the PIO pins. Theémnmouan efficiency
you can get from the PIO pins occur if you insteaddify the PIO registers directly with avutport
instruction Performance in this case will be adr?2 us to toggle any pin.

4-5

Chapter 4: Software SerialDrive

void pio_init
Arguments: char port, char bit, char mode
Return value: none

Port and bit refer to the specific PIO line you dealing with. P10-P17 are in port 1, P20-P27iraort
2, and P30-P37 are in port 3. Bit 0 refers to Pn€ach port, while bit 7 is used for Pn7.
Mode refers to one of four modes of operation.

» 0, High-impedance Input operation
e 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned char pio_rd:

Arguments: char port

Return value: byte indicating P10 status

Each bit of the returned byte value indicates theent I/O value for the PIO pins in the selected.p
void pio_wr:

Arguments: char port, char bit, char dat

Return value: none

Writes the passed in dat value (either 1/0) tostilected PIO.

4.2.4 Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog inphdsed on the reference voltage supplie®Ed-+.
For details regarding the hardware configuratiee, the Hardware chapter.

For a sample file showing the use of the ADC, mes=e386_adl12.dnt er n\ 386\ sanpl es\ sd.

intie_adl12
Arguments: char ¢
Return values: int ad_value

The argument selects the channel from which to do the next 8gab Digital conversion. A value of O
corresponds to chann&DO, 1 corresponds to chanm&D1, and so on.

The return valuad_valueis the latched-in conversion value from the prasioall to this function. This
means each call to this function actually retuhreswtalue latched-in from the previous analog-tateig
conversion.

For example, this means the first analog-to-digitaiversion done in an application will be simiiathe
following:

ie_adl2(0); // Read from channel 0
chn_0O_data = ie_adl12(0); // Start the next conversion, retrieve val ue.

4-6

SerialDrive Chapter 4: Software

4.2.5 Digital-to-Analog Conversion

One LTC 1446 chip is available on the SerialDriwvgpositionsU14. Each chip offers two channels, A and
B, for digital-to-analog conversion. Details regagl hardware, such as pin-outs and performance
specifications, can be found in the Hardware chrapte

A sample program demonstrating the DAC can be found 386 _da.c in the directory
t er n\ 386\ sanpl es\ sd.

void ie_da
Arguments: int datl, int dat2
Return value: none

Argumentdatl is the current value to drive to channel A of eitbhip, while argumerdat2 is the value
to drive channel B of each chip.

These argument values should range from 0-409%, wviits of millivolts. This makes it possible towk
a maximum of 4.906 volts to each channel.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timé8) is connected, the functidntwd() must be called every 1.6
seconds of program execution. If this is not exedupecause of a run-time error, such as an iefioibp
or stalled interrupt service routine, a hardwasetevill occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to taéue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff ieme. Backed up by a lithium-coin battery, tieal
time clock can be accessed and programmed usinghterdace functions.

There is a common data structure used to accesssanooth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl0; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten mnute digit.
unsi gned char hourl1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nmonth digit.

Chapter 4: Software SerialDrive

unsi gned char nonl0; Ten nonth digit.

unsi gned char year1l; One year digit.

unsi gned char year10; Ten year digit.

unsi gned char wk; Day of the week.
}TIM

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the temaé clock within the argumemtstructure. The structurg
should be allocated by the user. This functioomet 0 on success and returns 1 in case of ecrohn, &s
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahie the real-time clock. The argumerghould be a null-
terminated byte array that contains the new timleevto be used.

The byte array should correspond tedekday, year 10, year1, month10, month1, day10, dayl, hour 10,
hour1, minutelO, minutel, second10, secondl, O }.

If, for example, the time to be initialized intcetheal time clock is June 5, 1998, Friday, 13:55t86 byte
array would be initialized to:

unsigned char t[14] ={5, 9, 8,0, 6,0, 5, 1535, 3,0 };

Delay

In many applications it becomes useful to pausereegxecuting any further code. There are functions
provided to make this process easy. For applioatibat require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Tdwual time that it waits depends on processordspse
well as interrupt latency. The code is functiopadlentical to:

VWhile(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int

Return value: none

This function is similar to delayO, but the pasgedrgument is in units of milliseconds insteadaafp
iterations. Again, this function is highly depentlapon the processor speed.

4-8

SerialDrive Chapter 4: Software

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a bty ofcount size pointed to bwptr.

void ie_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedofmr
any reason. Depending on the current hardwardgumation, this might either start executing cootenf
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prqetyin the header filser0.handserl.hin the directory
tern\incl ude.

The internal asynchronous serial ports are funatlgndentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P softwares Kiir communication with the PC. As a result, you
will not be able to debug code directly written garial port O.

Two asynchronous serial ports are integrated in3B6EX CPU: SERO and SERL1. Both ports by default
use the signaBERCLK to drive communicationywhich is based on the 32 MHz system clock signal
CLK2. By default, SERO is used by the DEBUG ROM kerfwl application download/debugging in
STEP 1 and STEP 2. We will use SER1 as the examplee following discussion; any of the interface
functions which are specific to SER1 can be eagignged into function calls for SERO. While sdlegt

a serial port for use, please realize that some piight be shared with other peripheral functiofi$iis
means that in certain limited cases, it might r@pbssible to use a certain serial port with otreboard
controller functions. For details, you should desth chapter 11 of the Intel 386EX Embedded
Microprocessor User's Manual and the schematib@f3erialDrive provided at the end of this manual.

TERN interface functions make it possible to use of a number of predetermined baud rates. These
baud rates are achieved by specifying a diviso6f6RCLK (1,031,250 hz).

