TinyDrive ™

C/C++ Programmable 16-bit Industrial Controller
Based on the NEC V25

Technical Manual

TTERN

INC.
1950 &' Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

TinyDrive, TD40, V25-Engine, C-Engine, VE232, NTtKand ACTF are trademarks of
TERN, Inc.
V25 is a Trademark of NEC Electronics Inc.
Borland C/C++ is a trademark of Borland Internadiion
Microsoft, MS-DOS, Windows, Windows95, and Windows&e trademarks of
Microsoft Corporation.
IBM is a trademark of International Business MaelsiiCorporation.

Version 3.00

October 29, 2010

No part of this document may be copied or reproduceny form or by any means
without the prior written consent of TERN, Inc.

© 1995-201C TERIQI

1950 & Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedb® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to jatlife and property
against incidental failure.

TERN reserves the right to make changes and improventerts products without
providing notice.

Temperature readings for controllers are baseth@ngsults of limited sample tests; they
are provided for design reference use only.

TinyDrive Chapter 1: Introduction

Chapter 1: Introduction

1.1 Functional Description

The TinyDrive-A (TD) from TERN is alow cost, high-performance, C/C++ programmable, 16-bit
industrial controller. It is designed for embedded applications that require compactness, low power
consumption, and high reliability. The TinyDrive has atotal of 42 1/0 lines, including 12-bit ADC inputs,
4-bit ADC inputs, high voltage inputs, TTL inputs, and high voltage outputs. The TinyDrive can be
integrated into an OEM product as a processor core component or as a stand-alone controller in an
application system.

TinyDriveA | \/op =0]

3 Int SRAM
16-bit C/C++ CPU (512 bytes) eov U3
Controller 80x86/8088 = (OXC0000-OxFff, mem)
Compatible u2 .
Time Base Counter
sramM - Ul
16-Bit Timers (2) <;::> (0-Ox7ffff, mem)
DMA (2 Data [
22/28 Inputs Ext ln(t;rupts) Addr H
o Cntl UART SCC2691"
Analog or 4bit ADC Digital 1/0 Ports (3) <:j> (0XCO00-0xffff, 1/0) us
Digital | INTUINT2/NMI j:‘> Port T with 8 Comparators
Inputs TTL inputs Ser0 RTC72001 U4
Serl @
12-bit ADC HLDRQ/AK 3 (0x8000-0xbfff, 1/0)
TLC2543
PAL TDP100 ; -
U10 POL [P0 P03 /IWmI JVRESET || High Voltage Solenoid
—— i High Current L —N| Relays
AHWD [PFO_| RST 20/14 Outputs | Valves
EEPROM U7 MAX69F UG [VRAM
up to 8K Supervisor

Figure 1.1 Functional block diagram of the TinyDrive

Measuring 4.8 by 3.4 inches, the TinyDrive offers a complete C/C++ programmable computer system with
a 16-bit high performance CPU (NEC V25) and operates at 8 MHz with zero-wait-state. The TinyDrive
offerstwo 16-bit timers, 42 1/0 lines, power failure detection, watchdog timer, LED, and 48 positions of
screw terminal blocks. Optional features include up to 512K EPROM/Flash and up to 512K battery-backed
SRAM. A 512-byte serial EEPROM isincluded on-board. An optional real-time clock providesinformation
on the year, month, date, hour, minute, second, and 1/64 second, and an interrupt signal.

At 24x2 screw terminals, the TD provides 22 resistor-protected inputs, including eight comparator inputs,
11 12-bit ADC, three interrupt inputs, and 20 solenoid driver outputs. Six outputs can be configured as
inputs. The 20 solenoid drivers can sink up to 350 mA at 50V and can drive solenoid coils or relays.

The eight comparator ADC inputs can be used to measure either digital or 0to 5V analog inputsin 16
levels. The buffered digital inputs take +24V, +5V, or ground inputs. The optional 11 12-bit ADC features
reference inputs (2.5V or 5V), asamplerate of up to 2.5 kHz, and a0-5V input voltage range. A PAL
(TDP100) can provide eight digital inputs, replacing the ADC.

Two RS-232 serial ports from the V25 support up to 115,200 baud. The RS-485 port for the optional
UART (SCC2691) supports normal 8-bit and 9-bit networking. Three 16-bit timers provide precise timing.

1-1

Chapter 1: Introduction TinyDrive

Two standby modes, HALT and STOP, can reduce power consumption. An optional LCD interface can be
installed replacing the SCC2691. Up to four channels of 12-bit DAC (optional) can beinstalled in the two
solenoid driver sockets.

TERN also offers custom hardware and software design, based on the TinyDrive or other TERN
controllers.

CEECOCOCHEORRNERAMNDIDDABD

BEECRROOCO00ORTO00002022

Figure 1.2 The TinyDrive with a 16x2 character LCD installed

1.2 Features

Standard Features
» Dimensions. 4.8 x 3.4inches
« Power consumption: 180 mA at 9V
« Low power version: 75 mA full speed, 20 mA standby
* Power Input: +9V to +12V unregulated DC
* 16-bit CPU (NEC V25), 8 MHz, Intel 80x86 compatible, C/C++ programmable
¢ ROM and SRAM up to IMB, 512-byte EEPROM (or up to 2KB) and 256 bytes built-in-CPU
SRAM
e 5external interrupts, 24 bi-directional digital 1/0 lines, 8 comparators (some are used by system)
¢ 20 high-voltage drivers, al routed to screw terminals (6 outputs may be configured as inputs)
e Interfacefor LCD, keypad
* Two 16-bit timers, one 16-bit time base counter
« Two 16-bit counters or DMA. The counter can count external signal rising edges up to 500 kHz.
e Two high speed seria ports from the V25 CPU
e Supervisor chip (691) for power failure, reset and watchdog

Optional Features:

e 32KB, 128KB, or 512KB SRAM

e 11 channels of 12-bit ADC, sample rate up to 10 kHz

e Upto 4 channels 12-bit DAC, 0-4.095V output

e SCC2691 UART (on-board) with RS-485 drivers supports 8-bit or 9-bit networking
¢ Real-time clock RTC72423, lithium coin battery

» Precision reference, 20 PPM/°C, 5V

e Low-power version

TinyDrive

Chapter 1: Introduction

e LCD interface (PAL TDLCD)
« 8additional digital inputs (PAL TDP100) in U10 socket (if no ADC installed)

1.3 Physical Description

The physical layout of the TinyDrive is shown in Figure 1.3.

0, 3.41 4.86, 3.
o
Step2 |
jumper: NML INT2 INTI M9 M8 W7 16 15 4 113 112 GND IMA HOA 19A 18A ITA 16A ISA WA I3A 12A 1A GND
1B pins 3-4 [RP5 o] RP4] RP10 o] RP2o] RPie n
p \@\okps RP7 o] RP3o| | RP9 o | RPG o
B 7L} 17
s { w4
() — — TTEF
LI e
| [o] u3
v
u2 | u7
1 U
Uu
| [5] RNI[|| Rng @ A
us | ¢ 2 -
R9 u
ZLPND T —1
3 1
o
2 XTALT % el
N RN3
9 TR L 11 1 ‘et
o o
O Ut 4 | uis .{ | U6 4 | vy 4 |
12
GND 020 019 08 O7 016 O5 O14 013 012 ON O 09 0B 07 06 05 04 O3 02 O GND 12VI K
]
-2
0.0 4.86, 0

Figure 1.3 Physical layout of the TinyDrive

1.4 TinyDrive Programming Overview

4

Development of application software for the TinyDrive consists of three easy steps, as shown in the block

diagram below.

STEP1

Serial link PC and TinyDrive, program in C/C++

Debug C/C++ program on the TinyDrive with Remote Debugger

I

STEP 2 Test TinyDriveinthefield, away from PC
Application program resides in the battery-backed SRAM
STEP 3 Make application ROM or Download to Flash

Replace DEBUG ROM, project is complete

1-3

Chapter 1: Introduction TinyDrive

Y ou can program the TinyDrive from your PC via serial link with an RS232 interface. Y our C/C++
program can be remotely debugged over the serial link at arate of 115,000 baud. The C/C++ Evauation Kit
(EV) or Development Kit (DV) from TERN provides a Borland C/C++ compiler, TASM, LOC31, Turbo
Remote Debugger, 1/0 driver libraries, sample programs, and batch files. These kits also include aDEBUG
ROM (TDREM_V25) to communicate with Turbo Debugger, a DB9-IDE10 (PC-V 25) serial cableto
connect the controller to the PC, and a 9-volt wall transformer. See your Evaluation/Development Kit
Technical Manual for more information on these kits.

