TD40™

40 MHz Controller based on the 16-bit 188ES
with
70+ TTL and high voltage 1/0s, ADC, and DAC

Technical Manual

Trery

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //www.tern.com

COPYRIGHT

TDA40, NT-Kit, and ACTF are trademarks of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanceddviba&vices, Inc.
Paradigm C/C++ is a trademark of Paradigm Systems.
Microsoft, Windows 95/98/2000/ME/NT/XP are tradeksaof Microsoft Corporation.

Version 5.00

October 28, 2010

No part of this document may be copied or reproduceny form or by any means
without the prior written consent of TERN, Inc.

© 1998-201(TERIQI

1950 %" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to jadtlife and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@mnesults of limited sample tests; they
are provided for design reference use only.

TD40 Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

Measuring 4.8 by 3.4 by 0.5 inches, #ie40 offers a complete C/C++ programmable embedded aitet
with a 16-bit, high performance 40 MHz 188 CPU. TH240 supports 35 high-voltage 1/O lines, 24 TTL
bi-directional I/O pins, 11 channels of 12-bit AD@yo channels of 12-bit DAC, three channels RS-
232/RS485, a real-time clock, battery backup, waaghtimer, PWM, three timer/counters, a 512-byte
serial EEPROM, up to 512KB SRAM, and up to 512KBNR®Glash.

The TD40 is designed for industrial control applicationatthequire solenoid drivers and protected high-
voltage inputs. There are 35 high-voltage I/O lirmgted to screw terminals, including 7 inputs oldputs,
and 14 hardware-configurable inputs or outputs. ifipats can take up to 35V DC. The outputs are loi@pa
of sinking 350 mA at 50V per line, and they caredily drive solenoids, relays, or lights.

|
; Operational Amplifiers Am188ES SERO0/1 H1 R5232 SERQ
4 analog input >H2 RS232 SER1
T1 ADO to AD3 ADC ChO0-3 SCC2691 UART ‘
H3 RS232/485
7 analog inputs_\% 12-bit ADC (LTC2543) 24 1/0 of U5 PPI H5 _
7 HV I/O (T1 1/01-YQ7) AM1SSES 40MHz
IAM188ES PO, P15.. Real-time clock
7 HV inputs (T1 IN1-IN7) 512KB SRAM
/INTX 512KB ROM/Flash
512-byte EE
7RVIO (T2 015D AM188ES P24, P29L.. | 2 channels of 12-bit DAbH H2 _
14 HV output (T2 8%-014? U20+U18 74HC259 TD4O ‘ g 5(21410292\5 DD%C
e e

Figure 1.1 Functional block diagram of the TD40

An optional real-time clock provides information d¢ime year, month, date, hour, minute, second, 1/64
second, and an interrupt signal. Two DMA-driveniaeports support high-speed, reliable RS-232 keria
communication up to 115,200 baud. An optional UARTC2691 may be added for a third UART on
board and can be configured as RS-232 or RS-48josting either normal 8-bit or 9-bit multi-drop
RS485/422 network with twisted-pair wiring.

Three 16-bit programmable timers/counters are archorwo timers can be used to count or time eatern
events, up to 10 MHz, or to generate non-repetitivevariable-duty-cycle waveforms as PWM outputs.
Pulse Width Demodulation (PWD), a distinctive feajucan be used to measure the width of a signal in
both its high and low phases. It can be used inyragplications, such as bar-code reading. The 82/(Ch5
chip on-board provides an additional 24 bi-direill/O lines, which can be used to interface gwaphic-

or character-type LCD and a keypad.

A supervisor chip (ADM691AR) with power failure @etion, a watchdog timer, an LED, and expansion
ports are on board. The optional 12-bit ADC hasfidnnels of analog inputs with sample-and-hold and

1-1

Chapter 1: Introduction TD40

high-impedance reference input. The ADC convergiate is up to a sample rate of 10 KHz. Four
operational amplifiers provide differential analsignal conditioning with variable configurable gdor
ADC channels 0-3 at the screw terminal. The remgisieven ADC analog inputs’ range is single-ended O
5V (or 0 to REF). A 20 ppm/C®° 2.5V precision refege is available. Two optional 12-bit DAC channels
provide 0-4.095V analog voltage outputs capabkrding or sourcing 5 mA.

The TD40 can accept 9V to 12V unregulated DC power inptih wtandard linear regulator or +9 to +30V
DC input with optional switching regulator.

1.2 Features

Standard Features
» Dimensions: 4.8 x 3.4 x 0.5 inches
e Easy to program in C/C++ with Paradigm C/C++ IDE
» Power consumption: 190/130mA at 5V for 40/20 MHz
» Power saving mode: 30/25 mA at 5V for 40/20 MHz
» Power input: +9V to +12V unregulated DC with stambliinear regulator
+9V to +30V unregulated DC with optionalitehing regulator
» 16-bit CPU (188ES), Intel 80x86 compatible
» High performance, zero-wait-state operation at 449zM
* Upto 512KB Flash/ROM
e 2 high-speed PWM outputs and Pulse Width Demodati
e 321/0 lines from AmM188ES
e 512-byte serial EEPROM
* 6 external interrupt inputs, 3 16-bit timer/couster
» 2 serial ports from the 188ES support 8-bit or taBynchronous communication
* On-board +5V regulator
» Supervisor chip (691) for power failure, reset armdchdog
» 4 operational amplifiers for analog input signahditioning
e 24 TTL I/O pins support LCD/keypad interface
» 35 high-voltage 1/Os, all routed to screw terminals
» 24 additional bi-directional 1/O lines from 82C55
* Interface for LCD, keypad

Optional Features(* surface-mounted components)

» 128KB or 512KB SRAM*

» 11 channels of 12-bit ADC, sample rate up to 10 KHz

» 2 channels of 12-bit DAC, 0-4.095V output*

* SCC2691 UART (on-board) supports 8-bit or 9-bitvaking
UART comes with RS232 (default) or 485 drivers

* Real-time clock RTC72423%, lithium coin battery*

» Precision reference, 20 PPI@/ 5V

1.3 Physical Description

The physical layout of the TD40 is shown in Figlir2.

1-2

TD40 Chapter 1: Introduction

(-3 o o (-3 o o o o o o (-] o (-] o o (-3 o o (-3 o o (-3 o o
T1
INCC_GND 17168 1 W 13 12 Ll 7 1 5 4 3 Z T A3- A3¥ AZ= AZ¥ A= AT+ AU- AUT |
Step2
O A [[][UEN2003 Ut6d[18-pin DIP U7 O
o]] 3| 5
o 3 B34 3 | OPs uz2d | ADC U10é||_—_||g
- i 1o off [o]
& u12) L
EX Am188ES U3 REF |u23
232 =T
[oT] 485 14
H1 ROM/Flash
T 232||u13
i 2 PPI
L2 _| [T
o
J2 US
U1l U7
us RTC72421 o
0 A 691 H8 Hs
S|H4 — ks u21 [Te] u24 | 5
Watchdog g HC259 C) HC259 O
O pus| 18-pin DIP U19 [[ULN2003 U184 hug SCC2691 | |18-pin DIP U20
J7
12V_GNG 021 0 19 018 017 016 D15 D014 013 012 0N _D10__09 D8 07 06 05 04 03 02 01 GND
T2

Figure 1.2 Physical layout of the TD40

1.4 TD40 Programming Overview

Development of application software for the TD4gists of three easy steps, as shown in the block
diagram below.

STEP 1 Serial link PC and TD40, program in C/C++
Debug C/C++ program on the TD40 with
Paradigm C/C++ Remote Debugger

U

STEP 2 Test TD4O0 in the field, away from PC
Application program resides in the battery-back&AM

g

STEP 3 Make application ROM or Download to Flash
Replace DEBUG ROM, project is complete

The TD40 can be programmed from your PC via sénklwith an RS232 interface. Your C/C++ program
can be remotely debugged over the serial linkrateof 115,000 baud. The C/C++ Evaluation Kit (BY-
or Development Kit (DV-P) from TERN provides a R#iggn C/C++ IDE, complete with compiler, locate,
remote debugger, I/O driver libraries, sample peiotg, and text editor. The EV-P/DV-P Kkits also ineliad
DEBUG ROM (AE_0_11kto communicate with the Paradigm C/C++ IDE, aaedebug cable to the
connect the controller to the PC, and a 9-volt walhsformer. The Evaluation/Development Kit Techhi
Manual provides more information on these Kkits.

After debugging the application, test run the TDAGhe field, away from the PC, by changing a sngl
jumper, with the application program residing ie thattery-backed SRAM. When the field test is comeple

1-3

Chapter 1: Introduction TD40

application ROMs can be produced to replace the D&BROM. The .HEX or .BIN file can be easily
generated with the Development Kit (DV-P).

The three steps in the development of a C/C++ agiidin program are explained in detail below.

1.4.1 Step 1

STEP 1: Debugging
e Write your C/C++ application program in C/C++. Tiaradigm C/C++ IDE includes a text editor.
» Link controller and PC via debug serial cable pded with the EV-P/DV-P.

* Use Paradigm C/C++ to compile, link, and locatewmload, and debug your C/C++ applicatign

program.
PC [elelclelelelelelelelelelelelelelelelelelelelol)|
PC-V25 Cable o [
AMD
o
X X) l:l f*- RTC |
[2
Cleleleleleleleleleleleleleleielelelelelelele)
> TD40
‘ DC +9V 300 mA
Wall transformer))
Center Negative ! ' DC power jack

I

Figure 1.3 Step 1 connections for the TD40

1-4

TD40 Chapter 1: Introduction

1.4.2 Step 2

STEP 2: Standalone Field Test.
e Set the jumper on H7 pins 1-2 on the TD40 (Figu#g.1

» At power-on or reset, if H7 pin 1 (P4) is low, t8®U will run application that resides in the batte
backed SRAM.

e If a jumper is on H7 pins 1-2 at power-on or resie¢, TD40 will operate in Step Two mode. If tije
jumper is off H7 pins 1-2 at power-on or reset, T30 will operate in Step One mode. The statuq of
H7 pin 1 (signal P4) of the Am188ES is only checkég@ower-on or at reset.

; = = = -
0o D|ULN2003 U1649|18-pin DIP u17|_‘| O
o| — 45 [_OPs uz2g [ADC um{EH';

[_To] Il
Am188ES : U3 REF [u23

ROM/Flash

H7: pins 1-2

u1L u7 us
U4 RTC72421 o
Hg
IZEI U24
Watchdo) HC259 O

SCC2601 ||13 pin DIP U20]

%é

aaaaaaaaaaaaaaaaaaaaaaaa

Figure 1.4 Location of Step 2 jumper on the TD40

1.4.3 Step 3

STEP 3: Generate the application .BIN or .HEX file, mgkeduction ROMs or download your program Io
FLASH via ACTF.

« If the standalone field test was satisfactory, gateeyour application ROM to replace the DEBUG
ROM (AE_0_115). To generate an application Bl f¥ith Paradigm C/C++, right-mouse click dn
the AXE node, select Target Expert -> Target Cotioecand choose “No Target/ROM”.

The DV-P kit is required to complete Step 3.

Please refer to the Tutorial of the Technical Mdnofathe EV-P/DV-P Kit for further details on
programming the TD40.

1.5 Minimum Requirementsfor TD40 System Development

1.5.1 Minimum Hardware Requirements

» PC or PC-compatible computer with serial COMx pgbat supports 115,200 baud

» TD40 controller with DEBUG ROM AE_0_115

e Serial debug cable (RS232; DB9 connector for PC Qfok and IDC 2x5 connector for controller)
» Center negative wall transformer (+9V 500 mA)

1-5

Chapter 1: Introduction TD40

1.5.2 Minimum Software Requirements

 TERN Installation CD — EV-P or DV-P
» PC software environment: Windows 95/98/2000/ME/NF/X

The C/C++ Evaluation Kit (EV-P) and C/C++ Developm&it (DV-P) are available from TERN. The
EV-P Kit is a limited-functionality version of theV-P Kit. With the EV Kit, you can program and depu
the TD40 in Step One and Step Two, but you canmotStep Three. In order to generate an application
ROM/Flash file, make production version ROMs, anchplete the project, you will need the Development
Kit (DV-P).

1-6

TD40 Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/@evelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN Installation CD-ROMontains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

Hardware installation for the TD40 consists prirtyaoif connecting the microcontroller to your PC.

Overview

« Connect debug serial cable:
For debugging (STEP 1), place IDC connector on SER(with
red edge of cable at pin 1

» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack

2.2.1 Connecting the TD40 to the PC

The following diagram (Figure 2.1) illustrates thennection between the TD40 and the PC. The TD40 is
linked to the PC via debug serial cable.

The AE_0_115 DEBUG ROM communicates through SER@dfpult. Install the 5x2 IDC connector on
the SERO header (H1).IMPORTANT: Note that the red side of the cable must point to pin 1 of the H1
header. The DB9 connector should be connected to one af @ COM Ports (COM1 or COM2).

