TDU ™

40 MHz Controller based on the 16-bit 188ES
with

70+ TTL and high voltage 1/0s, USB, ADC, and DAC

Technical Manual

Trery

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://mwwww.tern.com

COPYRIGHT

TDU, NT-Kit, and ACTF are trademarks of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanceddvb@&vices, Inc.
Paradigm C/C++ is a trademark of Paradigm Systems.
Microsoft, Windows 95/98/2000/ME/NT/XP are tradeksof Microsoft Corporation.

Version 1.01

February 14, 2013

No part of this document may be copied or reproduseny form or by any means
without the prior written consent of TERN, Inc.

© 1998-201% TERI\Z(\]

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratsystems. These systems are
integrated with software and hardware that arel06o defect freéeTERN products are
not designed, intended, authorized, or warrantedi® suitable for use in life-support
applications, devices, or systems, or in othericet applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentilmages arising from
the use ofTERN products. It is the Buyer's responsibility to jeitlife and property
against incidental failure.

TERN reserves the right to make changes and improveneris products without
providing notice.

Temperature readings for controllers are baseth@mesults of limited sample tests; they
are provided for design reference use only.

TDU Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

The TinyDrive-USB™ (TDU) is designed for industrial control applicationsattirequire ADC, DAC,
solenoid drivers and protected high-voltage inputs.

TheTDU is C/C++ programmable with a 16-bit, 40 MHz CPLBR). It supports 35 high-voltage I/O lines,
24 TTL I/O pins, 11 ch. 12-bit ADC(P2543) or 8 di&-bit +-10V ADC (AD7606), an 8 ch. 16-bit DAC, a
high speed USB port, 3 RS-232/RS-485, a real-tinhecke battery, watchdog timer, PWM, 3
timer/counters, 512-byte EEPROM, up to 512KB SRAMJ 512KB ROM/Flash.

A true bipolar, simultaneous sampling ADC(AD7608)7616/14-bit) can be installed. It can accept +10V
or 5V true bipolar analog signals while samplingt@oughput rates up to 100+ kSPS for all 8 analog
inputs. Each analog input contains antialisingefijlsample-and-hold and clamp protection tolergntou
+16.5V. With 1M ohm analog input impedance, a M@SD rating, and sustaining up to £10 mA input
current, the analog inputs are designed to suliviveerough industrial environment. A serial ADC(B35

11 ch., 12-hit, 0-5V, 10KHz) can be installed tplaee the AD7606.

The 35 high-voltage I/O lines, routed to screw fieats, include 7 inputs, 14 outputs, and 14 hardwa
configurable inputs or outputs. The inputs can tageto 35V DC. The outputs are capable of sinking
350mA at 50V per line, and they can drive solenadselays. A real-time clock (RTC72421) provides
calendar information. Two DMA-driven serial portapport RS-232 communication, at up to 115,200
baud. The optional third UART SCC2691 can be camid as either RS-232 or RS-485, supporting 8-bit
or 9-bit RS-485 networking.

An USB 1.1/2.0 slave USB-B port can be installedhwa USB stack chip (FT232H, FTDI). No USB
specific firmware programming is required. Datangf@r rate can go up to 4 MB/sec with D2xx USB
software driver.

A 82C55 chip provides 24 TTL I/Os. A supervisor$91) with a watchdog is on-board. An 8 ch. 16-bi
DAC(LTC2600) can provide 0-5V analog voltage ougpirecision reference can be installed for the DAC
and the ADC(P2543).

A switching regulator can be installed to supppdwer-off mode, allowing pA-level power consumption

The TDU supports TERN 8-bit expansion boards, idiclg ACE, or UR8. An optional TD-Pack including
a 16x2 LCD, 8x2 keys is available. The 48 screwnteals can be replaced with pin headers for OEM
applications.

1-1

Chapter 1: Introduction TDU
SRAM] TDU
128KB or 512 KB |qp
8-bit U1
FLASH
512 KB 8-bitus hig EEPROMu7
RTCus P R8830 hig 512 BYTES
H5 11ch 12bit ADG T1
«—> 24 I/UO5 PPI PIq ZO/é%'\GHZ PIY P2543 l—
H2 DO0-D7 P00-P31 uo
RS232/485/422 :
<+ > K 3 < Dl 8ch 16-bit DAC
SCC2691us DMA(Z) e LT2600 ﬁ)
16-Bit Timers(3)
J4 UsSB 1.1/2.0 Ext. Interrupts(8) ui1
> FT232H [* 32 1/0 lines 1AHV IO |T182
u2s PWM/PWD <> ULN2003 [<¢—
i 210V 16-bit 8-bit Ext. data bus U17 and U19
—> AD7606 [*® 7Y 7 “«—> 32
v10 A 4 A 4 LI
T2 | 14 HV Outputs RS232 Watchdog

<+— ULN2003 [®¥

U18 and U20 SERO & SER1|| MAX691

U13 U6
T1 | 7 HV Inputs
—> uULN2003 [** I I
vte H1 & H2 J9 Jumper
J]l <—»

Figure 1.1 Functional block diagram of the TDU

1.2 Features

Standard Features

1-2

Dimensions: 4.8 x 3.4 x 0.5 inches

Power input: +9V to +12V unregulated DC with stamtiénear regulator
16-bit CPU (188ES), Intel 80x86 compatible

128KB SRAM, 512KB Flash

512-byte serial EEPROM

2 high-speed PWM outputs and Pulse Width Demodiriati

32 1/0 lines from Am188ES

6 external interrupt inputs, 3 16-bit timer/couster

2 serial ports from the 188ES support 8-bit ortSakiynchronous communication
On-board +5V regulator

Supervisor chip (691) for power failure, reset aradchdog

24 bi-directional I/O lines from 82C55

35 high-voltage I/Os, all routed to screw terminals

Interface for LCD, keypad

TDU

Chapter 1: Introduction

Optional Features
* Power input: +9V to +30V unregulated DC with op@bswitching regulator

* 512KB SRAM

¢ 8 ch. 16-bit parallel £10V ADC (AD7606) or 8 ch.-b# parallel £10V (AD7607)
or 11ch. 12-bit serial 0-5V ADC (P2543).

« 8 ch. 16-bit DAC (LTC2600)

* SCC2691 UART (on-board) supports 8-bit or 9-bitvaking

UART comes with RS232 (default), 485 or 422 drivers

« USB1.1/2.0 (FT232H)

¢ Real-time clock RTC72423 and lithium coin battery

¢ Precision reference, 20 PPI@/, 2.5/4.0/5V
» TD-Pack box, 16x2 LCD and 8x2 keypad

1.3 Physical Description
The physical layout of the TDU is shown in Figur.1

SER1 Port
H3

STEP2 Jumper
J2 Pin 1&3

SERO DEBUG
& SCC UART
Port
H2

USB Port

T2Pinl

Figure 1.2 Physical layout of the TDU

High-voltage
Drivers

DAC
LTC2600

®@®[C}C,’)}O©@O.®QOOJ®OOOOO

........

T1Pinl

H6 Pin 1

J1Pinl

H5 Pin 1

1-3

Chapter 1: Introduction TDU

1.4 TDU Programming Overview

An “ACTF Boot Loader” resides in the top protectasttor of the 512KB on-board flash chip (29F04Q). A
power-on/reset, the ACTF Utility will check the SFER jumper (J2 pins 1&3). If the STEP 2 jumper is
installed, the “jump address” located in the onfdogerial EEPROM will be read and the CPU will jump
to that address for immediate execution. A DEBU@kE@lready pre-programmed at the factory) can be
downloaded and programmed into the flash startingdalress OxE0000. Using the ACTF Utility, the
“GE0000 <enter>" command will set the jump addréssOXEO000. The command will also run the
DEBUG kernel, preparing the TDU for communicatioitmthe Paradigm C/C++ IDE for downloading
and debugging applications. The following diagrashew the procedure for programming the TDU. Steps
include preparing the TDU for debugging, debugghmgy TDU, standalone field test, and production.

[Power-On / Reset]

/ STEP?2 \

Go to application code CS:IH
CS:IP in EEPROM:
0x10 = CS high byte
0x11 = CS low byte
0x12 = IP high byte

STEP1 0x13 = IP low byte
ACTF Menu sent out through

SERO (19,200, N, 8, 1) \ j

Figure 1.2 Flow Chart of ACTF Operation

Step 2 Jumper Set ?

By default, the DEBUG kernel has been loaded into the ACTF flash at the factory
for your convenience. Y ou may proceed directly to STEP 1: Debugging.

Prepar ation for Debugging:

Thishad already been done at the factory! You may proceed to STEP 1. Debugging.
Thisstep isonly required if you have completed STEP 3
and would liketoreturn to STEP 1.

e Connect the TDU (SERO, H2) to PC (COMXx) via sedigbug cable provided with the EV-P/DV-P.
Using the Windows “Hyper Terminal”, create a seliigk based on 19,200, 8 bits, 1 stop, no parity.

o Power on the TDWTHOUT the STEP 2 jumper installed (J2 pins 1 & 3). THETA text MENU
should be sent out via serial port to “Hyper Teralin

e Use the “D <enter>" command to initiate downloSelect Transfer -> Send File, and select
\tern\186\rom\lo_ee512.hex. Use the “G04000 <efiteommand to execute this script.

e Select Transfer -> Send File to select \tern\I86\af_0_115.hex. This is the debug kernel. Use the
“GEO0000 <enter>" command to set jump address aedwgr the debug kernel. The LED will blink twice
and remain on.

e Set the STEP 2 jumper (J2 pins 1 & 3). The TDWadw ready to communicate with the Paradigm
C/C++ IDE for debugging and application development

TDU Chapter 1: Introduction

Step 1: Debugging:

e Launch the Paradigm C/C++ IDE. Select File -> Qp&mose the project file
\tern\186\samples\TDU\tdu.pdI.
e Use samples within the “tdu.pdl” project to creapplication. Download, run, and debug application.

Step 2: Standalone Field Test:

e After completing STEP 1, by default, your applicatresides in the battery-backed SRAM starting at
address 0x08000.

e Remove STEP 2 jumper and setup Hyper TerminaMiitk the TDU. (Open Windows “Hyper
Terminal” program. Set for 19,200, 8 bits, 1 stop parity).

e At power-on, ACTF menu will be sent to Hyper Tenali Use the “G08000 <enter>" command to
execute application. Set STEP 2 jumper (H2 pins)1&®every power-on/reset, application at 0x08000
will execute.

e Complete STANDALONE FIELD TEST. If return to STHEHASs required, remove STEP 2 jumper and
use the “GE0000 <enter>" command to run debug keéongrepare to setup for communication with
Paradigm C/C++ IDE.

Step 3: Production:

The DV-P Kit isrequired for thisstep.
If you do not have the DV-P Kit, visit http://tern.com/devkit.htm for upgrade details.

e Refer to the ACTF technical manual, found in tieen._docs\manuals directory. Here you will find
details on generating an ACTF downloadable HEXH#sed your application.

o Remove the STEP 2 jumper and create serial limgudyper Terminal (19,200, N, 8, 1). At power-
on/reset, you will see the ACTF menu at Hyper TeahiUse the “D <enter>" command to initiate
download process. Select Transfers -> Send Fitksaltect \tern\186\rom\re\l_29f40r.hex.

o This file will erase the flash and prepare theHléo accept ACTF downloadable application HEX file
Use

the “G04000 <enter>" command to run script. Flaghlve ready for application.

e Select Transfer -> Send File to select your ACowiloadable application HEX file. Upon completior
use the “G80000 <enter>" command to execute agmital his command also sets the jump address t
point your application in flash. Set STEP 2 jum@k pins 1&3). At power-on/reset application will
execute.

