

T-Box™

Low Cost Temperature Data acquisition and Control

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

T-Box, R-Box, RB, R-Engine, and ACTF are trademarks of TERN, Inc.
Am186ES is a trademark of Advanced Micro Devices, Inc.

Paradigm C/C++ is a trademark of Paradigm Systems.
Microsoft, Windows, Windows98/2000/ME/NT/XP are trademarks of Microsoft

Corporation.
IBM is a trademark of International Business Machines Corporation.

Version 1.00

April 27, 2009

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1993-2009
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

T-Box™ Chapter 1: Introduction

1-1

Chapter 1: Introduction
1.1 Functional Description
Boxed in an extruded aluminum enclosure, the T-Box™ (TB) is designed as a low cost, portable temperature data
logger, or an industrial embedded controller.

The T-Box™ (TB) is ideal for distributed temperature sampling. Each board has an on-board temperature sensor
and can acquire, process, and record readings from over 100 additional low cost external Temperature IC Sensors
(TS). Each group of 8 IC-Sensors can be addressed and read remotely over two I/O lines. The IC-Sensor has
0.5C accuracy over the temperature range of -40C to +125C. Typical applications for the T-Box™ (TB) include
cooler/freezer temperature monitoring, recording, and reporting for food safety applications. The TB can also
easily be used in building heating and cooling system control.

In addition to processing Temperature IC Sensors (TS), the T-Box also integrates 24-bit ADCs, RS232/485 serial,
Solenoid Drivers, TCP/UDP over Ethernet, ZigBee Wireless, 16x2 lines LCD and CompactFlash for mass
temperature data storage. The TB is C/C++ programmable with TERN’s development platform. Ready to use demo
firmware can be loaded into the on-board Flash memory.

A sigma-delta 24-bit ADCs (LTC2448) can be installed to provide 8 ch. differential or 16 ch. single-ended input
channels. Variable speed/resolution settings (up to 5 KHz) can be configured. The LTC2448 works well directly
with strain gages, current shunts, RTDs, resistive sensors, or 4-20mA current loop sensors, or thermocouples in
differential mode.
Mass data stored on a local CF card (up to 2 GB) can be easily transferred to a PC. FAT16 file system libraries are
provided with the development system.
A real time clock (RTC72423) can provide clock/calendar for time stamp usage. A UART (SCC2691) supports
RS232, or RS485, or ZigBee wireless. A CPU internal UART is used as RS232 DEBUG port. Three internal
timer/counters can be used to count or time external events, or to generate PWM outputs. An optional 10/100-
baseT Ethernet module or a slave USB port can be installed.
Fourteen PIO lines can be used to drive Temperature IC Sensors (TS), or can be buffered by solenoid drivers.
These solenoid drivers are capable of sinking 350 mA at 50V per line, and they can directly drive solenoids, relays,
or lights. A 11 ch. 12-bit ADC(TLC2543) can be installed.
The TB can use 8.5V to 12V DC power supply with default linear regulator, or up to 30V DC with switching
regulator without generating excessive heat, or uses as low as 5.1V-9V battery with low drop regulator (TPS765)
installed.
A 16x2 line character LCD can be installed. The TB is designed to fit in an aluminum extrusion enclosure.

 T-Box™ Chapter 1: Introduction

1-2

TB with CF, ZigBee and USB.

TB Aluminum Extrusion Enclosure with LCD, End plate for CF+Ethernet

T-Box™ Chapter 1: Introduction

1-3

TB End-PCB with 40 Screw Terminals and 2 Pushbottoms

 T-Box™ Chapter 1: Introduction

1-4

Figure 1.1 Functional block diagram of the TB

Features:
* 3.0 x 3.6”, 50 µA standby, 200 mA, 5-24V DC power
* C/C++ programmable, Ready to use Demo firmware
* Supports temperature IC-Sensors with 0.5C accuracy
* 16 ch. 24-bit ADC supporting Thermocouples
* 11 ch. 12-bit ADC, or TTL I/Os, or Solenoid drivers
* CompactFlash with FAT file system support
* 16x2 line LCD, Real time clock, timer/counters, PWM output
* UART with RS-232, or RS485, or ZigBee wireless support
* 10/100-baseT Ethernet module or a slave USB port

186
16-bit CPU

80x86
Compatible

16-Bit Timers (3)
Ext. Interrupts (8)

ACTF
FLASH
256 KW

32 I/O lines 16-bit Data
Bus

Serial Ports (1)

RS232
Driver

U21

DMA(2)

SER 0

RS485
Driver

U23

H2 Ser0 (DEBUG)

H3 Ser1

SC2691
U5

J3

H3 Ser1

MAX691
Watchdog Timer

U6

EEPROM
U7 SRAM

256 KW

Real-Time
Clock

U8

Switching
Regulator

U0

VOFF

P2543
U13
- or -

ULN2003
High Voltage Drivers

U22 & U24
- or -

TTL I/O’s
U22 & U24

TMP75
Temperature

Sensor

LTC2448
16ch 24bit ADC

U11

Compact
Flash

U4

Ethernet
I2Chip
- or -

USB Slave
J2

ZigBee
Wireless

U20

T-Box™ Chapter 1: Introduction

1-5

1.2 Physical Description

Below shows the physical description of the TB.

ULN2003
High Voltage Drivers

ZigBee
Wireless

LTC2448
16ch 24bit ADC

U11

Compact
Flash

USB
Slave

TMP75
Temperature

Sensor

TTL I/O’s
Serial Port 0
(Debug Port)

Serial Port 1

Ethernet
I2Chip

LTC2448
16ch 24bit ADC

U11

Step-2 Jumper
J1 Pins 1 & 2

 T-Box™ Chapter 1: Introduction

1-6

1.3 Programming Overview
An “ACTF Boot Loader” resides in the top protected sector of the 256KW on-board flash chip (29F400). At power-
on/reset, the ACTF Utility will check the STEP 2 jumper (J1 pins 1 & 2). If the STEP 2 jumper is installed, the
“jump address” located in the on-board serial EEPROM will be read out and the CPU will jump to that address for
immediate execution. A DEBUG kernel (already pre-programmed at the factory) can be downloaded and
programmed into the flash starting at address 0xFA000. Using the ACTF Utility, the “GFA000 <enter>” command
will set the jump address to 0xFA000. The command will also run the DEBUG kernel, preparing the TB for
communication with the Paradigm C/C++ IDE for downloading and debugging applications. The following
diagrams show the procedure for programming the TB. Steps include preparing the TB for debugging, debugging
the TB, standalone field test, and production.

Figure 1.2 Flow Chart of ACTF Operation

By default, the DEBUG kernel has been loaded into the ACTF flash at the factory for your
convenience. You may proceed directly to STEP 1: Debugging.

Preparation for Debugging:

 This had already been done at the factory! You may proceed to STEP 1:
Debugging. This step is only required if you have completed STEP 3 and would like to
return to STEP 1.

● Connect the TB (SER0, H2) to PC (COMx) via serial debug cable provided with the EV-P/DV-P. Using the
Windows “Hyper Terminal”, create a serial link based on 19,200, 8 bits, 1 stop, no parity.
● Power on the TB WITHOUT the STEP 2 jumper installed (J1 pins 1 & 2). The ACTF text MENU should
be sent out via serial port to “Hyper Terminal”.
● Use the “D <enter>” command to initiate download. Select Transfer -> Send File, and select
\tern\186\rom\re\l_debug.hex. Use the “G04000 <enter>” command to execute this script.
● Select Transfer -> Send File to select \tern\186\rom\re\re40_115. This is the debug kernel. Use the
“GFA000 <enter>” command to set jump address and execute the debug kernel. The LED will blink twice
and remain on.
● Set the STEP 2 jumper (J1 pins 1 & 2). The TB is now ready to communicate with the Paradigm C/C++
IDE for debugging and application development.

Power-On / Reset

Step 2 Jumper Set ?

STEP 1
ACTF Menu sent out through

SER0 (19,200, N, 8, 1)

STEP 2
Go to application code CS:IP

CS:IP in EEPROM:
0x10 = CS high byte
0x11 = CS low byte
0x12 = IP high byte
0x13 = IP low byte

NO

YES

T-Box™ Chapter 1: Introduction

1-7

There is no ROM socket on the TB. The user’s application program must reside in the SRAM (starting at address
of 0x08000 by default based on \tern\186\config\186.cfg) for debugging in STEP 1, reside in the battery-backed
SRAM for standalone field testing in STEP 2, and finally be programmed into the on-board flash for a complete
product. For production, the user must produce an ACTF-downloadable HEX file for the application based on the
DV-P Kit. From the ACTF Utility, use the command “G80000 <enter>” to point to the user’s application code in
the flash. The STEP 2 jumper must installed for every production-version board.

Step 1: Debugging:

● Launch the Paradigm C/C++ IDE. Select File -> Open. Chose the project file \tern\186\samples\TB\TB.ide.
● Use samples within the “TB.ide” project to create application. Download, run, and debug application.

Step 2: Standalone Field Test:

● After completing STEP 1, by default, your application resides in the battery-backed SRAM starting at
address 0x08000.
● Remove STEP 2 jumper and setup Hyper Terminal link with ST. (Open Windows “Hyper Terminal”
program. Set for 19,200, 8 bits, 1 stop, no parity).
● At power-on, ACTF menu will be sent to Hyper Terminal. Use the “G08000 <enter>” command to execute
application. Set STEP 2 jumper (J3 pins 1&3 or H1 pins 1&2). At every power-on/reset, application at
0x08000 will execute.
● Complete STANDALONE FIELD TEST. If return to STEP 1 is required, remove STEP 2 jumper and use
the “GFA000 <enter>” command to run debug kernel to prepare to setup for communication with Paradigm
C/C++ IDE.