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 32 MHz systenk.cloc

Function Argument | Divisor Value | Baud Rate

1 6875 150

2 3438 300

3 1719 600

4 859 1200

5 430 2400

6 215 4800

7 107 9600

8 72 14,400

9 54 19,200 (default)

4-9

Chapter 4: Software SerialDrive

Function Argument | Divisor Value | Baud Rate
10 27 38,400

11 18 57,600

12 9 115,200
13 4 275,812
14 2 515,625
15 1 1,031,250

Table 4.1 Baud rate values

After initialization by callings1_i ni t (), SER1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the speatifie baud rates.

An input buffer,ser 1 _in_buf (whose size is specified by the user), will autbosdly store the
receiving serial data stream into the memory by OMdperation. In terms of receiving, there is no
software overhead or interrupt latency for userliappion programs even at the highest baud rat®AD
transfer allows efficient handling of incoming datdhe user only has to check the buffer status wit
serhit1() and take out the data from the buffer wgtht ser 1() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howeuhe transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy ¥
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size iiz), and baud ratebfud) are specified by the user wisli_i ni t ()
with a default mode of 8-bit, 1 stop bit, no pariffter s1_i nit () you can set up a new mode with
different numbers for data-bit, stop bit, or parity directly accessing the Serial Line Control Regi
(LCR1) if necessary, as described in the Intel38®E2hual for asynchronous serial ports.

Due to the nature of high-speed baud rates andipesffects from the external environment, seinalut
data will automatically fill in the buffer circulbr without stopping, regardless of overwrite. lethiser
does not take out the data from the ring buffehwji¢t ser 1() before the ring buffer is full, new data
will overwrite the old data without warning or cooit Thus it is important to provide a sufficigntarge
buffer if large amounts of data are transferredr é&le, if you are receiving data at 9600 baud,
KB buffer will be able to store data for approxilgtfour seconds.

However, it is always important to take out datdyefstom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstratting data out and a slower baud rate for réegiv
data. This will give you more time to do other tjgn without overrunning the input buffer. You caseu
serhit1() to check the status of the input buffer and rethoffset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates data is available in the buffer.

You can usget ser 1() to get the serial input data byte by byte usingd~ffom the buffer. The in_tail
pointer will automatically increment after eveggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalhardware reset &l _cl ose() can stop this
receiving operation.

4-10

SerialDrive Chapter 4: Software

For transmission, you can ugait ser 1() to send out a byte, or ugmut sersl1() to transmit a
character string. You can put data into the trahsing buffer,s1_out buf, at any time using this
method. The transmit ring buffer addreseby(f) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service witheck the availability of data in the transmit fieuf If
there is no more data (the head and tail pointergqual), it will disable the transmit interruptherwise,

it will continue to take out the data from the dutffer, and transmit. After you catlut ser 1() and
transmit functions, you are free to do other tagkh no additional software overhead on the tratsng
operation. It will automatically send out all thatd you specify. After all data has been sent,litalear
the busy flag and be ready for the next transmissio

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dth receive an input
HEX file from SER1 and translate every ‘' charadie ‘?.” The translated HEX file is then transtad
out of SERO. This sample program can be fourtdeinn\ 386\ sanpl es\i e.

Software Interface
Before using the serial ports, they must be inied.

There is a data structure containing importanasgort state information that is passed as argtihoetine
TERN library interface functions. TheOM structure should normally be manipulated only RN
libraries. It is provided to make debugging of $&ial communication ports more practical. Siitce
allows you to monitor the current value of the leufind associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eiti®esr
ser0can be replaced withl or serl, for example. Each serial port should use its @@M structure, as
defined inie.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */

unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /1 transmit nacro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */

unsi gned int out_offs; /* output buffer offset */
unsi gned char byte_del ay; /* V25 macro service byte delay */

} Com

4-11

Chapter 4: Software SerialDrive

sn_init
Arguments: unsigned char b, unsigned char* ibuf, imisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 witte specified parameters.is the baud rate value
shown in Table 4.1. Argumenitsuf andisiz specify the input-data buffer, antuf andosiz specify the
location and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stap no parity communication.

There are a couple different functions used fongnaission of data. You can actually place dathiwit
the output buffer manually, incrementing the head t&il buffer pointers appropriately. If you dotreall
one of the following functions, however, the drivieterrupt for the appropriate serial-port will be
disabled, which means that no values will be trattiech This allows you to control when you wisteth
transmission of data within the outbound buffebémin. Once the interrupts are enabled, it is demgs
to manipulate the values of the outbound buffervel as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one bytutch into the transmit buffer for the appropriate segart. The return|
value returns one in case of success, and zemyiotaer case.

putsera

Arguments: char* str, COM *c

Return value: int return_value

This function places a null-terminated characteingtinto the transmit buffer. The return valueurets
one in case of success, and zero in any other case.

DMA transfer automatically places incoming dataoihe inbound bufferserhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.
getsen
Arguments: COM *c

Return value: unsigned char value

This function returns the current byte fram in_buf, and increments thia_tail pointer. Once again, this
function assumes thaerhitn has been called, and that there is a characteemrésthe buffer.

4-12

SerialDrive Chapter 4: Software

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret@ASCII: 0x0d) is retrieved.

This function makes repeated callgtser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtmdouffer.

Be careful when you are using this function. Téteimed character string is actually a byte array
terminated by a null character. This means thextetimight actually be multiple null charactershia byte
array, and the returneglue is the only definite indicator of the number otds/read. Normally, we
suggest that thgetsersandputsersfunctions only be used with ASCII character stsinij you are
working with byte arrays, the single-byte versiofishese functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awgiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadev
flow control in the form ofCTS (Clear-To-Send) anBTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appaitgofor
whatever form of flow control you wish to implemenBefore using these functions, you should once
again be aware that the peripheral pin function gmiusing might not be selected as needed. Failsie
please refer to chapter 11 of the Intel386EX Embdddicroprocessor User's Manual.