Pin 1 of

RED side of serial SERO (H1)
cable corresponding

to pin 1 of headers for \@@@@@@@@@@@@@@@@@@@@@@@@\
SERO/SER - [
Tosero \ [y T
for debugging D sw i
To COM1 L = T :
. or COM2 Iﬂ g - | [
PC k IDE - i
connector D:h @ C] .
F 0
9-pin = \
eoo [connector E. % | Dscowm]] %
== Eleloleloolelelelolelelelolelelelelolelelalele)

TD4C

Figure 2.1 Connecting the TD40 to the PC

2-1

TD40 Chapter 2: Installation

2.2.2 Powering-on the TD40

Connect a wall transformer +9V DC output to the pgver jack.

The on-board LED should blink twice and remain @erathe TD40 is powered-on or reset, as shown in
Figure 2.2.

Step2 =
Power O [][otNz003 Uted[16-pin DIP_U17C O
. - S,
]aCk H2 g * 5. 3 |_OPS uz2q[ADC u103 EHIZ
4 v Am188ES N
232

Wall
transformer

T[]
=

SERC

485
232 u1s u2
| c — o
J2
U1l u7.
m |1g] = U4 RTC72421
..u Us 21
Wa‘ehdoEl

Figure 2.2 The LED blinks twice after the TD40 is powered-on or reset

2-2

TD40 Chapter 3: Hardware

Chapter 3. Hardware

3.1 188ES - Introduction

The 188ES is based on industry-standard x86 aothiee The 188ES controllers are higher-performance
more integrated versions of the 80C188 micropramssdn addition, the 188ES has new peripherale. Th
on-chip system interface logic can minimize totgdtesm cost. The 188ES has two asynchronous serial
ports, 32 PIOs, a watchdog timer, additional intptipins, a pulse width demodulation option, DMAatwd
from serial ports, a 16-bit reset configurationisegy, and enhanced chip-select functionality.

3.2188ES — Features

3.2.1 Clock

Due to its integrated clock generation circuittye tL88ES microcontroller allows the use of a times-
crystal frequency. The design achieves 40 MHz Cpération, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J8 pin 1nfed CLK), default 40 MHz. The CLKOUTB signal
is routed to J8 pin 2.

CLKOUTA remains active during reset and bus holeaditions. The TD40 initial function ae_init();
disables CLKOUTA and CLKOUTB with clka_en(0); aciétb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=Jt pB.

3.2.2 External Interrupts and Schmitt Trigger I nput Buffer

There are eight external interrupts: INTO-INT6 adl.

/INTO, H7 pin 3, is used by SCC2691 UART, if itiistalled.
/INT1, H7 pin 7

/INT2, T1 pin 20 = IN5 > U16 pin 12

/INT3, H7 pin 5

/INT4, T1 pin 19 = IN4 > U16 pin 13

INT5 = P12, J9 pin 2, used as output for LED/EE/HWD
INT6 = P13, T1 pin 16 = IN1 > U16 pin 16 /NMI, HTh®

Six external interrupt inputs, /INTO-4 and /NMl eabuffered by Schmitt-trigger inverters (U9), irder to
increase noise immunity and transform slowly chagdnput signals to fast changing and jitter-frimals.
As a result of this buffering, these pins are céabonly acting as input.

These buffered external interrupt inputs requifelling edge (HIGH-to-LOW) to generate an interrupt

3-1

TD40 Chapter 3: Hardware

U16 ULN2003

T1.IN4 4 13 /INT4 INT4=U2.52

—_— U9A 0
INT2=U2.54

T1.IN5 5 12 /INT2 U9B o
11 INT1=U2.55

T1.IN6 6 /INT1 UID o
7 INT3=U2.53

T1.IN7 10 /INT3 UoE .
SCC2691 U8.13 > /INTO INTO=U2.56

usC 0
INMI = H7.9 NMI=U2.47

U9F 0

Figure 3.1 External interrupt inputs with Schmitt-trigger inverters

The TD40 uses vector interrupt functions to resptmebxternal interrupts. Refer to the 188ES User’s
manual for information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The 188ES CPU has two asynchronous serial chanfBERO and SER1. Both asynchronous serial ports
support the following:

* Full-duplex operation

e 7-bit, 8-bit, and 9-bit data transfers

« 0Odd, even, and no parity

* One stop bit

» Error detection

* Hardware flow control

* DMA transfers to and from serial ports

e Transmit and receive interrupts for each port

e Multidrop 9-bit protocol support

e Maximum baud rate of 1/16 of the CPU clock speed

* Independent baud rate generators
The software drivers for each serial port implemanting-buffered DMA receiving and ring-buffered
interrupt transmitting arrangement. See the samfiles sl _echo.c and sO_echo.c in the
tern\186\samples\ae directory.

The optional external SCC2691 UART is located m t/8 socket. For more information about the externa
UART SCC2691, please refer the data sheet on tiRNTED, under tern_docs\parts\scc2691.pdf.

3-2

TD40 Chapter 3: Hardware

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaiphers: Timer0, Timerl, and Timer2.

Timer0 and Timerl are connected to four externad:pi

Timer0 output = P10 = T1 pin 10

Timer0 input = P11 = ADC U10 pin 16 & EE U7 pin 5

Timerl output = P1 = ULN2003 U17 pin 17 > T1 teradifil (I01=U17 pin 2)

Timerl input = PO = ULN2003 U17 pin 15 > T1 termira(I03=U17 pin 4)
These two timers can be used to count or time eatexvents, or they can generate non-repetitive or
variable-duty-cycle waveforms. A 10 K pullup resisis required for PO used as Timerl input.

Timer2 is not connected to any external pin. tt ba used as an internal timer for real-time codinime-
delay applications. It can also prescale timen@tamer 1 or be used as a DMA request source.

The maximum rate at which each timer can operati$1Hz, since each timer is serviced once every
fourth clock cycle. Timer output takes up to sigok cycles to respond to clock or gate eventse the
sample programismer0.c andae_cnt0.c in thet er n\ 186\ sanpl es\ ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timerl outputs can also be used eteergte non-repetitive or variable-duty-cycle
waveforms. The timer output takes up to 6 clockeydo respond to the clock input. Thus the minimum
timer output cycle is 25 ns x 6 = 150 ns (at 40 MHz

Each timer has a maximum count register that define maximum value the timer will reach. Both Tithe
and Timerl have secondary maximum count registergariable duty cycle output. Using both the priyna
and secondary maximum count registers lets the tatbernate between two maximum values.

MAX. COUNT A

v
—1 I

MAX. COUNT B

Pulse Width Demodulation can be used to measurafhe signal’s high and low phases on the /INT2=J2
pin 19. See Section 8.2 of the Am188ES User's Maaonahe TERN CD, under the amd_docs\am186es
directory.

3.2.6 Power-save Mode

The TDA40 is an ideal core module for low power eongtion applications. The power-save mode of the
188ES reduces power consumption and heat dissipdtiereby extending battery life in portable syste

In power-save mode, operation of the CPU and iatgueripherals continues at a slower clock frequenc
When an interrupt occurs, it automatically retwmgis normal operating frequency.

The RTC72423 on the TD40 has a VOFF signal routeH# pin 8. VOFF is controlled by the battery-
backed RTC72423. The VOFF signal can be progranbyesbftware to be in tri-state or to be active low.
The RTC72423 can be programmed in interrupt moddritee the VOFF pin at 1/64 second, 1 second 1
minute, or 1 hour intervals. The user can use t&&N line to control an external switching power [dyp
that turns the power supply on/off. More detailge available in the sample filpoweroff.c in the

t er n\ 186\ sanpl es\ ae sub-directory.

3-3

TD40 Chapter 3: Hardware

3.3188ES PIO lines

The 188ES has 32 pins available as user-progranenhébllines. Each of these pins can be used asra us
programmable input or output signal, if the normehéred function is not needed. A PIO line can be
configured to operate as an input or output witlvithout a weak pull-up or pull-down, or as an ojuieain
output. A pin’s behavior, either pull-up or pullw, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to variownfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins eeded for specific on-board usage, as well. These
configurations, as well as the processor-interrgipbheral usage configurations, are listed belowable

3.1.

PIO Function Power-On/Reset status TD40 Pin No. ae_init() Initial

PO Timerl in Input with pullup T1.11=103 > U17.15 Input with pullup
P1 Timerl out Input with pulldown T1.9=101>U17.17 CLK 1

P2 /PCS6/A2 Input with pullup U4 pin 2 RTC selec

P3 /PCS5/A1 Input with pullup U8 pin 14 SCC26@ekst
P4 DT/R Normal H7.1 Input with pullUpTEP2
P5 /DEN/DS Normal T1.12=104 > U17.14 Input withllpp
P6 SRDY Normal T1.13=105 > U17.13 Input with lplown
pP7 Al7 Normal J4 pin 3 Al7

P8 Al18 Normal J5pinl Al8

P9 A19 Normal T2.3=021 > U19.8 A19

P10 Timer0 out Input with pulldown T1.10=102 > U18. Input with pulldown
P11 Timer0 in Input with pullup U10.16 & U7.5 lmpwith pullup
P12 DRQO/INT5 Input with pullup J9.2& U7.6 &LED Output for LED/EE/HWD
P13 DRQ1/INT6 Input with pullup T1.16=IN1 > U16.16 Input with pullup
P14 /MCSO0 Input with pullup T1.14=106 > U17.12 pit with pullup
P15 /IMCS1 Input with pullup T1.15=I07 > U17.11 put with pullup
P16 /PCSO Input with pullup U21.14 for 74HC259 putwith pullup
P17 /PCS1 Input with pullup U5 pin 7 PPI, 82Getect
P18 CTS1/PCS2 Input with pullup U24.14 for 74HC259 Input with pullup
P19 RTS1/PCS3 Input with pullup T2.9=015>U19.2 nput with pullup
P20 RTSO Input with pullup T1.18=IN3 > U16.14 tnpvith pullup
P21 CTSO Input with pullup T1.17=IN2 > U16.15 tpvith pullup
P22 TxDO Input with pullup H1.3 > U12 pin 10 TxDO

P23 RxDO Input with pullup H1.5>U12 pin 9 RxDO

P24 /IMCS2 Input with pullup T2.7=017 >U19.4 Ibmith pullup
P25 /IMCS3 Input with pullup T2.6=018 > U19.5 Ibmth pullup
P26 uzl Input with pullup T2.5=019 > U19.6 Inpwith pullup *
p27 TxD1 Input with pullup H2.3 > U12 pin 11 TxD1

P28 RxD1 Input with pullup H2.5 > U12 pin 12 RxD1

P29 /CLKDIV2 Input with pullup T2.4=020 > U19.7 dat with pullup *
P30 INT4 Input with pullup T1.19=IN4 > U16.13 knpwith pullup
P31 INT2 Input with pullup T1.20=IN5 > U16.12 knpwith pullup

Note: * P26 and P29 must NOT be forced low duriog/@r on or reset

Table 3.1 I/O pin default configuration after power-on or reset

Four external interrupt lines are not shared with pins:

/INTO =H7 pin 3
/INT1 = H7 pin 7
/INT3 = H7 pin 5
/NMI = H7 pin 9

3-4

TD40 Chapter 3: Hardware

The 32 PIO lines, PO-P31, are configurable via 1&ebit registers, PIOMODE and PIODIRECTION. The
settings are as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation

1 0 1 INPUT with pull-up/pull-down

2 1 0 OUTPUT

3 1 1 INPUT without pull-up/pull-down

TDA4O0 initialization on P10 pins iae_init() is listed below:

outport(0xff78,0xe73c); /I PDIR1, TxDO, RxDO, TxD1, RxDR16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); /l PIOM1

outport(0xff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCEG€
outport(0xff70,0x1000); // PIOMO, P12=LED

The C function in the librargie_lib can be used to initial PIO pins.
void pio_init(char bit, char mode);
Where bit = 0-31 and mode = 0-3, see the table@abov

Example:

pio_init(12, 2); will set P12 as output
pio_init(1, 0); will set P1 as Timerl output

void pio_wr(char bit, char dat);
pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned inpio_rd(char port);
pio_rd (0); return 16-bit status of PO-P15, if correggiag pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corrasgiag pin is in input mode,

Most of the I/O lines are used by the TD40 systenoh-board components (Table 3.2). We suggest tha
you not use these lines unless you are sure thataye not interfering with the operation of such
components (i.e., if the component is not installed

Signal Pin Function

PO Timerl in U17.15 high voltage driver

P1 Timerl out U17.17 high voltage driver

P2 /PCS6 U4 RTC72423 chip select at base 1/0 asl@e3600

P3 /PCS5 U8 SCC2691 UART chip select at base 1#Desd 0x0500
P4 /DT STEP 2 jumper

P5 /DEN/DS U17.14 high voltage driver

P6 SRDY U17.13 high voltage driver

P9 A19 U19.8 high voltage driver input

P10 Timer0 out U17.16 high voltage driver

P11 TimerO0 in Shared with U19 TLC2543 ADC and UT@4 EE data input
The ADC and EE data output can be tri-state, while disabled

P12 DRQO/INTS Output for LED or U7 serial EE clomkHit watchdog

P13 DRQO/INTS5 U16.16 high voltage driver

P14 /MCSO0 U17.12 high voltage driver

3-5

TD40 Chapter 3: Hardware

Signal Pin Function

P15 /MCS1 U17.11 high voltage driver

P16 /PCS0O U21.14 for 74HC259

P17 /PCS1 U5 PPI 82C55 chip select at base 1/Qeaddx0100
P18 CTS1/PCS2 U24.14 for 74HC259

P19 RTS1/PCS3 U19.2 high voltage driver input

P20 RTSO U16.14 high voltage driver

P21 CTSO U16.15 high voltage driver

P22 TxDO Default SERO debug

P23 RxDO Default SERO debug

P24 IMCS2 U19.4 high voltage driver input

P25 /IMCS3 U19.5 high voltage driver input

P26 uzl U19.6 high voltage driver input / U20 DAC
P29 /CLKDIV2 U19.7 high voltage driver input / UBAC
P30 INT4 U16.13 high voltage driver

P31 INT2 U16.12 high voltage driver

INTO J2pin2 U8 SCC2691 UART interrupt.