Step 3: Production:

The DV-P Kit is required for this step. If you do not have the DV-P Kit, visit
http://tern.com/devkit.htm for upgrade details.

● Refer to Section 3.3 of the ACTF technical manual, found in the \tern_docs\manuals directory. Here you
will find details on generating an ACTF downloadable HEX file based upon you application.
● Remove the STEP 2 jumper and create serial link using Hyper Terminal (19,200, N, 8, 1). At power-
on/reset, you will see the ACTF menu at Hyper Terminal. Use the “D <enter>” command to initiate download
process. Select Transfers -> Send File, and select \tern\186\rom\re\l_29f40r.hex.
● This file will erase the flash and prepare the flash to accept ACTF downloadable application HEX file. Use
the “G04000 <enter>” command to run script. Flash will be ready for application.
● Select Transfer -> Send File to select your ACTF downloadable application HEX file. Upon completion,
use the “G80000 <enter>” command to execute application. This command also sets the jump address to
point you application in flash. Set STEP 2 jumper (J1 pins 1 & 2). At power-on/reset application will execute.

 T-Box™ Chapter 1: Introduction

1-8

1.4 Minimum Requirements for TB System Development
Minimum Hardware Requirements

 PC or PC-compatible computer with serial COMx port that supports 115,200 baud

 TB controller

 Debug Serial Cable (RS232; DB9 connector for PC COM port and IDE 5x2 connector for controller)

 Center Negative Wall Transformer

Minimum Software Requirements

 TERN EV-P installation CD-ROM and a PC running: Windows 95/98/2000/ME/NT/XP

With the EV-P, you can program and debug the TB in Step One and Step Two, but you cannot run Step Three. To
generate an application Flash File and complete a project, the development kit, DV-P, is required. The EV-P kit
can be upgraded to the DV-P Kit. See http://tern.com/devkit.htm for details.

T-Box™ Chapter 2: Installation

2-1

Chapter 2: Installation
2.1 Software Installation
Please refer to the “software_kit.pdf” technical manual on the TERN installation CD, under
tern_docs\manual\software_kit.pdf, for information on installing software.

2.2 Hardware Installation

Hardware installation consists primarily of connecting the microcontroller to your PC.

2.2.1 Connecting the TB to the PC

Fig 2.1, 2.2 and 2.3 show the location of the debug serial port and power jack. The TB is linked to the PC
via a serial cable (DB9-IDE) which is supplied with TERN’s EV-P / DV-P Kits.

The TB communicates through SER0 by default. Install the 5x2 IDC connector on the SER0 H2 5x1 pin
header. IMPORTANT: Note that the red side of the cable must point to pin 1 of the H2 header and the
pins connect to the top row of the 5x2 IDC connector. The DB9 connector should be connected to one of
your PC's COM Ports (COM1 or COM2).

Overview
 Connect PC-IDE serial cable:

For debugging (STEP 1), place IDE connector on SER0 with red
edge of cable at pin 1. This DEBUG cable is a 10-pin IDE to
DB9 cable, made by TERN.

 Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
using power jack adapter supplied with EV-P/DV-P Kit

Chapter 2: Installation T-Box™

2-2

2.2.2 Powering-on the TB
By factory default setting:
1) The RED STEP2 Jumper is installed. (Default setting in factory)
2) The DEBUG kernel is pre-loaded into the on-board flash starting at address of 0xFA000. (Default
setting in factory)
3) The EEPROM is set to jump address of 0xFA000. (Default setting in factory)

Connect +9-12V DC to the DC power terminal. The screw terminal at the corner of the board is positive
12V input and the other terminal is GND (see figure for details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be used to connect the output of the power jack adapter
and the TB. Note that the output of the power jack adapter is center negative.
The on-board LED should blink twice and remain on, indicating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for programming and debugging.

Figure 2.1 Locations of STEP2 Jumper, LED, Power input and DEBUG port

Power Input
(Center Negative Plug)

Step 2 Jumper

Serial Port 0
(Debug Port)

T-Box™ Chapter 2: Installation

2-3

Figure 2.2 DEBUG port for T-Box with enclosure.

Chapter 2: Installation T-Box™

2-4

Figure 2.3 Power connection for T-Box with enclosure.

T-Box™ Chapter 3: Hardware

 3-1

Chapter 3: Hardware

3.1 Am186ER – Introduction
The Am186ER is based on the industry-standard x86 architecture. The Am186ER controllers are higher-
performance, more integrated versions of the 80C188 microprocessors. In addition, the Am186ER has
new peripherals. The on-chip system interface logic can minimize total system cost. The Am186ER has
one asynchronous serial port, one synchronous serial port, 32 PIOs, a watchdog timer, additional
interrupt pins, DMA to and from serial ports, a 16-bit reset configuration register, and enhanced chip-
select functionality.

In addition, the Am186ER has 32KB of internal volatile RAM. This provides the user with access to high
speed zero wait-state memory. In some instances, users can operate the TB without external SRAM,
relying only on the Am186ER’s internal RAM.

3.2 Am186ER – Features

Clock
Due to its integrated clock generation circuitry, the Am186ER microcontroller allows the use of a times-
four crystal frequency. The design achieves 40 MHz CPU operation, while using a 10 MHz crystal.

External Interrupts and Schmitt Trigger Input Buffer
There are six external interrupts: INT0-INT4 and NMI.

/INT0, used by SC26C91 UART.
/INT1, J3 pin 35, free for application use
INT2, Drives C07 output on ULN2003 (U24), J3 pin 26 when resistor pack is installed in U24
INT3, tied to C12, J3 pin 21, through 74HC14 inverter
/INT4, used by Ethernet I2Chip
NMI, tied to /PFO of MAX691 supervisor chip through 74HC14 inverter.

Five external interrupt inputs, /INT0-1, /INT3-4, and NMI are buffered by Schmitt-trigger inverters (U9,
74HC14) in order to increase noise immunity and transform slowly changing input signals to fast
changing and jitter-free signals. As a result of this buffering, these pins are capable of only acting as
input.

These buffered external interrupt inputs require a falling edge (HIGH-to-LOW) to generate an interrupt.

Chapter 3: Hardware T-Box™

3-2

Figure 3.1 External interrupt inputs

Remember that /INT0 is used by the on board UART. /INT0 should not be used by application if the
SCC2691 (U5) is installed.

The TB uses vector interrupt functions to respond to external interrupts. Refer to the Am186ER User’s
manual for information about interrupt vectors.

Asynchronous Serial Port
The Am186ER CPU has one asynchronous serial channel. It supports the following:

 Full-duplex operation
 7-bit, and 8-bit data transfers
 Odd, even, and no parity
 One or two stop bits
 Error detection
 Hardware flow control
 DMA transfers to and from serial port

U9D
/INT1=J3.3 INT1 =U2.55

U9C

/INT0=U5.1 INT0 =U2.56

C12=J3.2

/INT4=JP1. INT4=U2.52

INT3=U2.53
U9A

U9B

U9E
/PFO=U6.1 NMI=U2.47

T-Box™ Chapter 3: Hardware

 3-3

 Transmit and receive interrupts
 Maximum baud rate of 1/16 of the CPU clock speed
 Independent baud rate generators

The software drivers for the asynch. serial port implement a ring-buffered DMA receiving and ring-
buffered interrupt transmitting arrangement. See the sample file s0_echo.c

An external SCC26C91 UART is located in position U5. For more information about the external UART
SCC26C91, please refer to the section in this manual on the SCC26C91, or the data sheet. From the root
directory of the installation CD, \tern_docs\parts\scc26c91.pdf

Timer Control Unit
The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to four external pins:
Timer0 output = P10 = U22.2
Timer0 input = P11 = U24.6
Timer1 output = P1 = Beeper
Timer1 input = P0 = U24.5

These two timers can be used to count or time external events, or they can generate non-repetitive or
variable-duty-cycle waveforms.

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or
time-delay applications. It can also prescale timer 0 and timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz for the Am186ER since each timer is
serviced once every fourth CPU clock cycle. Timer inputs take up to six clock cycles to respond to clock
or gate events. See the sample programs timer0.c and ae_cnt0.c in the \186\samples\ae directory.

PWM outputs
The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both
Timer0 and Timer1 have secondary maximum count registers for variable duty cycle output. Using both
the primary and secondary maximum count registers lets the timer alternate between two maximum
values.

MAX. COUNT A

MAX. COUNT B

Power-save Mode
The TB is an ideal core module for low power consumption applications. The power-save mode of the
Am186ER reduces power consumption and heat dissipation, thereby extending battery life in portable

Chapter 3: Hardware T-Box™

3-4

systems. In power-save mode, operation of the CPU and internal peripherals continues at a slower clock
frequency. When an interrupt occurs, it automatically returns to its normal operating frequency.
The RTC72423 on the T-Box has a VOFF signal routed to J6 pin 2. VOFF is controlled by the
battery-backed RTC72423. The VOFF signal can be programmed by software to be in tri-state or to be
active low. The RTC72423 can be programmed in interrupt mode to drive the VOFF pin at 1/64 second, 1
second 1 minute, or 1 hour intervals. The user can use the VOFF line to control an external switching
power supply that turns the power supply on/off. More details are available in the sample file poweroff.c
in the 186\samples\ae sub-directory..

3.3 Am186ER PIO lines
The Am186ER has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a
user-programmable input or output signal, if the normal shared function is not needed. A PIO line can be
configured to operate as an input or output with or without a weak pull-up or pull-down, or as an open-
drain output. A pin’s behavior, either pull-up or pull-down, is pre-determined and shown in the table
below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by
TERN libraries reconfigures some of these pins as needed for specific on-board usage, as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed below in Table
3.1.