For an example on implementing your own flow cohtptease ses0_rts.cint er n\ sanpl es\i e.

char sn_cts(void)
Retrieves value o€ TS pin.

void sn_rts(char b)
Sets the value ®RTS tob.

void sn_dtr(char b)
Sets the value dTR tob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Hefau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délahardware as well as disabling the interrupt.
clean_sen

Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the &itl header buffer pointers.

4-13

Chapter 4: Software SerialDrive

The asynchronous serial 1/0 ports available onltliel386EX Embedded Processor have many other
features that might be useful for your applicatidhiyou are truly interested in having more cohtplease
read Chapter 11 of the manual for a detailed d&ounsof other features available to you.

4.4 Functions in SCC.0OBJ

The functions found in this object file are profwyd inscc.hin thet er n/ i ncl ude directory.

The SCC is a component that is used to provideird #synchronous port. It uses a 8 MHz crystal,
different from the system clock speed, for drivisgrial communications. This means the divisors and
function arguments for setting up the baud rateHis third port are different than for SERO andR3E

Table 4.2 Function Arguments for Baud Rate

Function Argument | Baud Rate
110

150

300

600

1200
2400
4800
9600 (default)
19,200
31,250
62,500
125,000
250,000

© 00 N o o b~ W N P

R e =
N B O

[N
w

Unlike the other serial ports, DMA transfer is nagted to fill the input buffer for SCC. Instead, an
interrupt-service-routine is used to place charadtgo the input buffer. If the processor doesmespond
to the interrupt—because it is masked, for examphe-interrupt service routine might never be able t
complete this process. Over time, this means migght be lost in the SCC as bytes overflow.

Special control registers are used to define hav3&C operates. For a detailed description of texgis
MR1 andMR2, please see Appendix C of this manual. In mofRNE&pplications, MR1 is set @57,

and MR2 is set t@x07. This configures the SCC for no flow control (RTSTS not used/checked), no
parity, 8-bit, normal operation. Other configuraisoare also possible, providing self-echo, even-odd
parity, up to 2 stop bits, 5 bit operation, as vesllautomatic hardware flow control.

Initialization occurs in a manner otherwise simifarSERO and SER1. &OM structure is once again
used to hold state information for the serial porte in-bound and out-bound buffers operate asrbef
and must be provided upon initialization.

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned chardigned char* ibuf, int isiz, unsignejl
char* obuf, int osiz, COM *c
Return value: none

4-14

SerialDrive Chapter 4: Software

This initializes the SCC2691 serial port to baue kg as defined in the table above. The valuesln
andm2 specify the values to be stored inM&®1 andMR2. As discussed above, these values are
normallyOx57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, armif andosizdefine the output buffer.

After initializing the serial port, you must alset up the interrupt service routine. The SCC288RT
takes up external interrupfNT5 on the CPU, and you must set up the appropriaterupt vector to
handle this. An interrupt service routing;c_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to tfus:

int5 init(l, scc_isr);
By default, the SCC is disabled for bdtansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deelflggou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomalsdile showing RS232 full duplex communications,
please se&_scc.dn the directoryt er n\ sanpl es\i e.

RS485 is slightly more complex to use than RS2B&485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes sent t
the SCC. As a result, assuming you are using tB48R driver installed on another TERN peripheral
board, you will need to disabteceive while transmitting. While transmitting, you walso need to place
the RS485 driver in transmission mode as well. sTihidone by usingn485(1) This uses pin MPO
(multi-purpose output) found on the J1 header. [8Wdu are receiving data, the RS485 driver wikde
to be placed in receive mode usem85(0) For a sample file showing RS485 communicatideage see
ie_rs485.cin the directoryt er n\ sanpl es\i e.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallysha
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_e/scc_recv_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofetbe
functions are disabled by default. If you are gd8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_recv_reset
Arguments: none
Return value: none

This function resets the state of the send andwedenction of the SCC2691. One major use of¢hes
functions is to disable send and receive. If yausing RS485, you will need to use this featunenv
transitioning from transmission to reception, @nfrreception to transmission.

4-15

Chapter 4: Software SerialDrive

Transmission and reception of data using the SG&nsost ways identical to SERO and SER1. The
functions used to transmit and receive data ardaimFor details regarding these functions, pbeeefer
to the previous section.

putser_scc
See: putsern

putsers_scc
See: putsersn

getser_scc
See: getsern

getsers_scc
See: getsersn

Flow control is also handled in a mostly similastiton. The CTS pin corresponds to the MPI pin,civhi
is not connected to either one of the headers. Rl pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.

ser_close
See: sn_cl ose

ser_hit
See: sn_hit

clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to chkekstate of the SCC for information regarding exitbiat
might have occurred. By callingcc_err, you can check for framing errors, parity erroifsp@rity is
enabled), and overrun errors.

scc_err

Arguments: none

Return value: unsigned char val

The returned valueal will be in the form of OABCO0000 in binary. Bit & 1 to indicate a framing error,
Bit B is 1 to indicate a parity error, and bit Glicates an over-run error.

4.5 Functions in IEEE.OBJ

The 512-byte serial EEPRON24C04) provided on-board provides easy storage of ndati®e program
parameters. This is usually an ideal locationtéeesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slommpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spaadlfi for this purpose.