INT1 H7 pin 7 U16.11 high voltage driver

INT3 H7pin5 U16.10 high voltage driver

Table 3.2 1/0 lines used for on-board components

3.41/0 Mapped Devices

3.4.11/0O Space

External I/O devices can use I/O mapping for accéss can access such /O devices withortb(port) or
outportb(port,dat). These functions will transfer one bgtevord of data to the specified I/O address. The
external I/O space is 64K, ranging from 0x0000x&fD

The default I/O access time is 15 wait states. May use the function void_wait(char wait) to define the
I/O wait states from O to 15. The system clock5sn® (or 50 ns), giving a clock speed of 40 MHzZ0
MHz). Details regarding this can be found in thdt8are chapter, and in the Am188ES User's Manual.
Slower components, such as most LCD interfaceshtnfiigd the maximum programmable wait state of 15
cycles still insufficient. Due to the high bus sgdeof the system, some components need to be edtdch
I/O pins directly.

For details regarding the chip select unit, pleseseChapter 5 of the Am188ES User’s Manual.

The table below shows more information about I/(piag.

I/O space Select Location Usage
0x0000-0x00ff /PCSO U21 pin 14=P16 74HC259
0x0100-0x01ff /PCS1 U5 pin 7=P17 PPI, 82C55

0x0200-0x02ff /PCS2 U24 pin 14=CTS1 74HC259
0x0300-0x03ff /PCS3 U119 pin 2=RTS1 PIO

0x0400-0x04ff /PCS4 Reserved
0x0500-0x05ff /PCS5 J2 pin 15=P3 UART, SCC2691
0x0600-0x06ff /PCS6 J2 pin 24=P2 RTC 72423

3-6

TD40 Chapter 3: Hardware

3.4.2 74HC259

The 74HC259 8-bit decoder latch provides eight timltil output lines for the TD-40. The U21 74HC259
is mapped in the 1/0 address space 0x0000. The/dRKE259 is mapped in the 1/0 address space 0x0200.
You may access this device by using the followindee The output of U21 drives the high voltage @lriv
U18. The output of U24 drives the high voltage drivJ20. For pin locations and details refer to the
schematic at the end of this manual.

out port b(0x0000 + i, val); //U21 i=output pin, val = 0/1 to set or reset latch.

out portb(0x0200 + i, val); // U24 i=outputpin, val = 0/1 to set or reset latch.

U2l 74HC259

DO 18fG1 g4 L0 qutportb(0x0000,

A0 1 QYs L1 out portb(0x0001,

a9 A Q2|6 L2 out port b(0x0002,

N L Q37 L3 out port b(0x0003,
— 9

C Q4 L4 out portb(0x0004, x) x =0, output low
Q510 L5 out port b(0x0005, x) x =1, output

/PCSQ 144 6 Q{11 L6 out portb(0x0006, x)
Q712 L7 out portb(0x0007, x)

Figure 3.2 74HC259 diagram with corresponding outport addresses

3.4.3 Programmable Peripheral I nterface (82C55A)

U5 PPI (82C55) is a low-power CMOS programmablealpelr interface unit for use in microcomputer
systems. It provides 24 I/O pins that may be iitdiglly programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be progre in sets of 4 and 8 pins to be inputs or outputs
In MODE 1, each of the two groups of 12 pins carplegrammed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshakimgirterrupt control signals. MODE 2 is a strobeéd b
directional bus configuration.

TD40 Chapter 3: Hardware

L 1 1 T 1]

‘*4’ GROUP 1
Port 2 0 Output
(Lower)
1 Input
Port 1 0 Output
1 Input
Mode 0 Mode 0
1 Mode 1
GROUP 2
Port 2 0 Output
(Upper)
1 Input
Port 0 0 Output
1 Input
Mode 00 Mode 0
01 Mode 1
1X Mode 2
Command 0 Bit
Select manipulatior

1 Mode
Selec

Figure 3.3 Mode Select Command Word

The TD40 maps U5, the 82C55/uPD71055, at basedfldeas 0x0100.
The Command Register = 0x0103; Port 0 = 0x0100; Per0x0101; and Port 2 = 0x0102.

The following code example will set all ports totjput mode:
out port b(0x0103, 0x80); /* Mbde 0 all output selection. */
out port b(0x0100, 0x55); /* Sets port O to alternating high/low 1/O pins. */
out port b(0x0101, 0x55); /* Sets port 1 to alternating high/low 1/O pins. */
out port b(0x0102, 0x55); /* Sets port 2 to alternating high/low /O pins. */
To set all ports to input mode:
out port b(0x0103, 0x9f); /* Mode 0 all input selection. */

You may read the ports with:

i nportb(0x0100); /* Port 0 */
i nportb(0x0101); /* Port 1 */
i nportb(0x0102); /* Port 2 */

This returns an 8-bit value for each port, withtebit corresponding to the appropriate line ongbs.
3.4.4 Real-time Clock RTC72423

If installed, the real-time clock RTC72423 (EPSQMN) is mapped in the 1/0 address space 0x0600. It
must be backed up with a lithium coin battery. TEC is accessed via software drivets init() or
rtc_rd() . Refer to the data sheet on the TERN installa@ibnunder tern_docs\parts\rtc7242xam.pdf.

It is also possible to configure the real-time &léa raise an output line attached to an extemtaliupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervdhis can be used in a time-driven applicat@rthe
VOFF signal can be used to turn on/off the controllsm@ an external switching power supply. An
example of a program showing a similar applicatian be found itern\186\samples\ae\poweroff.c

3.4.5 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped intoltBeaddress space at 0x0500. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, adjuple buffered receiver data register, an inggrru

3-8

TD40 Chapter 3: Hardware

control mechanism, programmable data format, shetbaud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit countenéi, an on-chip crystal oscillator, and a multignse
input/output including RTS and CTS mechanism.

For more information, refer to the data sheet @nltBRN CD, tern_docs\parts\scc2691.pdf. The SCC269
on the TD40 may be used as a network 9-bit UART tffe TERN NT-Kit).

3.50ther Devices

A number of other devices are also available onTihd0. Some of these are optional, and might not be
installed on the particular controller you are gsinFor a discussion regarding the software interfeor
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the TD40 has several functions:
watchdog timer, battery backup, power-on-reset ydefzower-supply monitoring, and power-failure
warning. These will significantly improve systentiability.

Watchdog Timer

The watchdog timer is activated by setting a jumper]9 of the TD40. The watchdog timer provides a
means of verifying proper software execution. e user's application program, calls to the fumctio
hitwd() (a routine that toggles the P12=HWD pin of the M) should be arranged such that the HWD
pin is accessed at least once every 1.6 secoridhe 09 jumper is on and the HWD pin is not acedss
within this time-out period, the watchdog timerIpuhe WDO pin low, which asserts /RST. This auttiena
assertion of /RST may recover the application mogif something is wrong. After the TD40 is redbg
WDO remains low until a transition occurs at the Wilh of the MAX691. When controllers are shipped
from the factory the J9 jumper is off, which dissbthe watchdog timer.

The 188ES has an internal watchdog timer. Thissahded by default witlae_init().

48, 34

‘-F‘O

ﬁ| H7L|I D : —
U] [- D" 5
Watchdog i| IWI :| |j

Enable |

S 1.
£ | n:l 3t I w

v _one on 17 n 12_oit © 08 07 06 05 04 03 02 O
T2

0.00, 0.00

| % Of

Figure 3.4 Location of watchdog timer enable jumper

Power-failure Warning

The supervisor supports power-failure warning aadkbp battery protection. When power failure is
sensed by the PFI pin of the MAX691 (lower than\t)3the PFO is low. You may design an NMI service
routine to take protect actions before the +5V drapd processor dies. You can also measure the PFI
voltage with one of the 12-bit ADC inputs. The &lling circuit (Figure 3.5) shows how you might dlse
power-failure detection logic within your applicati

3-9

TD40 Chapter 3: Hardware

! .

9-14 Vv(8.35 V min) ! VCC = +5V i
| |
| R3=10K |

47K J1pin 111 % |
L o PFlof MAX691,

| 1.3V min) |

2K L :

Figure 3.5 Using the supervisor chip for power failure detection

Battery Backup Protection

The backup battery protection protects data storéde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3V lithium battery positiy@n), and connects whichever is higher to the
VRAM (power for SRAM and RTC). Thus, the SRAM atin real-time clock RTC72423 are backed up.
In normal use, the lithium battery should last ab®® years without external power being suppligthen
the external power is on, the battery-switch-ovesuit will select the VCC to connect to the VRAM.

3.5.2 EEPROM

A serial EEPROM of 512 bytes (24C04), or 2K by{24C16) can be installed in U7. The TD40 uses the
P12=SCL (serial clock) and P11=SDA (serial datainterface with the EEPROM. The EEPROM can be
used to store important data such as a node adamdgsation coefficients, and configuration codds
typically has 1,000,000 erase/write cycles. Thia detention is more than 40 years. EEPROM careaé r
and written by simply calling functions tlee_rd()andee_wr().

A range of lower addresses in the EEPROM is resefwe TERN use. Details regarding which addresses
are reserved, and for what purpose, can be fouAgjrendix D of this manual.

3.6 Inputs and Outputs

The TD40 offers more than 70 1/O lines, include TIEkel 1/O, high voltage 1/0, and analog 1/0. The
below diagram gives a brief summary of availab® 1/

| Screw Terminal — T2 |

1 ! !

U20 — ULN2003 U18 — ULN2003 U19 — ULN2003
Output only Output only Input or Output (default
26
Pin
US PPI
H5| <P 24 TTL Ull DAC —>
level I/O 2 channels
10 U10 12-bit ADC| U16 — ULN2003 U1l7 — ULN2003
Pin 11 channels Input only Input (default) or Output

= T 1

| Screw Terminal — T1 |

3-10

TD40 Chapter 3: Hardware

3.6.1 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, susisesapproximation, 11 channels, serial interface,
analog-to-digital converter. Three PPI I/O lines ased to handle the ADC, with /CS=120; CLK=122dan
DIN=I21.

The ADC digital data output communicates with athtbsough a serial tri-state output (DOUT=P11). If
120=/CS is low, the TLC2543 will have output on P1f1120=/CS is high, the TLC2543 is disabled and
P11 is free. 120 and P11 are pulled high by 10Kstess on board. The TLC2543 has an on-chip 14-
channel multiplexer that can select any one ofripliis or any one of three internal self-test vatagrhe
sample-and-hold function is automatic. At the ehdamversion, the end-of-conversion (EOC) outputds
connected, although it goes high to indicate thatersion is complete.

TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingida
isolation of analog circuitry from logic and supptpise. A switched-capacitor design allows low-erro
conversion over the full operating temperature earigne analog input signal source impedance shuaild
less than 5Q and capable of slewing the analog input voltage 60 pF capacitor.

A reference voltage less than VCC (+5V) can be ipglexy for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +&NK lge used for this purpose, and can be connexted t
the REF+ pin.

The CLK signal to the ADC is toggled through an [, and serial access allows a conversion ratgof
to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines ased, as listed below:

ICS Chip select = PPI 120, high to low transitiorakles DOUT, DIN and CLK.
Low to high transition disables DOUT, DIN and CLK.

DIN PPI 121, serial data input

DOUT P11 of Am188ES, 3-state serial data output.

EOC Not Connected, End of Conversion, high indeateversion complete ang
data is ready

CLK I/O clock = PPI 122

REF+ Upper reference voltage (normally VCC)

REF- Lower reference voltage (normally GND)

VCC Power supply, +5 V input

GND Ground

The analog inputs ADO to AD3 are available at Trinieal 1 through 8 and AD4 through 10, REF+, GND,
and VCC are available at H6.