T-Box™ Chapter 3: Hardware

 3-5

PIO Function Power-On/Reset
status

TB Pin No. TB Initial

after ae_init();

function call

P0 Timer1 in Input with pull-up U24 pin 5 Input with pull-up
P1 Timer1 out Input with pull-down H5 pin 1 beeper Input with external pull-up
P2 /PCS6/A2 Input with pull-up U24 pin 3 /PCS6
P3 /PCS5/A1 Input with pull-up U24 pin 4 /PCS5
P4 DT/R Normal J1 pin 1 Input with pull-up: Step 2
P5 /DEN/DS Normal U24 pin 2, U13 pin 19 Input with pull-up
P6 SRDY Normal U24 pin 1 Input with external pull-up*
P7 A17 Normal N/A A17
P8 A18 Normal N/A A18
P9 A19 Normal U11 pin 34, U13 pin 17 Input with pull-up
P10 Timer0 out Input with pull-down U22 pin 2 Input with external pull-up
P11 Timer0 in Input with pull-up U24 pin 6 Input with pull-up
P12 DRQ0 Input with pull-up U22 pin 3 Output
P13 DRQ1 Input with pull-up U11 pin 2 Input with pull-up
P14 /MCS0 Input with pull-up JP1 pin 5 Input with pull-up
P15 /MCS1 Input with pull-up U22 pin 4 Input with pull-up
P16 /PCS0 Input with pull-up U22 pin 5 /PCS0
P17 /PCS1 Input with pull-up U19 pin 4 /PCS1 for U19 HC138
P18 /PCS2 Input with pull-up J3 pin 31, U15 pin 1 Input with external pull-up
P19 /PCS3 Input with pull-up U22 pin 6 Input with external pull-up
P20 SCLK Input with pull-up U11 pin 38, U13 pin 18 Input with pull-up
P21 SDATA Input with pull-up U11 pin 37, U13 pin 16 Input with external pull-up
P22 SDEN0 Input with pull-down U7 pin 6 Output
P23 SDEN1 Input with pull-down U11 pin 36 Input with pull-down
P24 /MCS2 Input with pull-up J3 pin 33, U15 pin 2 Input with pull-up
P25 /MCS3 Input with pull-up U24 pin 1, U13 pin 15 Input with pull-up
P26 UZI Input with pull-up U22 pin 7 Input with external pull-up*
P27 TxD Input with pull-up N/A TxD0
P28 RxD Input with pull-up N/A RxD0
P29 S6/CLKSEL1 Input with pull-up U7 pin 5, J9 pin 2 Output*
P30 INT4 Input with pull-up JP1 pin 2 Input with external pull-up
P31 INT2 Input with pull-up U24 pin 7 Input with pull-up
* Note: P6, P26 and P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

Chapter 3: Hardware T-Box™

3-6

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION.
The settings are as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION
0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

TB initialization on PIO pins in ae_init() is listed below:
outport(0xff78,0xc7bc); // PDIR1: TxD, RxD, PCS0, PCS1, P29& P22 Output
outport(0xff76,0x2040); // PIOM1
outport(0xff72,0xee73); // PDIR0: A18, A17, PCS6, PCS5, P12 Output
outport(0xff70,0x1040); // PIOM0

The C function in the library re_lib can be used to initialize PIO pins.
void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0-3, see the table above.

Example: pio_init(12, 2); will set P12 as output
 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pin is in input mode,

Some of the I/O lines are used by the TB system for on-board components. We suggest that you not use
these lines unless you are sure that you are not interfering with the operation of such components (i.e., if
the component is not installed).

Signal Pin Function
P4 J1.1 Step Two jumper
P5 U24.2 U13 P2543 EOC
P7 A17 Upper address line – Never use by application
P8 A18 Upper address line – Never use by application
P13 U11.2 U11 LTC2448 Busy
P14 JP1.5 Chip select for Ethernet module
P17 U19.4 Chip select for U18 HC138
P18 J3.31 Data pin for U15 TMP75
P20** SCLK Synchronous Clock for U11 and U13
P21** SDAT Serial Interface for U11 and U13
P22 U7.6 Clock for EEPROM
P23 U11.36 Chip select for U11 LTC2448
P24 J3.33 Clock pin for TMP75
P25 U24.1 Chip select for U13 P2543
P27 TxD0 Transmit line for RS232 debug port
P28 RxD0 Receive line for RS232 debug port
P29 J9.2 Data pin for EEPROM , watch dog timer pin
P30 INT4 Interrupt for Ethernet module

T-Box™ Chapter 3: Hardware

 3-7

Important Notes:

* The Am186ER CPU uses the P26 and the P29 lines to determine the system clock multiplier at
power-up or reset. The CPU has internal pull-ups on these lines to select the default multiplier of
four-times. It is critical that the user allow these lines to remain high during power-up or reset.
Failure to do so will result in undesirable operation. In addition, P6 must also be allowed high
duing power-on or reset.
** The SCLK and SDAT lines are the synchronous serial port on the Am186ER. The TLC2448
and P2543 ADC’s use these lines. The user is free to use the SCLK and SDAT lines for their
application only if the ADCs are disabled first. This is needed so as not to have more than one
device trying to occupy the SDAT line simultaneously.

Table 3.2 I/O lines used for on-board components

3.4 I/O Mapped Devices

I/O Space
External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port)
or outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address.
The external I/O space is 64K, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define
the I/O wait states from 0 to 15. The system clock is 100 ns for the Am186ER and the CPU clock is 25ns.
Details regarding this can be found in the Software chapter of this manual, and in the Am186ER User’s
Manual. Slower components, such as most LCD interfaces, might find the maximum programmable wait
state of 15 cycles still insufficient. Due to the high bus speed of the system, some components may need
to be attached to I/O pins directly.

For details regarding the chip select unit, please see Chapter 5 of the Am186ER User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Location Usage
0x0000-0x00ff /PCS0 U22 pin 5 = P16 USER
0x0100-0x01ff /PCS1 U19 pin 4 = P17 HC138
 0x0100-0x011f /RTC U8 pin 2 RTC 72423
 0x0120-0x013f /RTU U17 pin 4 USB Reset
 0x0140-0x015f /SC U5 pin 14 SCC2691
 0x0160-0x017f /RD2 U12 pin 19 HC244
 0x0180-0x019f /LH U25 pin 11 HC273
 0x01a0-0x01bf /RDU U17 pin16 USB Read
 0x01c0-0x01df WRU U17 pin 15 USB Write
 0x01e0-0x01ff /CF U4 Compact Flash
0x0200-0x02ff /PCS2 J3 pin 31 = P18 USER
0x0300-0x03ff /PCS3 U22 pin 6 = P19 USER
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 U24 pin 4 = P3 USER
0x0600-0x06ff /PCS6 U24 pin 3 = P2 USER

Chapter 3: Hardware T-Box™

3-8

To illustrate how to interface the TB with external I/O boards, a simple decoding circuit for interfacing to
an 82C55 parallel I/O chip is shown in Figure 3.2.

/WR

/RD

/SEL20

A0
A1

D0-D7

/CS

/WR

/RD

82C55

RST P00-P07

P10-P17

P20-P27

1

/PCS0

A7

6VCC

4

3
2

5

A5
A6 /SEL20

/SELF0
/SELC0
/SELA0
/SEL80
/SEL60
/SEL40

14
13
12
11
10
9
7

NC15

74HC138

C

A
B

G2A
G2B
G1

Y2
Y3
Y4
Y5
Y6
Y7

Y1
Y0

Figure 3.2 Interface the TB to external I/O devices

The function ae_init() by default initializes the /PCS0 line at base I/O address starting at 0x00. You
can read from the 82C55 with inportb(0x020) or write to the 82C55 with outportb(0x020,dat). The call
to inportb(0x020) will activate /PCS0, as well as putting the address 0x20 over the address bus. The
decoder will select the 82C55 based on address lines A5-7, and the data bus will be used to read the
appropriate data from the off-board component.

Real-time Clock RTC72423
If installed, the real-time clock RTC72423 (EPSON, U8) is mapped in the I/O address space 0x0100. It
must be backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or
rtc_rd().
It is also possible to configure the real-time clock to raise an output line attached to an external interrupt,
at 1/64 second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or
the VOFF signal can be used to turn on/off the controller using an external switching power supply. An
example of a program showing a similar application can be found in tern\186\samples\tb\poweroff.c

UART SCC2691
The UART SCC2691 (Signetics, U5) is mapped into the I/O address space at 0x0140. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an interrupt
control mechanism, programmable data format, selectable baud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a multi-
purpose
input/output including RTS and CTS mechanism.
Depending on the option selected at the time of purchase, the TB’s SCC2691 can be used as either an
RS232 port, an RS485 port or communicate directly with the XBee Pro Zigbee wireless module. When
configured as RS232, the SCC2691 TxD and RxD lines are connected to the on-board RS232 (U21)
driver. When configured for RS485, the TxD, RxD and MPO lines are connected to the on-board RS485
(U23) driver. If the Zigbee option was purchased for the TB, the TxD, RxD, MPI and MPO lines
communicate with the XBEE Pro module (U20).

T-Box™ Chapter 3: Hardware

 3-9

3.5 Other Devices
A number of other devices are also available on the TB. Some of these are optional, and might not be
installed on the particular controller you are using. For a discussion regarding the software interface for
these components, please see the Software chapter.

On-board Supervisor with Watchdog Timer
The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the TB has several functions:
watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-failure
warning. These will significantly improve system reliability.

Watchdog Timer
The watchdog timer is activated by setting a jumper on J9 of the TB. The watchdog timer provides a
means of verifying proper software execution. In the user's application program, calls to the function
hitwd() (a routine that toggles the P29 = WDI pin of the MAX691) should be arranged such that the WDI
pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the WDI pin is not accessed
within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the application program if something is wrong. After the TB
is reset, the WDO remains low until a transition occurs at the WDI pin of the MAX691. When controllers
are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

The Am186ER has an internal watchdog timer. This is disabled by default with ae_init().