4-16

SerialDrive Chapter 4: Software

Addresse9x00 to 0x1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, jump address for S2epnd other data that is of a more permanent @atur

The rest of the EEPROM memory spa@e?0to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passediat to the specifiedddr. The return value is 0 in success.
ee_rd

Arguments: int addr
Return value: int data

This function returns one byte of data from thecsfped address.

4.6 Functions in QUART.OBJ

Two Quad UARTS are installed on board providing tiser an additional 8 RS-232 serial ports. These
serial ports provide full software driven handsimgki5,6,7 or 8-bit communication, and 1,1.5, ot&s
bits. TERN provides full software support for ialization, character send and receive as well iaerdior
handshaking. The baud rate is based on a usergonoggble divisor and the input clock to the UARTg. B
default the UARTS receive a 16MHz clock (systencklb2 = 32 / 2 MHz), or an optional 32MHz clock
(system clock / 2 = 64 / 2 MHz). The following taldhows the resulting baud rate for a corresponding
divisor. The function defined in “quart.h”void qur_init(char channel, unsigned char baud) will
initialize the serial ports from the Quad UARTs.nEtion argumenbaud can be an integer from 1 to 15
where each corresponds to a baud rate below. (Reample code c:\tern\386\samples\sd\qur_ecbo.c f
more details).

Table 4.3 Function Arguments for Baud Rate

Function Argument | Baud rate with 16MHZ Baud rate with 32MH32
input to UART (default) input to UART

1 150 300

2 300 600

3 600 1200

4 1200 2400

5 2400 4800

6 4800 9600

7 9600 19,200

8 14,400 28,800

9 19,200 (default) 38,400

10 38,400 76,800

11 57,600 115,200

12 115,200 230,400

4-17

Chapter 4: Software SerialDrive

13 250,000 500,000
14 500,000 1,000,000
15 1,000,000 2,000,000

The following function allows the user to initiadizhe 8 serial ports. In addition, TERN providesgna
other drivers to interface the Quad UARTs. Refeth®e pre-built project:\tern\386\quart.ide for full
implementation examples and definitions of othdtveare drivers.

qur_init
Arguments: char channel, unsigned char baud
Return value: none

This function initializes serial pochannel (valid values are 2-9)to N,8,1 at the baud rate that
corresponds tbaud (valid values are 1-15)Please refer to:\tern\386\samples\sd\quart.dor details
on how to initialize to other than N,8,1.

4-18

SerialDrive

Appendix A: SerialDrive

Appendix A: SerialDrive

The Serial Drive measures 4.57 by 4.11 inches. All dimensions arein inches.

(0.67, 4.02)

(1.48, 4.02)

(3.18, 4.02)

(4.57,4.11)

I\‘ﬂ“‘ | \ﬁ o |
01388 .
2 R R

\ﬁm I —

o @A (4.43, 3.84)
I | Q = 18
(0.66, 3.3) — j@ i i ﬁ (4.39, 3.37)
// s ;°@\\
(0.52, 3.06) (3.37, 3.06) (3.56, 3.02)
(0.36, 1.12) i - — 0<%
= 4 |L 1
:5‘2)j 7 /(4.47, 0.66)
(0.3,0.97) — (3.63, 0.97)
18 (4.46, 0.32)
0.1,0.16 e NE<
()\6 | /v_|us SD.I Q)M
P / (4.46, 0.13)
(0.00, 0.00)
(259,022) (3.18,012) (4.12,0.16)

A-1

SerialDrive Appendix B: RTC72421

Appendix B: RTC72421

Function Table

Address Data
Az | Ay | A | Ag | Register | 3 D, D, Do Count Remarks
Value
0 (0 0 |0 |9 S3 Sy S S 0~9 1-second digit register
0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register
0 (O 1 (0 | My Mig | Miy mi, | mig 0-~9 1-minite digit register
0 |0 1]1 Mko Miyg Miyg | Migg | 05 10-minute digit register
0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register
0 |1 |0 |1 | H PM/A | hyy | hyg 0-2 | PM/AM, 10-hour digit
M or register
0-1
0 |1 1 ({0 | Q dg dy d, d; 0-~9 1-day digit register
0 |1 1]1 Do dy | dig 0~3 10-day digit register
1 |0 01|o0 MQ mog | Moy mo, | mo; | 0-9 1-month digit register
1]0 0 |1 MQg mo, | 0~1 10-month digit register
1 0 1 0 Y Vs Ya Yo V21 0~9 1-year digit register
1]0 1 [1 | Y Yso | Yao Yoo | Y10 0~9 10-year digit register
1)1 0 |0 | W W W, wy 0~6 Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj Flag
1)1 1 | 0 | RegE 4t ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test| 24/12 Stop Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse
2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low };'0"

4)
Data bit| PM/AM | INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

SerialDrive Appendix C: UART SCC2691

Appendix C: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
ICEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

AO0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

XUCLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TxD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bit6 | Bit5 | Bit4 HETE [Bit2 [Bit1 [Bito
RxRTS RXINT Error __ ParityMode___ Parity Type Bits per Character
0=no 0=RxRDY 0 =char 00 = with parity 0=Even 00=5
l=vyes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0 =Data
1=Addr

C-1

Appendix C: UART SCC2691

SerialDrive

MR2 (Mode Register 2):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
TX (add 0.5 to cases 0-7 if channel is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo l=yes l=yes 1=0625 5=0.875 9=1.625 D=1875
10 = Local loop 2=0688 6=0938 A=1688 E=1938
11 = Remote loop 3=0750 7=1.000 B=1750 F=2.000
CSR (Clock Select Register):
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 [Bito
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] = 0:
0= 50 1=110 2=1345 3= 200 0= 50 1=110 2=1345 3=200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7=1050
8=2400 9=4800 A=7200 B =9600 8=2400 9=4800 A =7200 B = 9600
C=384k D=Timer E=MPI-16x F=MPI-1x C=384k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1=110 2=1345 3=150 0= 75 1=110 2=1345 3=150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A =7200 B =1800
C=192k D=Timer E=MPI-16x F=MPI-1x C=192k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX RX Rx
0 = no command 8=gartC/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter l=vyes 1=yes 1=vyes 1=yes
2 =reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C=reset MPI
5 =reset break change change INT
INT D =reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RXRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes
* * *
Note:

* These status hits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are

reset when the corresponding data character is read from the FIFO.