3.6.2 Operational Amplifiersfor ADC analog input signal conditioning

There are 4 op-amps (LM324) installed in U22.,tfee ADC channels 0 to 3. A single differential apgma
is used to condition the analog input signal fazheADC input. The default gain of these channekeisto
1, but can be configured by changing the resig®®% and RP3 with "*".

A simple R&C filter constructed with RP5 and C19232n be installed. Default value for RP5 is 10K.

3-11

TD40 Chapter 3: Hardware

Channels 0, 1, 2, 3 have the following structurdy@hannel 0 is shown):
Gian=RP1/RP2=

*RP1A 10K
nos RP2A K |5 RP5A 10K
U22A N ADO
- T
RP2B 10K C19, 0.01uf

*RP1B 10K .|;
3.6.3 Dual 12-bit DAC

The LTC1446 is a dual 12-bit digital-to-analog certer (DAC) in an SO-8 package. It is complete with
rail-to-rail voltage output amplifier, an interne¢ference and a 3-wire serial interface. The LT®144
outputs a full-scale of 4.096V, making 1 LSB ecieal mV.

The buffered outputs can source or sink 5 mA. Tiputs swing to within a few millivolts of supplit
when unloaded. They have an equivalent outputteggie of 40Q when driving a load to the rails. The
buffer amplifiers can drive 1000 pf without goinga oscillation.

The DAC is installed in U11 on the TD40, and thépots are routed to J2.

The DAC uses P12 as CLK, P26 as DI, and P29 as §DNote that P26 and P29 are also used by the high
voltage driver U19. Writing to the DAC will cauigese two high voltage outputs to toggle. Pleafsr to

the LT1446 technical data sheets on the TERN Czutetn_docs\parts\litc1446.pdf for more information
See also the sample programda.c in the\ t er n\ 186\ sanpl es\ ae directory.

3.6.4 Protective high voltage inputs

In order to support high voltage digital signalubpip to 30V, Darlington Transistor Arrays (ULN2093
are installed in U16, U19, UlThe maximum input voltage is 30V. The input pin H&s7K resistance
load to the GND. You have to provide a pulled hainal input. A valid input low voltage is less tha
0.8V, and a valid input high voltage is higher tf®hand less than 30V.

. i 5V
Darlington Transistor
— K
Digital Input upto 30V DC 27K |
AN

| ouT Am188ES PIO

VAN

ULN2003A

= GND
Figure 3.6 Darlington Transistors used as Protective High Voltage Inputs.

Ul17 and U19 may be set as input or output. Byofgatlefault, U19 is output and U17 is input. Thpuh
and output orientation for U17 and U19 is illustchbelow. Follow these illustrations carefullypevent
damage to the chipdNotice that U17 and U19 are aligned differentlyln addition, the ULN2003 chips
may be replaced with a resistor pack to providé@alighputs or outputs to the terminal blocks.

3-12

TD40 Chapter 3: Hardware

ul7
Reversable high voltag ULN2003 installed fofNPUT
input/sinking output =
Default: INPUT €00ZNN o |
48,34 =
l T1
[@TCOND 17 T L 1] 7 A \ L F) T K3= ASY A K2 A= A Auiﬁslr\ ULN2003 insta"ed fOOUTPUT
[H7L{ [ve [Ul7 0w
O & “L a5 | v2g | ve 9|
un LUTU J_lw_m:] p ULN2003
=]
W E| e[|
i — Am188ES o
s . 2 % ui19
e NN S—
i 1|2 I “D
-

. o[} — il Bw & ULN2003 installed foDUTEPUT
| [UI9 o 3t 1| Eé £00ZNIN DE

12V_GNG 021 020 019 0% Of5 014 015 012 O# 00 09 08 07 08 05 04 03 02 O

T2

0.00, 0.00

Reversable high voltage
input/sinking output
Default: OUTPUT

ULN2003 installed fotNPUT

" b ULN2003 C

Figure 3.7 Locations of user configurable Darlington Transistor Arrays.

3.6.5 High-Voltage, High-Current Drivers

ULN2003 has high voltage, high current Darlingteansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substréléchannels feature open-collector outputs fokiig
350 mA at 50V, and integral protection diodes fovidg inductive loads. Peak inrush currents ota600
mA sinking are allowed. U18 and U20 are dedicatégh-kioltage drivers and U17 and U19 are
configurable as high-voltage drivers. These outpugy be paralleled to achieve high-load capability,
although each driver has a maximum continuous ciolfecurrent rating of 350 mA at 50V. The maximum
power dissipation allowed is 2.20 W per chip atd2frees C°C). The common substrate G is routed to T2
GND pins. All currents sinking in must return tethi2 GND pin. A heavy gauge (20) wire must be used
connect the T2 GND terminal to an external commaugd return. K connects to the protection diodkes i
the ULN2003 chips and should be tied to highesiag® in the external load system. K can be conddote
an unregulated on board +12V via J6 andUWIZN2003 is asinking driver, not a sourcing driver. An
example of typical application wiring is shown tel

3-13

TD40 Chapter 3: Hardware

o1

I Solenoid +12V

Power Supply

|

GND/SuB

J6 or J7
O Q

K +12Vv
IGND/SUB

XA A

ULN2003 TinyDrive

Figure 3.8 Drive inductive load with high voltage/current drivers.

3.7 Headers and Connectors

T H6

10 pin

ADC

AD4 to AD10

/Reset

7 L] 1) L3 3 7 m T A 5 74 k) Z T A3-"ASY RS AZ¥ AT- ATF
[

L~

[uis u17 f' [-l s
H2, RS-232_1 (- s U2z 2 v @
SERI m H—uy (L ——

H56, GND & V7

& o
LTI T
ul
H1, RS-232 |y :
SER(ﬂ | w2
Am188ES "
v2

J2, DAC T ® utt

) EDE

H5

26 Pin
Header
PPI

24 1/0

u1s

H3, 232/485 U19 C[_ui_ 3 |[e [‘é
SCC I.“ZV ONG 021 020 019 018 017 0% 015 014 013 012 OH_ 010 09 08 07 08 05 04 03 02 01 Gl \

T2 LED

0.00, 0.00

Figure 3.9 ADC, PPI, Interrupts, Reset, RS-232/485, DAC headers.

The 0.1 inch spacing dual row pin headers H6, &6, H5 are lined up as a 19x2 pin header nexteto th
PCB right side edge of TD40. The headers havedlh@fing pin layout:

H6 Pin 1 = AD4 Pin 2 = AD5
Pin 3 = AD6 Pin 4 = AD7
Pin 5= AD8 Pin 6 = AD9
Pin 7 = GND Pin 8 = AD10

3-14

TD40 Chapter 3: Hardware
Pin 9 = REF+ Pin 10 = VCC
H56 Pin1=GND Pin2=V7 (TTL output from U24 74HG2Sutportb(0x207,dat);)
H5 Pin 26 =110 Pin 25 =111
Pin24 =112 Pin 23 =113
Pin22 =114 Pin 21 =115
Pin 20 =116 Pin 19 =117
Pin 18 =120 Pin 17 =121
Pin 16 =122 Pin 15 =123
Pin 14 =124 Pin 13 =125
Pin 12 =126 Pin 11 =127
Pin 10 =100 Pin9 =101
Pin 8 =102 Pin 7 =103
Pin 6 =104 Pin 5 =105
Pin 4 =VLC Pin 3=VCC
Pin 2 =106 Pin 1 =107

3.7.2 Jumpers and Headers

The following are the jumpers and connectors onTthé0.

Name Size

H1
H2
H3
H4
H5
H6
H7
H8
JO
J2
J3
J4

J5

J6
J7
J8
J9
T1
T2

Function

5x2 SERO0, RS-232.

5x2 SER1, RS-232.

5x2 SCC2691, RS-232/485.

2x1 +12VI and GND, Under the DC power jack.

13x2

24 1/0 from PPI, for LCD, keypads.

5x2 ADC AD4 to AD10, REF+, VCC, GND.

5x2 Interrupts, STEP 2 jumper, /RST, PFO.

3x1 POT with VLC, VCC, V- for graphics LCD coast adjustment.
3x1 DC power jack for 12V power input.

4x1 12-bit DAC outputs, 0 to 4.096 V, VA, GNIZB, GND.

3x1 SRAM selection: pin 2-3 SRAM 256K-512K,
3x1 EPROM size selection:

3x1 EPROM size selection:

A2 SRAM 32K-128K
pin 1-2 EPROM si2ik-228K

pin 2-3 EPROM size 256K-512K
pin 1-2 EPROM si2i¢ 3256K

pin 2-3 EPROM size 512K

2x1 K1 and +12VI for ULN2003, U17

2x1 +12V and K for ULN2003, U18, U19, U20.

2x1 CLKA and CLKB under Am188ES.

2x1 Watchdog timer is enabled, if Jumper isisabled, if jumper is off

24x1
24x1

3.7.3 Terminal Blocks

Screw Terminal for Inputs.
Screw Terminal for Outputs.

The TD40 has a total of 24x2 positions of termislakcks. The signals are listed as below. As defdultis

for inputs, and T2 is for outputs.

3-15

TD40 Chapter 3: Hardware

VCC GND IN7 IN6 IN5 IN4 IN3 IN2 IN1 107 106 105 1040B 102 101 A3- A3+ A2- A2+ Al- Al+ AO- A0+
«—

>
(U6 3 ulr 0w
(-] s | g |
I ——
1 I

‘j D U
%ﬁﬁ [g . —

o — b &
U109 ©[uis 3¢ L2 fﬁ
T2 "i2v_eNe 021 020 o o1 OU7 OB o oW o O on 0w 09 08 o7 05 05 04 03 gz Of i

0.00, 0.00

ﬁZV GND 021 020 019 018 017 016 015 014 013 O12 @A 09 08 O7 06 O5 04 O3 02 O1 GI\TE

Figure 3.10 Terminal block diagram

T1
A{3...0, +, -} 1..8 Differential signal conditiomkeanalog input
10{1...7} 9 ... 15 | Configurable high-voltage inputApuit
IN{1...7} 16 ... 22 | Dedicated high-voltage input
GND 23 Ground
VCC 24 +5V power supply, <200 mA

Table 3.3 Terminal 1 (T1)
T2

+12VI 1 Unregulated input voltage from power supply
GND 2 Ground
0O{21 ... 15} 3...9 | Configurable high-voltage inputitput
0{14...1} 10 ... 23| Dedicated high-voltage drivers
GND 24 Ground

Table 3.4 Terminal 2 (T2)

3-16

TD40 Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix E.

Guidelines, awar eness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not felked, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers caissis an I/O address space and a memory address
space. /O address space ranges fo@f000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwareplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I/O or memory space, amd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments. unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3dgenent
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsajp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

4-1

Chapter 4: Software TD40

These functions retrieve the data for a specifédtess in memory space. Once againsggment address
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component méppeat address should return either an 8-bit ebil6
value over the data bus. If there is no componegped to that address, this function will retamdom
garbage values every time you try to peek into diclalress.

outport/outportb
Arguments. unsigned int address, unsigned int/unsigned char da
Return value: none

(D
=}

This function is used to place tbeta into the appropriataddressin I/O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usexh@st cases when dealing with user-configured perid
components.

When dealing with processor registers, be sureédle correct function. Useatport if you are dealing
with a 16-bit register.

inport/inportb
Arguments. unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipiEase refer to the Hardware chapter of thisrtieeh
manual.

41AE.LIB

AE.LIB is a C library for basic TD40 operations.iritludes the following modules: AE.OBJ, SER0.OBJ,
SER1.0BJ, SCC.OBJ, and AEEE.OBJ. You need to liBkLMB in your applications and include the
corresponding header files. The following is adikthe header files:

Include-filename | Description

AE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1.H Internal serial port 1

SCC.H External UART SCC2691

AEEE.H on-board EEPROM

4.2 Functionsin AE.OBJ

4.2.1 TD4O0 Initialization

ae init

This function should be called at the beginningewéry program running on TD40 core controllers. It
provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS 1I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

4-2

TD40 Chapter 4: Software

There are certain default pin modes and interrefiing)s you might wish to change. With that in dhithe
basic effects oée init are described below. For details regarding regisse, you will want to refer to the
AMD Am188ES Microcontroller User’'s manual.

< Initialize the upper chip select to support thead#fROM. The CPU registers are configured such
that:

— Address space for the ROM is from 0x80000-0xffftf (hap MemCard I/O window)
— 512K ROM Block size operation.

— Three wait state operation (allowing it to suppgotto 120 ns ROMs). With 70 ns ROMs, this
can actually be set to zero wait state if you regjiricreased performance (at a risk of stability
in noisy environments). For details, see the UMGfper Memory Chip Select Register)
reference in the processor User’'s manual.

out port (Oxffal, 0x80bf); // UMCS, 512K ROV| 0x80000-Oxfffff

e Initialize LCS (ower Chip Select) for use with the SRAM. It is configured so that:
— Address space starts 0x00000, with a maximum oK5RAM.
— Three wait state operation. Reducing this valueiggrove performance.