O

There is no ROM socket on the TDU. The user’s agfithn program must reside in the SRAM (starting at
address of 0x08000 by default based on \tern\186g\@86.cfg) for debugging in STEP 1, reside ia th
battery-backed SRAM for standalone field testin@FEP 2, and finally be programmed into the on-toar
flash for a complete product. For production, teerumust produce an ACTF-downloadable HEX file for
the application based on the DV-P Kit. From the &AQTtility, use the command “G80000 <enter>" to
point to the user’s application code in the flashe STEP 2 jumper must be installed for every petida-
version board.

1-5

Chapter 1: Introduction TDU

1.5 Minimum Requirementsfor TDU System Development

1.5.1Minimum Hardware Requirements

¢ PC or PC-compatible computer with serial COMx pbat supports 115,200 baud

e TDU controller
» Serial debug cable (RS232; DB9 connector for PC Gk and IDC 2x5 connector for controller)

* Center negative wall transformer (+9V 500 mA)
1.5.2Minimum Software Requirements
* TERN Installation CD — EV-P or DV-P

» PC software environment: Windows 95/98/2000/ME/NFPIXISTA/7

The C/C++ Evaluation Kit (EV-P) and C/C++ Developrh&it (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of theV-P Kit. With the EV Kit, you can program and depu
the TDU in Step One and Step Two, but you cannotStep Three. In order to generate an application
ROM/Flash file, make production version ROMs, anthplete the project, you will need the Development

Kit (DV-P).

g
o
i ®

eYse|d1oedwod

DWaliixg

ysiques

i}

gy L IS BT
nStinim
dadid
scoopcen

-
-
-

-
-

‘.;:“0
ccccocooo |

o
s
A A R

~
-
g

, = e, | Im:“ """

1 b =
lse. , BNLE S I - :
% J3 ke .}'Hu_uﬁ,

e o

?@OpOOOOCOOQDOOOOQOOQbGQ

—-—.—1-‘-1"—-;-— W WA W W W WA WS WA WS W SR OW MW S W W S W S WA W A OW A T A W AN A

Figure 1.3 TDU with ACE + CompactFlash + Ethernet + 33 channels of 12-bit ADC

1-6

TDU

Chapter 1: Introduction

sETEI L

-
A28
R

-
=
=
=
e

Txae e \

» P : i. L — --Ll
Figure 1.4 TDU with UR8 + 8 UART Ports

TDU Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e Installation

Please refer to the “development kit pro.pdf” tacehmanual on the TERN installation CD, under
tern_docs\manual\ development kit pro.pdf, for infation on installing software.

2.2 Hardwar e I nstallation

Hardware installation consists primarily of coniegtthe microcontroller to your PC and poweringtioe
device.

Overview

« Connect PC-IDE serial cable:
For debugging (STEP 1), place IDE connector on SER)
with red edge of cable at pin 1. This DEBUG cakla iL0-pin
IDE to DB9 cable, made by TERN (See Appendix D).

¢ Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack
using power jack adapter supplied with EV-P/DV-R Ki

2.2.1 Connecting to the PC

The following diagram (Fig 2.1) provides the looatiof the debug serial port and the power jack. The
controller is linked to the PC via a serial calid80-IDE) which is supplied with TERN’s EV-P / DV-P
Kits.

The controller communicates through SERO by deféndtall the 5x2 IDE connector on the SERO 5x2 pin
header. IMPORTANT: Note that the red side of the cable must point to pin 1 of the SERO header. The
DB9 connector should be connected to one of yous BOM Ports (COM1 or COM2).

2.2.2 Powering-on the TDU

By factory default setting:

1) The RED STEP2 Jumper is installed. (Defaulfirsgiin factory)

2) The DEBUG kernel is pre-loaded into the on-bd&ash starting at address of 0XE0000. (Defautirsgt
in factory)

3) The EEPROM is set to jump address of OXE00O@fdit setting in factory)

Connect +9-12V DC to the DC power terminal. The [pfver jack adapter is center negative.

The on-board LED shouldlink twice and remain on, indicating the debug kernel is running and reiady
communicate with Paradigm C++ TERN Edition for pmgming and debugging.

2-1

TDU Chapter 2: Installation

2.2.3 Connecting the TDU

The proper connections required to debug the bhrdugh Paradigm software). J2 (SER 0) is a 582 p
header on the VE232.

SERO IDE-DB9 Debug ()| 2000 e 25
Cable on H2 header [==== e —

...................

9-12 Volt Power Plug
(Center Negative)

Figure 2.1: TDU with Debug Cable (SERQ), Power Plug, and Step 2
Jumper shown

NOTE: Remember to watch for thel6uble blink” of the LED. This indicates theebug Kernel has
been loaded with thgimp address pointing to it. This is mandatory to commence dmading code
through the Paradigm environment.

2-2

TDU Chapter 3: Hardware

Chapter 3: Hardware

3.1188ES - Introduction

The 188ES is based on industry-standard x86 anthiee The 188ES controllers are higher-performance
more integrated versions of the 80C188 microprairass$n addition, the 188ES has new peripherals. Th
on-chip system interface logic can minimize totaltem cost. The 188ES has two asynchronous serial
ports, 32 P10s, a watchdog timer, additional intptipins, a pulse width demodulation option, DMA to
and from serial ports, a 16-bit reset configuratiegister, and enhanced chip-select functionality.

3.2188ES — Features
3.2.1 Clock

Due to its integrated clock generation circuithg L88ES microcontroller allows the use of a times-
crystal frequency. The design achieves 40 MHz Cpé&ration, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J8 pin Infea CLK), default 40 MHz. The CLKOUTB signal
is routed to J8 pin 2.

CLKOUTA remains active during reset and bus holdditions. The TDU initial function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); aciitb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=Jd pB.

3.2.2 External Interrupts and Schmitt Trigger | nput Buffer

There are eight external interrupts: INTO-INT6 aidI.

/INTO, used by SCC2691 UART

/INT1, used by AD7606

/INT2, J2 pin 20, available for use

/INT3, used by AD7606

/INT4, J2 pin 8, available for use

INT5 = P12, used as output for LED/EE/HWD
INT6 = P13, used by FT232H USB

/INMI = J2.17

Six external interrupt inputs, /INTO-4 and /NMIedsuffered by Schmitt-trigger inverters (U9), irder to
increase noise immunity and transform slowly chaggdnput signals to fast changing and jitter-free
signals. As a result of this buffering, these @ns capable of only acting as input.

These buffered external interrupt inputs requifelling edge (HIGH-to-LOW) to generate an interrupt

3-1

TDU Chapter 3: Hardware

/INT4 INT4=U2.52
—— U9A o)

INT2=U2.54
/INT2 U9B 5

INTO=U2.56

$CC2691 UB.13 #AINTO | U9D
GND U9E 5
/TXE U25.25 = /INT6 P13 = INT6 = U2.76
uac o)
INMI = J2.17 NMI=U2.47

U9F 0

Figure 3.1 External interrupt inputs with Schmitt-trigger inverters

The TDU uses vector interrupt functions to resptmnexternal interrupts. Refer to the 188ES User’s
manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The 188ES CPU has two asynchronous serial charBiR0 and SER1. Both asynchronous serial ports
support the following:

* Full-duplex operation

e 7-bit, 8-bit, and 9-bit data transfers

« 0Odd, even, and no parity

* One stop bit

e Error detection

» Hardware flow control

» DMA transfers to and from serial ports

« Transmit and receive interrupts for each port

e Multidrop 9-bit protocol support

* Maximum baud rate of 1/16 of the CPU clock speed

* Independent baud rate generators
The software drivers for each serial port implenering-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the saffiipies1l_echo.@nds0_echo.dn the
tern\186\samples\ae directory.
The optional external SCC2691 UART is located i /8 socket. For more information about the externa
UART SCC2691, please refer the data sheet on tiRRNTED, under tern_docs\parts\scc2691.pdf.

3-2

TDU Chapter 3: Hardware

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmainhers: Timer0, Timerl, and Timer2.
TimerO and Timerl are connected to four exterras:pi

TimerO output = P10 = ULN2003 U17 pin 16 > T1 ph(102=U17 pin 3)

TimerO input = P11 = ADC UO pin 16 & EE U7 pin 5

Timerl output = P1 =J2.12 = ULN2003 U17 pin 17&t&rminal 9 (101=U17 pin 2)

Timerl input = PO = ULN2003 U17 pin 15 > T1 terniriel (I03=U17 pin 4)
These two timers can be used to count or time eat@vents, or they can generate non-repetitive or
variable-duty-cycle waveforms. A 10 K pullup resisis required for PO used as Timerl input.
Timer2 is not connected to any external pin. ft ba used as an internal timer for real-time coding
time-delay applications. It can also prescale tithend timer 1 or be used as a DMA request source.
The maximum rate at which each timer can operat® i8|Hz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to disak cycles to respond to clock or gate events t8e
sample programtmer0.c andae_cntO.c in thet er n\ 186\ sanpl es\ ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be useénemte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 cloceyto respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both
TimerO and Timerl have secondary maximum counsteig for variable duty cycle output. Using boté th
primary and secondary maximum count registersthetdimer alternate between two maximum values.

MAX. COUNT A

2
—1 I

MAX. COUNT B

Pulse Width Demodulation can be used to measuraph signal’s high and low phases on the /INT2=J2
pin 20. See Section 8.2 of the Am188ES User’'s Maonghe TERN CD, under the amd_docs\am186es
directory.

3.2.6 Power-save Mode

The TDU is an ideal module for low power consumptipplications. The power-save mode of the 188ES
reduces power consumption and heat dissipatiorellyeextending battery life in portable systems. In
power-save mode, operation of the CPU and intgreapherals continues at a slower clock frequency.
When an interrupt occurs, it automatically retuxmgs normal operating frequency.

The RTC72423 on the TDU has a VOFF signal routetBtpin 1. VOFF is controlled by the battery-
backed RTC72423. The VOFF signal can be progranbyetbftware to be in tri-state or to be active low.
The RTC72423 can be programmed in interrupt modkgite the VOFF pin at 1/64 second, 1 second 1
minute, or 1 hour intervals. The user can use &N line to control an external switching power@yp
that turns the power supply on/off. More details available in the sample fif@weroff.c in the

t er n\ 186\ sanpl es\ ae sub-directory.

3.3188ES PIO lines

The 188ES has 32 pins available as user-progranenv@blines. Each of these pins can be used asra us
programmable input or output signal, if the norstared function is not needed. A PIO line can be

3-3

TDU

Chapter 3: Hardware

configured to operate as an input or output witkvithout a weak pull-up or pull-down, or as an open
drain output. A pin’s behavior, either pull-up arlpdown, is pre-determined and shown in the tdigow.