After you debug your program, you can test run the TinyDrive in the field, away from the PC, by changing a
single jumper, with the application program residing in the battery-backed SRAM. When the field test is
complete, application ROMs can be produced to replace the DEBUG ROM. The .HEX or .BIN file can be
easily generated with the makefile provided. Y ou may also use the DV Kit or ACTF Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ application program are explained in detail below.
141 Step 1

STEP 1: Debugging
* Writeyour C/C++ application program in C/C++.
e Connect your controller to your PC viathe PC-V25 serid link cable.

» Usethebatchfilem bat to compile, link, and locate, or uset . bat to compile, link locate, download,
and debug your C/C++ application program.

IDE
connector

To SERO

?i TinyDrive

Red side of serial cable
'\n to pin 1 of J7 header

connector

ToCOM1
or COM2

]
oo o
= /pc

DC power jack

+9V 500mA center negative wall transformer

Figure 1.4 Step 1 connections for the TinyDrive

1-4

TinyDrive Chapter 1: Introduction

1.4.2 Step 2

STEP 2: Standalone Field Test.
» Set the jumper on J3 pins 3 and 4 on the TinyDrive (Figure 1.5).

e At power-on or reset, if J3 pin 3 (P02) islow, the CPU will run the code that resides in the battery-
backed SRAM.

* If ajumper ison J3 pins 3-4 at power-on or reset, the TD will operate in Step Two mode. If the jumper
is off J3 pins 3-4 at power-on or reset, the TD will operate in Step One mode. The status of J3 pin 3
(signal P02 of the NEC V25) is only checked at power-on or at reset.

0, 3.41 4.86, 3.41
T
NN INTZ INTI 19 M8 I W6 15 14 W3 N2 GND INA HOA 19A IBA I7A BA I5A MA I3A 124 HA OND
St 2 @ Ii_ RPsli RP4I1 RPI?°, RP2o
ep \\ﬂ_fi_ - 7o RP3o -lum- RP9 0 =y
H . (X%i o ﬂ “
Jumpa' |j u RRC—————7 <o F L | L y
- u i
. v 12 \
-
J3 pins 3-4 ®
u2
wuif || g
u% Lo 2 @ a2
2&13[] '&-Uﬂ —— h
3 1
v, "J XTALT mﬁ:\-_l ;ﬁf}
U9 L 1=] Erang
O un 4 | Ut 4 | ™ 4 | 7 4 | uts 4!] 15
Z

GND 020 019 08 017 016 015 0% 0% 012 0l 00 02 0B 07 06 05 04 03 02 01 GND 12VI K

S

0.0 4.86, 0

Figure 1.5 Location of Step 2 jumper on the TinyDrive

1.4.3 Step 3

STEP 3: Generate the application .BIN or .HEX file, make production ROMs or download your program to
FLASH viaACTF.

» If you are happy with your Step Two test, you can go back to your PC to generate your application
ROM to replace the DEBUG ROM (TDREM_V25). Y ou need to change DEBUG=1 to DEBUG=0in
the makefile.

Y ou need to have the DV Kit to complete Step Three.

Please refer to the Tutorial of the Technical Manual of the EV/DV Kit for further details on programming
the TinyDrive.

1-5

Chapter 1: Introduction TinyDrive

1.5 Minimum Requirementsfor TinyDrive System Development

1.5.1 Minimum Hardware Requirements

* PC or PC-compatible computer with serial COMXx port that supports 115,200 baud

e TinyDrive controller with DEBUG ROM TDREM_V25

 DB9-IDE10 (PC-V25) seriad cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector
for controller)

e center negative wall transformer (+9V 500 mA)

1.5.2 Minimum Software Requirements

« TERN EV/DV Kit installation diskettes
* PC software environment: DOS, Windows 3.1, Windows95, or Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Development Kit (DV) are available from TERN. The EV Kit
isalimited-functionality version of the DV Kit. With the EV Kit, you can program and debug the
TinyDrivein Step 1 and Step 2, but you cannot run Step 3. In order to generate an application ROM/Flash
file, make production version ROMs, and complete the project, you will need the Development Kit (DV).

TinyDrive Chapter 2: Installation

Chapter 2: Installation

2.1 Softwar e I nstallation

Please refer to the Technical manual for the “C/@eavelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN EV/DV disk containsportant information about the installation
and evaluation of TERN controllers.

2.2 Hardware I nstallation

Overview
» Connect PC-V25 cable:
For debugging (Step One), place connector on SEROrad edge
of cable at pin 1
» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack

Hardware installation for the TinyDrive consistinmarily of connecting the microcontroller to you€P

2.2.1 Connecting the TinyDrive to the PC

The following diagram (Figure 2.1) illustrates tbhennection between the TinyDrive and the PC. The
TinyDrive is linked to the PC via a serial cabl&€(N25).

The TDREM_V25 DEBUG ROM communicates through SERO by defaultdh the 5x2 IDC connector
on the SERO header of the TinyDrivé MPORTANT: Note that the red side of the cable must point to pin

1 of the TinyDrive J7 header. The DB9 connector should be connected to one of fdlls COM Ports
(COM1 or COM2).

IDE
connector
To SERO I
= TinyDrive
To COM1 il
or COM2

Red side of serial cabl
\ to pin 1 of J7 header
n

connector

-
oo o
= |/pc

Figure 2.1 Connecting the TinyDrive to the PC

2-1

Chapter 2: Installation TinyDrive

2.2.2 Powering-on the TinyDrive

Connect a wall transformer +9V DC output to theyDrive's DC power jack.

The on-board LED should blink twice and remain ferathe TinyDrive is powered-on or reset (Figure
2.2).

0, 3.41 4.86, 3.41
LED :

NN INTZ INTT 19 1B N7 16 115 VW4 113 N2 GND IMA 1GA 1A 1BA 17A IBA 15A A 13A 12A 1A GND|

RP5 o] RP4] RPIO o] RP2o]
RPTo] RP3o] RPgo |
&jﬁ
{ S

v g v [w g[w [v g

GND 020 019 018 017 O6 015 014 O13 012 On O 09 OB ©07 06 05 04 03 02 O GND 122VI X

Wall transformer

|
S

0.0 486, 0

Power jack

Figure 2.2 The LED blinks twice after the TinyDrive is powered-on or reset

TinyDrive Chapter 3: Hardware

Chapter 3: Hardware

3.1 NEC V25 - Introduction

The NEC V25 is based on industry-standard x86 #rchire. The NEC V25 controllers are a higher-
performance, more integrated versions of the 80CGh&8Boprocessors. In addition, the NEC V25 has new
peripherals including 256 bytes built-in RAM, higheed serial ports, parallel /O ports, comparptots,
timers, and DMA. The on-chip system interface lagao minimize total system cost.

3.2NEC V25 — Features

3.2.1 Clock

Due to its integrated clock generation circuithe NEC V25 microcontroller allows the use of a silble
system clock frequency d&/2, fx/4 andfx/8. The design achieves a maximum 8 MHz CPU operation
while using a 16 MHz crystal.

A built-in clock generator supplies various clotighe CPU and peripheral hardware. The TinyDrisesu
a 16 MHz crystal. The default system clock outgitrainitialization is 8 MHz on the CLK. The clock
cycle is 125 ns. The normal bus cycle requires ¢leok cycles, which is 250 ns. With built-in watate
generation, up to 2 wait states can be inserteth WWe default initialization of 2 wait states, EPRs of
120 ns to 150 ns can be used. A time base coupéates continuously since the TinyDrive is poweyed
It provides clock signals for two 16-bit timersuolerate generator, refresh timing, refresh addigss time
base interrupt request flag. A time base interrogy be generated at four different intervals: 1281024
ms, 8.192 ms, and 131.072 ms, selectable by saftwar

3.2.2 External Interrupts

The V25 processor has a built-in, high-performanterrupt controller that can control multiple pessing
of 17 interrupt sources. /NMI, /INT1 and /INT2 amuted to the TinyDrive terminal block T2 via a fauf
resistor pack, RP6.