Figure 3.3 Location of watchdog timer enable jumper

Watchdog jumper, J9.

Chapter 3: Hardware T-Box™

3-10

Battery Backup Protection
The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit
compares VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM and the real-time clock 72423 are backed up. In
normal use, the lithium battery should last about 3-5 years without external power being supplied. When
the external power is on, the battery-switch-over circuit will select the VCC to connect to the VRAM.

Power Fail Monitoring
The MAX691 and the NMI interrupt line can be used to monitor power supply. User configurable
resistors at locations R6 and R7 can be used to create a voltage divider across PFI, where the source
voltage is tied to +V. The input threshold for the PFI is rated a 1.3 volts. If PFI drops below this, the
MAX691 supervisor will assert /PFO, which will drive the NMI interrupt line. The use may program the
NMI ISR to take critical steps before complete power fail. See \tern\186\samples\ae\intx.c for details on
interrupts.

EEPROM
A serial EEPROM of 512 bytes (24C04) is installed in U7. The TB uses the P22=SCL (serial clock) and
P29=SDA (serial data) to interface with the EEPROM. The EEPROM can be used to store important data
such as a node address, calibration coefficients, and configuration codes. It typically has 1,000,000
erase/write cycles. The data retention is more than 40 years. EEPROM can be read and written by simply
calling the functions ee_rd() and ee_wr().

A range of lower addresses in the EEPROM is reserved for TERN use, 0x00 – 0x1F. The addresses 0x20
to 0x1FF are for user application.

12-bit ADC (P2543)
The P2543 is a 12-bit, switched-capacitor, successive-approximation, 11 channels, serial interface,
analog-to-digital converter. Four I/O lines interface the ADC: /CS=P25; CLK=SCLK; DIN=SDAT and
P5=EOC. The ADC digital data output communicates with a host through a serial tri-state output
(DOUT= SDAT). If
P25=/CS is low, the P2543 will have output on SDAT. If P25=/CS is high, the P2543 is disabled and
SDAT is free. The P2543 has an on-chip 14-channel multiplexer that can select any one of 11 inputs or
any one of three internal self-test voltages. The sample-and-hold function is automatic. At the end of
conversion, the end-of-conversion (EOC) output goes high to indicate the conversion is complete. P2543
features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and isolation of
analog circuitry from logic and supply noise. A switched-capacitor design allows low-error conversion
over the full operating temperature range. The analog input signal source impedance should be less than
50Ω and capable of slewing the analog input voltage into a 60 pf capacitor. By default, the P2543
reference is tied to VCC (+5V). A precision 5V or 2.5V reference can be installed in U10. Inputs to
P2543 are connected to signal C05 through C15 on header J3 (see schematics).

Important Note: P2543 inputs share lines with other devices on the TB

The 12-bit ADC inputs AD0-AD10 share lines C05-C13 with the high-voltage driver ULN2003 at U22
and a 10 Ohm resistor pack at U24. When using the P2543, shared lines must be configured correctly to
ensure proper analog readings and prevent conflict. When P2543 (U13) is installed along with
ULN2003 (U22) and the 10 Ohm resistor pack (U24), the following conditions must be met:

* P26 and P6 must be configured as output and set to high (5V) so C05 floats (HiZ)
* P0, P2, P3, P11, and P25 must be configured as input without pull-up
* INT2 must be disabled as an interrupt
* AD1 and AD8 cannot be used as an analog input

T-Box™ Chapter 3: Hardware

 3-11

* ALL INPUT VOLTAGES ON C05-C15 ARE LIMITED TO +5 VOLT MAXIMUM

For best results, remove any unused pins or entire chips at U22 and U24 to prevent conflicts.
The following table shows the various uses of signals C00-C15.

 P2543 (U13) ULN2003 (U22) 10Ω Resistor Pack (U24)
C00 P10
C01 P12
C02 P15
C03 P16
C04 P19
C05 AD0 P26 (output, high)
C06 AD1 (can’t use) P5 = P2543 EOC
C07 AD2 INT2 (disable interrupt)
C08 AD3 P11 (input, no pull-up)
C09 AD4 P0 (input, no pull-up)
C10 AD5 P3 (input, no pull-up)
C11 AD6 P2 (input, no pull-up)
C12 AD7
C13 AD8 (can’t use) P25 = P2543 /CS
C14* AD9 P6 (output, high)
C15 AD10

* C14 is used for LCD backlighting at header H0.

24-bit, 16-channel ADC(LTC2448)
A 24-bit LTC2448 sigma-delta ADC can be installed in U11. The LTC2448 chip offers 8 ch. differential
or 16 ch. single-ended input channels. Variable speed/resolution settings can be configured. A peak
single-channel output rate of 5 KHz can be achieved. The LTC2448 switches the analog input to a 2 pf
capacitor at 1.8MHz with an equivalent input resistance of 110K ohm. The ADC works well directly with
strain gages, current shunts, RTDs, resistive sensors, and 4-20mA current loop sensors. The ADC can
also work well directly with thermocouples in the differential mode. The TLC2448 can be referenced by
VCC, or a 5 or 2.5V precision reference with a internal temperature sensor can be installed in U10. Inputs
are routed directly to header J3 pins 2-18 = B00-B15 (see schematics).

High-Voltage, High-Current Drivers
The TB comes with seven channels of high-voltage/high-current drivers. The ULN2003A (U22) has high
voltage, high current Darlington transistor array, consisting of seven silicon NPN Darlington pairs on a
common monolithic substrate. All channels feature open-collector outputs for sinking 350 mA at 50V,
and integral protection diodes for driving inductive loads. Peak inrush currents of up to 500 mA sinking
are allowed.
These outputs may be paralleled to achieve high-load capability, although each driver has a maximum
continuous collector current rating of 350 mA at 50V. The maximum power dissipation allowed is 2.20 W
per chip at 25 degrees C (C). ULN2003 is a sinking driver, not a sourcing driver. An example of
typical application wiring is shown below.

Chapter 3: Hardware T-Box™

3-12

K

+12V

GND/SUB

GND/SUB

Power Supply

Solenoid

O1

ULN2003 TinyDrive

Figure 3.4 Drive inductive load with high voltage/current drivers.

Compact Flash Interface
By utilizing the compact flash interface on the TB, users can easily add widely used 50-pin CF standard
mass data storage cards to their embedded application via RS232, TTL I2C, or parallel interface. TERN
software supports Linear Block Address mode, 16-bit FAT flash file system, RS-232, TTL I2C or parallel
communication. Users can write/read files to/from the CompactFlash card. Users can also transfer files to
and from a PC via a Compact Flash card reader. (sandisk.com).
This allows the user to log huge amounts of data from external sources. Files can then be accessed via
compact flash reader on a PC.
The tern\186\samples\tb directory includes sample code, TB_cf.c, to show reads and writes of raw data
by sector. In addition, tern\186\samples\fn\fs_cmds1.c is a simple file system demo with serial port based
user interface. Also refer to tb.ide which includes the demo tb_filesys.axe in the project

Ethernet Module
The tb supports an i2Chip W3100A which is an LSI of hardware protocol stack that provides an easy,
low-cost solution for high-speed internet connectivity for digital devices by allowing simple installation of
TCP/IP stack in the hardware. The i2Chip offers a quick and easy way to add Ethernet networking
functionality to embedded controllers. It can completely offload internet connectivity and processing
standard protocols from the host system, reducing development time and cost. It contains TCP/IP protocol
stacks such as TCP, UDP, IP, ARP and ICMP protocols, as well as Ethernet protocols such as Data Link
Control and MAC protocol. The full datasheet is provided on the TERN CD:
\tern_docs\parts\w3100a datasheet 3.1.pdf. Also find sample programs for accessing the module in the
TB sample project, c:\tern\186\sampels\tb\tb.ide. Sample programs include i2chip.c and i2_dma.c. The
module is accessed by P14 = /MCS0 (midrange chip select). The chip select can be mapped into memory
by initializing the MMCS and MPCS registers. See chapter 5 of the Am186ER technical manual
(amd_docs\am186er).

T-Box™ Chapter 3: Hardware

 3-13

USB
The TB integrates a high-performance USB stack chip to provide an easy to program USB 1.1/2.0 slave
interface. The onboard hardware fully handles USB stack processing, and provides for high-speed
bidirectional 8-bit parallel communication. The hardware interface includes 384 bytes of FIFO transmit
buffer, and 128 bytes of FIFO for the receiving buffer, making this an ideal low-overhead solution for all
embedded applications. The TB USB exposes a slave USB interface, and connects to a PC via USB-B
connector.
No USB specific firmware programming is required on the controller side. The USB interface is seen as a
transparent parallel FIFO buffer tasked with transferring data back and forth with the remote host. The
only control signals needed are “ready to transmit” and “data received” signals, readily available to your
C/C++ application running on the TERN controller.
Royalty-free software drivers are provided for most Windows environments (XP, 2000, NT, 98). These
field proven USB software drivers eliminates the requirement for Windows USB driver development. Two
types of USB software drivers are available: VCP and D2xx. The VCP (Virtual Com Port) driver supports
up to 300 K bytes per second transfer rate, and allowing the device to be accessed transparently on the PC
side through traditional COM port software. The D2xx (USB direct driver and DLL) drivers can support
up to 1M bytes per second. Additional utilities available from third-party sources allow the USB interface
to be programmed with unique service and product ID numbers, allowing the unit to be transparently
integrated into OEM applications.