After power-on/reset, PIO pins default to varioosfigurations. The initialization routine providég
TERN libraries reconfigures some of these pinsessiad for specific on-board usage, as well. These
configurations, as well as the processor-interealpberal usage configurations, are listed belowable

3.1.
PIO | Function Power-On/Reset TDU Pin No. TDU Initial
status
PO Timerl in Input with pull-up T1.11=103 (U17.15) Input with pull-up
P1 Timerl out Input with pull-down T1.9=101 (U17)17 | Input with pull-down
P2 /PCS6/A2 Input with pull-up U4 pin 2 RTC Select
P3 /PCS5/A1 Input with pull-up U8 pin 14 SCC Select
P4 DT/R Normal J2 pin 3 Input with pull-up (STEP|
P5 /IDEN/DS Normal T1.12=104 (U17.14 Input with pup
P6 SRDY Normal T1.13=105 (U17.13 Input with puthwn
pP7 Al7 Normal U3 pin 6 Al7
P8 Al18 Normal U3 pin 9 Al18
P9 Al19 Normal T2.3=021 (U19.8) Al19
P10 | TimerO out Input with pull-down J2 pin 12 Inpuith pull-down
P11 | TimerO in Input with pull-up U7 EE pin 5 Inpwith pull-up
P12 | DRQO/INT5 | Input with pull-up U7 EE pin 6 Outdot LED/EE/HWD
P13 | DRQL/INT6 | Input with pull-up U9 pin 10 /TXE lapwith pull-up (USB)
P14 | /MCSO Input with pull-up T1.14=106 (U17.12 rtpwith pull-up
P15 | /MCS1 Input with pull-up T1.15=107 (U17.1]] rtpwith pull-up
P16 | /PCSO Input with pull-up J1 pin 19 /PCSO
P17 | /PCS1 Input with pull-up U27 pin 1 PAL Select
P18 | CTS1/PCS2 Input with pull-up J2 pin 19 Inputhwiull-up
P19 | RTS1/PCS3| Input with pull-up T2.9=015 (U19.2)| nput with pull-up
P20 | RTSO Input with pull-up Ull pin7 DAC Select
P21 | CTSO Input with pull-up J2 pin 5 Input with pup
P22 | TxDO Input with pull-up H2 pin 3 /TXDO TxDO
P23 | RxDO Input with pull-up H2 pin 5 /RXDO0 RxDO
P24 | /MCS2 Input with pull-up T2.7=017 (U19.4) Inuith pull-up
P25 | /MCS3 Input with pull-up T2.6=018 (U19.5) Inputh pull-up
P26 | Uzl Input with pull-up T2.5=019 (U19.6) Inputttvpull-up*
P27 | TxD1 Input with pull-up H1 pin 3 /TXD1 TxD1
P28 | RxD1 Input with pull-up H1 pin 5 /RXD1 RxD1
P29 | /CLKDIV2 Input with pull-up T2.4=020 (U19.7) pat with pull-up*
P30 | INT4 Input with pull-up J2 pin 8 /INT4 Input thipull-up (ET)
P31 | INT2 Input with pull-up J2 pin 20 /INT2 Inpuitiv pull-up

Note: * P26 and P29 must NOT be forced low duriog/@r on or reset

Table 3.1 I/O pin default configuration after power-on or reset

3-4

TDU Chapter 3: Hardware

Four external interrupt lines are not shared with pins:
INTO = used by SCC2691 UART
INT1 = used by AD7606
INT3 = used by AD7606
/INMI = J2.17

The 32 PIO lines, P0-P31, are configurable via 1ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE | PIOMODE reg. | PIODIRECTION reg. | PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

TDU initialization on PIO pins ime_init() is listed below:

outport(Oxff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); /l PIOM1

outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCRAE
outport(0xff70,0x1000); /l PIOMO, P12=LED

The C function in the librarge_lib can be used to initial P1O pins.
void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0-3, see the table@bov

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);

pio_rd (0); return 16-bit status of PO-P15, if corresgiog pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresiag pin is in input mode,

3-5

TDU Chapter 3: Hardware

Most of the I/O lines are used by the TDU systenofo-board components (Table 3.2). We suggest that
you not use these lines unless you are sure theargonot interfering with the operation of such

components (i.e., if the component is not installed

Signal | Pin Function

PO Timerlin U17.15 high voltage driver

P1 Timerl out U17.17 high voltage driver

P2 /IPCS6 U4 RTC72423 chip

P3 /PCS5 U8 SCC2691 UART chip select

P4 /DT STEP 2 Jumper

P5 /DEN/DS U17.14 high voltage driver

P6 SRDY U17.13 high voltage driver

P7 Al7 Address line 17 for SRAM and Flash

P8 A18 Address line 18 for SRAM and Flash

P9 Al19 U19.8 high voltage driver input

P10 Timer0O out U17.16 high voltage driver

P11 TimerO in Shared with U0 P2543 ADC and U7 24E€B4data input
The ADC and EE data output can be tri-state, while disabled

P12 DRQO/INT5 | LED, U7 serial EE clock, Hit watchdagd DAC LTC2600

P13 DRQO/INT5 | /TXE pin on USB FT232H U9

P14 /IMCSO0 U17.12 high voltage driver

P15 /MCS1 U17.11 high voltage driver

P17 /PCS1 PAL U27 chip select

P19 RTS1/PCS3| U19.2 high voltage driver input

P20 RTSO DAC LT2600 U11 chip select

p22 TxDO Default SERO debug

P23 RxDO Default SERO debug

P24 IMCS2 U19.4 high voltage driver input

P25 IMCS3 U19.5 high voltage driver input

P26 Uzl U19.6 high voltage driver input

P27 TxD1 SER1 RS232 port

P28 RxD1 SER1 RS232 port

P29 /CLKDIV2 U19.7 high voltage driver input

Table 3.2 I/0O lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0 Space

External I/O devices can use I/O mapping for accésa can access such 1/O devices vititbortb(port)
or outportb(port,dat). These functions will transfer one bytevord of data to the specified I/0O address.
The external 1/0 space is 64K, ranging from OxOGDOxffff.

The default I/O access time is 15 wait states. iy use the function void_wait(char wait) to define

the 1/0 wait states from 0 to 15. The system cligc®5 ns (or 50 ns), giving a clock speed of 402Mbr

20 MHz). Details regarding this can be found in 8odtware chapter, and in the Am188ES User's Manual
Slower components, such as most LCD interfaceshinfiigd the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus sdef the system, some components need to be attach

I/O pins directly.

For details regarding the chip select unit, plesseChapter 5 of the Am188ES User’'s Manual.
The table below shows more information about I/Qopiag.

3-6

TDU Chapter 3: Hardware

I/0 space Select Location Usage
0x0000-0x00ff /PCSO J1pin 19 Available
0x0100-0x01ff /PCS1 PAL U27 PPI, ADC, HV
+ 0x0100-0x010f /PPI U5 pin 7 PPI
e 0x0110-0x011f: Read /I U22 pin1 & 19 74HC244
e 0x0110-0x011f: Write /V U24 pin 14 74HC259
e 0x0120-0x012f: Read /CV U10 pin 9&10 AD7606 AD converstion
e 0x0120-0x012f: Write /L U21 pin 14 74HC259
¢ 0x0130-0x013f /AD U10 pin 13 AD7606 chip select
* 0x0140-0x014f: Read /RDU U25 pin 26 FT232H USB read
e 0x0140-0x014f: Write WRU U25 pin 27 FT232H USB write
0x0200-0x02ff /[PCS2 J2 pin 19 = CTS1Available
0x0300-0x03ff /PCS3 J2pin 10=RTS1 Available (skdav/U19)
0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 U8 pin 14 UART, SCC2691
0x0600-0x06ff /PCS6 U4 pin 2 RTC 72423

3.4.2 7AHC259

The 74HC259 8-bit decoder latch provides eight timtuil output lines for the TDU. The U21 74HC259 i
mapped in the I/O address space 0x0120. The U2£€Z881is mapped in the I/O address space 0x0110.
You may access this device by using the followiadee The output of U21 drives the high voltage elriv
U18. The output of U24 drives the high voltage drild20. For pin locations and details refer to the
schematic at the end of this manual.

out portb(0x0120 + i, wval); // U21 i=outputpin, val = 0/1 to set or reset latch.

out portb(0x0110 + i, val); // U24 i=outputpin, val = 0/1 to set or reset latch.

U2l 74HC259

DO 13/G1 qol4 L0 qutportb(0x0120,
Q15 L1 out port b(0x0121,

AO —; A Q2|6 L2 out port b(0x0122,
2; 4B Q3|7 L3 out portb(0x0123,

c Q49 L4 outportb(0x0124, x) x = 0, output low
os{10 L5 outportb(0x0125, x) x = 1, output high

14 oel11 L6 outportb(0x0126, x)
n——G o712 out port b(0x0127, x)

—
~

Figure 3.2 74HC259 diagram with corresponding outport addresses

3.4.3 Programmable Peripheral I nterface (82C55A)

U5 PPI (82C55) is a low-power CMOS programmablealpelrinterface unit for use in microcomputer
systems. It provides 24 1/O pins that may be iitlially programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be progreed in sets of 4 and 8 pins to be inputs or outputs
In MODE 1, each of the two groups of 12 pins caplmrammed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshakidgreterrupt control signals. MODE 2 is a strobéd b
directional bus configuration.

3-7

TDU Chapter 3: Hardware

L I T [[T T]

‘*4’ GROUP 1
Port 2 0 Output
(Lower)

1 Input
Port 1 0 Output

1 Input
Mode 0 Mode O
1 Mode 1

GROUP 2
Port 2 0 Output
(Upper)

1 Input
Port 0 0 Output

1 Input
Mode 00 Mode 0
01 Mode 1
1X Mode 2

Command 0 Bit
Select manipulation
1 Mode
Selec

Figure 3.3 Mode Select Command Word

The TDU maps U5, the 82C55/uPD71055, at base I6Pead 0x0100.
The Command Register = 0x0103; Port 0 = 0x0100; Per0x0101; and Port 2 = 0x0102.
The following code example will set all ports tatjput mode:

out port b(0x0103, 0x80); /* Mode O all output selection. */

out port b(0x0100, 0x55); /* Sets port O to alternating high/low 1/O pins. */
out port b(0x0101, 0x55); /* Sets port 1 to alternating high/low /O pins. */
out port b(0x0102, 0x55); /* Sets port 2 to alternating high/low /O pins. */

To set all ports to input mode:
out port b(0x0103, 0x9f); /* Mode O all input selection. */
You may read the ports with:

i nportb(0x0100); /* Port 0O */
i nportb(0x0101); /* Port 1 */
i nportb(0x0102); /* Port 2 */

This returns an 8-bit value for each port, withrehit corresponding to the appropriate line ongbs.
3.4.4 Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSQNM) is mapped in the 1/O address space 0x0600. It
must be backed up with a lithium coin battery. R¥C is accessed via software driveis init() or
rtc_rd() . Refer to the data sheet on the TERN installai®nunder tern_docs\parts\rtc7242xam.pdf.

It is also possible to configure the real-time &lée raise an output line attached to an extemtatiupt, at
1/64 second, 1 second, 1 minute, or 1 hour interva@his can be used in a time-driven applicatiorthe
VOFF signal can be used to turn on/off the controlEng an external switching power supply. An
example of a program showing a similar applicatian be found inern\186\samples\ae\poweroff.c

3.4.5 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped intoltBeaddress space at 0x0500. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, adjuple buffered receiver data register, an inpgrru
control mechanism, programmable data format, saietaud rate for the receiver and transmitter, a

3-8

TDU Chapter 3: Hardware

multi-functional and programmable 16-bit countenéi, an on-chip crystal oscillator, and a multigmnse
input/output including RTS and CTS mechanism.

For more information, refer to the data sheet @ltBRN CD, tern_docs\parts\scc2691.pdf. The SCC269
on the TDU may be used as a network 9-bit.

3.50ther Devices

A number of other devices are also available orifbe. Some of these are optional, and might not be
installed on the particular controller you are gsifror a discussion regarding the software interfar
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Witlinstalled, the TDU has several functions:
watchdog timer, battery backup, power-on-resetydgawer-supply monitoring, and power-failure
warning. These will significantly improve systentiaibility.