+5V +5V +5V
10K 10K 10K
RP6 1-2 RP6 7-8 RP6 5-6
T1.24 INMII INMI, V25 T1.22 INTL—"V\V/—0—— P12, V25 T1.23 /INT2—"\V\V/—0—— P13, V25
RP7 7-8 RP7 3-4 RP7 5- D, 33,34
o SUML, J3.36
+5V, 13.31

Figure 3.1 Protective resistors and landing resistors for interrupt inputs, /NMI, /INTP1,
/INTP2

In order to support interrupt input voltage levetd24V, protective resistor networks are builpinhe
circuit, as shown in Figure 3.1. The locations &6Rand RP7 are shown in Figure 3.2.

3-1

Chapter 3: Hardware TinyDrive

0, 3.41 / \ ; 4.86, 3.41
NMI INT/MTV n ng w7 N ns H\ I3 12 GND IMA I1IDA 19A 1BA I7A IBA I5A WA I3A 12A 1A GN,D’ Tl
1 RP5o] Rb4] RPI0 o] RP2o] RP1o] u
PEFERERE_T RPT—¥ W3e] | RP9] RG]
VE) Eavad LA
)

OO B |
MC——— T 1 N —
u3
J7

u2

:
n ® 5
u!
RN NG|
u 8 C 2 @ 82
) 8,
N

N
1
EJ
3
R

1
vs

; —-%

D— i BY

0 —— [T dl

2 ; NJ aan |)

7] il ==~ C J c13
ut 9| B 3] ws 9 wd uts <DJ5
T2 GND 020 019 018 OV Off O5 QW 013 022 ON O 09 OB 07 G6 05 O4 03 02 01 OGN IzvI K

I
g

0,0 4.86, 0

Figure 3.2 Position of the protection resistors and the landing resistors for interrupt
inputs.

The interrupt inputs /NMI, /INT1, and /INT2 are lfafj edge active. Users should be aware that the
maximum input voltage at the V25 chip is +5V. Aidainput low voltage is less than 0.8 V and a valid
input high voltage is higher than 4V and less th%n

If your input voltage has to be higher than 5V, ldreding resistor RP7 is 10K, the protection resi®P6
is 10K, and a jumper must be on J3 pins 34-36 (SE&ND).

If the inputs are normally at 5V maximum, do nostall a jumper on J3 pins 34-36 or pins 36-38
(SUM1=open).
GND SUM1 +5V
N |/
2 4 6 8 10 12 14 16 18 20 2226128 30 32 34 36 38 40
0000000000000000|000|0

© 0006000 0[(0 06/00 00000 0 00
Ol 3 5 7 9 11 13 15 17 19 212827 29 31 33 35 37 39

‘]3 INMI /PFO
Figure 3.3 Use of SUM, SUM1, /PFO and /NMI

3.2.3 Asynchronous Serial Ports

The NEC V25 CPU has two asynchronous serial chanB8&8IR0 and SER1. Both asynchronous serial ports
support the following:

* Full-duplex operation

» 7-bit and 8-bit data transfers

« Odd, even, and no parity

* One or two stop bits

3-2

TinyDrive Chapter 3: Hardware

» Error detection

* Hardware flow control

« Transmit and receive interrupts for each port

* Independent baud rate generators
The software drivers for each serial port implemanting-buffered macro service receiving and ring-
buffered interrupt transmitting arrangement. $mesample files1_echo.ands0_echo.c

An optional external SCC2691 UART is located in B&r more information about the external UART
SCC2691, please refer to section 3.4.4 and AppeBdix

3-3

Chapter 3: Hardware TinyDrive

3.2.4 Timer Control Unit

The NEC V25 CPU has two 16-bit programmable tim&nsier 0 and Timer 1. Both programmable 16-bit
timers are comprised of a 16-bit modulo registek§ it timer register, and an 8-bit control regist

TIMER O Interval Timer Mode
MDO
TMCO Register Register
Present Output Tout
6 Control
d
—> T™O Set
f4/128 Selector Register TMeF?)
TIMER 1
MD1
TMCL1 Register Register
Present Sets
TMF1
46
TMl Sets
f4/128 Selector Register TMF2
ful12 TIMERO One-Shot Timer Mode
o > MDO Sets
f,/128 Selector Register > TMF1
Output
[T™MCO Register | Con?rol > ToUT
—> T™O Sets
f4/128 Selector Register > TMEO
TIMER 1
MD1
TMCL1 Register Register
=
fal/6
—Pp TMl Sets
f4/128 Selector Register TMF2

Figure 3.4 Interval Timer Mode and One-Shot Timer Mode Configuration

TimerO can be programmed as an interval timer ca age-shot timer. In interval timer mode, the MDO
register value is set to the TMO register, and tthenTMO countdown begins (Figure 3.4). When TMO
underflows, the TMFO output is set to 01 and theQMBgister is again set to TMO. The countdownkloc

fok is divided by 6 or 128, as defined in the TMC@ister. The square wave generated by TimerO can be
output toTOUT (T2 O17 = P15) on U19 pin 3.

3-4

TinyDrive Chapter 3: Hardware

As a one-shot timer, Timer 0 is configured as tadependent timers that count down from the valténse
MDO and TMO (Figure 3.4). The countdown frequeiscdivided by 12 or 128. If the counter is stoppe
by either reaching 0 in the count or by settingT8® bit to 0 (STOP = 0), a single pulse outpufBQIUT.

Timerl can only act as an interval timer and haexternal output.

3.2.5 Standby Modes

The TinyDrive is an ideal core module for applioas that require low power consumption. The V25 CPU
has two standby modes, HALT and STOP mode, whidiae power consumption and heat dissipation,
thereby extending battery life in portable systems.

In HALT or STOP mode, operation of the CPU closkstopped and program execution is halted. All
registers and RAM content are preserved. HALT moatedrop the power consumption to 50 mA. When
an interrupt occurs, it automatically returns tomal operation.

The difference between HALT mode and STOP modeasHALT mode allows peripheral hardware (such
as serial ports, DMA controller, etc.) to functid®TOP mode disables all devices. The followindetab
shows which devices are active and which are macturing HALT and STOP modes.

Item HALT Mode STOP Mode
Oscillator Operates Stops

Internal System Clock Stops Stops

16-bit timer Operates Stops

Time Base counter Operates Stops

HOLD circuit Operates Stops

Serial interface Operates Stops
Interrupt request controller| Operates Stops

DMA controller Operates Stops

I/O lines Data Retained| Data Retaineld

Table 3.1 Hardware Status During Standby Mode

To release stop mode, /NMI or /RESET must be trigdeA non-maskable interrupt request, DMA request,
macro service request, or a reset will release HAhdde. Since the serial ports are functional durin
HALT mode, it is possible to send a break commanithé¢ serial Port To resume operations.

The VOFF pin (J3.15) can be connected to /NMI (dBt@ wake up the V25 from STOP mode.

3.3NEC V25 I/O Ports

3.3.1Port0,1,and 2

The NEC V25 has three 8-bit user-programmable B@spavailable. The 24 bi-directional I/O portsD-
are multiplexed with different functions. Individlul/O lines can be specified as an input, outputontrol
line. Each port is controlled by a Port Mode CohRegister (PMC), a Port Mode Register (PM), and a
Port Data Register (P). You can write or readefregisters via the following functions:

3-5

Chapter 3: Hardware TinyDrive

pokeb(0xfff0, 0x??, Ox!!)
or peekb(0xfffO, 0x??)

where?? is the register offset address dhdks the control/data byte.

The following is a list of the register addresses.

Register Register Offset R/W Access
Symbol Address Units (bits)
PO 0x00 R/W 8/1
PMO 0x01 w 8
PMCO 0x02 R/W 8/1
P1 0x08 R/W 8
PM1 0x09 w 8/1
PMC1 0x0A R/W 8
P2 0x10 R/W 8/1
PM2 Ox11 w 8
PMC2 0x12 R/W 8/1

After power-on/reset, I/0 pins default to variousnfigurations. The initialization routine providdxy
TERN libraries reconfigures some of these pins esdad for specific on-board usage as well. These
configurations, as well as the processor-intermaipheral usage configurations, are listed belowable

3.2.