Temperature Sensor
The TB has an on-board TMP275 (U15) temperature sensor. The sensor is a 0.5°C accurate, two-wire,
serial output temperature sensor. The TMP275 is capable of reading temperatures with a resolution of
0.0625°C over an operating temperature range of −40°C to +125°C.
The two-wire serial bus is driven by P18=Data and P24=Clock. The device protocol allows up to eight
devices to be read from on one bus. By default, the on-board chip is set to address 0.
The T-Box is ideal for connecting additional Temperature IC Sensors (IS) to the J3 header. Each TB can
read upto 100 sensors. The sample program tern\186\samples\tb\tb_tmp1.c demonstrates how to read the
on-board and external temperature sensors.

LCD Display
A 16x2 alphanumeric character-based LCD comes as part of the aluminum extrusion enclosure package.
It is connected to header H4, and an on-board buffer to drive the LCD. The contrast for the LCD is set by
a potentiometer (pot) at P1.
See the sample program tern\186\samples\tb\tb_lcd.c for programming details.

Chapter 3: Hardware T-Box™

3-14

3.6 Headers and Connectors
The J3 header is the primary connector on the TB that provides access to I/O for expansion. Signals B00 –
B15 are directly connected to the 24-bit ADC LTC2448 (U11). Signals C00-C15 are multipurpose pins
depending on the TB configuration. The tables bellow summarize the signals available on the J3
connector and the different configurations.

The user is responsible for ensuring that out of range voltages are not applied to sensitive lines.

Signals coming directly from the processor are +3.3V signals, but are +5V
tolerant. Any voltages above +5V will certainly damage the board.

J3 Signal

GND 40 39 VCC
9VI 38 37 V3
C00 36 35 /INT1
C01 34 33 P24
C02 32 31 P18
C03 30 29 C04
C06 28 27 C05
C07 26 25 C08
C10 24 23 C09
C11 22 21 C12
C14 20 19 C13
B15 18 17 C15
B13 16 15 B14
B11 14 13 B12
B09 12 11 B10
B07 10 9 B08
B05 8 7 B06
B03 6 5 B04
B01 4 3 B02
B00 2 1 GND

T-Box™ Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your
PC may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory
will be used to activate appropriate chip-select lines and the corresponding hardware component
responsible for handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then

Chapter 4: Software T-Box™

4-2

output over the address bus, and the hardware component mapped to that address should return either an
8-bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most
hardware options added to TERN controllers are mapped into I/O space, since memory space is valuable
and is reserved for uses related to the code and data. Using I/O mappings, the address is output over the
address bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this
technical manual.

4.1 RE.LIB/TB>LIB
RE.LIB is a C library for basic TB operations. It includes the following modules: AE.OBJ, SER0.OBJ,
SER1R.OBJ, and AEEE.OBJ. You need to link to RE.LIB in your applications and include the
corresponding header files in your source code. The following is a list of the header files:

Include-file name Description
AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SER0.H Internal serial port 0, from CPU
SER1R.H External UART SCC26C92
AEEE.H on-board EEPROM

Not all functions in the above modules will apply to the TB. For example, “ae.h” was originally created
for the A-Engine. Therefore, “ae.h” will include routines for the TLC2543 (for example), not installed on
the TB. The user will need to include the header file “re.h” to provide routines for the TB devices.
Although “ae.h” was created for a different controller, it will still be needed for a variety of routines used
by the TB, such as timers, interrupts, and others. Refer to the actual header file itself to determine which
is needed for a certain application.

T-Box™ Chapter 4: Software

4-3

TB.LIB is a library for T-Box specific functions. This library must be linked in to your applications
as well. It includes drivers for various input/output functions.

Include-file name Description
TB.H RTC, 16x2 LCD, Temperature Sensor

4.2 Functions in AE.OBJ

4.2.1 T-Box Initialization

ae_init

This function should be called at the beginning of every program running on TB controllers. It provides
default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded DOS
I/O, and provides other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind,
the basic effects of ae_init are described below. For details regarding register use, you will want to refer
to the AMD Am186ER Microcontroller User’s manual.

 Initialize the upper chip select to support the on-board flash. The CPU registers are configured
such that:

 Address space for the Flash is from 0x80000-0xfffff (to map Memcard I/O window)
 512K ROM Block size operation.
 Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs,

this can actually be set to zero wait state if you require increased performance (at a risk of
stability in noisy environments). For details, see the UMCS (Upper Memory Chip Select
Register) reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000-0xfffff

 Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:
 Address space starts 0x00000, with a maximum of 512K RAM.
 Three wait state operation. Reducing this value can improve performance.
 Disables PSRAM, and disables need for external ready.

outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

 Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:
 MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this

chip select line is used for the I/O window.
 Sets up PCS5-6 lines as chip-select lines, with three wait state operation.

outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

 Initialize PACS so that PCS0-PCS3 are configured so that:
 Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.
 The chip select lines starts at I/O address 0x0000, with each successive chip select line

addressed 0x100 higher in I/O space.
outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable CS0 for RAM

Chapter 4: Software T-Box™

4-4

 Configure the two PIO ports for default operation. Most pins are set up as default input, except
for P29 (used for driving the LED), pins for SER0, and others.

outport(0xff78,0xc7bc); // PDIR1, TxD,RxD,PCS0,PCS1,P29&P22 Output
outport(0xff76,0x2040); // PIOM1
outport(0xff72,0xec7b); // PDIR0, A18,A17,PCS6,PCS5, P12 Output
outport(0xff70,0x1000); // PIOM0

 Configure the PPI 82C55 to all inputs. You can reset these by writing to the command register.
outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20 high

The chip select lines are set to 15 wait states, by default. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number
down as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is
decreased too dramatically. A function is provided for this purpose.

void io_wait
Arguments: char wait
Return value: none.
This function sets the current wait state depending on the argument wait.

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization
There are up to six external interrupt sources on the TB, consisting of five maskable interrupt pins (INT4-
INT0) and one non-maskable interrupt (NMI). There are also an additional eight internal interrupt
sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 9 of the AMD Am186ER Microcontroller User’s available on the
TERN CD under the amd_docs directory.

TERN provides functions to enable/disable all of the 5 maskable external interrupts. The user can call
any of the interrupt init functions listed below for this purpose. The first argument indicates whether the
particular interrupt should be enabled, and the second is a function pointer to an appropriate interrupt
service routine that should be used to handle the interrupt. The TERN libraries will set up the interrupt
vectors correctly for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled
must be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be
handled first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user
chooses to clear the in-service bit for the interrupt currently being handled, the interrupt service routine
just needs to issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

T-Box™ Chapter 4: Software

4-5

See Chapter 9 of Am186ER technical manual (tern_docs) for additional details. Sample code is also
available in the tern\186\samples\ae directory, ‘intx.c’.

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer, which will
act as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about
20 s.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the
call but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR
will return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

Two ports of 16 I/O pins each are available on the TB. Hardware details regarding these PIO lines can be
found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, initialize the appropriate pins in one of the four available
modes. Before selecting pins for this purpose, make sure that the peripheral mode operation of the pin is
not needed for a different use within the same application. (Example, if using the ADS8344, P15 is
needed as the chip select, so it will be unavailable for any other purpose while the ADC is being used).

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 14 of the AMD Am186ER User’s Manual. Also see Table 3.2 in this
manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.
The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 us. The maximum efficiency you can get from the PIO pins occur
if you instead modify the PIO registers directly with an outport instruction Performance in this case will
be around 1-2 us to toggle any pin. Refer to ‘re_speed.c’ for the fastest possible access.
The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode

Chapter 4: Software T-Box™

4-6

Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

 0, normal operation
 1, input with pullup/down
 2, output
 3, input without pull

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the TB can be used for a variety of applications. All three timers run at ¼ of
the processor clock rate, which determines the maximum resolution that can be obtained. Be aware that if
you enter power save mode, the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register that is specified using the software
interfaces. The mode register is described in detail in chapter 10 of the AMD AM186ER User’s Manual.

The timers can be used to time execution of your user-defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used for pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts reaches
maxcount A before switching and counting to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution
at the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this
down even further. The sample files timer02.c and timer12.c, located in tern\186\samples\ae,
demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 10 of the AMD
AM186ER User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none
Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be
specified using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON
mode registers for configuring the two timers.

T-Box™ Chapter 4: Software

4-7

The interrupt service routine t_isr specified here is called whenever the full count is reached if the
interrupt bit in the T0CON/T1CON is set, with other behavior possible depending on the value specified
for the control register. If the interrupt bit is not set, the user can poll the status if the MC bit in the timer
control registers. Polling the MC bit offers a way to monitor timer status without using interrupts.
void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.
Timer2 behaves like the other timers, except it only has one max counter available, and no I/O pins.

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) jumper is set, the function hitwd() must be called every
1.6 seconds of program execution. If this is not executed because of a run-time error, such as an infinite
loop or stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

while(t) { t--;}

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

Chapter 4: Software T-Box™

4-8

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board
for any reason. Depending on the current hardware configuration, this might either start executing code
from the ACTF Boot Utility or from some other address.

4.3 Functions in SER0.OBJ
The functions described in this section are prototyped in the header file ser0.h in the directory
tern\186\include.

The Am186ER only provides one asynchronous serial port. The TB comes standard with the SC26C92,
providing two additional asynchronous ports. The serial port on the Am186ER will be called SER0, and
the two UARTs from the SC26C92 will be referred to as SER1 and SER2.

This section will discuss functions in ser0.h only, as SER0 pertains to the Am186ER.

By default, SER0 is used by the DEBUG kernel (re80_115.hex) for application download/debugging in
STEP 1 and STEP 2. The following examples that will be used, show functions for SER0, but since it
is used by the debugger, you cannot directly debug SER0. This section will describe its operation and
software drivers. The following section will discuss, SER1 and SER2, which pertain to the external
SC26C92 UART. SER1 and SER2 will be easier to implement in applications, as they can be directly
debugged in the Paradigm C/C++ environment.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions for SER0 ONLY. SER1 and SER2 have baud rated based upon different arguments. These are
based on a 40 MHz CPU clock (80MHz boards will have all baud rates doubled).