C-2

SerialDrive Appendix C: UART SCC2691

ACR (Auxiliary Control Register):

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode
0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rateset 1, 1 = counter, MPI pin divided by power 1=CITO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TXC-1x clock of the active 3=TxC (16x)
transmitter 1=off 4=RxC (1x)
1= Baud 3 = counter, crystal or externa normal 5=RxC (16x)
rate set 2, clock (x/CLK) 6 =TxRDY
seeCSR 4 =timer, MPI pin 7=RxRDY/FFULL
bit format 5 =timer, MPI pin divided by
16
6 = timer, crystal or externa
clock (x1/CLK)
7 = timer, crystal or externa
clock (x1/CLK) divided by 16

ISR (Interrupt Status Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TxXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=vyes 1=high 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes

IMR (Interrupt Mask Register):

| Bit7 | Bit6 | BIt5 | Bit4 | BIt3 | Bit2 | Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n

CTUR (Counter/Timer Upper Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |

[crsr | ompaae | orqy [orpgl [oy [oTpao | cor@ | orie |
CTLR (Counter/Timer Lower Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |

Lorm [criel [corsp [com4 [corEy [cor [crpy [cmo |

C-3

Appendix D: Serial EEPROM M ap SerialDrive

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations asglu®/ system software. Application programs mustuse
these locations.

0x00 Node Address, for networking
0x01 Board Type

0x02

0x03

0x04 SERO_receive, used by ser0.c
0x05 SERO_transmit, used by ser0.c
0x06 SER1 receive, used by serl.c
0x07 SER1_transmit, used by serl.c
0x10 CS high byte, used by STEP 2
0x11 CS low byte, used by STEP 2
0x12 IP high byte, used by STEP 2
0x13 IP low byte, used by STEP 2
0x18 MM page register O