— Disables PSRAM, and disables need for externalread
out port (Oxffa2, Ox7fbf); // LMCS, base Mem address 0x0000

e Initialize MMCS and MPCS so théd CS0 andPCS0-PCS6 (except for PCS4) are configured so:

- MCS0is mapped also to a 256K window at 0x80000. #dusith MemCard, this
chip select line is used for the 1/0O window.

- Sets upPCS5-6 lines as chip-select lines, with three wait stgderation.

out port (Oxffa8, OxalObf); // s8, 3 wait states
out port (Oxffa6, 0x81ff); // CSOMSKH

¢ Initialize PACS so thaPCS0-PCS3 are configured so that:
- Sets upPCS0-3 lines as chip-select lines, with fifteen wait staperation.

— The chip select lines starts at /0O address 0x0@fif,each successive chip select line
addressed 0x100 higher in I/O space.

out port (Oxffa4, 0x007f); // CSOMSKL, 512K, enable CSO for RAM

< Configure the two PIO ports for default operatidXil pins are set up as default input, except for
P12 (used for driving the LED), and peripheralction pins for SERO and SER1, as well as chip
selects for the PPI.

out port (Oxff 78, 0xe73c); /1 PDI R1, TxDO, Rx DO, TxD1, RxD1,
/1 P16=PCSO, P17=PCS1=PPI

out por t (0xff 76, 0x0000) ; /1 PIOWVL

out port (Oxff 72, Oxec7b); /1 PDI RO, P12, A19, A18, Al7, P2=PCS6=RTC
/1

out port (0xff 70, 0x1000); Pl OMD, P12=LED

e Configure the PPI 82C55 to all inputs, except fioed 120-23 which are used as output for the
ADC. You can reset these to inputs if not beingduor that function.

out port b(0x0103, 0x9a) ; /1 all pins are input, |20-23 output

out port b(0x0100, 0) ;

out port b(0x0101, 0);

out port b(0x0102, 0x01) ; /1 120=ADCS hi gh

The chip select lines are by default set to 15 staite. This makes it possible to interface witnyn
slower external peripheral components. If you negiaster I/O access, you can modify this numimavrd
as needed. Some TERN components, such as th& ReaiClock, might fail if the wait state is decreds
too dramatically. A function is provided for thpsirpose.

4-3

Chapter 4: Software TD40

void io_wait

Arguments. char wait

Return value: none.

This function sets the current wait state dependmthe argumemwait.
wait =0, wait states 0, 1/0O enable for 100 ns

wait=1, wait states = 1, |/O enable for 100+25 ns
wait=2, wait states = 2, |/O enable for 100+50 ns
wai t=3, wait states = 3, |1/0O enable for 100+75 ns
wai t=4, wait states = 5, |/O enable for 100+125 ns
wai t=5, wait states = 7, |/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, |/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sourceshenTD40, consisting of seven maskable interrups p
(INT6-INTO) and one non-maskable interruptM). There are also an additional eight internadrintpt
sources not connected to the external pins, camgistf three timers, two DMA channels, both
asynchronous serial ports, and k!l from the watchdog timer. For a detailed discussivolving the
ICUs, the user should refer to Chapter 7 of the AMBL88ES Microcontroller User’'s Manual.

TERN provides functions to enable/disable all af 8 external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isieitn pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dked must
be cleared. This can be done using H@nhspecific EOl command. At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityrig will be handled
first, and a higher priority interrupt will intenpti any current interrupt handlers. So, if the uderoses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine jusstds to
issue the nonspecific EOl command to clear theectitnighest priority IR.

To send the nonspecific EOl command, you need i@ WreEOI register word with 0x8000.
out port (0xff22, 0x8000);

void intx_init
Arguments. unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwapter). The first argumenindicates whether this
particular interrupt should be enabled or disabl€de second argument is a function pointer thtast
as the interrupt service routine. The overheatherinterrupt service routine, when executed, aua0

us.

By default, the interrupts are all disabled aftstialization. To disable them again, you can eggke call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultwR
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());

TD40 Chapter 4: Software

void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.3 1/O Initialization

Two ports of 16 I/O pins each are available onftbd0. Hardware details regarding these PIO linesbea
found in the Hardware chapter.

Several functions are provided for access to ti@ IPles. At the beginning of any application whgoa
choose to use the PIO pins as input/output, yolupndlbably need to initialize these pins in onetaf four
available modes. Before selecting pins for thigppae, make sure that the peripheral mode operafion
the pin is not needed for a different use withia $hme application.

You should also confirm the PIO usage that is deedrabove withinae init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this méd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 11 of the AMD Am18&Eser’'s Manual.

Please see the sample prograenpio.c in t er n\ 186\ sanpl es\ ae. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-apnte
the PIO lines.

The functionpio_wr andpio_rd can be quite slow when accessing the PIO pingebding on the pin
being used, it might require from 5-10 us. The imaxn efficiency you can get from the PIO pins oci€ur
you instead modify the PIO registers directly vétioutport instruction Performance in this case will be
around 1-2 us to toggle any pin.

The data register Bxff74 for PIO port 0, an@xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.
mode refers to one of four modes of operation.

e 0, normal operation

e 1, input with pullup/down
e 2, output

e 3, input without pull

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating P10 status

Each bit of the returned 16-bit value indicatesatrent 1/0 value for the P1O pins in the seleqted.
void pio_wr:

Arguments: char bit, char dat
Return value: none

4-5

Chapter 4: Software TD40

Writes the passed in dat value (either 1/0) test#Hected PIO.

4.2.4 Timer Units

The three timers present on the TD40 can be usealVariety of applications. All three timers rain’a of
the processor clock rate, which determines the maxi resolution that can be obtained. Be awareithat
you enter power save mode, the timers will opesitereduced speed as well.

These timers are controlled and configured throaghode register that is specified using the softwar
interfaces. The mode register is described inildatahapter 8 of the AMD AM188ES User’'s Manual.

Pulse width demodulation is done by setting the PhitDn theSY SCON register. Before doing this, you
will want to specify your interrupt service routdjewvhich are used whenever the incoming digitahalig
switches from high to low, and low to high.

The timers can be used to time execution of yoar defined code by reading the timer values bedok
after execution of any piece of code. For a sarfiedemonstrating this application, see the saiibd
timer.c in the directorytern\186\samples\ae.

Two of the timers,TimerO and Timerl can be used to do pulse-width modulation with dabde duty
cycle. These timers contain two max counters, whbe output is high until the counter counts up to
maxcount A before switching and counting up to naaxd B.

It is also possible to use the outpuflofner2 to pre-scale one of the other timers, since 1@dsiblution at
the maximum clock rate specified gives you only H50 Only by usinglimer2 can you slow this down
even further. The sample filésner02.c andtimer12.c, located irtern\186\samples\ae, demonstrate this.

The specific behavior that you might want to impérnis described in detail in chapter 8 of the AMD
AM188ES User’'s Manual.

void t0_init

void t1_init

Arguments:. int tm, int ta, int tb, void interrupt far(*t_igp)
Return values: none

Both of these timers have two maximum counters (MXUNTA/B) available. These can all be specified

usingta andtb. The argumentm is the value that you wish placed into theCON/T1CON mode
registers for configuring the two timers.

The interrupt service routineisr specified here is called whenever the full cosntgached, with other
behavior possible depending on the value spedifiethe control register.

void t2_init
Arguments. int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer 2 behaves like the other timers, except it only dv@s max counter available.

4.2.5 Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog infnatsed on the reference voltage supplieBEs+. For
details regarding the hardware configuration, keeHardware chapter.

In order to operate the ADC, lines 120, 121,122nfrthe PPI must be configured as output. P11 nisst a
be configured to be input. This line is also sdangth the RTC and EEPROM, and left high at power-
on/reset. You should be sure not to re-prograreeth@ns for your own use. Be careful when usirgg th

TD40 Chapter 4: Software

EEPROM concurrently with the ADC. If the ADC isadied, the line P11 will be reserved for its usé an
any attempt to access the EEPROM will time-outraftene time.

For a sample file demonstrating the use of the Apl€ase seae adl12.cint er n\ 186\ sanpl es\ ae.

int ae_ad12
Arguments:. char ¢
Return values: int ad_value

The argument selects the channel from which to do the next dgab Digital conversion. A value of 0
corresponds to chann&DO, 1 corresponds to chanmeD1, and so on.

The return valuad_value is the latched-in conversion value from the prasioall to this function. This
means each call to this function actually retuhgsvalue latched-in from the previous analog-tataig
conversion.

For example, this means the first analog-to-digitaiversion done in an application will be simtiathe
following:

ae_adl2(0); // Read from channel 0
chn_0O_data = ae_adl12(0); // Start the next conversion, retrieve val ue.

4.2.6 Digital-to-Analog Conversion

An LTC 1446 chip is available on the TD40 in pasitlJ11. The chip offers two channels, A and B, for
digital-to-analog conversion. Details regardingdveare, such as pin-outs and performance specditsti
can be found in the Hardware chapter.

A sample program demonstrating the DAC can be fouimd ae dac in the directory
t ern\ 186\ sanpl es\ ae.

void ae_da
Arguments: int datl, int dat2
Return value: none

Argumentdat1l is the current value to drive to channel A of ¢hé, while argumentdat?2 is the value to
drive channel B of the chip.

These argument values should range from 0-40985,witts of millivolts. This makes it possible towe a
maximum of 4.906 volts to each channel.

4.2.7 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timég) is connected, the functidritwd() must be called every 1.6
seconds of program execution. If this is not exetbecause of a run-time error, such as an iefioitp or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Chapter 4: Software TD40

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to théue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama roll-over in digits in the year 2000. Ondusion
might be to store an offset value in non-volattlerage such as the EEPROM.

There is a common data structure used to accesssarobth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten minute digit.
unsi gned char hourl; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl0; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}TIM

intrtc rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the timaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrcin, as
the clock failing to respond.

Void rtc_init
Arguments. char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tevdekday, year 10, year 1, month10, month1, day10, dayl, hour10,
hour1, minutelO, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t86 byte
array would be initialized to:

TD40 Chapter 4: Software

unsigned char t[14] ={ 5 9, 8 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 }; |

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For appliogtibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delay0
Arguments. unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspee
well as interrupt latency. The code is functiop&dientical to:

VWhile(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments. unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentapon the processor speed.

unsigned int crcl6
Arguments. unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr.

void ae_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgetyin the header filser0.h andser1.h in the directory
tern\ 186\ i ncl ude.

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits t@mmunication with the PC. As a result, you will
not be able to debug code directly written foragport 0.

Two asynchronous serial ports are integrated inAmd88ES CPU: SERO and SER1. Both ports have
baud rates based on the 40 MHz clock, and can @para maximum of 1/16 of that clock rate.

By default, SERO is used by the DEBUG ROM for aggtiion download/debugging in STEP 1 and STEP
2. We will use SER1 as the example in the followttigcussion; any of the interface functions tha ar
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial portdse,
please realize that some pins might be shared otiter peripheral functions. This means that inaier

4-9

Chapter 4: Software TD40

limited cases, it might not be possible to useréageserial port with other on-board controllendtions.
For details, you should see both chapter 10 of Ah&l88ES Microprocessor User's Manual and the
schematic of the TD40 provided at the end of tres\oal.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor for Joflhe processor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions. These are based on a 40 MHz systenk;céo20 MHz system clock would have the baud rates
halved.

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by callings1 i nit (), SER1 is configured as a full-duplex serial paortl & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAL operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status witer hit 1() and
take out the data from the buffer wiglet ser 1() , if any. The input buffer is used as a circulagrbuffer,

as shown in Figure 4.1. However, the transmit ap@ras interrupt-driven.

ibuf in_tail in_head ibuf+isiz

v v
[L[]

1 |

Figure 4.1 Circular ring input buffer

The input buffer ipuf), buffer size idiz), and baud ratebfud) are specified by the user wistl_i ni t ()
with a default mode of 8-bit, 1 stop bit, no pariffter s1_init() you can set up a hew mode with
different numbers for data-bit, stop bit, or patity directly accessing the Serial Port 0/1 ConRedbister

4-10

TD40 Chapter 4: Software

(SPOCT/SP1CT) if necessary, as described in chaptef the Am188ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates andhp@sgfects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer witht ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyde buffer
if large amounts of data are transferred. For gtanif you are receiving data at 9600 baud, a 4bdBer
will be able to store data for approximately foacands.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for réegiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhit1() to check the status of the input buffer and rethmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates aata is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after evaggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @l _cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sersl1() to transmit a
character string. You can put data into the trahsing buffer,s1_out _buf, at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthasiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeufIf there

is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out bufferd transmit. After you cafput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every “:’ charadte‘?’. The translated HEX file is then transimit out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ae.