Port PMC, =1 PMC, =0 Status after TinyDrive

lfe} PM =X PM, =1 PM, =0 td_init() Location/Function

POO - Input Output Input EEPROM (U7 pin 6) clocklSQ

PO1 - Input Output Input EEPROM (U7 pin 5) data SDA

P02 - Input Output Input J3 pin 3=4, Step 2 jumper
If low, V25 runs code starting at
0800:0000, based on EE setting.

P03 - Input Output Output J3 pin 11. HWD (hit watoh)

P04 - Input Output Input WDO (Read watchdog outplt)
if low, watchdog time-out reset

P05 - Input Output Output LED control or U19 pin 1

P06 - Input Output Input J3 pin 5.

PO7 CLKOUT Input Output CLK Internal use.

P10 - INMI - /INMI J3 pin 17, and T1.24 via buffer
resistor RP6.

P11 - /INTPO - /INTPO SCC2691 UART interrupt ([if
installed)

P12 - /INTP1 - /INTP1 T1.22

P13 | /INTAK /INTP2 - /INTP2 T1.23.

P14 | INT /POLL Output Output RTS1 for SER1 and UB&

3-6

TinyDrive Chapter 3: Hardware

Port PMC, = 1 PMC, =0 Status after TinyDrive

I/0 PM =X PM, =1(PM, =0 td_init() Location/Function
HV 016

P15 | TOUT Input Output Output T2.5 HV O17

P16 | /SCKO Input Output Output RTSO for SERO, T2V G118

P17 | READY Input Output READY RP6.3, internal use.

P20 | DMARQO Input Output Output HV 019, T2.3

P21 | /DMAAKO Input Output Output HV 020, T2.2

P22 | /TCO Input Output Input J3 pinl

P23 | DMARQ1 Input Output Output EN485 for SCC RS-48%ver.
If low, receiving.

P24 | /DMAAK1 Input Output Output 12-bit ADC CLK

P25 | /TC1 Input Output Output 12-bit ADC DIN

P26 | /HLDAK Input Output Input 12-bit ADC DOUT

P27 | HLDRQ Input Output Output 12-bit ADC CS, pulleidh

Table 3.2 I/O pin default configuration

TinyDrive 1/O initialization inve_init() is listed below:

pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */

pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, PO5=LED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */

pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

pokeb(Oxfff0,0x11,0xf7); /* Set PM2 for input, P23=EN485 output */

The C function in the librarye_lib can be used to initialize PIO pins.
void port_init(charp, unsigned chaomc, unsigned chaom);
Where p=port0, 1 or?2.

pmc = define each pin as CONTROL or I/O (0 = I/O; 1 ©IKTROL).
pm = define each I/O pin as input or output (0 = ot = input).

3.3.2 Port T Comparator I nport

Port T is an 8-bit input port whose threshold wgdtacan be changed in 16 steps. Each Port T isput i
compared with the selected threshold voltage (M@ > Vth results in a value 1, PTn < Vth resita
value 0. All eight results from PTO to PT7 arelhetd to the Port T input latches.

The threshold voltage VTH is fixed to +5V (J3 13rb¥ default. The comparator of each input cartrset
reference voltage to one of 16 levels (1/16 x VDBHL6/16 x VTH). This provides users with an easy an
inexpensive way to measure analog input signalé;hit resolution.

The comparator 8-bit latch can be accessed byuhetibn portt_rd(void), which returns the 8-bit result.
VTH can be changed by the functiportt_wr(charvref). The variablevref {0 .. 15} sets the reference
voltage by the following equation: Referenc¥th * vref/16. wvref = 0 sets Reference = VTH.

J3.36=J3.38 SUM1=VCC. PTO-7 pulled high
J3.36=J3.34 SUM1=GND. PTO-7 pulled low

3-7

Chapter 3: Hardware TinyDrive

Port TinyDrive

/o Location/Function

PTO | 112, T1.14
PT1 | 113, T1.15
PT2 | 114, T1.16
PT3 | 115, T1.17
PT4 | 116, T1.18
PT5 | 117, T1.19
PT6 | 118, T1.20
PT7 | 119, T1.21

Table 3.3 I/0 pin default configuration

3.41/0 Mapped Devices

3.4.11/0O Space

External I/O devices use I/O mapping. You may a&d&3 with inportb(port) or outportb(port,dat). The
external I/O space is 64K, ranging from 0x0000 x&fD In the 1/O space of 0x0000-0x7fff, the I/@eess
time is 500 ns. In the I/O space of 0x8000-0xffffe 1/0 access time is 250 ns. Table 3.4 shows more
information on 1/O mapped devices.

I/O space Usage

0x0000 HV1 high voltage driver for U15 and U17
0x4000 HV2 high voltage driver for U16 and U18
0x8000 RTC U4

0xc000 SCC U8

Table 3.4 1/0O Mapped devices

3.4.2 74HC259

The 74HC259 8-bit decoder latch provides eight @aithl output lines for the TD. The U15 74HC259 is
mapped in the I/O address space 0x0000 (selected\dy. The U16 74HC259 is mapped in the I/O
address space 0x4000 (selected by HV2). You magsacthis device by using the following code. The
output of U15 drives the high voltage driver Ul heToutput of U16 drives the high voltage driver U18
See the schematics for the TD-A (TinyDrive version A).

out port b(0x0000 + i, val); //Ul6 i=outputpin, val = 0/1 to set or reset latch.

out portb(0x4000 + i, val); // Ul5 i=outputpin, val =0/1 to set or reset latch.

3-8

TinyDrive Chapter 3: Hardware

Ul5 74HC259

DO 131Gl qol4 L0 outportb(0x0000,
AO 1 QYS L1 out portb(0x0001,
M 9 A Q2l6 L2 out portb(0x0002,
o 4B Q37 L3 out port b(0x0003,
— | cC Q419 L4 out port b(0x0004, x) x =0, output low

Q510 L5 out portb(0x0005, x) X =1, output

JHV1 144 6 Q6111 L6 out portb(0x0006, x)
Q712 L7 out portb(0x0007, x)

Figure 3.5 74HC259 diagram with corresponding outport addresses

3.4.3 Real-time Clock RTC72421

If installed, a real-time clock RTC72421 (EPSON,) igmapped in the I/O address space 0x8000-0xffff.
must be backed up with a lithium coin battery. TREC is accessed via software drivets init() or
rtc_rd() (see Appendix C and the Software chapter for B@tai

It is also possible to configure the real-time &léa raise an output line attached to an extemtetiupt, at
1/64 second, 1 second, 1 minute, or 1 hour intervahis can be used in a time-driven applicat@rthe
VOFF signal can be used to turn on/off the controllsmg an external switching power supply. An
example of a program showing a similar applicatonrcan be found in

t ern\ v25\ sanpl es\ ve\ power of f. c.

3.4.4 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped in tk& dddress space 0xc000-0xffff. The SCC2691
offers the following:

» afull-duplex asynchronous receiver/transmitter

» aquadruple buffered receiver data register

e aninterrupt control mechanism

e programmable data format

» selectable baud rate for the receiver and transmitt

» amulti-functional and programmable 16-bit couriiewr

» an on-chip crystal oscillator

« a multi-purpose input/output, including RTS and GMi&chanism
For more information, refer to Appendix B. The S®82 on the TinyDrive may be used as a network 9th-
bit UART. An RJ11-6 phone connector N1 providesvmek signals. Use N1 pin 3 (RS485+) and pin 4
(RS485-), or J9 to join the multi-drop RS485 twiafr network.

3.50ther Devices

A number of other devices are also available onTingDrive. Some of these are optional, and mightt n
be installed on the particular controller you aseng. For a discussion regarding the softwarefates for
these components, please see the Software chapter.