Watchdog Timer

The watchdog timer is activated by setting a junmgred9 of the TDU. The watchdog timer provides a
means of verifying proper software execution. Ha tiser's application program, calls to the fumctio
hitwd() (a routine that toggles the P12=HWD pin of the M#) should be arranged such that the HWD
pin is accessed at least once every 1.6 secohttge J9 jumper is on and the HWD pin is not acedss
within this time-out period, the watchdog timerlpuhe WDO pin low, which asserts /RST. This autbena
assertion of /RST may recover the application m@ogif something is wrong. After the TDU is resbg t
WDO remains low until a transition occurs at the Wi of the MAX691. When controllers are shipped
from the factory the J9 jumper is off, which dissgbthe watchdog timer.

The 188ES has an internal watchdog timer. Thissialded by default witle_init().

Watchdog Jumper J9

-

Figure 3.4 Location of watchdog timer enable jumper

Battery Backup Protection

The backup battery protection protects data storéide SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3V lithium battery positipe), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM athe real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last d&®6 years without external power being supplidthen
the external power is on, the battery-switch-oweuit will select the VCC to connect to the VRAM.

3-9

TDU Chapter 3: Hardware

3.5.2 EEPROM

A serial EEPROM of 512 bytes (24C04), or 2K by{24C16) can be installed in U7. The TDU uses the
P12=SCL (serial clock) and P11=SDA (serial datahterface with the EEPROM. The EEPROM can be
used to store important data such as a node addadigsation coefficients, and configuration coddts
typically has 1,000,000 erase/write cycles. Tha detention is more than 40 years. EEPROM careaé r
and written by simply calling functions tlee_rd() andee_wr(). A range of lower addresses in the
EEPROM is reserved for TERN use.

3.6 Inputs and Outputs

The TDU offers more than 70 I/O lines, include Ti€kel I/O, high voltage 1/0, and analog I/O. The
below diagram gives a brief summary of availab@ I/

U10 - AD7606/7
8ch 16/14-bit

U16 — ULN2003 U17 — ULN2003 -or-
Input only Input (default) or Output U0 — P2543 ADQ
11ch 12-bit
T1
[slclelelelolcislolclol lelslelaiPleIPlOIosIok:]

: H6
flessesess (moozs=e 8ch DAC
3 1 ; » Output

H5
24ch PPI
Input

3 . > &
e RRanReST - : OUtpUt

TLLL:

@ = -
4 - -
- E%
®)

THRRAET @028 ypapsiiiii | . !
---------------- ue U21 L L XN LR RX._

" hy @

@@«"[

T2

BODEOEOOODOOOBOEOOO0D

U19 — ULN2003 U18 — ULN2003| | U20 — ULN2003
Input or Output (default Output only Output only

Figure 3.5 TDU Inputs and Outputs

3.6.2 AD7606 16-bit parallel and AD7607 14-bit high speed ADC

The TDU supports either the AD7606, 16-bit ADC loe tAD7607, 14-bit ADC. Both ADC’s can accept
+10V or 15V true bipolar analog signals while saimglat throughput rates up to 200 kSPS for all &@gn
inputs. Each analog input contains second-ordealansing filter, sample-and-hold amplifier andarolp
protection tolerant up to +16.5V. With 1M ohm argloinput impedance, a 7000V ESD rating, and
sustaining up to 10 mA input current, the analoguis are designed to survive in a rough industrial
environment. The TDU allows simultaneous samplingath eight analog inputs. Using the 16-bit paaall

3-10

TDU Chapter 3: Hardware

DMA interface, the TDU can transfer 8 channels 6fbit (AD7606) or 14-bit (AD7607) data into the
SRAM or CompactFlash with minimal software overhead

The analog inputs All to AD8 are available at Trini@al 1 through 8. The AD7606 or Ad7607 ADC may
only be installed if the P2543 is NOT installed.

See sample program \tern\186\samples\tdu\tdu_addetails on reading the ADC. The sample progmm i
also included in the pre-built sample project:rit@86\samples\tdu\tdu.ide.

3.6.3 12-bit ADC (P2543)

The P2543 is a 12-bit, switched-capacitor, suceesspproximation, 11 channels, serial interfacel@m
to-digital converter. Three PPI 1/O lines are usetdandle the ADC, with /CS=120; CLK=I22; and
DIN=I21.

The ADC digital data output communicates with attibsough a serial tri-state output (DOUT=P11). If
120=/CS is low, the P2543 will have output on Pif120=/CS is high, the P2543 is disabled and 11 i
free. 120 and P11 are pulled high by 10K resistorboard. The P2543 has an on-chip 14-channel
multiplexer that can select any one of 11 inputaror one of three internal self-test voltages. Jample-
and-hold function is automatic. At the end of casi@n, the end-of-conversion (EOC) output is not
connected, although it goes high to indicate thatersion is complete.

P2543 features differential high-impedance inphiéd facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supplgise. A switched-capacitor design allows low-erro
conversion over the full operating temperature eafigne analog input signal source impedance shmild
less than 5Q and capable of slewing the analog input voltage &60 pF capacitor.

The CLK signal to the ADC is toggled through an i@, and serial access allows a conversion ratgpof
to approximately 10 KHz.

The analog reference is provided by the REF1 sigiaimally REF1 is tied to VCC to provide a 5V
reference. An optional precision reference cambtall at U28. Note that REF1 is shared by the
DAC2600 chip U11.

Eight analog inputs of P2543 are available at Tihiteal 1 through 8 (All to AD8). The P2543 ADC may
only be installed if AD7606 and AD7607 are NOT aiktd.

3.6.4 Eight channel 16-bit DAC (TLC2600)

The TLC2600 is an eight channel 16-bit digital-tatpg converter (DAC) in an SO-8 package. It is
complete with a rail-to-rail voltage output ammificapable of driving up to 15mA. It uses a 3-v8r
compatable serial interface and has an output rahQeREF volts, making 1 LSB equal to REF/65535 V.
The analog reference is provided by the REF1 sidgiaimally REF1 is tied to VCC to provide a 5V
reference. An optional precision reference cambtall at U28. Note that REF1 is shared by thed325
ADC chip. The REF voltage must be greater than GIND less than VCC. The DAC outputs are routed to
the H6 pin header, pins 1-8.

The DAC is installed on the TDU at location U11 arsés /RTSO as the chip select. The synchronous
serial interface is used to send data to the deleter to the sample code \tern\186\samples\tdutta.c
for an example on driving the DAC. The sample soahcluded in the pre-built sample project
\tern\186\samples\tdu\tdu.pdl.

Refer to the DAC data sheet for additional speaifans; \tern_docs\parts\ltc2600.pdf.

3.6.5 Protective high voltage inputs

In order to support high voltage digital signalubhpip to 30V, Darlington Transistor Arrays (ULN2G%3
are installed in U16, U19, U1lThe maximum input voltage is 30V. The input pin H&s7K resistance
load to the GND. You have to provide a pulled hgigmnal input. A valid input low voltage is less tha
0.8V, and a valid input high voltage is higher tf®hand less than 30V.

3-11

TDU

Chapter 3: Hardware

Digital Input upto 30V DC 27K

|

10K
Il
N

Darlington Transistor

5V

’—ek—K

ULN2003A

ouT Am188ES PIO

= GND

Figure 3.6 Darlington Transistors used as Protective High Voltage Inputs.

U17 and U19 may be set as input or output. Byofgctlefault, U19 is output and U17 is input. Thptt
and output orientation for U17 and U19 is illustdibelow. Follow these illustrations carefullygi@vent
damage to the chipsNotice that U17 and U19 are aligned differentlyln addition, the ULN2003 chips

may be replaced with a resistor pack to providéalignputs or outputs to the terminal blocks.

Reversable high voltag
input/sinking output
U17 Default: INPUT

[Hie 7.

i

EEOLORCOOCH APVOOOROLLE

Reversable high voltage
input/sinking output
U19 Default: OUTPUT

ui7

ULN2003 installed fotNPUT

ULN2003 installed foOUTPUT

L B N N N N N N

ui19

ULN2003 installed foOUTPUT

= m oww |W

ULN2003 installed fotNPUT

L R N RN

Figure 3.7 Locations of user configurable Darlington Transistor Arrays.

3-12

TDU Chapter 3: Hardware

3.6.6 High-Voltage, High-Current Drivers

ULN2003 has high voltage, high current Darlingtoansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substraiéchannels feature open-collector outputs foksig
350 mA at 50V, and integral protection diodes fawidg inductive loads. Peak inrush currents oftap
600 mA sinking are allowed. U18 and U20 are deditatigh-voltage drivers and Ul7 and U19 are
configurable as high-voltage drivers. These outputs/ be paralleled to achieve high-load capability,
although each driver has a maximum continuous coltecurrent rating of 350 mA at 50V. The maximum
power dissipation allowed is 2.20 W per chip atd@grees C°C). The common substrate G is routed to
T2 GND pins. All currents sinking in must returnttee T2 GND pin. A heavy gauge (20) wire must be
used to connect the T2 GND terminal to an extecoaimon ground return. K connects to the protection
diodes in the ULN2003 chips and should be tiedigiést voltage in the external load system. K can b
connected to an unregulated on board +12V via #6J&JLN2003 is asinking driver, not a sourcing
driver. An example of typical application wiring is showelow.

_>O? oml
>O£_ Solenoid +12V
>O£_ Power Supply
>O£_ J6orJ7
O O
. . K +12V
ULN2003 TinyDrive
IGND/SUB

Figure 3.8 Drive inductive load with high voltage/current drivers.

3.1.1 High-Speed USB 1.1/2.0 Save FT232H

FTDI's TF232H chip provids a USB 1.1/2.0 slave UBBort. The FT232H handles USB stack processing
and no USB specific firmware programming is reqir€he FT232H is configured to interface with the
TDU’s CPU using the FT245 style asynchronous FIRterface. When configured in this mode, the pins
on the FT232H connect directly to the databus efGFPU and is selected using an I/O mapped chiptsele
The FT232H uses two types of USB software driveGP or D2xx. When the FT232H is configured to
use the VCP driver, the USB connection createstaaliCOM port on the PC. This allows the UB to
communicate to a terminal program as if it were mamted via RS232. The sample program
\tern\186\samples\tdultdu_usb.c shows how to us&8B port as a virtual COM port.

By default, the FT232H is configured to use the ©2xiver. The data transfer rate can go as higB as
MB/sec with the D2xx driver. The D2xx driver prdes a dymanic linked library that the user caninse
developing a Windows application interface (see E@@n for information on using the D2xx driver)e&s
the appendix at the end of this manual for instgliand configuring the FTDI drivers.