Softwar e I nterface
Before using the serial ports, they must be initad.

There is a data structure containing importanas@ort state information that is passed as argtiteetihe
TERN library interface functions. TheOM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufnd associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eitbeor
ser0 can be replaced witsll or serl, for example. Each serial port should use its @@M structure, as
defined inae.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */

unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* 1 nput buffer HEAD ptr */

int in_size; /* I nput buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_nt; /* Input buffer FLAG */

4-11

Chapter 4: Software TD40

unsi gned char in_full; /[* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /[* Qutput buffer MI */

unsi gned char tnso; /'l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsigned int in_segm /* input buffer segment */
unsigned int in_offs; /* input buffer offset */
unsi gned i nt out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */
} com

sn_init
Arguments. unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value show
in Table 4.1. Argumentiduf andisiz specify the input-data buffer, aebuf andosiz specify the location
and size of the transmit ring buffer.

=)

The serial ports are initialized for 8-bit, 1 stoiy no parity communication.

There are a couple different functions used fangmaission of data. You can place data within thigat

buffer manually, incrementing the head and taifdrupointers appropriately. If you do not call aofethe

following functions, however, the driver interrufar the appropriate serial-port will be disabledchieh

means that no values will be transmitted. Thisved| you to control when you wish the transmissibdaia
within the outbound buffer to begin. Once the linipts are enabled, it is dangerous to manipulage
values of the outbound buffer, as well as the \abfehe buffer pointer.

t

putsern
Arguments. unsigned char outch, COM *c
Return value: int return_value

This function places one byteitch into the transmit buffer for the appropriate Sepiart. The return value
returns one in case of success, and zero in aey o#ise.

putsersn
Arguments. char* str, COM *c
Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferser hitn() should be called befor
trying to retrieve data.

Y%

4-12

TD40 Chapter 4: Software

serhitn
Arguments. COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments the_tail pointer. Once again, this
function assumes thatrhitn has been called, and that there is a characteemirgsthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffetr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callggabser, and will block untillen bytes are retrieved. The retwaue
indicates the number of bytes that were placedthdouffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means thaxetimight actually be multiple null charactershia byte
array, and the returnadlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yoeheck and set the value of these I/O pins appatgpfor
whatever form of flow control you wish to implemerBefore using these functions, you should onaérag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to the AM188ES User’s Manual.

char sn_cts(void)
Retrieves value € TS pin.

void sn_rts(char b)
Sets the value ®RTStob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Wefau
system resources.

sn_close
Arguments. COM *c
Return value: none

4-13

Chapter 4: Software TD40

This closes down the serial port, by shutting délmenhardware as well as disabling the interrupt.

clean_sern
Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial 1/0O ports available onAimd88ES Processor have many other features thait mig
be useful for your application. If you are trubterested in having more control, please read @hdytt of
the manual for a detailed discussion of other fegtavailable to you.

4.4 Functionsin SCC.OBJ

The functions found in this object file are profmyg inscc.h in thet er n\ 186\ i ncl ude directory.

The SCC is a component that is used to provideird #synchronous port. It uses an 8 MHz crystal,
different from the system clock speed, for drivisgrial communications. This means the divisors and
function arguments for setting up the baud rateHisrthird port are different than for SERO andR3E

The SCC2691 component has its own 8 MHz crystaligiog the clock signal. By default, this is set&
MHz to be consistent with earlier TERN controllegsiyns. The highest standard baud rate is 198%0,
shown in the table below. If your application reqs a higher standard baud rate (115,200, for pigit

is possible to replace this crystal with a custa6884 MHz crystal. A sample file demonstrating hitne
software would be changed for this applicatioadssccl.c, found in theter n\186\samples\ae\ directory.

Function Argument | Baud Rate

110

150

300

600
1200
2400
4800
9600 (default)
19,200
31,250
62,500
125,000
250,000

© 00 ~NOO UL~ WNPRE

e el =
W N RO

Unlike the other serial ports, DMA transfer is mged to fill the input buffer for SCC. Instead,iaterrupt-
service-routine is used to place characters ingoirtput buffer. If the processor does not respanthé
interrupt—because it is masked, for example—theriopt service routine might never be able to cetepl
this process. Over time, this means data migthbdtdn the SCC as bytes overflow.

Special control registers are used to define hav3EC operates. For a detailed description of tergis
MR1 andMR2, please see Appendix B of this manual. In mosRNEpplications, MR1 is set @57,
and MR2 is set t@x07. This configures the SCC for no flow control (RT&TS not used/checked), no
parity, 8-bit, normal operation. Other configuraticare also possible, providing self-echo, evengmatity,
up to 2 stop bits, 5 bit operation, as well as enatiic hardware flow control.

4-14

TD40 Chapter 4: Software

Initialization occurs in a manner otherwise similarSERO and SER1. AOM structure is once again
used to hold state information for the serial pofte in-bound and out-bound buffers operate asrbef
and must be provided upon initialization.

scc_init

Arguments. unsigned char m1, unsigned char m2, unsigned charsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue ba as defined in the table above. The valuegairand
m2 specify the values to be stored irMd&R1 andMR2. As discussed above, these values are normally
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, adif andosiz define the output buffer.

After initializing the serial port, you must alsetaup the interrupt service routine. The SCC26%RU
takes up external interrugkNTO on the CPU, and you must set up the appropridegrupt vector to
handle this. An interrupt service routingc isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

intO_init(1, scc_isr);
By default, the SCC is disabled for bdttansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deedegou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomaledile showing RS232 full duplex communications,
please seae scc.c in the directoryt er n\ 186\ sanpl es\ ae.

RS485 is slightly more complex to use than RS2&%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i8Br installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you willso need to place the
RS485 driver in transmission mode as well. Thiddee by usingcc_rts(1). This uses pin MPO (multi-
purpose output) found on the J1 header. While areureceiving data, the RS485 driver will need ¢o b
placed in receive mode usirmgc_rts(0). For a sample file showing RS485 communicatideage see
ae rs485.cin the directoryt er n\ 186\ sanpl es\ ae.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallyshea
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_elscc rec e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofetbe
functions are disabled by default. If you are gdr8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec reset
Arguments: none
Return value: none

4-15

Chapter 4: Software TD40

This function resets the state of the send andvedenction of the SCC2691. One major use ofe¢hes
functions is to disablansmit andreceive. If you are using RS485, you will need to uss feature when
transitioning from transmission to reception, @mfrreception to transmission.

Transmission and reception of data using the SG@Crsst ways identical to SERO and SER1. The
functions used to transmit and receive data aréssimFor details regarding these functions, peaser to
the previous section.

putser_scc
See: putsern

putsers scc
See: putsersn

getser_scc
See: getsern

getsers scc
See: getsersn

Flow control is also handled in a mostly similastfeon. The CTS pin corresponds to the MPI pincivtis
not connected to either one of the headers. THg BT corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

sce_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.

scc_close
See: sn_cl ose

ser hit_scc
See: sn_hit

clean_ser_scc

See: clean_sn
Occasionally, it might also be necessary to chbekstate of the SCC for information regarding extbat
might have occurred. By callingcc_err, you can check for framing errors, parity erroifspérity is
enabled), and overrun errors.

scc_err
Arguments. none

Return value: unsigned char val

The returned valueal will be in the form of OABC0000 in binary. Bit & 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit @licates an over-run error.

4-16

TD40 Chapter 4: Software

45 Functionsin AEEE.OBJ

The 512-byte serial EEPROM4CO04) provided on-board allows easy storage of nontilelgprogram
parameters. This is usually an ideal locationtémesimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite slowmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addresse€x00 to Ox1f on the EEPROM is reserved for system use, incudomfiguration information
about the controller itself, jump address for Skeyp, and other data that is of a more permaneniraat

The rest of the EEPROM memory spa@e0 to Ox1ff, is available for your application use.

The EEPROM shares line P11 with the ADC. If the ABGnabled, it can interfere with the EEPROM.
The ADC is enabled if 120 is low. In the init fumm, it is brought high so that you can access the
EEPROM. Be aware that if you modify the PPI conteglister by calling outportb(0x0103, xx); then il
the output lines on the PPI are brought low, iniclgdi20, which enables the ADC and disables the
EEPROM. If you need to use the EEPROM, be sureitghb20 high again to disable the ADC (refer to
section 3.5.2).

ee wr
Arguments:. int addr, unsigned char dat
Return value: int status

This function is used to write the passedlat to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:. int addr
Return value: int data

This function returns one byte of data from thec#fjedl address.

4-17

TD40

Appendix A: TD40 L ayout

Appendix A: TD40 Layout

The TD40 measures 4.87 by 3.42 inches. All dimensions shown below are in inches.

Thisdrawing is not to scale.

(0.10, 3.18) (0.79,2.99 (2.74, 2.37)
i 14, 2. 4.87,3.42
(0.17, 3.28) (1.93, 2.22) \ (2.74,2.07) ()
\
(013’ 292) \c/ o o o \ o o o o \\: o o o o o o o o o o o (473‘ 292)
k T1 /
7 7 T A3= A3¥ AZ= AZ¥ RI- AT AU-
ep2
© ﬂ ¥ Dwzoos e m O
/ S % 5 /| OPs uz2g| ADC u104:;|§
(0.08, 2.73) 2 _llJIZ'_ (4.71, 2.78)
5 | Am188ES U3 REF Ez}
232 |
o]] n
_—ma| | ROM/Flash
(0.08, 2.05) E 232||u1s U2
@] B PP
(053,162 °
e Jue RTC2421 | o 481,098
_—tl m % 691 H8 H5 ()
(0.08, 1.28) u21 [Tl u24 | =
— | HC259 |
(0.13, 1.02) JHC250] & O
- [uLn2o03 Uisdhus scceser | \
(0.13,0.62) |2y_ohc oat o4 ofs_ow o o5 ow o3 on ot oo 09 08 07 06 05 04 03 02 O G (4.73,0.82)
(0.00, 0.00) (1.21, 1.08)
(0.10, 0.23)
(0.17, 0.13)

Appendix B: UART SCC2691 TD40

Appendix B: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
ICEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

AO0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

XUCLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TxD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bit6 | Bit5 | Bit4 HETE [Bit2 [Bit1 [Bito
RxRTS RXINT Error __ ParityMode___ Parity Type Bits per Character
0=no 0=RxRDY 0 =char 00 = with parity 0=Even 00=5
l=vyes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0 =Data
1=Addr

B-1

TD40

Appendix B: UART SCC2691

MR2 (Mode Register 2):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
Tx (add 0.5 to cases 0-7 if channel is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0.625 5=0875 9=1625 D=1.875
10 = Local loop 2=0688 6=0938 A=1688 E=10938
11 = Remote loop 3=0.750 7=1.000 B=1750 F=2.000
CSR (Clock Select Register):
[Bit7 | Bit6 | Bit5 | Bit4 [BIit3 [Bit2 [Bit1 [Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] =0:
0= 50 1=110 2=1345 3=200 0= 50 1=110 2=1345 3=200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=38.4k D=Timer E=MPI-16x F=MPI-1x C=38.4k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A=7200 B = 1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX RXx Rx
0 = no command 8=gart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=vyes 1=yes 1=vyes 1=yes
2 =reset receiver A = assert RTSN
3 =reset transmitter B = negate RTSN
4 =reset error status C=reset MPI
5 = reset break change change INT
INT D =reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are

reset when the corresponding data character is read from the FIFO.

B-2

Appendix B: UART SCC2691 TD40

ACR (Auxiliary Control Register):

[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode
0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rateset 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)
transmitter 1= off 4 =RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (x2/CLK) 6 =TxXRDY
see CSR 4 =timer, MPI pin 7 =RxXRDY/FFULL
bit format 5 =timer, MPI pin divided by
16
6 = timer, crystal or external
clock (x1/CLK)
7 =timer, crystal or external
clock (x1/CLK) divided by 16

ISR (Interrupt Status Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes

IMR (Interrupt Mask Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n

CTUR (Counter/Timer Upper Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |

| cTag | crpa | crpyy | otz | otqa | otlig | cm9 | cmrg |
CTLR (Counter/Timer Lower Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |

[T | cmiel | cmis) | crg | orig) | cm2 | cry [oo I

B-3

TD40

Appendix C: RTC72421 / 72423

Appendix C: RTC72421 / 72423

Function Table

Address Data
Az | A, | A; | Ay | Register | 3 D, D, Do Count Remarks
Value
0 (0 0 |0 |9 S3 S S S 0~9 1-second digit register
0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register
0 (0 1 ({0 | My mig | miy miy, [mig 0~-9 1-minute digit register
0 (O 1|1 Mk Migq Misg | Migg | 0~5 10-minute digit register
0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register
0 |1 |0 |1 | Hg PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1
0 |1 110] dg dy d, d; 0~9 1-day digit register
0 |1 1 (1 Do dgy | dig 0-~3 10-day digit register
1]0 0 |0 | MQ mog | mo, mo, [mo, | 0~9 1-month digit register
1]0 0 |1 MQg mo | 0~1 10-month digit register
1 0 1 0 Y Ys Y4 Yo Y1 0~9 1-year digit register
1 |0 1]1 Yo Yso | Yao Yoo | Y10 0~9 10-year digit register
1 |1 0|0 | W vy W, Wy 0~6 Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj | Flag
1 |1 110 Reg E qt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test 24/12 Stop Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse

2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)

Data bit| PM/AM INT/STD 24/12
PM INT 24
AM STD 12

5) Test bit should be "0".