3.5.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the TinyDrive has several functiohatt
significantly improve system reliability:

Chapter 3: Hardware TinyDrive

« watchdog timer

» power-failure warning

» battery backup

* power-on-reset delay

* power-supply monitoring

Watchdog Timer

The watchdog timer is activated by setting a jumperJ3 pins 11-12 of the TinyDrive. The watchdog
timer provides a means of verifying proper softwaxecution. In the user's application programisdal
the functionhitwd() (a routine that toggles the PO3=HWD pin of the MB®4) should be arranged such
that the HWD pin is accessed at least once evérgdconds. If the J3 11=12 jumper is on and theDHW
pin is not accessed within this time-out perioa atchdog timer pulls the WDO pin low, which asser
/RESET. This automatic assertion of /RESET mayvecthe application program if something is wrong.
After the TinyDrive is reset, WDO remains low urdiltransition occurs at the WDI pin of the MAX691.
When controllers are shipped from the factory tBel1=12 jumper is off, which disables the watchdog
timer.

0, 3.41 . 4.86, 3.41

1
NMI INT2 NT1 119 N8 17 16 W5 14 13 12 GND ITA 1OA 18A BA I7A I6A I5A WA I3A 12A 1A DNI{
Watchdog ® [-’Lvs m ot : 5a] LI} :ﬁiui :;énL‘ RZO
uio
enable | [.
. ™ L™ |
jumper e p ;
m
R %
1
. U
J3 pins 11-12 s
(173
HL Bt
il
; = Q.0
A w 3w 3w 3,
GND 020 019 Q8 Q17 016 015 O14 O3 012 O O 09 08 07 06 O5 D4 O3 02 01 GND 2V K
1

0.0 486, 0

Figure 3.6 Location of watchdog timer enable jumper

Power-failure Warning

The MAX691/LTC691 PFO (Power Failure Output) pinyntee connected to NMI via J3 pins 17-19. The
user may connect the PFI (Power Failure Input)gfiMAX691 to an external voltage divider to monitor
the power voltage level (Figure 3.7). The PFI pas lbeen pulled high to VCC with a 10K resistor loa t
TinyDrive. When the external DC power drops to 8\35the voltage on the PFI is less than 1.3 V, the
MAX691 will pull down PFO pin, and NMI will occuryYou can write an NMI interrupt service routine to
meet your requirements.

+12V (8.35V min) VCC = +5V
10.7K or 47K 2 R2 10K
PFI of MAX691
R3 (1.3 V min)
2K
(5.0 V max.)

Figure 3.7 Power-fail detection with PFI

3-10

TinyDrive Chapter 3: Hardware

2 4 6 8 10 12 14 16 18 20 2228428 30 32 34 36 38 40
® 6 6 6 6 ¢ © 06 6 ¢ ¢ 6 0 0 ¢ 0 0 0 0 o
® 6 6 6 6 6 ¢ (0 060 6 06 06 0 0 ¢ 0 0 o
1 3 5 7 9 11 13 1/5 17\19 212827 29 31 33 35 37 39

®)
J3 /INMI /PFO

Figure 3.8 Use of /PFO and /NMI

Battery Backup Protection

The backup battery protection protects data stordde SRAM and RTC. The battery-switch-over citcui
compares VCC to VBAT (+3 V lithium battery positiyén), and connects whichever is higher to VRAM
(power for SRAM and RTC). Thus, the SRAM and teealtime clock RTC72421 are backed up. In
normal use, the lithium battery should last appr@tely 3-5 years without external power being siggopl
When the external power is on, the battery-switebraircuit will select the VCC to connect to th&&M.

NOTE: When there is no battery on the TinyDrive, the VBATsignal should be shorted to ground

3.5.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesO@4), or 2K bytes (24C16) can be installed in U7.
The TinyDrive uses the POO=SCL (serial clock) afd+5DA (serial data) to interface with the EEPROM.
The EEPROM can be used to store important data asch node address, calibration coefficients, and
configuration codes. It typically has 1,000,00@se/write cycles, and the data retention is moaia #0
years. EEPROM can be read and written to by simplyng the functionge_rd() andee_wr().

In order to use the EEPROM correctly, J3 pins 1820 must be connected (see Figure 3.9).
0, 3.41 . 4.86, 3.41
1
NMIINTZ NTT 13 N8 17 16 15 14 113 112 GND ITA DA 19A 1BA I7A 16A I5A 4A I3A 12A I'A GND

T P50 RP4] RPI0 of ®Pzo] RPTo] "
@ [orPE | RPT o[RP3o] | RP9 O | RP65|
7T L

EEPROM — —
jumper -
J3 pins 18-20 Uy
P {) OO —
’Jﬂl ! D &] ‘
U3 : “:R#m{m ;"fu 1 Ry
O | uus %[Ut : %[[%[u

GND 020 019 OB Q7 O6 015 O14 O3 D12 QM O Q9 D8 07 06 05 D4 03 02 01 GND 12Vl K

|
0.0 4.86,0

Figure 3.9 Location jumper for EEPROM

3-11

Chapter 3: Hardware TinyDrive

3.6 Inputs and Outputs

The TinyDrive offers 22 inputs and 20 outputs, leaven below.

11 inputs 0 12-bit ADC(LTC2543) or - -

i ¢ it 14 high voltage drivers
8input______~ g hit digital input g g \—=> 14 outputs
T12-11 (PALTDP100) ULN2003 T28-21

; 4-bit ADC 6 high voltage outputs 6 outputs or
8inputs >\ A
T114-2" 1 v25 PORTT or 6 digital inputs |~ ° 6 digital inputs

3input A\ Ntz NT2 | T nyDrive

T1 22-2¢

Figure 3.10 Functional block diagram of inputs and outputs for the TinyDrive

3.6.1 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, susivesapproximation, 11 channels, serial interface,
analog-to-digital converter. It has three contrglits (/CS=P27; CLK=P24; DIN=P25) and is desigred f
communication with a host through a serial tristatitput (DOUT=P26).

The ADC digital data output communicates with athtbsough a serial tri-state output (DOUT=P26). If
P27=/CS is low, the TLC2543 will have output on PRBEG27=/CS is high, the TLC2543 is disabled and
P26 is free. P27 and P11 are pulled high by 10kst@s on board. The TLC2543 has an on-chip 14-
channel multiplexer that can select any one ofripliis or any one of three internal self-test vatagrhe
sample-and-hold function is automatic.

TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingyda
isolation of analog circuitry from logic and supptpise. A switched-capacitor design allows low-erro
conversion over the full operating temperature earigne analog input signal source impedance shuaild
less than 5Q and capable of slewing the analog input voltage &60 pF capacitor.

A reference voltage less than VCC (+5V) can be iplexy for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +&NK lge used for this purpose, and can be connexted t
the REF+ pin.

The reference voltage REF+ can be tied to VCC dtiometric application via a precision referenagts
as LT1029 (5V), U20. By default, REF+ is pulledtop/CC by R8.

The CLK signal to the ADC is toggled through an @, and serial access allows a conversion ratgof
to approximately 10 KHz.

3-12

TinyDrive Chapter 3: Hardware

In order to operate the TLC2543, five V25 I/O lireee used, as listed below:

/ICS Chip select = P27, high to low transition eea®dOUT, DIN and CLK.
Low to high transition disables DOUT, DIN and CLK.

DIN P25, serial data input

DOUT P26, 3-state serial data output.

EOC P13, End of Conversion, high indicates coneersbomplete and data is
ready

CLK I/O clock = P24

REF+ Upper reference voltage (normally VCC)

REF- Lower reference voltage (normally GND)

VCC Power supply, +5 V input

GND Ground

The analog inputs ADO to AD10 (11A to 111A) are dshble at T1 terminal 1 through 12.
RP8, RP9, and RP10 are 10K landing resistors fo€Afputs ADO-AD10. Their locations are shown in
Figure 3.11.

RP10 RP9 RPS

0, 3.41 \ \ \ 4.86, 3.41

N INT2 INTI 19 n8 17 WE M5 4 113 Nn2 GND \VNDA DA 1BA R\EA 154 WA Nu A GN,DJ Tl
O °IB RPA RN

T
Jo T JtD
] \M[XTALT -TEF ;? O
m T LT =] = o3
O Ut 9| ue 3] we 9 ud uts <D“
Tz

T2 ‘

0,0 ’ 4.86, 0

OND 020 019 018 O Of6 015 QW 013 012 Off 010 09 08 07 06 05 04 03 02 01 GOND 12Vl K}

Figure 3.11 Position of the protection resistors and the landing resistors for ADC
inputs.