3-13

TDU

Chapter 3: Hardware

3.7Headers and Connectors

The following are the jumpers and connectors onibé

Name | Size | Fuunction

H1 5x2 SER1 RS232

H2 5x2 | SERO and SCC RS232

H5 13x2 | 24 1/0 from PPI 82C55

H6 6x2 8 DAC output

H8 3x1 POT for LCD contrast adjustment

J1 20x2 | Address/Databus expansion port

J2 10x2 | Programmable processor I/O expansion port
J3 3x1 | SRAM selection: Pin 1=2: 128K, Pin 2=3: 512K
J6 2x1 HV proctection diode jumper for ULN2003 U17
J7 2x1 HV proctection diode jumper for ULN2003 U189, U20
J8 2x1 VOFF for switching regulator

J9 2x1 Watchdog enable jumper

Tl 24x1 | Screw terminal for inputs

T2 24x2 | Screw terminal for outputs

3-14

Chapter 3: Hardware

TDU
3.7.1 Header J1 and J2
Header J2
GND 1 2 VCC
P4 3 4 P14
/ICTSO 5 6
TXDO 7 8 /INT4
RXDO 9 10 /IRTS1
11 | 12 P1
TXD1 13 | 14
RXD1 15| 16 GND
INMI 17 | 18
ICTS 19| 20 /INT2

Header J1
VCC 1 2 GND
3 4 CLK
5 6 GND
7 8 DO
9 10 D1
11 | 12 D2
13 | 14 D3
IRST 15| 16 D4
RST 17| 18 D5
P16 19| 20 D6
21 | 22 D7
23 | 24 GND
25 | 26 A7
27 | 28 A6
/IWR 29 | 30 A5
/RD 31| 32 Ad
33| 34 A3
35| 36 A2
37 | 38 Al
39 | 40 A0

3-15

TDU Chapter 3: Hardware

3.7.2 Header H5 and H6

The 0.1 inch spacing dual row pin headers H6 an@td3ined up as a 19x2 pin header next to the PCB
right side edge of TDU. The headers have the faligwin layout:

Header H6
DAl 1 2 DA2
DA3 3 4 DA4
DAS 5 6 DA6
DA7 7 8 DAS8
9 | 10
GND 11| 12
Header H5

110 26 | 25 111
112 24 | 23 113
114 22| 21 115
116 20 | 19 117
120 18 | 17 121
122 16 | 15 123
124 14 | 13 125
126 12 | 11 127

100 10 9 101
102 8 7 103
104 6 5 105
VLC 4 3 VCC
106 2 1 107

3-16

TDU Chapter 3: Hardware

3.7.3 Terminal Blocks

The TDU has a total of 24x2 positions of terminialcks. The signals are listed as below. As defdultis
for inputs, and T2 is for outputs.

VCC GND IN7 IN6 IN5 IN4 IN3 IN2 IN1 10706 105 104 103 102 101 AI8 Al7 Al6 AI5 Al AI3 Al2 All

@l

elalelelalelolclels/elslelelololpl@iolsis]
______ * ,,,, 3 n [W

+12VI GND 021 020 019 018 O17 016 O15 @243 012 O11 010 09 08 O7 06 O5 O4 O3 @2 GND

Figure 3.9 Terminal block diagram

T1
A{l...8} 1...8 | Analoginput
10{1...7} 9...15 | Configurable high-voltage inputput
IN{1...7} 16 ... 22 | Dedicated high-voltage input
GND 23 Ground
VCC 24 +5V power supply, <200 mA

Table 3.3 Terminal 1 (T1)

T2
+12VI 1 Unregulated input voltage from power suppl
GND 2 Ground
0O{21 ... 15} 3...9 | Configurable high-voltage inpulitput
0{14...1} 10 ... 23| Dedicated high-voltage drivers
GND 24 Ground

Table 3.4 Terminal 2 (T2)

3-17

TDU Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewelopment Kit Professsional for TERN 16-bit
Embedded Microcontrollers” for details on debuggamgl programming tools.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a sismdbw cost solution to application engineers, some
guidelines must be followed. If they are not falled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Rem#dugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgeeing problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatimmgram enables interrupt and occupies the interrup
controller for longer than the remote debugger aerept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset megduired to restart your PC.

For your reference, be aware that our system istekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssisf an 1/0 address space and a memory address
space. 1/O address space ranges féx0000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. ah@ memory mappings are done in software to define
how translations are implemented by the hardwdnreplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expliciticess any address in /O or memory space, amd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in 1/0O space) or non-mapped Brgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigngdnsigned char data
Return value: none

These standard C functions are used to place sukdidta at any memory space location. Jdgenent
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space mbanshe appropriate address and data are placed
the address and data-bus, and any memory-spacenmgsajap place for this particular range of memory
will be used to activate appropriate chip-selewdi and the corresponding hardware component
responsible for handling this data.

(@]

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifiitt@ss in memory space. Once againstgment
address is shifted left by four bits and addedhemffset to find the 20-bit address. This address is then
output over the address bus, and the hardware aoenpaapped to that address should return either g
8-bit or 16-bit value over the data bus. If thisrao component mapped to that address, this fumetill
return random garbage values every time you tpetk into that address.

-

4-1

Chapter 4: Software TDU

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place tHata into the appropriataddress in 1/0 space. It is used most often
when working with processor registers that are redppto I/O space and must be accessed using eithgr
one of these functions. This is also the functiead in most cases when dealing with user-confijure
peripheral components.

When dealing with processor registers, be sureséate correct function. Usetport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data fromponents in 1/0 space. You will find that most haade
options added to TERN controllers are mapped i@cspace, since memory space is valuable and is
reserved for uses related to the code and dateng U® mappings, the address is output over thiress

bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/0O and memory mappipésase refer to the Hardware chapter of this
technical manual.

41AE.LIB

AE.LIB is a C library for basic TDU operations.iftcludes the following modules: AE.OBJ, SER0.OBJ,
SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to lilkLMB in your applications and include the
corresponding header files. The following is adisthe header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog|,
SERO.H Internal serial port O

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEE.H on-board EEPROM

4.2 Functionsin AE.OBJ

4.2.1 TDU Initialization
ae init
This function should be called at the beginningewéry program running on TDU core controllers. It

provides default initialization and configuratiohthe various 1/0 pins, interrupt vectors, setsexpanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

There are certain default pin modes and interrefiings you might wish to change. With that in dyithe
basic effects ohe init are described below. For details regarding regisse, you will want to refer to the
AMD Am188ES Microcontroller User’s manual.

< Initialize the upper chip select to support thead#fROM. The CPU registers are configured such
that:

— Address space for the ROM is from 0x80000-0xffftf thap MemCard 1/0O window)

4-2

TDU Chapter 4: Software

— 512K ROM Block size operation.

— Three wait state operation (allowing it to suppgtto 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you regjiricreased performance (at a risk of stability
in noisy environments). For details, see the UMGgper Memory Chip Select Register)
reference in the processor User's manual.

out port (Oxffa0, Ox80bf); // UMCS, 512K ROM 0x80000-Oxfffff

e Initialize LCS (ower Chip Sdect) for use with the SRAM. It is configured so that:
— Address space starts 0x00000, with a maximum oKRAM.
- Three wait state operation. Reducing this valueiggrove performance.
- Disables PSRAM, and disables need for externalyread

out port (0Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

e Initialize MMCS and MPCS so thid CS0 andPCS0-PCS6 (except for PCS4) are configured so:

- MCS0is mapped also to a 256K window at 0x80000. #dmith MemCard, this
chip select line is used for the 1/O window.

— Sets upPCS5-6 lines as chip-select lines, with three wait stggeration.
out port (Oxffa8, OxalObf); // s8, 3 wait states
out port (Oxffa6, O0x81ff); // CSOMSKH
¢ Initialize PACS so thaPCS0-PCS3 are configured so that:

— Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.

— The chip select lines starts at /0O address 0x0@i,each successive chip select line
addressed 0x100 higher in I/O space.

out port (O0xffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

« Configure the two PIO ports for default operatidkl pins are set up as default input, except for
P12 (used for driving the LED), and peripheraldiion pins for SERO and SER1, as well as chip
selects for the PPI.

out port (Oxff 78, 0xe73c) ; /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/1 P16=PCSO, P17=PCS1=PPI

out port (Oxff 76, 0x0000) ; /1 Pl OVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, Al19, A18, A17, P2=PCS6=RTC

out port (Oxff 70, 0x1000) ; /1 PIOWD, P12=LED

« Configure the PPI 82C55 to all inputs, except fioes 120-23 which are used as output for the
ADC. You can reset these to inputs if not beingdufor that function.

out port b(0x0103, 0x9a) ; /1l all pins are input, 120-23 output
out port b(0x0100, 0) ;

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

The chip select lines are by default set to 15 staite. This makes it possible to interface widmgn
slower external peripheral components. If you negjfaster I/O access, you can modify this numhoevrd
as needed. Some TERN components, such as théReal€lock, might fail if the wait state is decreds
too dramatically. A function is provided for ttpsirpose.

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state dependim¢he argumentait.

wai t=0, wait states 0, I/O enable for 100 ns
wait=1, wait states 1, 1/ 0O enable for 100+25 ns

4-3

Chapter 4: Software TDU

wait=2, wait states
wai t=3, wait states
wai t=4, wait states
wai t=5, wait states
wai t =6, wait states
wai t=7, wait states

, I/O enable for 100+50 ns

, I/ O enable for 100+75 ns

, I/ O enable for 100+125 ns
, I/ O enable for 100+175 ns
, I/ O enable for 100+225 ns
15, 1/ O enable for 100+375 ns

O~NOTWN

4.2.2 External Interrupt I nitialization

There are up to eight external interrupt sourceshenTDU, consisting of seven maskable interrups pi
(INT6-INTO) and one non-maskable interruptM1). There are also an additional eight internatrintpt
sources not connected to the external pins, camgisdf three timers, two DMA channels, both
asynchronous serial ports, and el from the watchdog timer. For a detailed discussivolving the
ICUs, the user should refer to Chapter 7 of the AMB188ES Microcontroller User's Manual.

TERN provides functions to enable/disable all af Bexternal interrupts. The user can call anthef
interrupt init functions listed below for this puge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second imetifin pointer to an appropriate interrupt servicetine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriataeérvice bit for the IR signal currently being Hked
must be cleared. This can be done using\trespecific EOl command. At initialization time, interrupt
priority was placed iffrully Nested mode. This means the current highest priorityrioge will be handled
first, and a higher priority interrupt will intenoti any current interrupt handlers. So, if the ud@oses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine puestds to
issue the nonspecific EOl command to clear theectifnighest priority IR.

To send the nonspecific EOl command, you need i@ wWreEOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any ditbeexternal interrupt channels (for pin locai@nd
other physical hardware details, see the Hardwaapter). The first argumentndicates whether this
particular interrupt should be enabled or disabl&e second argument is a function pointer thitaet
as the interrupt service routine. The overheatherinterrupt service routine, when executed, ®aB0

us.

By default, the interrupts are all disabled aftetialization. To disable them again, you can edfbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwdiR
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4-4

TDU Chapter 4: Software

4.2.3 1/O Initialization

Two ports of 16 1/O pins each are available onTtb&J). Hardware details regarding these PIO lineshmn
found in the Hardware chapter.

Several functions are provided for access to tli IiPles. At the beginning of any application whgoa
choose to use the PIO pins as input/output, youpsdbably need to initialize these pins in onetaf four
available modes. Before selecting pins for thigopse, make sure that the peripheral mode operafion
the pin is not needed for a different use withia $me application.

You should also confirm the PIO usage that is deedrabove withinae init(). During initialization,
several lines are reserved for TERN usage and lgould understand that these are not availabledar y
application. There are several PIO lines that aeddor other on-board purposes. These are altidedc
in some detail in the Hardware chapter of this méxdd manual. For a detailed discussion towardit®e
ports, please refer to Chapter 11 of the AMD Am1B8&Ker’'s Manual.

Please see the sample prograepio.c in t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qguri
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingebding on the pin
being used, it might require from 5-10 us. The imann efficiency you can get from the PIO pins ociéur
you instead modify the PI1O registers directly watihoutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register xff74 for PIO port 0, an@xff7a for P1O port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.