0x19 MM page register 1

Oxla MM page register 2

0x1b MM page register 3

Ox1c — Ox1f Reserved

0x20 — Ox4ff User

K1 voe !
1 e vov 49 g;010 1o
T J1
2 3 aLK2 Do 13 4 10 vee
G\D CLK UL U3 29F800 D g 5 T1 G\D_ 40 39 vec voo 1 2 G\D
%; M A9 1 44 A8 AL6 1 48 A17 BLE 1 6 T2 7 3 37 o2 30 O Toure
P UART A0 21450 AS[E3 A7 AlS 2 ah %0 [Ervee AL 2| % 7 T3 3 3 35 DO RXD 5 D
c cl RS ALl 3 42 A6 A 3 6 G\D A>3 9 T4 TXDO 3 33 TXD 7
+ + RS A2 4|42 AS3ETTro Az 4|48 OO Z5 s 2 X575 RXDO 32 31 DSR3 VOEE © 0_ DI
RO A3 JOE D Al2 D15 & 5 O Q o &
kR R 0o Al3 5 7 E Alp 52 DS a1y rcss 14) o R [LIT6 R4 3 20 P 1 >
c7 bz U3 IRAM 6] M. YB3 E AIL_6 3 Dl TRST 15 > TXDL 2 27 Dord G 3 D
D6 R3 /cs /LB A0 DL4 CLR &7 2L 12
2 Yk D5 e 40 b5 30 AR fia 06 155 7AFC259 e 73 RST 17 D
¢ URS 8 3 2 A9 D13 5 5 S
H vee D4 /URSE R D5 _o| 2l DMIaE i3 o]%8 DI u13 DSR5 22 21 RI6 /CS619 20 D6
D3 / UR6&IRE D2 D13 21N D5 5 /89 225 o2 RE 2 o o023
s D2 / UR7@SRL Olps D2 |32 DI2 100 N¢ pr2 |29 DI2 A 1ian vopdS ° S & S Dot
+ c22 ROV, 1417 Vi 1] 8. D23 b sve 11 NG, DPL2 38 A 218 0 TSCC 7 S Sarox 230 &3 D
= Taw Bl VRS RDY GD 12| &S SDI33Vram TRsT 12| /MR DY BT W a3 YlPisTRic a1e 5§15 e T°§ S S A7
> A2 DSRBGERRS B oe oii SR N o 5B Y3 P s 170 O T s w0 O OS50 A
bl Al DSRo&2SRo D D5 D10 [141N D3 -3 v4 pil 2 29 5
1 15 30 5 34 DIL0 A7 6 0 CS6 10 9 DIRs JRD 31 32
BLE I NT7BY~NT6 Do _16] 2 D912 A9 16| RY D033 (Csz 4] S, YopPTo- D 7 DIRY 33 34__A3
CKO | NT6E({-NT® D D7 D8 |2 NC D2 -3 @A Y6 p2— z 2 -
QKO NTeRITNT2 AV A MBI, Do [32 Mio 5y &8 YR /em Do £ DR % o
R | NT3 418 27 _A5 A8 3 D1 R 3 3
uis vec coo BRSS! NTSRINTS Al 10| %> Al2156 A A7 10 At 2 30 74HC138 ab, 2 Q S 1 iR 39 O 340 BLE
RXDL 1 8 T 1 Al6 20 25 A3 A6 290 1 FDRDA0
RXDL 1] 7 ¥ 2
&b 7| ROVCC —ors; o R8I NTIBRTH A2 A AL ISTR A5 21| RS D 58 TR A1 5 /UR2 HDRD4O ~ J2
S 21/ Re B RIZE 2 | NTOBILNIO A8 A9 A ICE A YO !
RTSL 3 6 RTS1 O OTR2 A7 22 23 Al8 A4 22 27 G A5 2 0
XL 4] F JAE RsRO2 DTRBSTR: A6 ALY 3 23]4 D5 A6_3]2 VPiaim
D G\D e Rl 3 DTR3 ﬁg RAVAA A2 2452 /CE 55 AL ¢ Y2 0 RS \Y/c o]
o ?7 = ® cos DTRABIETR? AL 20 Y3 b2 R i > REF+
coa B R TRBIOTRS AT 6l Y2PIOTOR v 3O VA
RSB R 5 DIR7ERIRY 1GSL_44 oA 6 po SR DL 5
5 DTRS uL6 Yoo M1O 5] &f o b7 IURS 3 S8
R 6 R CP° DTREBINSR, o1+ 1 60 01+ 9 AD5__© 0_ADA
R1 pa Rl 6 DSR2 @=2rs Cl+ VCC | > A
M % DSR3 Ve 5 G\D 74FCI38 AD7 11
L6 B cp6 DSR3 _ Vi GN\D 1 A 1 z A
R 7 R4 L3 4 RTSO c16
10K corBR DSRieneRs coor 4], MOMacrso ol L1 vee GND 15 6 _ADLO
RR D! DSRErere 002- 512" RU Mo Py o2+ ST peppnpey 119 cl+
cs 8 cos RR 8 DSRO@psry V- 6| 1 P11 Vi 2 5 G\D %o HDRDL6
V&R D8 DSR7grEp Tx0 7] Y 13! [To =0 c17 c_3| Y 9D RTSL XTALL HDRDL6
10K VRV PP SDTRO TRx0 8] 12C T2l om0 o2 (23 g, Bors—<rs a- g |;| X3
. R - 2 /CIs1 Cox 3 J5
[RDE/RD 7 WR {:a\sl\?_ MAX232A V- 32' _ﬁlo 1 /RTS1 1 MHZ C12 vee 1 2 _aGN\ND
RST€@crke u19 vce C3+ TTX0L 7| Yo 151 [T0_TXDL ;; /Trsl 3 2 €2 ko
cLke 3+ 10 voolie? RO 8] fo° feh o Rol 2 %—7 2 5 3
Vi | S VC s e c14 a7 1
31 GBMMa RS o VAXZ3ZA pi7 O 10 _p24
uL7 voe G 4|3 MOz crs Gar SR I1 S S 12 Po3
22— rovec -85 v —2 $2- RO I E 37153 ST N
wo 3| 'RE BI—5Rrs 710 7] V. 0 TXD CA- uL2 Voo | RTST 17 8 DT
DE A LIXD 70120 T21 2 LM . 20 al O S50
X041 5 e 2 LRXD 8] Rp| Reo|—2 RXD Vi —1 o o—2- A0 voc 299 L1965 o
/ TXD0 3 4_CTSO ADL 2| D0 (TS NTE 21 3 S 7
[TCA8S VAXZ32A clis TR5 O S—F R A 3| EXME T 0 23 24 TNT1
u18 véc anD 7 = A =N v 75 26 G\D
RXDO__1 80 ap~— 92 210 A 5]a% SN P10
b 2] ROVCC — 1o c19 \S4 e 5 bI5 T HDRD26
P11 3| 'FF Bl % Rrso V- 1 2 AD6 7 4 REF+
DE A sTO C—5 AD6 REF+
X0 4 5 [TXT3 S S crst AD7 8| A% FEE* M3 g
D G\D RXDL 5 5 RTS1 Al 9] Ao REF 12 ADIO ul4
[TCA85 VOFE 1 op voo |24 VRAM 7 = 0] A%8 AL0 11 ADe T3 17 vel8 VB
IRIC 2| ee V& [23 ap~ 52 S0 vee T 2] ¥YBITvee
Us 3 22 S TLC2543 T4 3 6 _GND
| NC X1 © LD GHoGb
MAX691 VvCC_ 4| N E e 22X P2543 _41po val—S2 VA
VBAT 1 < 6 RST BLE 5] g oSt |20/ RsT +vi1 M2 2
VRAM 2| VB RST M5 TRsT 9 0 ITD 32 4 CTS [TCI44
21vo /RsT] NC Do 2 220 O - C1iaaes
V\DJS 7] YCC WO ')I\gsoo g A NC 77— 72 93
= 5| GND CEl H5TRAM 9| NC NC 5 p1 ap_ 92 910-
—21BoN CEO 2 DL 5
—&l/i vor (AL VD A3 A3 D2 D2 +
A el T H5 rrRoIL] M3, B2 [1a s W[TWE75| +12v 4 1| g o
5] 9 PFI VOFE 1 2 G\ 2] 3 TVR Voo L |3 lveat RTS cTs
—81Gss PRI o G /W v pes 12345 ~ B AT
j3 HORD2 5 72423 G\D : cs 1M BTAL
2o o DRD22 = T 248" 34 112 12v VOFE e 8 voc
L1 /RD__1 g +
voc 1K R5 AT H 2] R0 VeC 93w Voo 2] 29 VoS 7 an
U7 vee TXD 3 22 DO LX1 vee 3|4 sa 617
LED [VR 1]14 vwo 4 X0 D0 o1 ol 1N5817 D 7| {3s Soa [5 PI5
TvWR] 2]+ (13 /cs6 Mol 5 20 o2 DL
3] 1Y 6AIT s Ao 6] V! D2 15 240045
2A 6Y 5 2 D3
[VR2_ 415y gafEl JRDL AL 71 o4 |22
/ RD 5 3A 5Y 0 _/RD2 BLE 8 A0 D5 7 D5 H4 STE/ TERN
TROL 61 30 3X TIN5 Xa_— 9149 e [1e EV RN 2 _G\D L2 _
€ A FARIDY INT5 X3 10153 2 15 or "DRD2 +\ +12V Title
RST 111 12 Bl [Ia[SCC RisVeC INSBI7P SERI AL DRI VE
7AHACLA 12| D / 3 /1 MSM_Q
D /1 NT 10K 10UF35V Si ze |[Docunment Numnber
5 502691 B SD- MAN. SCH
Dat e: June 10, 2002][Sheet 1 of