T-Box™ Chapter 4: Software

4-9

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)

10 38,400

11 57,600

12 115,200

13 250,000

14 500,000

15 1,250,000

16 28,800

Table 4.1 Baud rate values for ser0 only

As of January 25, 2004, the function argument “16” was added for initializing SER0. This new rate
provides a baud rate of 28,000 for 40MHz boards, and 57,600 for 80MHz boards.

After initialization by calling s0_init(), SER0 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser0_in_buf (whose size is specified by the user), will automatically store the
receiving serial data stream into the memory by DMA0 operation. In terms of receiving, there is no
software overhead or interrupt latency for user application programs even at the highest baud rate. DMA
transfer allows efficient handling of incoming data. The user only has to check the buffer status with
serhit0() and take out the data from the buffer with getser0(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s0_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s0_init() you can set up a new mode with

Chapter 4: Software T-Box™

4-10

different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0 Control Register
(SP0CT) if necessary, as described in chapter 12 of the Am186ER manual for asynchronous serial ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user
does not take out the data from the ring buffer with getser0() before the ring buffer is full, new data
will overwrite the old data without warning or control. Thus it is important to provide a sufficiently large
buffer if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4-
KB buffer will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit0() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser0() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser0() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s0_close() can stop this
receiving operation.

For transmission, you can use putser0() to send out a byte, or use putsers0() to transmit a
character string. You can put data into the transmit ring buffer, s0_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If
there is no more data (the head and tail pointers are equal), it will disable the transmit interrupt.
Otherwise, it will continue to take out the data from the out buffer, and transmit. After you call
putser0() and transmit functions, you are free to do other tasks with no additional software overhead
on the transmitting operation. It will automatically send out all the data you specify. After all data has
been sent, it will clear the busy flag and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted
out of SER0. This sample program can be found in tern\186\samples\ae.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to
the TERN library interface functions. The COM structure should normally be manipulated only by
TERN libraries. It is provided to make debugging of the serial communication ports more practical.
Since it allows you to monitor the current value of the buffer and associated pointer values, you can watch
the transmission process.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */

T-Box™ Chapter 4: Software

4-11

 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; /* transmit macro service operation */
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */
 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 with the specified parameters. b is the baud rate value shown in
Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of
data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer. The following functions are
shown as ‘putsern’, where n is the serial port in use. This section applies only to SER0, thus ‘putser0’.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value
This function places one byte outch into the transmit buffer for the appropriate serial port. The return
value returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value
This function places a null-terminated character string into the transmit buffer. The return value returns
one in case of success, and zero in any other case.

Chapter 4: Software T-Box™

4-12

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called
before trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again,
this function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return
value indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the
byte array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate
for whatever form of flow control you wish to implement. Before using these functions, you should once
again be aware that the peripheral pin function you are using might not be selected as needed. For details,
please refer to the Am186ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, you can re-initialize the serial port with s0_init(); to reset
default system resources.

T-Box™ Chapter 4: Software

4-13

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

The asynchronous serial I/O port available on the Am186ER processor has many other features that might
be useful for your application. If you are interested in having more control, please read Chapter 12 of the
manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ
The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.5 Functions in TB.LIB
TB.LIB contains drivers for T-Box specific hardware. In order to use these functions, TB.LIB must be
included in the project tree and TB.H must be included in the C file. See the TB sample project
tern\186\samples\tb\tb.ide for details.

TB Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions. See
\tern\186\samples\tb\tb_rtc.c for a sample program. There is a common data structure used to access and
use both interfaces. The structure is defined in the AE.H header file.

Chapter 4: Software T-Box™

4-14

typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int tb_rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The
structure should be allocated by the user. This function returns 0 on success and returns 1 in case of error,
such as the clock failing to respond.

int tb_rtc_rds
Arguments: char* realTime
Return value: int error_code

This function is slightly different from the rtc_rd function. It places the current value of the real time
clock into a character string instead of the TIM structure, making it a more convenient function than
rtc_rd.

This function places the current value of the real time clock in the char* realTime. The string has a
format of “week year10 year1 month10 month1 day10 day1 hour10 hour1 min10 min1 second10
second1”. The rtc_rds function also places a null terminating character at the end of the time string. It is
important to note that you must be sure to make the destination character string long enough to hold the
real time clock value plus the null character. A destination character string that is too short will result in
the data immediately following the character string in memory to be overwritten, causing unknown
results.

For example “3040503142500\0” represents Wednesday May 3, 2004 at 02:25.00 pm. There are only two
positions for the year, so the user must decide how to determine the hundreds and thousands digit of the
year. Here we just assume “04” correlates to the year 2004.

The length of char * realTime must be at least 14 characters, 13 plus one null terminating character.

This function returns 0 on success and returns 1 in case of error, such as the clock failing to respond.

Void tb_rtc_init
Arguments: char* t
Return value: none

T-Box™ Chapter 4: Software

4-15

This function is used to initialize and set a value into the real-time clock. The argument t should be a
null-terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is Friday June 6, 2003, 10:55:30 am, the
byte array would be initialized to: unsigned char t[14] = { 5, 0, 3, 0, 6, 0, 6, 1, 0, 5, 5, 3, 0};

SCC2691
The SCC is a component that is used to provide a second asynchronous port. It uses an 3.6864 MHz
crystal, different from the system clock speed, for driving serial communications. This means the divisors
and function arguments for setting up the baud rate for this second port are different than for SER0.
The highest standard baud rate is 19,200, as shown in the table below. A sample file demonstrating how
to use the software can be found in scc_echo.c, found in the tern\186\samples\tb\ directory.

Function Argument Baud Rate

1 110
2 134.4
3 150
4 300
5 600
6 1200
7 2000
8 2400
9 4800
10 7200
11 9600
12 19200

Unlike the other serial ports, DMA transfer is not used to fill the input buffer for SCC. Instead, an
interrupt-service-routine is used to place characters into the input buffer. If the processor does not respond
to the interrupt—because it is masked, for example—the interrupt service routine might never be able to
complete this process. Over time, this means data might be lost in the SCC as bytes overflow.
Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see ‘tb.h’. In most TERN applications, MR1 is set to 0x57, and MR2 is set to
0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no parity, 8-bit, normal
operation. Other configurations are also possible, providing self-echo, even-odd parity, up to 2 stop bits, 5
bit operation, as well as automatic hardware flow control.
Initialization occurs in a manner otherwise similar to SER0. A COM structure is once again used to hold
state information for the serial port. The in-bound and out-bound buffers operate as before, and must be
provided upon initialization.

Chapter 4: Software T-Box™

4-16

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz,
unsigned char* obuf, int osiz, COM *c
Return value: none

This initializes the SCC2691 serial port to baud rate b, as defined in the table above. The values in m1
and m2 specify the values to be stored in to MR1 and MR2. As discussed above, these values are
normally 0x57 and 0x07, as shown in TERN sample programs.

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INT0 on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:
 int0_init(1, scc_isr);
By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.
When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once
this is done, you can transmit and receive data as needed. If you do need to do limited flow control, the
MPO pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex
communications, please see scc_echo.c in the directory tern\186\samples\tb.
RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to
the SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral
board, you will need to disable receive while transmitting. While transmitting, you will also need to
place the RS485 driver in transmission mode as well. This is done by using scc_rts(1). This uses pin
MPO (multi-purpose output) found on the J1 header. While you are receiving data, the RS485 driver will
need to be placed in receive mode using scc_rts(0).

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of
these functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

T-Box™ Chapter 4: Software

4-17

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functions is to disable transmit and receive. If you are using RS485, you will need to use this feature
when transitioning from transmission to reception, or from reception to transmission.

Transmission and reception of data using the SCC is in most ways identical to SER0. The functions used
to transmit and receive data are similar. For details regarding these functions, please refer to the previous
section.

putser_scc

See: putsern

putsers_scc

See: putsersn

getser_scc
See: getsern

getsers_scc

See: getsersn

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which
is not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER0.

scc_close

See: sn_close
serhit_scc

See: sn_hit
clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to check the state of the SCC for information regarding errors
that might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

TB 16x2 Display

The T-Box is designed to interface a 16x2 character LCD. TB.lib provides functions to make displaying
text on the LCD simple. See sample program tern\186\samples\tb\tb_lcd.c

tb_lcd_init
Arguments: none

Chapter 4: Software T-Box™

4-18

Return value: none

Intializes the LCD and clears the display. The function set PIO P6 as output to drive UNL2003(U22)
C14=J3.20=H0.2 to enable or disable LCD backlighting.

tb_lcd_clr_line
Arguments: unsigned int code
Return value: none

This function clears a line of the display. Use the code argument to set the line position. After the line is
cleared, the curser is set back to the position set by the code argument.

tb_lcdcmd
Arguments: unsigned char cmd
Return Value: none

Write a command byte defined by argument cmd to the LCD module.

tb_lcddat
Arguments: unsigned char dat
Return Value: none

Write a data byte defined by argument cmd to the LCD module.

T-Box™ Chapter 4: Software

4-19

tb_lprintf
Arguments: char* str
Return Value: none

Write a null terminated character string to the LCD starting at the current cursor position. Use the
tb_lcdcmd to set the cursor position.

Temperature Sensor TMP275

The T-Box has an on-board temperature sensor TMP275 at U15. The sensor is read via a 2-wire serial bus
with P24 = Clock and P18 = Data. See sample program tern\186\samples\tb\tb_tmp for details on
reading the temperature sensor.

tmp_rd
Arguments: unsigned char sck, unsigned char sda,unsigned char t_add
Return Value: int

This function reads the raw data value from the temperature sensor and converts it to a signed integer.
The return value represents 16 times the temperature in degrees Celsius. To calculate the actual
temperature, divide the return value by 16.