* 0, normal operation

e 1, input with pullup/down
e 2, output

e 3, input without pull

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesahieent 1/0 value for the P1O pins in the seleqted.
void pio_wr:

Arguments: char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) tostlected PI1O.

4.2.4 Timer Units

The three timers present on the TDU can be used Variety of applications. All three timers rain of
the processor clock rate, which determines the maxi resolution that can be obtained. Be awareithat
you enter power save mode, the timers will opesiaereduced speed as well.

These timers are controlled and configured throagihode register that is specified using the softwar
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’'s Manual.

4-5

Chapter 4: Software TDU

Pulse width demodulation is done by setting the Phithin theSY SCON register. Before doing this, you
will want to specify your interrupt service routievhich are used whenever the incoming digitahalig
switches from high to low, and low to high.

The timers can be used to time execution of yoer defined code by reading the timer values bedok
after execution of any piece of code. For a sarfildelemonstrating this application, see the saiib
timer.c in the directorytern\186\samples\ae.

Two of the timers,TimerO andTimer1l can be used to do pulse-width modulation with gawde duty
cycle. These timers contain two max counters, whke output is high until the counter counts up to
maxcount A before switching and counting up to noaxt B.

It is also possible to use the outpufldmer?2 to pre-scale one of the other timers, since 1édsiblution at
the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. The sample filésner02.c andtimer12.c, located inern\186\samples\ae, demonstrate this.

The specific behavior that you might want to impésrnis described in detail in chapter 8 of the AMD
AM188ES User’'s Manual.

void t0_init

void t1 init

Arguments: int tm, int ta, int tb, void interrupt far(*t_ip)
Return values: none

Both of these timers have two maximum counters (MMDUNTA/B) available. These can all be specified
usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

The interrupt service routineisr specified here is called whenever the full cosntgached, with other
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only draes max counter available.

4.2.5 Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog infaatsed on the reference voltage supplieREs+. For
details regarding the hardware configuration, keeHardware chapter.

In order to operate the ADC, lines 120, 121,122nfrthe PPl must be configured as output. P11 nlsst a
be configured to be input. This line is also sHanéth the RTC and EEPROM, and left high at power-
on/reset. You should be sure not to re-prograraethmns for your own use. Be careful when usirg th
EEPROM concurrently with the ADC. If the ADC isadied, the line P11 will be reserved for its usé an
any attempt to access the EEPROM will time-outraftene time.

For a sample file demonstrating the use of the Apl€ase seae ad12.cint er n\ 186\ sanpl es\ ae.

int ae_ad12
Arguments: char ¢
Return values: int ad_value

The argument selects the channel from which to do the next Agab Digital conversion. A value of O
corresponds to chann&DO, 1 corresponds to chann&D1, and so on.

The return valuad_value is the latched-in conversion value from the prasioall to this function. This
means each call to this function actually retuhesytalue latched-in from the previous analog-tatdig
conversion.

TDU Chapter 4: Software

For example, this means the first analog-to-digitalversion done in an application will be simtiathe
following:

ae_adl2(0); // Read from channel 0
chn_0O_data = ae_adl12(0); // Start the next conversion, retrieve val ue.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timé@®) is connected, the functidritwd() must be called every 1.6
seconds of program execution. If this is not exedecause of a run-time error, such as an iafioibp
or stalled interrupt service routine, a hardwasetsvill occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to taéue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, tieal
time clock can be accessed and programmed usinqiterace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu

application developers should be careful to accéoma roll-over in digits in the year 2000. Ondusimn
might be to store an offset value in non-volattlerage such as the EEPROM.

There is a common data structure used to accesssanboth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten minute digit.
unsi gned char hour1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nmonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

4-7

Chapter 4: Software TDU

intrtc rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the timaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrch, &s
the clock failing to respond.

Void rtc_init

Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinleevto be used.

The byte array should correspond tadekday, year 10, year 1, month10, month1, day10, dayl, hour 10,
hour 1, minutel0, minutel, second10, secondl, O }.

If, for example, the time to be initialized intcetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8 0, 6, 0, 5, 1, 3, 5, 5 3, 0};

Delay

In many applications it becomes useful to pauserbefxecuting any further code. There are functions
provided to make this process easy. For applicatibat require precision timing, you should use
hardware timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Hwutual time that it waits depends on processordspse
well as interrupt latency. The code is functiopadlentical to:

VWhile(t) { t--; }

Passing in & value of 600 causes a delay of approximately 1 ms.
void delay_ms

Arguments: unsigned int

Return value: none

This function is similar to delay0, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crclé
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr.

void ae_reset
Arguments: none

4-8

TDU Chapter 4: Software

Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlhedbior
any reason. Depending on the current hardwaregrafion, this might either start executing codmf
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgetlyin the header filser0.h andser1.h in the directory
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funetigridentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits G@mmunication with the PC. As a result, you will
not be able to debug code directly written foragubrt 0.

Two asynchronous serial ports are integrated inAmE.88ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can pata maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for apgiion download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the followthigcussion; any of the interface functions tha ar
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial port dse,
please realize that some pins might be shared otfiter peripheral functions. This means that inager
limited cases, it might not be possible to usergaweserial port with other on-board controllenétions.
For details, you should see both chapter 10 of Ahel88ES Microprocessor User’s Manual and the
schematic of the TDU provided at the end of thisinsh

TERN interface functions make it possible to use of a number of predetermined baud rates. These
baud rates are achieved by specifying a divisoffb6 of the processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systenk;céo20 MHz system clock would have the baud rates
halved.

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values
After initialization by callings1 i ni t (), SERL1 is configured as a full-duplex serial portl & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser1 i n_buf (whose size is specified by the user), will autboadly store the
receiving serial data stream into the memory by OMdéperation. In terms of receiving, there is no
software overhead or interrupt latency for useriapfion programs even at the highest baud rat&1AD

4-9

Chapter 4: Software TDU

transfer allows efficient handling of incoming datdhe user only has to check the buffer status wit
serhit1() and take out the data from the buffer wgilt ser 1(), if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howgwthe transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

voovv v
[T[]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer sizeiz), and baud ratebéud) are specified by the user wisti_i ni t ()

with a default mode of 8-bit, 1 stop bit, no parifjffter s1_i nit () you can set up a new mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRegister
(SPOCT/SP1CT) if necessary, as described in chaptef the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andigp@sgfects from the external environment, seiniglut
data will automatically fill in the buffer circulpr without stopping, regardless of overwrite. letlhiser
does not take out the data from the ring buffehwi¢t ser 1() before the ring buffer is full, new data
will overwrite the old data without warning or coolt Thus it is important to provide a sufficigntarge
buffer if large amounts of data are transferredr éxample, if you are receiving data at 9600 bautl KB
buffer will be able to store data for approximatfeyr seconds.

However, it is always important to take out datdyefrom the input buffer, before the ring buffeslis
over. You may designate a higher baud rate foistratting data out and a slower baud rate for récgiv
data. This will give you more time to do other tgn without overrunning the input buffer. You caseu
serhit1() to check the status of the input buffer and retbmoffset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates d@ta is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_talil
pointer will automatically increment after eveggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oaljhardware reset &1_cl ose() can stop this
receiving operation.

For transmission, you can ugeit ser 1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsmg buffer,s1_out buf, at any time using this
method. The transmit ring buffer addresbyf) and buffer lengthasiz) are also specified at the time of
initialization. The transmit interrupt service witheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othese, it will
continue to take out the data from the out buféerd transmit. After you caput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrappen.

It will automatically send out all the data you sife After all data has been sent, it will clebhetbusy flag
and be ready for the next transmission.

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dule receive an input
HEX file from SER1 and translate every ‘.’ charadte ‘?’. The translated HEX file is then transrad
out of SERO. This sample program can be fourtceinn\ 186\ sanpl es\ ae.

Softwar e I nterface

Before using the serial ports, they must be inzéd.

There is a data structure containing importantsgort state information that is passed as argtiteetine
TERN library interface functions. Th@OM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siitce
allows you to monitor the current value of the lufnd associated pointer values, you can watch the
transmission process.

4-10

TDU Chapter 4: Software

The two serial ports have similar software integfac Any interface that makes reference to eitiewr
ser0 can be replaced witkll or serl, for example. Each serial port should use its @@M structure, as
defined inae.h.

t ypedef struct ({
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /* I nput buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /[* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /1l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsigned int in_offs; /* input buffer offset */
unsi gned i nt out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */
} com

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitle specified parameterb.is the baud rate value shown
in Table 4.1. Argumentduf andisiz specify the input-data buffer, antuf andosiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 staip no parity communication.

There are a couple different functions used fandmaission of data. You can place data within thigat
buffer manually, incrementing the head and taiféupointers appropriately. If you do not call arfethe
following functions, however, the driver interrufatr the appropriate serial-port will be disabledhigh
means that no values will be transmitted. Thisvedl you to control when you wish the transmissién o
data within the outbound buffer to begin. Onceittierrupts are enabled, it is dangerous to maatpiuthe
values of the outbound buffer, as well as the \&ahfehe buffer pointer.

4-11

Chapter 4: Software TDU

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate sepiart. The return valué
returns one in case of success, and zero in amy otise.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated charactengtinto the transmit buffer. The return valueurets one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataoithe inbound bufferserhitn() should be called
before trying to retrieve data.

ser hitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufée this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again, this
function assumes thagrhitn has been called, and that there is a characteemrigsthe buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret¢ASCII: 0x0d) is retrieved.

This function makes repeated callgggbser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedthedouffer.

Be careful when you are using this function. Téteimed character string is actually a byte array
terminated by a null character. This means thaetimight actually be multiple null characterstia byte
array, and the returne@lue is the only definite indicator of the number otds/read. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsing you are
working with byte arrays, the single-byte versiofishese functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) anBTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appatgfor
whatever form of flow control you wish to implemerefore using these functions, you should on@érag
be aware that the peripheral pin function you aiegimight not be selected as needed. For depidlase
refer to the Am188ES User’s Manual.

4-12

TDU Chapter 4: Software

char sn_cts(void)
Retrieves value o€ TS pin.

void sn_rts(char b)
Sets the value ®RTStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset efau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting dolmenhardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial 1/0 ports available on Ah€l88ES Processor have many other features that
might be useful for your application. If you araly interested in having more control, please r€adpter
10 of the manual for a detailed discussion of ofbatures available to you.

4.4 Functionsin SCC.0OBJ

The functions found in this object file are profwdy inscc.h in thet er n\ 186\ i ncl ude directory.

The SCC is a component that is used to providerd #synchronous port. It uses an 8 MHz crystal,
different from the system clock speed, for driviegrial communications. This means the divisors and
function arguments for setting up the baud rateHisrthird port are different than for SERO andR3E

The SCC2691 component has its own 8 MHz crystaligiog the clock signal. By default, this is set&
MHz to be consistent with earlier TERN controllersiyns. The highest standard baud rate is 19d%0,
shown in the table below. If your application rgs a higher standard baud rate (115,200, for plen
it is possible to replace this crystal with a cust8.6864 MHz crystal. A sample file demonstrativay
the software would be changed for this applicatisrae sccl.c, found in thetern\186\samples\ae\
directory.

Function Argument | Baud Rate

110

150

300

600
1200
2400
4800
9600 (default)
19,200
31,250
62,500
125,000
250,000

© 0O ~NO UL WNPR

=
N R O

(=Y
w

4-13

Chapter 4: Software TDU

Unlike the other serial ports, DMA transfer is mged to fill the input buffer for SCC. Instead,iaterrupt-
service-routine is used to place characters ingoirtput buffer. If the processor does not respanthée
interrupt—because it is masked, for example—theriopt service routine might never be able to cetepl
this process. Over time, this means data mighbdten the SCC as bytes overflow.