R12 RXD- D3 DIR2 7Rz [7 [VR
eX) oA RES [RXD* XTAL2 D2 _D4 | D2 DTRY DTR3 | [TRDZ S/-B22
ot e Y] Ve XG D XD o D1 = D1 OT R [TPPSI PP
Voo Go c2p —to = Do DT BT [rorr o/ U2
aND TXD- 20 D7 DI BTRG | [JURS a8
xé TXG?IB ;; ;; n 5 6D VRXQ DT R7] [TURE > s
LI NKLED| ee RIS R6 | RO D_% DIRS | o2 >TURG
LANLED | Yee fon3 - A >7_: 82
SRR EERE G R R R V22 TNTE TS| [Tor S LU
6/6/6/66 0 8(7|7|7|7|7|7 7 6l6[6/6l6 1 N TS
98765L4l321 0987654321098765L4(L321 LN Z bsRe
LAX T B0RBREOGK Xa0B8BFFPPEEL c NCRRGDDDDDDDD! VRRONN I'NT. 3 [
DDDDDDDDI YRRCNN 7| [DSRe SR
EO ~ NDNSDDDNDDND-'+- +- +1PS —1 765432 10NCXI DCCNC 82— —2{ NCCBI XN765432 T0ONCXI BCChe (59 I NT 1] [DSra SR8
GND 11 acneP DDD - +DD- +DD 2 | TCDDD psrp p22 DSR5 __ 21 NG AAAD TCDDD pgrp p22 DSR9 1 NTQ> 51 B8R DS%
2| ees DSRS_ 3] s crop P58 TCTS5 DSRS 3] pera s Crep bo8 _CTs9 Sene<DS
—3] TIs2 4 57 DTl CIS 57 DT D S DSR?
—31EEcs == BTRD p2i—20 T CTSA BTRD p2i—20 D7 o7 > DR SERY
—5 EESK Ncomm OND "55—RTSB VT DTRA S0 [55 RTS: ESR B
a6 EEXO RTSZ 7, RISDDEITNTD RIS6 Voo RTSD D54 NT D4 SR
7] EED [NTA 89 INTD Fes7TURs TNTE 89 R1oh INTD 3T Uro D3
£+ CHI PSEL CSD P23 2 I NTA CSD P23 2
8 TUR2 TXD 22 _TX5 TURG 9 csa D 22 T D2 >
voc 9] S\P ™ 51 TRD? TX6 10 51 TRO? DL
) VoD o 11 | RPS5Txa Twee ii] A | RPE5—T 0 3
G\D L TXC L1 1 ow TXC
11 TX3 12 JRas TURA Tx7_129 158 oS b29 7 URe dre
veciz] R2 7URB 13 28 INTC 7 UR7 13 28 INTG CKO
DACK2 L34 I NTC L34 csB I NTC fexe]
3 TNTB L4 27 RIS4 TNIE L4 27 RTS8 A3
L3 | RTSC P4 INTB RTSC P4 23
VoS4 RTS3 15 26 VOO RIS7 15 26 Vo A2
DACKL VCC |48 3 RTSB VCC |48 —A2
5 GD_16 oveC (25 DT &b 169 KIS LS (25 DrRe AL
VCC 16 | DT 7 CTse h34_CTIs DIR7 17] OrRe CTsC b44_CTs8 BLE
7] DAGKO CTS3 18 23 DSR4 CTS7 18 23 _DSR8 /89
—L! csaur RT DSRC CTSB c RT DSRC 189
G\ND 18 57 DS XX NG 42 DSR7 DSRB K XX NG 42 veo
5 D15 R RRRGRRC 21 ReRB cRRS RRRGRRC NC 4T~ D
20 D14 — XENAAAXXSDDNXI DNNC —— ——— NCNNDI XENAAAXXSDDNXI DN Vot
291 D13 BLC21012FYvyDccce CCBBBLC21012TYYDCCCC St
D12 I 00
uecazl Unh =T E Al6 |23 BE 2R 16C754 97 o0, 16C754
231 607 poMIMONSSNE L aanaanaffER Ara 22 6 5
25 D10 98RD210663E01 2345678901 H2 A13 21 e <) 922 S o33 1
7 422 21 115
2|2|2|2|3|3|3|3|3|3]3| 33| 3|4l 4|4l a| a| a| a| a| 4| 4] 5 €S8900 4 R 520 2 & T19 117
6/7(8([o[1]23]4(5(6|718{310]1]2[2|4|5/6] 78| 9|, vec S O
a9 Seuyakl D | TROY 018 S STIrTer
VCC Ve | RRDY 2 S 815123
INT4 | Voo G\ |voc|ab RST 2ald"5 315158
BLE X6 2
ALl (a2 J7 — /RTS5 1 2 /RTS4 0 5 101
w23 I NTE VCC XH 3 2 S aTTXod 02 O_g 03
RO 1 | NTE TRXD5 5 6/ RXD4 04 05
RC 21113 I NTG I NT7 rcrss 73 8T8 /cisa D O3
[mor 3 — &b 2 S 10 o To6 22 81107