C-1

Appendix D: Serial EEPROM Map TD40

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations aeal U/ system software. Application programs mustse
these locations.

0x00 Node Address, for networking
0x01 Board Type

0x02

0x03

0x04 SERO_receive, used by ser0.c
0x05 SERO_transmit, used by ser0.c
0x06 SERL1 receive, used by serl.c
0x07 SERL1_transmit, used by serl.c
0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™
0x18 MM page register O

0x19 MM page register 1

Oxla MM page register 2

0x1b MM page register 3

D-1

TD40 Appendix E: Software Glossary

Appendix E: Software Glossary

The following is a glossary of library functions fine TD40.

void ae_init(void) ae.h

Initializes the Am188ES processor. The followiaghe source code fae_init()
outport(0xffa0,0xcObf); // UMCS, 256K ROM, 3 wait states, disable AD15-0
outport(Oxffa2,0x7fbc); // 512K RAM, O wait states

outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS1/0
outport(Oxffa6,0x81ff); // MMCS, base 0x80000

outport(Oxffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIRL, TxDO, RxDO, TxD1, RxD1, P16=PCS), P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1

outport(0Oxff72,0xec7b); // PDIRO, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOMO, P12=LED

outportb(0x0103,0x9a); // all pins are input, 120-23 output
outportb(0x0100,0);

outportb(0x0101,0);

outportb(0x0102,0x01); // 120=ADCShigh

clka_en(0);

enabl e();

Reference: led.c

void ae_reset(void) ae.h

Resets Am188ES processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ae.h

Toggles P12 used for led.

Var: i- Led on or off

Reference: led.c

E-1

Appendix E: Software Glossary TD40

void delayO(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple for loop up to t.

Reference:

void pwr_save en(int i) ae.h

Enables power save mode which reduces clock spBieters and serial ports will be effected.
Disabled by external interrupt.

Var: i— 1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peeigh use.

Var: i — 1 enables clock output, O disables (saves current when
disabled).
Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must benected to WDI of the MAX691 supervisor chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line0-31
Mode — above mode select

Reference: ae_pio.c

E-2

TD40 Appendix E: Software Glossary

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be incariput mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit—PIO line 0 - 31
dat - 1/0

Reference: ae pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16 bit PIO port.

Var: port—0: PIOO - 15
1: PIO16-31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bitvalue to I/O addresgortid.

Var: portid — /O address
value — 16 bit value

Reference: ae ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bitvalue to I/O addresgortid.

Var: portid — 1/0 address
value — 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h
Reads from an 1/O addrepsrtid. Returns 16-bit value.
Var: portid — /O address

Reference: ae_ppi.c

E-3

Appendix E: Software Glossary TD40

int inportb(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 8-bit value.

Var: portid — 1/0 address

Reference: ae_ppi.c

int ee_ wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ae_ee.c

int ee rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ae ee.c

int ae_ad12(unsigned char c) ae.h

Reads from the 11-channel 12-bit ADC. Returnsitl2b data of the previous channel.
In order to operate ADC, 120,121,122 must be outgud P11 must be input.
P11 is shared by RTC, EE. It must left high at pean/reset.

Unipolar:
Vref- = 0x000
Vref+ = Qxfff

Use 1 wait state for Memory and 1/0O without RDY380 us execution time
Use 0 wait state for Memory and 1/0O with VEPO1® %0 us execution time

Var: ¢ — ADC channel.

-~

0...a},inputch=0-10

input ch = (vref+ - vref-) /2
input ch = vref-

input ch = vref+

software power down

OO0 00
oo
DPOOT

Reference: ae_adl2.c

E-4

TD40

Appendix E: Software Glossary

void io_wait(char wait) ae.h

Setup /O wait states for I/O instructions.

Var: wait — wait duration {0...7}

Reference:

wait=0, wait states = 0, /O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, /O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, /O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

void rtc_init(unsigned char * time) ae.h

Sets real time clock date, year and time.

Var: time —time and date string
String sequence is the following:

time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = monl10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hourl0
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = sec10
time[12] = secl

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtc_rd(TIM *r)

ae.h

Reads from the real time clock.

Var: *r — Struct type TIM for all of the RTC data
typedef struct{

Reference: rtc.c

unsigned char secl, sec10, minl, minl10, hounlrly
unsigned char dayl, day10, monl, monl0, yearIl@ea
unsigned char wk;

}TIM;

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h

E-5

Appendix E: Software Glossary

TD40

void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void tO_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm — Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual

ta — Count time a (1/4 clock speed).
tb — Count time b for timer 0 and 1 only (1/4 clock).

Time a and b establish timer duty cycle (PWM). See

hardware chapter.
t #_isr — pointer to timer interrupt routine.

Reference: timer.c, timer 1.c, timer02.c, timer 2.c, timer 0.c timer 12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void intl init(unsigned char i, void interrupt far (*intl_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMil¢gn-Maskable Interrupt).
Var: i—1: enable, O: disable.

int #_isr — pointer to interrupt service.
Reference: intx.c

void S0_init(unsigned char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c¢) (void);

void sl _init(unsigned char b, unsigned char* ibuf, intisiz, serl.h
unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b — baud rate. Tabl e bel ow for 40MH#z and 20MHz C ocks.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0siz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM

structure.

baud (40MHz) | baud (20MHz)
110 55
150 110
300 150
600 300
1200 00
2400 1200
4800 2400
9600 1800
19200 600
0 [38400 9200

2O 00|N|O| Ul A W|N| | T

=lolalnglal o

E-6

TD40 Appendix E: Software Glossary

11 [57600 38400
12 |115200 §7600
13 |23400 115200
14 |460800 23400
15 921600 460800
Reference: S0_echo.c, sl_echo.c, sl 0.c
void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h

unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1
m2 = SCC691 MR2
b — baud rate. T abl e bel ow for 8MHz d ock.
ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
osiz — ouput buffer size

¢ — pointer to serial port structure. See AE.H for COM
structure.
ml bit Definition
7 (RXRTS) receiver request-to-send control, 0=no, 1 =yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Bloc k
4-3 Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
2 (Parity Type), 0O=Even, 1=0dd
1-0 # bits) 00=5, 01=6, 10=7, 11=8
n2 bit Definition
7-6 Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
5 (TXRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 Stop bit), 0111=1, 1111=2
b baud (8MHz)
1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19200
10 (31250
11 [62500
12 [125000
13 [250000

Reference: S0_echo.c, sl_echo.c, sl 0.c

int putserO(unsigned char ch, COM *¢); ser0.h
int putser1(unsigned char ch, COM *¢); serl.h
int putser_scc(unsigned char ch, COM *c¢); scc.h

Output 1 character to serial port. Charactervéllsent to serial output with interrupt isr.

Appendix E: Software Glossary TD40

Var: ch — character to output
¢ — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c¢); ser0.h
int putsersl(unsigned char *str, COM *c¢); serl.h
int putsers_scc(unsigned char ch, COM *c¢); scc.h

Output a character string to serial port. Charaestitbe sent to serial output with interrupt isr.

Var: str — pointer to output character string
¢ — pointer to serial port structure

Reference: serl sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *¢); scc.h

Checks input buffer for new input characters. Retu if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure
Reference: S0_echo.c, s1_echo.c, sl 0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getser 1(COM *c¢); serl.h
unsigned char getser_scc(COM *c¢); scc.h

Retrieve 1 character from the input buffer. Asssitatserhit routine was evaluated.

Var: ¢ — pointer to serial port structure
Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c¢, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers scc(COM *c, int len, unsigned char *str); scc.h

Retrieves a fixed length character string fromitipaut buffer. If the buffer contains less charastidsan
the length requestedy will contain only the remaining characters frora thuffer. Appends a \0’
character to the end df. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure
len — desired string length
str — pointer to output character string

Reference: serl.h, ser0.h for source code.

E-8

TD40

Appendix F: LCD Interfaces

Appendix F: LCD Interfaces

F.1Interfacea 20x4 LCD to H5 of the TD40

48, 3.4

T1 fv
—— | E—

p[H7 4 [us 3 w7 %)
? [lﬁ[1“1[1“‘1J rOPSW[i umﬁ.ﬁ_
: ; uy m:}@_
) [[|
[— AmMISBES o
" 7] u2 ROM PP
F— 1wl 5] VIGE
o1]] . &
Os U19 [us 45 ¢ J[v uzn[@
O\g 111
@ 113=GND
© O | |15=RS
© O | 117=LCD
© O | 121=D1
(ON®)
(ON®)
O O |127=D7
(ON®)
O O
(ON®)
O O
o log O @ | |07
) e} ~
o I o H5
o o N

O000O0O0DO0O00O0O0 011

No cable connection on pin 3

20X4 LCD

Appendix F: LCD Interfaces TD40

F.2 Interface a 240x128 Graphic LCD to H5 of the TD40

4.8, 3.4

l Tl {
[CY-oa v S S A A B T T AT AT A A An-kﬁi“.

Q [H7L{ I C%w&’—dw@
P ropsml ADC_ well]

& %
ﬁPs:}@
JED
ml
u2
o — AmMI1BBES

ROM PPl 8%
1 Iﬁsu; . H5
i““ I b O
- ﬁumj scc][U20 um[@
0.00, 0.00 j
O O
O O
O O
116=GND| @ @ | 117=FS=GND
120=D7| O O |121=D6
[ONe®)
O O
126=D1| O O | 127=D0
100=/RST| ® @ |I01=NC
102=C/D| ® @ |103=LCD
104=/RD @ @ |I05=/WR
106=GND) @ @ |107=GND
H5

SEL 1=FS
SEL 2=FS

(@) x 0{7,>
[alNa)
2S0Z328 59

.
./ GND

LN NN NONONORONONONORON N N N N NO)
20

240x128 LCD

TD40

Appendix F: LCD Interfaces

F.3 Interfacea 16x2 L CD and 3x4 Keypad to H5 and H56 of the TD40

V7
110
112
113
116
120
122
124
126
100
102
104
VLC
106

H56

® O |GND 16x2 LCD Header

® 61 GND=112| & @ |5V=i13
0 ©i13 RS514 0 @ [NC=i15
0 Oiis LCD=116| © '® |Rw=i17
0 O ii7 Biziz0| © @ |Do=121
O @71 D352 0 @ |D2=i23
O Oz D5-124 '@ '@ |D4=12s
© O7iz% D726 ' © @ |D6=127
0 ©7i%7 :