Special control registers are used to define hav3EC operates. For a detailed description of tergis
MR1 andMR2, please see Appendix B of this manual. In mosRNEapplications, MR1 is set @57,
and MR2 is set t@x07. This configures the SCC for no flow control (RTSTS not used/checked), no
parity, 8-bit, normal operation. Other configuraticare also possible, providing self-echo, evengatity,
up to 2 stop hits, 5 bit operation, as well as anattic hardware flow control.

Initialization occurs in a manner otherwise similarSERO and SER1. ASOM structure is once again
used to hold state information for the serial pofhe in-bound and out-bound buffers operate asrbef
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned charsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue ba as defined in the table above. The valuealmand
m2 specify the values to be stored ilMdR1 andM R2. As discussed above, these values are normally
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, afdif andosiz define the output buffer.

After initializing the serial port, you must alsetap the interrupt service routine. The SCC26%RU
takes up external interrupkNTO on the CPU, and you must set up the appropriaterupt vector to
handle this. An interrupt service routingc isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

intO_init(l, scc_isr);
By default, the SCC is disabled for bdtiansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deelfiggou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomalsdile showing RS232 full duplex communications,
please seae scc.cin the directoryt er n\ 186\ sanpl es\ ae.

RS485 is slightly more complex to use than RS28%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoap The RS485 driver will echo back bytes serthie
SCC. As a result, assuming you are using the R84i86r installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you willso need to place the
RS485 driver in transmission mode as well. Thidase by usingcc_rts(1). This uses pin MPO (multi-
purpose output) found on the J1 header. While areureceiving data, the RS485 driver will needé¢o b
placed in receive mode usirsgc_rts(0). For a sample file showing RS485 communicatideage see
ae rs485.cin the directoryt er n\ 186\ sanpl es\ ae.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)Jow (i = 0). The function scc_rts() actuallysha
similar function, by pulling the same pin high ow, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

4-14

TDU Chapter 4: Software

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofetse
functions are disabled by default. If you are gdR8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec reset
Arguments: none
Return value: none

This function resets the state of the send andvwedenction of the SCC2691. One major use of¢hes
functions is to disableransmit andreceive. If you are using RS485, you will need to uss feature when
transitioning from transmission to reception, @mfirreception to transmission.

Transmission and reception of data using the SQCrisost ways identical to SERO and SER1. The
functions used to transmit and receive data aréasinFor details regarding these functions, pteader to
the previous section.

putser_scc
See: putsern

putsers scc
See: putsersn

getser_scc
See: getsern

getsers scc
See: getsersn

Flow control is also handled in a mostly similasgon. The CTS pin corresponds to the MPI pincivhis
not connected to either one of the headers. THg BT corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.

scc_close
See: sn_cl ose

serhit_scc
See: sn_hit

clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to chhekstate of the SCC for information regarding ertbat
might have occurred. By callingcc_err, you can check for framing errors, parity errafspérity is
enabled), and overrun errors.

scc_err
Arguments: none

4-15

Chapter 4: Software TDU

Return value: unsigned char val
The returned valueal will be in the form of OABC0000 in binary. Bit & 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit Glicates an over-run error.

45 Functionsin AEEE.OBJ

The 512-byte serial EEPROMA4CO04) provided on-board allows easy storage of noniilelgrogram
parameters. This is usually an ideal locationtéeesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite stowmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use speifi for this purpose.

Addresse$x00 to 0x1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, jump address for Siew, and other data that is of a more permanenireat

The rest of the EEPROM memory spa@e0 to 0x1ff, is available for your application use.

The EEPROM shares line P11 with the ADC. If the ABQnabled, it can interfere with the EEPROM.
The ADC is enabled if 120 is low. In the init fura, it is brought high so that you can access the
EEPROM. Be aware that if you modify the PPI conteglister by calling outportb(0x0103, xx); then il
the output lines on the PPI are brought low, inielgdi20, which enables the ADC and disables the
EEPROM. If you need to use the EEPROM, be sureitmgyb20 high again to disable the ADC (refer to
section 3.5.2).

ee wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedat to the specifie@ddr. The return value is 0 in success.
ee rd

Arguments: int addr
Return value: int data

This function returns one byte of data from thect#fperl address.

4-16

0.08, 2.73

0.08, 2.05

TDU Appendix A: TDU Layout

Appendix A: TDU Layout

The TDU measures 4.87 by 3.42 inches. All dimensions shown below are in inches.

Thisdrawing is not to scale.
4.87, 3.42
/ 0.13,2.92
T HY
Hin 4.73, 2.92
I 4 B % IJ|F!| NEET'T W l i/

N T o

\A
23
" L |
ATALT
o3
Bl [+ _+ A
|

D Ll
— e USO 2 |, 4.81,0.98
3 i ! [al
Ci = o
Q 4 N 5 % cDZ:I:I:I
o' - HE
) 151 C24
i o= Utg VE s um DO v
(=} e
2 ¥ i i % 120 d
=Sy
H14 DG 5 K1z
| [[
o OHT! E
0.00, 0.00

TDU Appendix B: Software Glossary

Appendix B: Software Glossary

The following is a glossary of library functiong fine TDU.

void ae_init(void) ae.h

Initializes the Am188ES processor. The followiaghe source code fae_init()
outport(Oxffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, 0 wait states

outport(Oxffa8,0xalbf); // 256K block, 64K MCS0, PCSI1/O
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffad,0x007f); // PACS, base 0, 15 wait

outport(Oxff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS), P17=PCS1=PPI
outport(Oxff76,0x0000); // PIOM1

outport(Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(Oxff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins areinput, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

enabl e();

Reference: led.c

void ae_reset(void) ae.h

Resets Am188ES processor.

void delay_ms(int m) ae.h
Approximate microsecond delay. Does not use timer.
Var: m — Delay in approximate ms

Reference: led.c

void led(int i) ae.h
Toggles P12 used for led.
Var: i- Led on or off

Reference: led.c

B-1

Appendix B: Software Glossary TDU

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.
Var: m — Delay using simple for loop up to t.

Refer ence:

void pwr_save en(int i) ae.h

Enables power save mode which reduces clock spBeters and serial ports will be effected.
Disabled by external interrupt.

Var: i—1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peeifzh use.

Var: i — 1 enables clock output, O disables (saves current when
disabled).
Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must baeoted to WDI of the MAX691 supervisor chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0-31
Mode — above mode select

Reference: ae_pio.c

B-2

TDU Appendix B: Software Glossary

void pio_wr(char bit, char dat)

Writes a bit to a P10 line. PIO line must be inctput mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 - 31
dat — 1/0

Reference: ae pio.c

ae.h

unsigned int pio_rd(char port)
Reads a 16 bit P1O port.

Var: port—0: PIOO - 15
1: PIO16-31

Reference: ae_pio.c

ae.h

void outport(int portid, int value)

Writes 16-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 16 bit value

Reference: ae _ppi.c

dos.h

void outportb(int portid, int value)

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — /O address
value — 8 bit value

Reference: ae _ppi.c

dos.h

int inport(int portid)
Reads from an 1/0O addrepsrtid. Returns 16-bit value.
Var: portid — 1/0 address

Reference: ae _ppi.c

dos.h

B-3

Appendix B: Software Glossary

TDU

int inportb(int portid) dos.h

Reads from an I/0O addrepertid. Returns 8-bit value.
Var: portid — 1/0 address

Reference: ae _ppi.c

int ee wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data
Var: addr — EEPROM data address

Reference: ae_ee.c

int ae_adl2(unsigned char c) ae.h

Reads from the 11-channel 12-bit ADC. Returnsil2b data of the previous channel.
In order to operate ADC, 120,121,122 must be outgod P11 must be input.
P11 is shared by RTC, EE. It must left high at poan/reset.

Unipolar:
Vref- = 0x000
Vref+ = Oxfff

Use 1 wait state for Memory and I/O without RDY360 us execution time
Use 0 wait state for Memory and I/O with VEPO1®#) us execution time

Var: ¢ — ADC channel.

-~

0..a}inputch=0-10

input ch = (vref+ - vref-) /2
input ch = vref-

input ch = vref+

software power down

OO0 000
oo n
PoooT

Reference: ae_adl2.c

B-4

TDU

Appendix B: Software Glossary

void io_wait(char wait) ae.h

Setup I/O wait states for I/O instructions.

Var: wait — wait duration {0...7}

Refer ence:

wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, /O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, /O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

void rtc_init(unsigned char * time)

Sets real time clock date, year and time.

Var: time —time and date string
String sequence is the following:

time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = monl10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = sec10
time[12] = secl

— e

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

ae.h

intrtc_rd(TIM *r)

Reads from the

ae.h

real time clock.

Var: *r— Struct type TIM for all of the RTC data
typedef struct{

Reference: rtc.c

unsigned char secl, sec10, minl, min10, houndrlfo

unsigned char dayl, day10, monl, monl0, yearl@ea

unsigned char wk;
}TIM;

B-5

Appendix B: Software Glossary TDU
void t2_init(int tm, int ta, void interrupt far (*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());
Timer 0, 1, 2 initialization.
Var: tm — Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual
ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock).
Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.
Reference: timer.c, timer 1.c, timer 02.c, timer 2.c, timerO.c timer 12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void intO_init(unsigned char i, void interrupt far (*int0_isr)());
void intl_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMlIlgn-Maskable Interrupt).
Var: i—1: enable, O: disable.

int #_isr — pointer to interrupt service.
Reference: intx.c

void sO_init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void sl _init(unsigned char b, unsigned char* ibuf, int isiz, serl.h

unsigned char* obuf, int osiz, COM *c) (void);
Serial port 0, 1 initialization.

Var: b — baud rate. Tabl e bel ow for 40MH#z and 20MHz C ocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) | baud (20MHz)

1 |110 55

2]150 110

3 |300 150

4 600 300

5 11200 600

6 [2400 1200

7 4800 2400

B-6

Appendix B: Software Glossary

TDU

8 19600 4800

9 19200 9600
10 |38400 19200
11 57600 38400
12 115200 57600
13 |23400 115200
14 1460800 23400
15 | 921600 460800

Reference: sO_echo.c, s1_echo.c, s1_0.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b,
unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1

m2 = SCC691 MR2

b — baud rate. T abl e bel ow for 8MHz C ock.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size
¢ — pointer to serial port structure. See AE.H for
structure.
ml bit Definition
7 (RXRTS) receiver request-to-send control, 0=no, 1 =yes
6 (RXINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Bloc k
4-3 Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
2 (Parity Type), 0O=Even, 1=0dd
1-0 # bits) 00=5, 01=6, 10=7, 11=8
n2 bit Definition
7-6 Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
5 (TXRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 Stop bit), 0111=1, 1111=2
b baud (8MHz)
1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 (31250
11 (62500
12 125000
13 (250000

Reference: sO_echo.c, s1_echo.c, s1_0.c

scc.h

COM

Appendix B: Software Glossary TDU

int putserO(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); serl.h
int putser_scc(unsigned char ch, COM *c¢); scc.h

Output 1 character to serial port. Character belisent to serial output with interrupt isr.