13 &8 2(1 O O3 O &
1 7 us2 /RTS3 11 2 TRIS2
—2IneNe 3|2{1/0[o o o—
0. 1UF 5] NSNS T8 133 Q14 TTxee
Tx 614 of 11 c50 [BXD3 15 5 o218 [RXD?
TC A s INTH 4| b)Y Y9 [18 InTe TSz i7 g 8 /CTS2 D3 D4
[=812 & uss Voo TTROVE | | 2 Pl 3 150 S0 G 5
c25 1Mo vec 8 TRROVIE | | & % 2 IR0 21 2 S o7 TRiss oL 06
0. 1UF ST701 2| ROV 7/ rxpa TTROYV 7] | 2 el 1 TIXD9 23 24 TTX 0 5}
10BT 3 pp A[6 [TXD4 [RROYE] |7 oo 0 JRXD9 25 26/ RXDS RST Ve
R7 2] oF a5 [008 7CTS9 27 3 Q28 /Ciss alalalalalalslalsl s
RAD RxD+ Q29 50 _GHD Slal7(elsla32(Tlofe wos
AL [TCA85 . levep /RTS7 31 32 TRIS6
: o[dif3s 1eveP TTXDI33 34 T TX ———
v+ vee L3 R1O I NT! NTA [RXD7_35 36 /RXI [VR_ 40|\ SRPRONPDRDV | 128 117
cz7 PR LI NKLED TXD- an| | [NTB [CTS7 37 o & 38 /CIS6 07 41 by T Dpig [27 116
680 24 9 168PF LNT 3P 5 oA GD 06 421 pos p15 [28 T15
OND4 gVGC 4 An RIL RO > P05 P14 |52
LANLED TXD+ Trx+ HDRD40 0444 ;03 P13 [2 3
V- LED 680 24.9 FORDI0 03_; Ne NC %‘ 12
w4 Yoo u26 Voo c7+ w28 Voo u30 oo cli+ 023 Fos P2 21Tl
3o whfeo 21 S0 WHen od S0 Wehten 27 EHor GHEGe o e e Flo 2319
= + = '+ = '+ = =
&3] 4. P8i RS2 <3 o3| & AR[AiTRTs - o3| F3[IiTrise B a3 ¢y P[IA Riss cli IR _61)pp /G, P PPPPP LIS ITE 122
G+ 4| Sy mir 13 /Cris2 os-| G 4l & mpo A3 /CTsa o+ Clo+ 4| 57 pir 13 /CTS6 Co- Cl2+ 4| &, mir A3 [CIsS8 Cla+ CNAAZN22222
& 52 RUMoerss Ger o 5| 2F R corw <o 5] 2t RUMocrss crox ci2- 5| &2* RN crss PPl 8255
o V- T [SETS2 Y S V- T [RL RIS C3 Yoo Ve T RTs6 Voo V- 11 AL RTS8 C3 1l1lalal1laf1l1 PPI S
TTX02 7| Yo 151 [T X2 C3 TTXOA 7| Yo 15 [10TXa Ce- TTX06 7 Yo 151 [10TX6 C3 TTXB 7| Vo 151 [10TX8 Cl2 lelolof R
IRXD2 8| 5" roo |2 RX2 - LIRXD4 8| p5” oo |2 RX4 LRXD6 8 | 05" rool—2 RX6 E IRXD8 8| 5" Rool—2 RX8 JP_FgN) |2§1
NAXZ3ZA VAXZ3ZA VAXZ3ZA VAXZ32A ~AL 124
u25 vee 7 Voo c15+ 9 Voo Us1 Yoo clo+ BLE 125
ast 1l vecH g?GND as: cst 1l vacH g?GND o are 1o vool Q‘é% c17+ cer 1l veclHe 9GND o 127] 126
ci3— 3|4 9802 TrIss o4 c5- 3| 4 GB[1a TRiss cis ci7-_3| o GBraTRIs? o4 clo- 3|4 9B[7a /Rise clo TERN STE
2| &, faOriarcrss ca] Clew 4| &, P13 /crss Cler Cier al & HPrI3rcrsr ard cor 4| &, O3 rcrse Sot
— 5|2 RlUMScrss Clar cie 5| &f R cors cis- 5| 2" RLriocrsy Cis+ co- 52" RLre crs Title
V- SIvo T (A1 RIS3 V2 6l v: Tir [ZL RIS & y___ 61y T AL RISt V-6l Ti [L1L RTS9 A TI 16C754 UARTS
[TXDB 7| 120 121 0 _TX3 (o2 [TXD5 71 155 12 0 _TX5 Cl6 [TXDT 7 150 T2 0 TX7 4 [TXD9 7| 155 T2 0_TX9 C20 _
/ RXD3 8 Rl R2O 9 RX3 Cl4 / RXD5 8 Rl R20 9 RX5 / RXD7 8 oI R2O 9 RX7 C18] / RXD9 8 Rl R2O | 9 RX9 Si ze|Docunent Nunber REV|
VAXZ3ZA VAXZ3ZA VAXZ32A VAXZ3ZA B Sb. 2
Dat e: Cct ober 29, 2001 [Sheet 2 of 2