2 4 6 8 10 12 14 16 18 20 2226128 30 32 34 36 38 40
000 0000000000000 00 o0
© 0000000000000 0000 00
1 3 5 7 9 11131517 19 212827 29 31 33 35 37 39

(@)
J3 GND/ SUlM -v\cc

Figure 3.12 Use of SUM.

Note that if the 12-bit ADC is not needed, a ULN3G&an optionally be installed in the U10 sockek Se
section 3.6.5 for details.

3-13

Chapter 3: Hardware TinyDrive

3.6.2 Dual 12-bit DAC

If high-voltage drivers are not needed in U17, U&BU19, the user may install DAC LT1446 in those
sockets.

The LTC1446/LTC1446L is a dual 12-bit digital-toedmg converter (DAC) in a DIP-8 package. It is
complete with a rail-to-rail voltage output ammifj an internal reference and a 3-wire serial fater. The
LTC1446 outputs a full-scale of 4.096V, making 1BL.&qual to 1 mV. The LTC1446L outputs a full-scale
of 2.5V, making 1 LSB equal to 0.61 mV.

The buffered outputs can source or sink 5 mA. Thipwts swing to within a few millivolts of supplit
when unloaded. They have an equivalent outputteggie of 40Q when driving a load to the rails. The
buffer amplifiers can drive 1000 pf without goinga oscillation.

The DAC chips may be installed in U17, U18, and @h%he TinyDrive.
See sample program@ \ t er n\ v25\ sanpl es\td\td_dal2. c.

3.6.3 Protectiveresistor networks for inputs

In order to support digital signal input voltagede0 to 24V, protection resistor networks are tinito the
circuit. Beware that the maximum input voltagehs ¥25 or ADC chip is +5V. A valid input low volteg
is less than 0.8V and the input high voltage is©éighan 4V and less than 5V.

For ADC applications, if the analog inputs are 0418 landing resistor must be installed to divide input
voltage to 5V maximum.

GND (J3.33)
SUM(J3.33) :
| .
10k Vcece (33.37)
Landing ;
Resistor
T1.2=11A J%
/\/\/\/ ADO (TLC2543)
10k
Protective
Resistor
Figure 3.13 ADC/Digital Inputs resistor configuration.
Input Landing Protective
ADC: AD0-10 RP8, RP9, RP10 RP1, RP2, RP3
Comparator: PTO-7 RP6 RP3, RP4, RP5
Interrupts: NMI, INTP1, INTP2 RN1, RN2 RP7

3-14

TinyDrive Chapter 3: Hardware

RP5 RP4 RP10 Rp2 RP1

ose \RP7 \RP3\ '\ Rpo /.,
RP6 \ M INT2 INTT 119 kl" ||5\|A|3 n2 GND ':IA NA 194 IBA I7A \6A JEA WA I3A 1ZAf1K GND Tl
RP58] l&‘.l IF;D" M;v I!I'1i 1

6 RP9 RPB O
J3 I™~RPS8
RN2 —
2
RN1
@)
——]
RN6 1 iy [
N = w
3 [
GND 020 013 018 OF 016 015 O14 0B 012 O 010 09 08 O7 06 05 04 03 02 01 GNP 12V K
T2 .

0,0 4.86, 0
Figure 3.14 Locations of user configurable protective resistors and landing resistors.

If the analog inputs are less than 5V, do not |h#t@ landing resistors RP8/RP9/RP10. RP8/RP9/RP10
may be pulled high or low with a jumper connect8igM to VCC or GND at J3 pins 35-37 or pins 33-35.

For 0-24V digital input applications, if the inpuase normally 24V, and grounding the input as gger
signal, the landing resistors are 1K and the ptimecesistors are 10K, SUM=GND, and a jumper isJ8n
pins 33-35.

If the inputs are normally at 5V maximum, and grdiag as the trigger signal, the protection resigdrK
and no landing resistors are installed.

For additional information on landing and protesti@sistors for interrupt inputs, see section 3.2.2

3.6.4 High-Voltage, High-Current Drivers

ULN2003 has high voltage, high current Darlingteansistor arrays, consisting of seven silicon NPN
Darlington pairs on a common monolithic substraiéchannels feature open-collector outputs fokiig
350 mA at 50V, and integral protection diodes fovidg inductive loads. Peak inrush currents ofta 600
mA sinking are allowed.

Up to four ULN2003 can be installed on the Tinyrivhree ULN2003 may be installed in U17, U18, and
U19. One may also be installed in U10, replacirg ThC2543 12-bit ADC (for details, refer to section
3.6.5). These outputs may be paralleled to achtl@gb-load capability, although each driver has a
maximum continuous collector current rating of 388 at 50V. The maximum power dissipation allowed
is 2.20 W per chip at 25 degrees C). The common substrate G is routed to T2 GND.pMiscurrents
sinking in must return to the T2 GND pin. A heawguge (20) wire must be used to connect the T2 GND
terminal to an external common ground return. Knemts to the protection diodes in the ULN2003 chips
and should be tied to highest voltage in the exfdoad system. K can be connected to an unreglutate
board +12V via J5ULN2003 is asinking driver, not a sourcing driver. An example of typical
application wiring is shown below.

3-15

Chapter 3: Hardware TinyDrive

I
>:’% Solenoid +12V

>:‘SE Power Supply
>>SE GND/suB

>Oz 75

O Q.
K +12Vv
IGND/SUB

ULN2003 TinyDrive

Figure 3.15 Drive inductive load with high voltage/current drivers.

3.6.5 High-voltage Driversin U10

U10 is a 20-pin socket for 12-bit ADC TLC2543. Bars require more high voltage drivers than those
already provided on board (U17, U18, U19) insteltizbit ADC, a ULN2003 can be installed in the U10

socket.

The digital output signals from the V25 processothie ULN2003 are P23=REF+, P24, P25, P26, and P27.

P23H=AD6
P27H=AD5
P26H=AD4
P25H=AD3
P24H=AD2

High voltage outputs: P23H P27H P26H P25HP24H K=AD1

connect to highest

P23H P27H P26H P25H P24H K

voltage
GND AD8 AD7 AD6 AD5 AD4 AD3 AD2 AD1 ADO
-~ ADO=NC
1 e
1C 2C 3C 4C 5C 6C 7C K
u10
1B 2B 3B 4B 5B 6B 7B G
VCC=NC

d - -
AD9 AD10 GND REF+ P27 P26 P25 P24 P13 VCC

P23=REF+

Cut off P13, Connect to GND

Figure 3.16 Installing high-voltage drivers in U10

To use U10 for high-voltage drivers, cut off the3Pdonnection to U10 pin 19 and add the following

connections:

P23 = REF+ = U10 pin 14
GND = U10 pin 19

3-16

TinyDrive Chapter 3: Hardware

High voltage outputs on T1 are as follows:

T1 pin 2 = ADO = NC = Not connected
T1 pin 3 = AD1 = K = connect to highest voltagettie system (<50V DC), may be connected to
T2 pin 24=K

T1 pin 4 = AD2 = P24H

T1pin 5=AD3 = P25H

T1 pin 6 = AD4 = P26H

T1pin 7 = AD5 = P27H

T1 pin 8 = AD6 = P13H

3.7 Headers and Connectors

3.7.1 Jumpers and Headers

ROM Select SRAM Selec
jumper on J3.11-1 0, 3.41 . 486, 3.41
selects Watchdo T
timer Ilul INT2 INTI 19 I:“l" 16 \:{ n2 GND "I;J//"
(O crtin—— — \ LT/
/J9

jumper ot .

J3.3-4

Step2

| -J4

1]

ik T
W —] L —J5
“m 020 Of Ioll D7 016 O15 014 013 ©12 011 ©ID 09 OB 0\7 06 05 04 D3 02 01 GND 1Z2VI K If USIng eXternal K
| TZ/ . \ | source, J5 jumper
0.0 / i 185, 0 must NOT be set.