Var: ch — character to output
C — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c); ser0.h
int putsersl(unsigned char *str, COM *c); serl.h
int putsers_scc(unsigned char ch, COM *¢); scc.h

Output a character string to serial port. Charagitibe sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure
Reference: serl_sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *¢); scc.h

Checks input buffer for new input characters. Reu if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

unsigned char getserO(COM *c¢); ser0.h
unsigned char getser 1(COM *c¢); serl.h
unsigned char getser_scc(COM *c¢); scc.h

Retrieve 1 character from the input buffer. Assstmatserhit routine was evaluated.

Var: ¢ — pointer to serial port structure
Reference: sO_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c¢, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers scc(COM *c, int len, unsigned char *str); scc.h

Retrieves a fixed length character string fromittpait buffer. If the buffer contains less charaster
than the length requestedt;, will contain only the remaining characters frore tiuffer. Appends a
\O’ character to the end &fr. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure
len — desired string length
str — pointer to output character string
Reference: ser1.h, ser0.h for source code.

B-8

A5 G\ND . us W 72423 RN2 10K3 oo U3 UL T1 T2
LGOI As / RD R vaol24 Vee VORF L[o124 vRam ZREF1I ALL 10,07 op |32 /RD RAMR71024| _ A L | xi2w
A6 e XD 2 23 7VWR P22 23 3117 A2 31 A0 Al81 32 VRAM A G
RD /WR jcs X2 (23 A9~ ALO Al8 VDD A 2 |8
e Al 3 Txp 3| B /IR [H5 IS P 2116 Ag 3|45 MOS0 TUcs Ale2 | A1e YPP[B1 AIS A 210
GD vwo 4] X0 D051 o vecal NC. XLy 5115 A3 4|48, /SEoobr - ALa3| A AlS S0 vRAM Al b e
Al 2 MPL 5 20 20 5 20/ RST 6 Al 5 28 24 29 7 VB A Ko
L2 ML Ivel D2 [50-E2 2{ A0 csi [S0-LR S 14 Ald__Slma e [55-B0 Al2diae RwHSLWE o 5 |8
All Al 7] 452 B 18 a7 N R 18- 8112 / 7| Mk B2 A6 6t M2 A8 Al S e
AN A8 7 8 7 9 TI1 VCC_8 25 A5 7 26 A9 A [
6/6/5/6/6 5 5514 y1o x4 9429 D5 75 a2 NC NC 5 o1 10 110 ~ A8 9] V¢ 815) S A9 5 AT 8
41312|210|3(8|7|8|3(213(2| 2[o[o XX D6 (18 D e D1 D a8 o as awo 5380 A4 Blar g3 Al 19 9 | &
X2 D7 5 3
RST 11 4 P3 [RD1L] "3 D2 Hats RN 10Ky yoe A5 11] A6 R 55 or mio]A Sz Alo o] 0
vee | YYVVVVYVVYYYYYYYYY RST /EN /RD D3 Al5 D1 A2 ALO
Y YYVYNVVYYYYYYYY vec GND, 12 3 7INT0 GND12 3 TWR 2 Il AlZ12 21 ATLL 22 TRAM TO4 [
1| 8557808584 8327LT | |4g0 G\D /I NT G /W ~n—2- Pl Ad2i2s po sl B0 ALl e 22 LR 9 X
GND 2 A% I awn K& SCC2691 ULZ 32A 112 A6 14 e A9 [19AT 3] A0 b7 5% (o3 Ko
20 3125, AC a6 @b 16 i+ 1Ty vao 16 vee 5125 A5 15148 AlMs A Diia| X s o7 [
21 4| o 45 _RCP KI_ 1 2 +12V1 Ve 2 5 GND 6 124 A4 16 7 A3 D2ib 8 D4 i 0
22 1 ROB 771 o o CL- Ve GND TTXD1 712 M A3 o 16| 22 D4 77 D ke
6] B2 RCA 3~ avp +12vi1 J7. 2 K &+ 4] &- T10 TRXDL 8 22 29F040 G\D D8
PAR RG 55—k O O Cc2+ Ril = < <
Voo 7] AR RS a2 RE -5 2 R R 9 121 uls 7
123 RANGE ne [AL GN w1 J9 2 p12 V- 3 1 TXD1 10 120 0o 1 6 Q 0 Vel 5 [e7
/Cy © 20 _G\D ©© 1TX00 7] Yo, 15! [To Tx00 1 2] BlCHs® I3 VL 6 [t
VA AG T20 T2I RNA 10K L 2B 2C £
1.10] 39 CAP2 Us MAX691 RXDO 8 9 1 VvCC L2 3 4 010 V- [e7]
a7 B RECCBBVvee vBAT 1|2 Ror |16 RST R2l RO 2 52| 3B3Cr s o vramlt 2 A7 € <L
/ROI2 37 _VCC 2 5 TRST UL3 32A 3707 T4 5 2 OL2 VRAN HDRS3 cC D
RD AV VO / RST 5B 5C VRAN
TADI3] oo rean [36CAP1 Voo 3] v B0 G+ 1oy voo L6V 27106 5 6|20 2CHT a3 ULl LTC2600
I NTL 14 35 GND GND 4 3/LCS v+ 2 5 G 5105 16 7 0 _o14 G\D 1 6 vcc T24 T24
] 5] BSY AG 32 voc 5] GND Bl M5 3| " 9D I RS 6104 oD 8|/B7Cox AL 2| SNPVCC 75TAg H5
D0 16| o} pDDD RIS 33 Ve 6] BN CEO 77 4] & Morarers 7103 G K DA2 3| Vi V8|14 DA/ 107 106
D% DDDDDVDDADLE LT P15 [C —S1/LL v C2+ RiI c D V2 V7 D 1 2j—i06
123456D78G901234 —2L1 sl PFO —g—v A 2| G- rioi2 M g102 ULN2003 DAS 3 1v3 ve (£3 D6 VG 3 3jp—YLC
AD7606 oSS PRI o A o s o AN TR uL9 Beere] VA V5 5T TRer 3 5 6p—83
1]1/112|2|2|2|2|2|2)2|2|2|3|3|3 WT2O T21 9 RXD —m{\, 1 8 G\D/ S0 REF/CRCO 01 7 SO_W
o1 [71B1901 1121321516 78(3101]2 o3 - IRXD 8| por” R2O 10Ky vee Jrreia]!l o 8- S0 —& 7 csspo 23 19T g9 10—
12 C2 > SCKSDI 11 12 o—126
D2 2 P6 17 3 o 25 24
D3 b1 D6 Ja 3pL p2a 4] !3 B H5 5y 123 __qi3lap—53
pA CAPL CAP2 0o D7 vee J7 5 DM 2 P10 P25 5|12 [Ma o8 o 13 T21 41516 0—5%
5| 3 =3 RST oo b 5 0 P26 6 3 010 7 17180 6
Va3 =% _c P43 2 16 B 19 20 o
6| 6 /TNT4 P29 7 2 00 0 1 5 ry
ot ct| law 3(31313(313(3133(3(2 USB- B 7 INT2 Al 8! LI %1 A2 3 21220 2
veb) o EEREEEEREE Y > B3 N2 A9 Blig cg i1 AL 2 3 2324 2
- HODODNDODD 27PF X5 X6 27PF 9 /N VS © 2526
/VWR_40 28 117 Clr' C20 [I0 br UD52982 /L 14
S0123C4567D CoAA—10 BT
07 a1 LeR? BRll (27116 12V w20 C3+ /RSTI5 vce 1“"\1,:> 2 G\D
06421 pos P15 [28 115 ;; g; —Hnnalg-ar csl 35 o—3aK
05 _43] by P14 [22 114 ve 12 e FAL9 Do 13 554 D
04_aa| FO2 Fldl2a113 vce Vs 31122 Mf @ c3- 7 8 DO
g NG [Z3) NI, v—49, va_—a] |38 150 Cax A1 5 i
02 3] PO3 P12 150132 TN 5] 1Y 6A [T man vo—e!5% & casl 4 5 13 z
01_ 4| P02 Pl 20110 1Ntz 4]28 SYaiTme vi—7]'6 %12 4 £2 15 5
N gL 2 1po1 P10 2Y 5A | 17 o7 - JRST IS A o 16 D4
pol P10 [@o123 7inNm0s 10 P13 VO B 11 or G\D [V 14 RST 17 15 15
X6 2 5 /G P PPPPP 18 122 INIO 34 5Y 550 b 9] '8 B ToK | RST 159 Pic_10 Q S50 %
w33 " EHngs Ngesat 2= e e S8 S
G\D 4 — UDS2982 V- 23 24 _GN\ND_
RE 5 ROP T PP 8255 { 7AFCIZ Ul6 ULN2003 HIT Ho 253 726 A
6 C1l 11 6 /1IN 28 A6
7 e seer 1899 4RPI 8 22 orR8 2Keppa 1xp- R 10K1yp TRG 2 BlC s e : : 0 A5
38 ;; —ab 120 RAVYSK AN 33 3P 28 TTNG 2 2 2
|| |l efie me Xiwo g il g ar : —
1 REF V+ 27| 126 6 6] B35S M1 TN H H AL
2 22 Ca 93LC568 16-B T M CROCH P a b s ¢ s AQ
_ G K eC 8 8
a\D 1 8 voC EECS1 8 va33
A0 vee |8 vee & cs 5v -8 Vs 9 9
lililldafafololalole ET232H ;; 2 m we (L D EEKZ] o ne S0 2_VCC
audiaazz2 ~ N P12 EEDA3| K NS Vi Ul7 _UDS2982 P14
Do V33 P17 Z 5Pl Or_4 5 .G\ KL 1 8 _GN\D e
DL 1D /RST| voc VSS ~ SDA Do G N v S8 /iNT4
A I/ RXF A3 VRU 240045 93LC5 [@ 3 6 P10 10/ RTS1
D3 ID7. Ul4 LTCA8S B 4 :‘313 550 25 oL~
D4 D6 Jdl3d ver RXD__ 1[0 voc |8_vee 28 45|, 5 [14P5 3 2
D5 Gb 2] fiRe’%s [1 v T 6112 2 [A3P6 5 G\D
6 T 220 1067 2 Pid 7
w2 244V As 4l BLROQ |18 s rou TXo 4| BF 5[5 LMI020 c28 o8| & ML Ppis 9 /I NT2
/1 16 vool2o vee A 51,5 o arrc REF=4. 09V | CAPNP AP 9] e %5 [Io Ve S ©
TREH 97 A7 6 AY 23 LTC485
1AL 26 15 X 1
o7_3] 241 2SPIs W 71|32 S s RXD 1 [ro voo |8 _Vec HIZ H13)
/TNT 4 71N A4 B 4 7PPI GND_ 2 7R D1 B
Hin 2pa L 17T oof 21/RE BL 1
+12VI +12V 7
rine 61202 12 5. 8GEO1 2P A5 an 1 2
71103 283 o B Tpuooo 16V8P D &\o LED 3 ;
22 1v3 2 : 11f1l1 4 o
/TN3_ 8 3 /1N5 LED C18
1A4 2A2 01123 5
D4 18 5Y1 1Y4 i [b% / RD | LMR575 | x12v1 VCC 6 CcC
; G\D 2A1 L1 / 7
TERN STE
B1 VOFF 1 98 1 g M, 1 e Title
+ |2 VBAT a3 3 S i xe3 g TDU MANUAL
1] . — . [RXDI5 3§76 Rmsg S
W \Y, 7 8 7 Si ze |[Docunment Nunber REV]
<] N 15 2 <450
680 4 G0 aD S o010 G ot B TDU- VAN
Date: February 14, 2013][Sheet 1 of 1