The sck, sda and t_add arguments are used to select the desired sensor on a temperature sensor network.
Arguments sck and sda define the PIO lines connected to the clock (sck) and data (sda) lines on the
TMP275. The t_add argument is the address of the desired sensor.

Example: The on-board sensor uses the following settings:
 Clock (sck) = P24

Data (sda) = P18
Address (t_add) = 0

The following code reads the current ambient temperature from the on-board sensor:
 current_temperature = tmp_rd(24, 18, 0) / 16;

4.6 Other Sample code
The following is a list of other sample code available for the TB. Each will show an example
implementation of the specific hardware and are located in the tern\186\samples\tb directory. Most can
also be found in the tb.ide test project.

4.6.1 Analog to digital conversion

Delta-Sigma ADC LTC2448

The LTC2448 ADC chip (U11) provides 16 channels of 0-2.5V analog single-ended (24 differential)
inputs with a 5V reference or 0-1.25V input with 2.5V reference. For details regarding the hardware
configuration, see the Hardware chapter.

Chapter 4: Software T-Box™

4-20

The following functions will drive the 24-bit ADCs. The order of functions given here should be followed
in actual implementation. The following functions are found in the sample program
tern\186\samples\tb\tb_ad24.c.

 void ad24_init(void);

 void ad24_setup(unsigned char chip, unsigned int control_byte);

 void ad24_ssi_rd(unsigned char* raw);

The control byte, control_byte, drives the LTC2448 in 16 channel single-ended mode with value 0xb000.

In code, the control byte is calculated this way:

 ch_sel=0; //select channel

 control_byte=control_byte+speed[10]; //add speed desired to 0xb000

 control_byte=control_byte+(ch_sel<<8); //add channel selection w/ 8 bit left shift

NOTE: “ch_sel” and the desired channel signal do not match up. Instead use this scheme to select the
desired signal on the board:

ch_sel U11
0 B00
1 B02
2 B04
3 B06
4 B08
5 B10
6 B12
7 B14
8 B01
9 B03
10 B05
11 B07
12 B09
13 B11
14 B13
15 B15

The LTC2448 also supports 8 channel differential mode. This can be achieved by changing the control
byte passed to the ‘ad24_setup’ routine to 0xa0000 (speed and channel selection is added on the same way
as in single-ended mode). See the LTC2448 data sheet for details on how to define the control byte,
‘LTC2448.pdf’ in the tern_docs\parts directory.

For a sample file demonstrating the use of the ADC, please see tb_ad24.c in tern\186\samples\tb.

This sample is also included in the tb.ide test project in the tern\186 directory.

Serial ADC P2543

The P2543 ADC unit (U13) provides 11 channels of analog inputs based on the reference voltage supplied
to REF+. For details regarding the hardware configuration, see the Hardware chapter.

TB uses P25=/CS, P20=CLK, P21=DOUT, P9=DIN and P5=EOC from the CPU to read from the P2543
chip. P20(SCLK), P21(SDAT) and P9(A19) are shared with the 24-bit ADC (U11). Be sure the 24-bit

T-Box™ Chapter 4: Software

4-21

ADC is disabled when reading from P2543. For a sample file demonstrating the use of the ADC, please
see tb_ad12.c in tern\186\samples\tb.

int tb_ad12
Arguments: char c
Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel AD0, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

Ae86_ad(0); // Read from channel 0
chn_0_data = ae86_ad(0)>>4; //Start the next conversion, retrieve value.

4.6.2 File system support

TERN libraries support FAT file system for the Compact Flash interface. Refer to Chapter 4 of the
FlashCore technical manual (tern_docs\manuals\flashcore.pdf) for a summary of the available routines.
The libraries and header files are as follows:

 fileio.h

 filegio.h

 filesy16.lib

 mm16.lib

The TB uses a 16-bit external A/D bus. The user must then link to the libraries for 16-bit external busses,
filesy16.lib and mm16.lib. In addition, if using the fs_cmds1 sample, you must define ‘TERN_186’ and
‘TERN_16_BIT’ in the ROM node’s local options.

Libraries are found in the tern\186\lib directory and header files in the tern\186\include directory. Refer to
tb.ide for two samples, tb_cf.c and tb_filesys.c.

4.6.3 Communication

USB Port
The TB supports a single slave USB port. The hardware interface for the USB chip includes 384 bytes of
FIFO transmit buffer, and 128 bytes of FIFO for the receiving buffer. Accessing the USB port is simply a
matter of reading and writing directly to and from the I/O mapped USB chip. The sample program
tern\186\samples\tb\tb_usb.c demonstraights how to communication over USB. Other information
regarding the USB chip is found in:

Tern\tern_docs\manuals\cusb install.pdf //installation instructions for a USB win32 serial

driver
 Tern\tern_docs\parts\usb //folder contains all data sheet and application notes for usb chip

Chapter 4: Software T-Box™

4-22

ZigBee Wireless

The TB incorporates an interface for the XBee-Pro wireless module. The XBee-Pro RF module meets the
IEEE 802.15.4 standards. The TB interfaces the wireless module through the SCC2691 serial port. By
default, XBee-PRO RF Module operates in Transparent Mode. When operating in this mode, the module
act as a serial line replacement - all UART data received through the DI pin is queued up for RF
transmission. When RF data is received, the data is sent out the DO pin. See the XBee-Pro product
manual for details on the wireless module. Sample program tern\186\samples\tb\ser0_scc.c demonstrates
interfacing with the wireless module via RS232.

Appendix A: Layout TB

A-1

Appendix A: Layout

T-Box (TB) layout mechanical dimensions: (All in inches)

3-24-2009

0, 0

4.0, 3.0

0.15, 0.10
3.7, 0.1

2.933

1.033

0.
19

2,
 0

.5
5

0.
40

8,
 1

.6
5

0.983

0.417

0.075

2.483, 2.725
0.25, 2.90

Appendix B: Enclosure Dimensions RB

Appendix B: Enclosure Dimensions
TB End Panel Dimensions: (All in inches) March 27, 2009
Extrusion Technology RS-3010-4020-TRN, cut to a 4" length, two machined end panels and screws,
all pieces powder coat painted, overspray allowed.
Josh Murray
Program Manager
XTech
781-963-7200, x104
Email: jmurray@xtech-outside.com
*Web Site: www.xtech-outside.com

0.
58

 3.
27

5

1.120

0.
13

9

0.35

0.76

0.25

1.
19

5

0.
44

3.
03

0

1.
09

5 3.
13

5

0.60

0.15 DIA, 3 holes END Plate “C”

0.56

0.
33

 3.
27

5

1.120

0.
13

9

0.25

0.96

0.25

1.
19

5

3.
03

0

1.
02

 3.
13

5

0.60

0.15 DIA, 2 holes

END Plate “D”

0.56

Appendix B: Enclosure Dimensions RB

TB Extrusion LCD Window Open Dimensions: (All in inches)
April 3, 2009
Extrusion Technology RS-3010-4020-TRN, cut to a 4" length
all pieces powder coat painted, overspray allowed.

Open a window on the extrusion body of the 4” RS-3010-4020-TRN:

4.
00

3.275

0.00

2.392

0.
73

1

0.
00

3.
17

2

CUT OPEN WINDOW
2.44”x 0.64”

on the Top for LCD

Body with Window “E”

1,752

Date: April 27, 2009 Sheet 1 of 2

Size Document Number REV

B TB-MAN.SCH

Title

THERMO-BOX

STE/TERN

/INT1

P18
P24

C04
C05
C08
C09

V3

VCC

 1 2
 3 4
 5 6
 7 8
 9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J3HDRD40