WP=GND (J3.18-20) jumper on J3.17-]

NOTE: Must always be connected connects NMI with
PFO of MAX691

Figure 3.17 Jumpers and headers on the TinyDrive

3-17

Chapter 3: Hardware

TinyDrive

The following table lists the jumpers and connextam the TinyDrive:

Name | Size Function Possible Configuration
J3 20x2 Main configuration Pins 28-30: SRAM 256KB-512KB
header Pins 30-32: SRAM 32KB-128KB
ROM/Flash size selection:
Pins 29-31: ROM or Flash size 32KB-128KB
Pins 27-29: ROM or Flash size 256KB-512KB
ROM 512KB/Flash selection:
Pins 24-26: ROM size 512KB
Pins 22-24: Flash (all sizes), or ROM < 512 KB
Pins 11-12= Watchdog Timer enabled. Else disabled.
Pins 17-19: /PFO=/NMI. If jumper is on, when a powe
failure is sensed /PFO will generate interrupt on
INMIL.
J4 2x1 Reset, GND
J5 2x1 High voltage driver If using an external K source, J5 jumper must N@T b
protection diode K pin to| set.
+12V
J7 5x2 RS-232 SERO Default debug port
J8 5x2 RS-232 SER1 for application
J9 5x2 UART SCC2691 RS-485
networking
N1 RJ11-6 UART SCC2691 RS-485
networking
T1 24x1 Terminal block
T2 24x1 Terminal block

3-18

TinyDrive Chapter 3: Hardware

3.7.2 J3 20x2 Header
J3 pin names and functions are as follows:
J3 Signals
P22 1 2 GND
Step2: Jumper on P02 3 4 GND
P02=GND (J3.3-4)
P06 5 6 GND
/RTSO, or U19.2 I/O pin P14 7 8 GND
Low active reset, may be | /RST 9 10 IRT remote reset via J9/N1
connected to /RT for
remote reset via N1
hit watchdog, toggle by | HWD 11 12 WDl watchdog timer active
hitwd(); input, if WDI=HWD
reference voltage for VTH 13 14 VCC
PORTT comparator
U4 RTC72421 alarm VOFF 15 16 VCC
output
/NMI 17 18 WP Always WP=GND
MAX691 power fail /PFO 19 20 GND (NOTE: this must
output always be connected)
-5V 21 22 R/W
Landing resistor network | SUM 23 24 AW For ROM size 512K,
RN5, RN6 summing point} AW=A18.
for inputs For Flash (all sizes) or
ROM <512K, AW=R/W.
NC (NC) 25 26 A18
Al17 27 28 Al17
For 32K-128K A17P 29 30 CE2 For 32K-128K SRAM,
ROM/Flash, A17P=VCC. CE2=VRAM.
For greater than 128K, For greater than 128K,
Al17P=Al17. CE2=A17
VCC 31 32 VRAM Battery back-up switching
power source for SRAM
and RTC
GND 33 34 GND
Landing resistor network | SUM 35 36 SUM1 Resistor network RP7
RN5, RN6 summing point summing point for NMI,
for inputs INTP1, INTP2
VCC 37 38 VCC
GND 39 40 SUM2 NC

3-19

Chapter 3: Hardware TinyDrive

NOTE: pin 18must be
connected to pin 20
(WP=GND)

GND GND /IRT VCC WP R/W A18 CE2 GND VCC
GND GND WDI vCC ND AW Al7 VRAM SUM1 SUM2
2 4 6 8 10 12 14 16 18 /20 22 24 26 28 30 32 34 36 38 40

J3 ° ° ° ° ° o [®] o |o o| ° ° |o o| |o o| °)
[} [} [] [] [} [] L [} [} [] |0 .l [] [] |O .l |O .l [] []
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

P22 P06 /RST VTH /NMI -5V Al7P GND VCC
PO2 P14 HWD VOFF /PFO SUM Al7 VCC SUM GND

Figure 3.18 Default jumper settings for the main configuration header J3

3.7.3 Terminal Blocks

The TinyDrive has a total of 24x2 positions of terah blocks. The signals are shown below. By defaul
T1is for inputs, and T2 is for outputs.

—_

NMI INT2 INT1 119 118 117 116 115 114 11312 GND I11A 110A I9A 18A I7A I6A 15A 14AI13A 12A 11A GND

0,341 4.86, 3.41

0.0 4.86, 0

GND 020 019 018 017 016 015 014 013 OI2 @10 O9 O8 O7 06 O5 04 O3 02 GND 12VI Kb—‘

Figure 3.19 Terminal block diagram

3-20

TinyDrive

Chapter 3: Hardware

The tables below provide a summary of the signalseaninals T1 and T2.

T1 signal screw Description
GND 1 Ground
{1...11}A 1...12 | Analog inputs
GND 13 Ground
1{12...19} 14 ... 21| PortT inputs
INT{1...2} 22 ... 22 | Interrupt inputs
NMI 24 Interrupt inputs

Table 3.5 Signal definitions on terminal 1 (T1)

T2 signal screw Description

GND 1 Ground

0{20 ... 1} 2 ... 21 | High-voltage driver

GND 22 Ground

+12VI 23 Input voltage from power supply
K 24 Protection diode

Table 3.6 Signal definitions on terminal 2 (T2)

Signal definitions for Terminal Block T1:

Pin | Signal | Description

1 GND

2 I1A Input to 12-bit ADC ADO/Digital input with RL(TDP100) installed in U10
3 12A Input to 12-bit ADC AD1/Digital input with RL(TDP100) installed in U10
4 I3A Input to 12-bit ADC AD2/Digital input with RL(TDP100) installed in U10
5 14A Input to 12-bit ADC AD3/Digital input with RL(TDP100) installed in U10
6 I5A Input to 12-bit ADC AD4/Digital input with RL(TDP100) installed in U10
7 I6A Input to 12-bit ADC AD5/Digital input with RL(TDP100) installed in U10
8 I7A Input to 12-bit ADC ADG6/Digital input with RL(TDP100) installed in U10
9 IBA Input to 12-bit ADC AD7/Digital input with RL(TDP100) installed in U10
10 19A Input to 12-bit ADC AD8

11 I110A Input to 12-bit ADC AD9

12 111A Input to 12-bit ADC AD10

13 GND

14 112 Input to comparator/4-bit ADC PTO

15 113 Input to comparator/4-bit ADC PT1

16 114 Input to comparator/4-bit ADC PT2

17 115 Input to comparator/4-bit ADC PT3

18 116 Input to comparator/4-bit ADC PT4

19 117 Input to comparator/4-bit ADC PT5

20 118 Input to comparator/4-bit ADC PT6

21 119 Input to comparator/4-bit ADC PT7

22 /INT1 | External interrupt inputl

23 /INT2 | External interrupt input 2

24 /NMI Non Mask Interrupt Input, can be used t&ke/up CPU from STOP mode

3-21

Chapter 3: Hardware TinyDrive

Signal definitions for Terminal Block T2:

Pin | Signal | Description

1 GND

2 020 U19 HV pin 11, as output, or P05 as inpatndt install U19, connect 1-16
3 019 U19 HV pin 12, as output, or P14 as inpuhdbinstall U19, connect 2-15
4 018 U19 HV pin 13, as output, or P15 as inpuhdbinstall U19, connect 3-14
5 Oo17 U19 HV pin 14, as output, or P16 as inpuhdbinstall U19, connect 4-13
6 016 U19 HV pin 15, as output, or P20 as inpuhdbinstall U19, connect 5-12
7 015 U19 HV pin 16, as output, or P21 as inpuhdbinstall U19, connect 6-11
8 014 U18 HV pin 10

9 013 U18 HV pin 11

10 012 U18 HV pin 12
11 011 U18 HV pin 13
12 010 U18 HV pin 14

13 09 U18 HV pin 15

14 08 U18 HV pin 16

15 o7 U17 HV pin 10

16 06 U17 HV pin 11

17 05 U17 HV pin 12

18 04 U17 HV pin 13

19 03 U17 HV pin 14

20 02 U17 HV pin 15

21 01 U17 HV pin 16

22 GND

23 +12VI | power supply input, +8V to +24V, polarjtyotected by a diode.
24 K highest voltage in the system, protect diddke J5 connecting to +12V

A row of 0.1-inch spacing pads is located nextht® screw terminal pads for both T1 and T2. Thesks pa
are designed for using 0.1-inch spacing pin headdrs even-numbered pins (2, 4, 6, etc.) are néactn
These pads are intended for applications in whieh TinyDrive must be plugged into a customer’s
motherboard.