® 6 n: :ég ®C2

88'03 v7 @Rt [+]] [»] [
ooi?f:c :ﬁ:gg@
OC1)|07 :gi :Rglg@
e R2

F.3.a Flat CableInterfacea 16x2 LCD and Keypad to the TD40

, Flat Ribbon Cable

16x2 LCD

LCD pinl

YUV

¥

0

68|,
9|S|¥

€l2|T

T2 u20 w24 v
1| xi2vi i a 13 glo D 13[5 o ; ¥r1) 51 e 1 <RPIA 5 uLo 28/OC
2 | §F42 3112 @ HES A0 1] % 6 V2 T2 R2 VCC 10K 4 A0 1lapp vec| 299
3 | o 3 va_—4]l3 L5 Al_2 7 V3 1. e AA0 RP2A LNB24A Z2iA1 ECCHR- .,
Q 14 >4 S1 @ 1 2o+ 3 RPSA AD2 CLK
: | : V3 515 s [L2 £ 31s; oo + 2 e VBAT 1ok AQ+ * 1,1 2,00 A 4lhps piN{iL 2L
3 T V5 10K w22 1T
6 |8 6 vZ—2ie & / CTs114 LI ve BTFL 1o- 2| 1 A 2] apa pour [28PL
7|8 4 o5l AT TeridS . Shrvr el 100K C19 AD5 61 aps CS b 1o
0 Vo8 i RST 15 G r & ro. 4 B8 5| 3 40 A d oSS 2
8 |5 8 | oo 9]!8 B« + AD6 N
9 | & 9 VS G 74RC259 XPLCI0K YoK| 7 AD7 ReF- (13 QD
6] G\D 5 * - ADB 91 Apg AD1O (42 AD
0 10 UDS2982 w o A =4
O 11 VOFFE 1 [o vram |L8_VRAM 10K Ol e ADO
5 12 w21 P2 2 17 2C
3 13 o 1216 = Do 13 4 L0 vee 3] A0 Fris A+ 5 R 61t 5N LM3247A o ?9 [TC2543
901 e 2 = = (e I I A e i
fe3 12 L2 S13g3C _TM —%0 A0 1lso -8 L2 Al SIAL oo 32 3(1) ey 100K C20 G\D REF+ VCC
Keu 17| B agactis- &2 51 @[5+ 5 A2 DLigs M- g R2D 7| 7 ROIED 4 44 Tvess ok
18 | T5—358 5CI1T 55 Sz H o 1s (RO 8| My B2a1 RP3A 10K Tok
19 =2 6B 6C = 4 B T GO 9 0 /WR G\ND 1 *
0 7 [T0_ Gl4 P16 144 - L2 G\D /W
20 7B 7C = TR 19 03] = 10K
[t 8lg ‘K9 K TRSTiB] g & |l2 L
< 2 reast A2+ 1 RPAR 5 la+ 10N LMB24A RP5C e
oL 22 ULNE003 7AFC259 5 s 6 AD2 AD4 1 > ADS
9 53 10K 12, 9|22 AD6 3 oo)
2 o 100K C21 AD8 5 o6 A
T24 11 o |18 G\D AV VB VCC=A17P VRAM=CE2 vo. 4 RPIE | 5 RP3 i x5 o ADg
/RTS1 2 7 _0O15 - REWO < T oC
12 Ce 10K S ©
uL? 7 3 6 016 RP3C lok
13 @B == J5 Ja J3 G\ND 5 * 6
KL 1F; o 8 Qo 2421155 ~g; , N o .
a2 PL P25 12 1
@ 31,2 [6 P10 P26 6] |c o [13 Qo s /V\B?V\B voc VC§17 vRAW) iz A3+ 5 RPAC 5|y 15 N LMB24A RP5D Vi 2 1 G
29 7 Al
@43 & [P0 P20 7117 o [HZ X0 N b 14 8 ,AD3 T
o 5 7 P5 6% s 13
15 G 5 - H5
[e 3 3 _P6 9lvs & K 100K C22
7 :gg 2 pia ; VRAM A3- g RP4D 7| 4 RS 8 13 ;; 0 26 25 1
o7 8|4 o [Z1Pi5 UDS2982 o= o o ion 3 9 26 25 3
9 0_VoC < 24 23
Vs G J6 Z 5
2 DL D6 20 19
UDS2982 KL 1 o +12VI oL 06 16 20 19 2L
37 HDORD2 RST | Y us Yoo 22 16 15 i
B 1 13 1oV s K) /IRD 11 o0 voo 24 vee 22 14 13 =2
Lo, 313|3|3|3) 3|3|3] RX > 2 12 11 2
e p P e ai] S A e e ik 08109 1!
3 3B 3C NPO 4 T D1 0 8 7 0
44 3 /INT4 J8 RDDDDNDD DDV MPO DL 5555 04 05
5 5]|4B4CI 1o /N2 CLK 1 2 CLKB IVR_ 40|/ \\n §0123C4567D p17 |28 117 . Y tC & 3
5B 5C 07 41 7 D 27 116 A2 A2 D3 4 3 107
E__8leeec| LI INIL HDRD2 06 42 P07 P18 e 115 AL 7|2 A 7106 5 3
7] 78 7¢c [L2 LINT3 19 05 43| o8 25 114 A0 Bl D5 (L
B 9 vce PO5 P14 9 65 D6
G K 1 2 p12 04_44 24 113 X4) oo
W 2o o 7] P04 P13 53 X3 101 3% D¢ 5 o7
ULNZ003 HDRD2 NC NC 55112 RST 11 4 P3
03 2 P12 RST /EN
02 3] P08 51 111 GD_ 12 I EN 370
e +12V1 1 o~ o 2 GND H Po2 P11 555 G\D / RNL o, VeC 10K
1 2 HDRD2 01 PO1 P10 <0560 19 RN2 1 vee
IO O— 00 5] oo p23 |2 123 2/ RST 2 P13
/ TXDL o4 H7 32 RO 6]7°° /6 P PPPPP 18 122 FAA—2 =
TRXDL 5 3 Pa 1 2_GND /RD CNAA2N22 222 P22 3 P1 3
7 8 /TNTO 3 TRST YA 1 SD107C65401 N7 p10 4 116
G\ND 9 10 /TNT3 5 € G\D 2 PPl 8255 U2 vee 57 NTO 5 115
71INT1 7 VOFE VB A PPI S s 1 NG N 14
L 5 o-10 Pl D 4 vi 2| C1* VCC T o 7 TTNT2 7 113
1) HDRS4 c_ 3| SN 7o TTNT3 8 112
. Cl- T10 7 4 9 1
ITX03 2 &2 SoF 4 3 TRXDL
TR 5 2 % ui1 ur Co+ Rl 0715
RXDO 5 6 e Rt ANy
T2 2% p12 1 8 VB 1 vee -8 vec C2- R1O B
— o c—= CK VB > A0 7 GND 2+ V- 6 V- T11 11X
b9 g gTI0 P26 2| 5 o[7 VCC I~ hves el T 11X
P29 31 b g D A2 soL & P1Z 12 = 120 T2 13 TX
H3 A0 VA B VA A& Spa[B PIL T TROB] ro” R2O RNA 10K; yvoo RN 10K; voo
1 2 NAXZ32A 2 2 P11
53O 7 FAA—2— LAA——2
/ TXD 0_4 | CTS LTC144 24C04S ci+ 107 1327
TRXD 5 2 AN DA S
RXD 5 6 /RTS ey o ok 1156
—Lr o o—2 c11 u13 Voo AN 3105 NA—3 T2
MO Oi— C3- Cl- C3+ % Cl+ VCC _EjG\lD 703 7 153
\/fgl > 2A 2P 4 /RIS 8 102 8 122
2 DL 3 3 /CIS 01 N9 121
3 +12VI N)')‘ +12V /1NT4 1 2 INT4 /INT1 9 8 2 S—Whi 10 100 VY10 120
JO DJ-005 €L 5 1 VPO VN
IN5817 0 _TXD K
c18 74HC14 74HC14 9 RXD "1 VvccRrL
Lves75 | 212V ws WE ve NA* P12
12345 3 /I NT2 3 4 INT2 /1INT311 10 I NT3 VBAT ; g 680 LED
o o VSCM 7] voc wo _8V$C TERN, | NC
3 D 1]]
+i2y Ness Lot Gorctt L aw e 3 ;_CE/I Rp—% RO Ve[crs
P9 S ar »e 6| BN CEOT W [RST WPO 3| LFE SeTRTS Miue
D2 /INTO 5 6 INTO /NM 13| 12 N — sl PFOHE- ‘o] XA GN\D |2 Ti nyDri ve- 40
11 330uH — 1 ©8S PFI LTCass ? Si ze[Docunent Nunber REV|
1N5817 74HC14 74HC14 NVAXGOT ;; B TD40- MANUAL. SCH
Dat e: July 7, 1999][Sheet 1 of

250 OHM LANDI NG RES| STORS FOR 4-20 MA | NPUTS
A0+ Al+ A2+
RX1 RX2 RX3 u20
250 250 250 17 o L8 _aw
D013 [P4y, |4 VO ve 213 L Erar
AO- Al- A2- —— v V5311232 0
O 1lg, FlEV2 Vi D EEae
A 213 &l W V3 5], 2 o o
A3l & lova V2 6],0 ool 12 T2
. & I Vi 18 E e ND
/ CTS114 16 Vo8 10 i
2 c & 18 08 1
2 - TRST 15 GrRe M2V ab 9]\ RITK 2
4 74HC259 21
. KL 1], o |18 GD UDS2982 % o1
o 7] 7 PL -
6 L 12 Ce e >
T x4]!338 0 u1s a
8 l4 ot 75 13 4 1 6 g
9 X 11506 (2E2 Lo pY21p 0 10 1B 1C O B
% 61,2 cn [L3 P6 QB Ll LI 2lpcHs e o
% 1€ L M ra 0 1lg, @[z Iz _3|5B5CMHa o u1s 0
or 8|4 & A1 Pis A 213 ErLs Lz a3Bichzan L3 15 vel8 ol vB2 [1 VB2
9118 % [movce Az_313 S [9Lta Iz _s5|ipag[izon 2| Br7ar v [2 VCC
OPA anal og out on H3 Io3 O L5 5 6 6B 60 1 3 L5 3 LD G 6 3 G\D 13 G\D
5x2 Cabl e connects OPA H3 to TD40 H6 UDS2982 P16 14 116 L6 7 0 _oL4 4 5 Ol4 VA2 2 VA2
FORCE H3. 7=AD6=GND TR 159 & - L [T 17 8] /B7CITo K —1bo VA 5
: IRST 154 o R & L G K L
uL6 [TCI446 16 VA
A0 1 o tB 2 A 1 1[o iclle P13 ULNZ003 17 VB
AD 3 & 2 35 2¢ [15 1 CIS0 18 VBL
AD4 5 6_AD5 3 3|50 5¢ 14 /RS0 9 VCC
DA T2 Al 2] 3B 3C I3 u19 0 GND
GD__ 0 T F 5 2 TTNT2 1 8 GND 1 VAL
2158 5C (15 1o 48
< 6B 6C 1 LRTS1 12 2 QL5 b
THIS H3 IS ON OPA 7] 55 Sc [T0 T3 L7 3] ,5 o5 [I6 a6 12\
8| [B7C o vee P24 4|13 B [15 oy u1o
25 5|l P Maom P25 1o vpl8 Q8 VBl 24
UCN2003 26 6|12 23 o P 2| VBTG vee
P20 71,5 %[0 B9 _3|h ([@a ap
A9 Bl g op [Ll-Co1 2 Sl val
Vs G CTCI4%
UDS2982
ap 1 *RPIA 5 -
10K 4
a0+ 1 RP2A 5 lior 3 N(LMB24A RP5A u10 Voo
THI'S H6 IS ON TD40 6% A 1) N B 2_{130 A 1 a0 v 20
}—5 -
AD4 1 2 AD5 RP2B RP1 100K C19: 2 3| ADp CLK 18 122
A6 3 2 Sa apr A0-_4 3] 3 . 410 AD__ 4 17 121
s 52 S5 An E: R4 Al 5|48 DN 11
oo 72 S8 Abo ap s *RPICI0K 10KY. REF+ vce Al 6] AD4 DAUT 20
G0 7 5 58 ADIO REFF o VCC AD5 cs pi> 12
NC REF+ 9 10 _VCC 10K 2K Al 71'AD6 REF+ EF+
Y] Y [13 oo
DO NOT install H6.9 at+ 5 RP2C g [l1. 5N LMB24A RP5B ADB__ O 2&7; iEE)Eo 2 _ADIO
7. 3 4 ADL 10 A
DO NOT install H56 10K 11 6|Y22 s GD A
H56 RP2D vy 100K C20 [TC2543
vz 2 1 aD Al- 8 7l 7 8 11 5
1 +
HDRD2 awp 1 *RP3A 10K 10K H
H5 TOK CAPNP
0 1
26 25 3 A+ 1 RPAA 5 |50 10 N LMB24A RP5C
2 2423 5 + 8, 5 6
22 21 = 10K 2. 9|22 NanZ
fo 17— RP4B RP3b 100K 217
22 181 23 A2 4 3] 3 41 _EI_
2 125 10K 10K
26 msp 27 a5 +RPSCy a3 Ve ULl Pa_1 o 72 e
0 0L = VYWTIoK V- | P12 1 8 VB /TNTO 3 TRST
g 10 9 cla K VB S o—a
2 9 03 RPAC LVB24A P26 2| K YBI7veo N353 876G
04 & I 05 A3+ 5 6lizr 120 RP5D GND P20 31 P SY[eaw TN 73 88 VorF
LC 4 3 VeC 10K eop-tay 7 8 —4lpo va|-2 VA 9 5 510 [PE
106 5 3 107 13- 13
100K C22 [TCI44
A3- g RPAD 4| 4 RPS 8 13
10K 10K
STE
MODI FI CATI ON ON TD40+OPS+OPA SYSTEM 6 0- 10V DAC, 6 0-10V ADC, 3 4-20 MA) Title
* TD40 | NSTALL LTCl446 REPLACI NG ULN2003 | N U18 AND U9
* TD40 | NSTALL 250 OHM LANDI NG RES|I STORS FOR 3 CH. 4-20 MA | NPUTS TD40 MODI FI CATI ON for 6 DAC outputs
* 2 OPS MODI FIED FOR 6 CH, OF 0-4V | N AND 0- 10V OUTPUTS Si ze|Docunent Nunber REV
; = © N Z
OPA, NO ADC, RP1=100K, RP2=200K, R2=1K, R3=5K, 0-10V |N AND 5-OV OUT 5 TD40. DAC. SCH
Dat e: _Sept enber 30, 2003 [Sheet 1 of