GND

C00
C01
C02
C03

C10

C06
C07

C14
C00
C01
C02
C03
C04
C05

1B
 1

2B 2

3B 3

4B 4

5B 5

6B
 6

7B 7

G 8

1C
16

2C 15

3C 14

4C 13

5C 12

6C
11

7C 10

K 9

U22

ULN2003

9VI
P6

P26

P15

P19

P10

P16

P12

GND

A19

REF

VCC

SDAT

P5
SCLK

P25

C15

AD0
 1

AD1 2

AD2 3

AD3 4

AD4 5

AD5
 6

AD6 7

AD7 8

AD8 9

GND 10

VCC
20

EOC 19

CLK 18

DIN 17

DOUT 16

CS
15

REF+ 14

REF- 13

AD10 12

AD9 11

U13

P2543

C10
C11

C07
C08
C09

C06

C13

C05

C12

GND
 1

D3 2

D4 3

D5 4

D6 5

D7
 6

/CE1 7

A10 8

/OE 9

A9 10

A8 11

A7 12

VCC 13

A6 14

A5 15

A4 16

A3 17

A2 18

A1 19

A0 20

D0 21

D1 22

D2 23

WP 24

CD2 25

CD1
26

D11 27

D12 28

D13 29

D14 30

D15
31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE 36

RDY 37

VCC 38

/CS 39

VS2 40

RST 41

/WT 42

/IP 43

/REG 44

BV2 45

BV1 46

D8 47

D9 48

D10 49

GND 50

U4

CFB

A15
 1

A14 2

A13 3

A12 4

A11 5

A10
 6

A9 7

A8 8

NC 9

NC 10

/WR 11

/RST 12

NC 13

NC 14

RY 15

NC 16

A17 17

A7 18

A6 19

A5 20

A4 21

A3 22

A2 23

A1 24

A16
48

/BY 47

GND 46

D15 45

D7 44

D14
43

D6 42

D13 41

D5 40

D12 39

D4 38

VCC 37

D11 36

D3 35

D10 34

D2 33

D9 32

D1 31

D8 30

D0 29

/OE 28

GND 27

/CE 26

A0 25

U1 29F800

A0
 1

A1 2

A2 3

A3 4

A4 5

/CS
 6

D0 7

D1 8

D2 9

D3 10

VCC 11

GND 12

D4 13

D5 14

D6 15

D7 16

/WR 17

A5 18

A6 19

A7 20

A8 21

A16 22

A15
44

A14 43

A13 42

/OE 41

/UB 40

/LB
39

D15 38

D14 37

D13 36

D12 35

GND 34

VCC 33

D11 32

D10 31

D9 30

D8 29

NC 28

A12 27

A11 26

A10 25

A9 24

A17 23

U3

RAM44

D1

D0

X6
VCC
GND

GND
X5
VCC

5V
USBD+

USBD-

SK 1

DA 2

VCC 3

/RST 4

/RTO 5

3VO 6

DP 7

DM 8

G

9

/
P
W

1
0

S
I

1
1

/
R
X
F

1
2

V
C
C

1
3

/
T
X
E

1
4

W
R

1
5

/
R
D

1
6

G 17
D7 18D6 19D5 20D4 21D3 22
D2 23D1 24D

0

2
5

V
C
C

2
6

X
I
N

2
7

X
O
U

2
8

A
G

2
9

A
V

3
0

T
S
T

3
1

E
C
S

3
2

U17

USB245

1 2
3 4

J2

USB-B

5V
VCC 1

2

J5

HDRS2

/RTU

DP
DM

USBD+
USBD-

X6 X5

/RTO
3VO

VCC

R18

R19 27

XTAL3

6MHZ

D7
D6
D5
D4
D3
D2

GND
WDI 1 2

J9

HDRD2

 1 2
J6

HDRD2

P0

P29 P2
P3

VOFF INT2
P11

P25
P5

C14

B13
B15

B09
B11

B05
B07

B00
B01
B03

C14
C11

1B 1

2B 2

3B 3

4B 4

5B 5

6B 6

7B 7

G 8

1C 16

2C 15

3C 14

4C 13

5C 12

6C 11

7C 10

K 9

U24

ULN2003

C10
C11

C07
C08
C09

C06
C13

GND

B12
B14

B10
B08
B06

B02
B04

C12
C13
C15

GND

/TXD
/RXD

485+

485-

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP2

HD28

1
2
3
4
5

H2

HDRS5

1
2
3
4
5

H3

HDRS5

GND

/TXD0
/RXD0

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP1

HD28

1
2

H0

HDRD2

GND

12
34
56
78
910
1112
1314

H4

HDRD14

C14

VCC

LD6
LD4

LCD BACKLIGHT
P4

VCC

/WR

D1
D0

VCC

I2X

16x2 LCD HEADER

 1 2
J1

HDRD2

/RD 1

RXD 2

TXD 3

MPO 4

MPI 5

A2
 6

A1 7

A0 8

X1 9

X2 10

RST
 11

GND 12

VCC 24

/WR 23

D0 22

D1 21

D2 20

D3
19

D4 18

D5 17

D6 16

D7 15

/EN
14

/INT 13

U5

SCC2691

LD7
LD5

/RD

MPO

RXD
TXD

VRAM

XBEE-DIGI

V3
RXD
TXDL

CK 1

I1 2

I2 3

I3 4

I4 5

I5
 6

I6 7

I7 8

I8 9

G 10

5V 20

O7 19

O6 18

O5 17

O4 16

O3
15

O2 14

O1 13

O0 12

/OE 11

U20

XBEE

VOFF

VCC

/RTC

/RDU
WRU

VCC

VCC
/TXE/RXF

STD 1

/CS 2

NC 3

ALE 4

A0 5

NC
 6

A1 7

NC 8

A2 9

A3 10

/RD
 11

G 12

VCC 24

X2 23

X1 22

NC 21

CS1 20

D0
19

NC 18

NC 17

D1 16

D2 15

D3
14

/WR 13

U8

72423

P23

GNDSCLK
SDAT

GND
A19

GND

/RTO DP

C24
27PF

C25
27PF

R20 2K

B00
B01
B02

GND

GND
P13 G 1

BY 2

EXT 3

G 4

G
 5

G 6

COM 7

A0 8

A1 9

A2
 10

A3 11

A4 12

S
K

3
8

S
D
O

3
7

C
S

3
6

F
0

3
5

S
D
I

3
4

G

3
3

G

3
2

G 31

RF- 30

RF+ 29

VCC 28

MXO-
27

AI- 26

AI+ 25

MXO+ 24

A15 23

A14
22

A13 21

A12 20
A
5

1
3

A
6

1
4

A
7

1
5

A
8

1
6

A
9

1
7

A
1
0

1
8

A
1
1

1
9

U11

LTC2449

B14
B15

VCC
REF

GND

R7

10K

A1

A2

A3
A4

GND
/RD

/RST
D0

D1
D2
D3
/WR

R8

1K

R9
2K

P24

/RTW

GND

X3
X4
RST

A1
A2
A3
MPI

MPI

MPOL
WS

R17

680
/RTW

/INT0

D7
D6
D5
D4
D3
D2

GND

E
RS

GND
VCC

/SC

D1 3 Q1 2

D2 4 Q2 5

D3 7 Q3 6

D4 8 Q4 9

D5
 13

Q5
12

D6 14 Q6 15

D7 17 Q7 16

D8 18 Q8 19

CLK
 11

CLR 1

U25

74HC273

RS
E

GND

A13

/WR
P14
A15

VCC
VLC
GND R/W

VCC

VLC
1
2
3

P1

HDRS3

V3

GND

GND

A11
A10

A9

A12
A14

A7 A6
A5 A4
A3 A2

A8

A1

/RD
RST

/INT4

V3

GND

GND

GND

GND

GND

GND

D4D5
D6D7

D0D1
D2D3

/RST

/INT0
VCC

/WRU
SDAT

 8
 7
 6
 5
 4
 3
 2
 1

RN1

10K RN8S1

/RST
WRU

RST

1A 1

1Y
 2

2A 3

2Y 4

3A 5

3Y 6

G 7

V 14

6A
13

6Y 12

5A 11

5Y 10

4A 9

4Y 8

U9

74HC14

INT3
/INT4

V3

C12485+
VCC

485-485+

R2

10K
R3

220

RS

LD6

E

LD7

LD5
LD4

/RST

D7
D6
D5
D4

D1
D0

/LH

/RD2
VCC

/TXE

/RXF

/RD2

/RXF

/TXE
D7

D6

GND

1G 1

1A1 2

2Y4 3

1A2
 4

2Y3 5

1A3 6

2Y2 7

1A4 8

2Y1
 9

GND 10

VCC 20

2G 19

1Y1 18

2A4
17

1Y2 16

2A3 15

1Y3 14

2A2 13

1Y4
12

2A1 11

U12

244V

C03

MPO

TXD TXDL

MPOL
R12

1K

R11

2K

P26

V3

9V

C8 C21

9V V3
C01

V3
C02

V3
C30

V+

C23

B12
B13

REF

P19

C12C2

V3

V3
R13

10K

B03
B04

B05
B06
B07 B09

B10
B11

B08

VCC

VRAM
VBAT

GND

/RST
RST

/RAM

WDO

/PFO

/LCS
VCC

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI 9

U6

MAX691

WDI

V+P1
V3 1

2

H5

BEEP

REF

NC 1

IN 2

TEMP 3

GND 4

NC 8

HEAT 7

OUT 6

TRIM 5

U10

LT1019

A7
A6
A5

P17
/RST

A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U19

74HC138

/TXD0
/RXD0

C5+

C5-
C2+
C2-

V+

V-

C1+ 1

V+ 2

C1- 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I 13

R1O 12

T1I 11

T2I 10

R2O 9

U21

MAX232D

/CF

/SC

/RTC

/LH
/RDU
/WRU

/RD2

/RTU

GNG 1

VO 2

VI 3 VO 4

U16

BB1117

GND

VCC
V3

VCC

GND

TXD0
RXD0

485-

TXD

/TXD

R4

10K

/RXD
RXDB

INT0
/INT0

V3

INT4

1
2

H1

T2

9VI

INT1
/INT1 /INT1

P6NMI

VCC

/INT4/PFO

12 345

U0

LM2575

- 1
+ 2

+ 3

B1

BTH1

LX1
VOFF

GND
VCC

I1 330uH

9V

C18L3

GND

VCC

VCC

9VI9V

9V

L2

LED

X4
XTAL2

3.68MHZ

GND

V+

V-

VCC

485-
485+

GND
VOFF

GND
VOFF

NC 1

PG 2

GND 3

EN 4

5V 8

5V 7

9V 6

9V 5

U14

TPS765

NC 1

PG 2

GND 3

EN 4

5V 8

5V 7

9V 6

9V 5

U18

TPS765

C37

0.1UF
C38

0.1UF

X3

MPO
GND

RO 1

/RE 2

DE 3

DI 4

VCC 8

B 7

A 6

GND 5

U23

LTC485

TXD

RXD
C33

0.1UF

C34
0.1UF

X2 X1
XTAL1

16MHZ
C4
10PF

C5
10PF

C5-

C5+

C2-

C2+

9V
R5

1M

VOFF

V3

V3

GND
P18

P22
P29

P24

R6

10K
P18

V3 SD 1

SC 2

AL 3

G 4

5V 8

A0 7

A1 6

A2 5

U15

TMP75
TMP75

GND
GND
GND
GND A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U7

24C04S

R10

680
R1

680

V3

V3

R16

680

R14

680

R15

680
V3

V3

P10

P1

RXDB RXD

LC
L1

LED

P29

C6

10PFLC1
L4

LED
WS

C9

10PF

VBAT