3-22

TinyDrive Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix F.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not feled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an 1/0 address space and a memory address
space. /O address space ranges fox@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwareplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in 1/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3égment
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsjp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

Chapter 4: Software TinyDrive

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédt@ss in memory space. Once agains#gmentaddress
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component mépgieat address should return either an 8-bit vatug
16-bit value over the data bus. If there is no jponent mapped to that address, this function eilinn
random garbage values every time you try to petekthrat address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

D
)

This function is used to place ttata into the appropriataddressin /O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perad
components.

When dealing with processor registers, be sureéahe correct function. Useitport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@cspace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigsase refer to the Hardware chapter of thisrtieeh
manual.

4.1VE.LIB

VE.LIB is a C library for basic TinyDrive operatisn It includes the following modules: VE.OBJ,
SERO0.0OBJ, SER1.0BJ, SCC.OBJ, and VEEE.OBJ. You medohk VE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-file name | Description

VE.H timer/counter, RTC, Watchdog
SERO.H Internal serial port O

SER1.H Internal serial port 1

SCC.H External UART SCC2691
VEEE.H on-board EEPROM

TD.H ADC, DI, HV

LCD.H 16 character by 2 line (16x2) LCD

4-2

TinyDrive Chapter 4: Software

4.2 Basic Functions

4.2.1 TinyDrive I nitialization

ve_init

This function should be called at the beginningwdry program running on TinyDrive core controllets
provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

ve_init will initialize the 1/O pin functions and storegthinitial register control bytes into the EEPROM€gs
Appendix E). You may use these image registerseterthine the status of the port but you must update
these registers in your applications. The port®e2igitialized as shown below:

void ve_init(void){
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */
pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, B ED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for REXDBY
pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, #ARTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for pordde */

td_init

This function is called immediately afteg init.
void td_init(char mode);
I

/I where m= hardware configuration
1

/I m=0: 015-020 outputs, (P05,P14,P15,P16,P20cRgiut low)
I RTS0=P16, RTS1=P14 !

1

/I m=1: 015-020 inputs, (P05,P14,P15,P16,P20imAit)

I You will lose RTS0=P16, RTS1=P14

I Do not install U19, and

1 connect U19 socket pin 1-16,2-15,3-14,4-13,%121 with 1K resistors

I T2 pin 2-7, 015-020 6 inputs(P05,P14,P15,P16 P21 inputs)

I Use td_di(char ch) to read inputs.

I where ch=20 to 25 for T2 pin 2-7 015-020 itspu

4.2.2 External Interrupt Initialization

There are up to five external interrupt sourceshenTinyDrive, consisting of four maskable interryins
(INTP2-INTPO, INT) and one non-maskable interruptM|). There are also additional internal interrupt
sources not connected to the external pins, camgistf two timers, a time base counter, two DMA
channels, both asynchronous serial ports, andNMk from the watchdog timer. For a detailed discussion
involving the interrupts, the user should refech@apter 4 of the NEC V25 CPU User’s Manual.

TERN provides functions to enable/disable all of #xternal interrupts. The user can call any ef th
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second imetiin pointer to an appropriate interrupt servioatine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the user shoulda finish interrupt routine. This can be donmgishe
fint() function.

| void intpx_init |

4-3

Chapter 4: Software TinyDrive

Arguments: unsigned char i, void interrupt far(* intpx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd

other physical hardware details, see the Hardwaapter). The first argumenindicates whether this

particular interrupt should be enabled or disabl€e second argument is a function pointer thtast
as the interrupt service routine.

By default, the interrupts are all disabled aftatialization. To disable them again, you can eggbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultw#R
return on interrupt.

void nm _init(void);

void intpO_init(unsigned char i, void interrupt far(* intO_isr)());
void intpl_init(unsigned char i, void interrupt far(* intl_isr)());
void intp2_init(unsigned char i, void interrupt far(* int2_isr)());
void tinmerO_init(unsigned char i, void interrupt far(* tinerO_isr)());
void tinmerl_init(unsigned char i, void interrupt far(* tinerl_isr)());
void timer2_init(unsigned char i, void interrupt far(* tinmer2_isr)());

void time_base init(char i, void interrupt far(*time_base isr)()):

4.2.31/0O Initialization

There are two ports of 16 I/O pins available onTigyDrive. Hardware details regarding these Pldi
can be found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatimere
you choose to use the PIO pins as input/output,wiyprobably need to initialize these pins in aofethe
four available modes. Before selecting pins fas purpose, make sure that the peripheral modeatper
of the pin is not needed for a different use witthie same application.

You should also confirm the PIO usage that is deedrabove withinve_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this mézdl manual. For a detailed discussion of thefdddts,
please refer to chapter 7 of the NEC V25 User’s bdn

Please see the sample progrportx.c in t er n\ v25\ sanpl es\ve. You will also find that these
functions are used throughout TERN sample filesnast applications do find it necessary to re-qgun
the PIO lines.

The functiongport_wr andport_rd can be quite slow when accessing the Port I/0. fiihe maximum
efficiency you can get from the Port I/O pins occifiyou modify the Port registers directly with an
outport instruction instead of usingprt_wr/port_rd.

See the Hardware chapter for Port register addsesse

void port_init
Arguments: char p, unsigned char pmc, unsigned char pm
Return value: none

p refers to Port O, Port 1 or Port2.
pmc refers to the 8-biport mode control register value for pog.

* A0 bit sets the pin to I/O mode
* A1 bit sets the pin to CONTROL mode

4-4

TinyDrive Chapter 4: Software

pm refers to the 8-biport mode register value for pog. This register is valid for pins only I/O mode gin
 A'O’ bit sets the pin to output
A1 bit sets the pin to input

char port_rd
Arguments: char p
Return value: byte indicating Port 1/O status for port p.

Each bit of the returned 8-bit value indicatesabegent 1/0 value for the Port I/O pins in pprt

void pio_wr
Arguments: char p, char dat
Return value: none

Writes an 8-bit value to popt Only changes status of I/O mode output pins.

Example 4.1 Set port 0 as 1/O, bits 0 — 3 as input, 4 — 7 as tput.

port_init(0, 0x00, 0xf0);
p = Port O,
pmc = 0 (1/0),
pmO0-3=1, pm4-7 =0.

Example 4.2 Set pins 20 and 23 as DMA Request. All other port gins as output.

port_init(2, 0x09, 0x00);
p = Port 2,
pmc = bit 0 and 3 = 1 (Control), all others = 0 (1/O)
pm = all 0s. Since pins 20 and 23 are control fumgjathepm field is not
relevant.

In most cases it is only necessary to change the vd one or two pins in the port data registénc8 the
port data register is a read/write register, passible to mask the pins that do not need to @hag this
case, theport_init function cannot be used. Instead, the port dagester can be directly accessed using the
poke andpeek functions.

4-5

Chapter 4: Software

While the port data registers are read/write registthe port control registemnc and pm are not.
Modifying only certain pins in these registers riegsi the use of global variables to store the \mbfdhese
This means that any changes tqthe or pm registers must be accounted for in the global
variable. As in the previous example, the bitw3R and AND expressions can be used to mask the

registers.

Example 4.3 Using bitwise OR to set a single bit high, set pi&3 high without

modifying the other pins. Assume all port 2 is oygut and that all pins
are low.

TinyDrive

pokeb(0xfff0, 0x10, (unsigned charpéekb(0xfff0, 0x10)| 0x08));

Assuming that all of port 2 is outputting low, theekb function will return a value o
0x00. A bitwise ‘OR’ with the valu®x00 and the maskx08 equalsOx08.
Port 2 now outputex08.

Example 4.4 Using bitwise AND to reset a single bit low, set pi23 low without

modifying the other pins. Assume settings are theame after executing

Example 4.3.

pokeb(0xfff0, 0x10, (unsigned charpgéekb(0xfff0, 0x10)& OxF7));

Assuming the settings from Example 4.3 are stéispnt, thgpeekb function should return
a value of0x08. A bitwise ‘AND’ with the valuedx08 and the masRxF7
equalsOx00. Port is again set @00 (all pins low).

register bits.

Example 4.5 Set port 2 pins 0 through 3 as output.

/I The following global variable defines the pm2 register

unsigned chapm2;

[* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits 0 through 3 are low. Use AND to set bitslow */

pokeb(0xfff0, Ox11, (pm2 = (pm2 & OxFO)));//pm2 must be set to a new register
value

Example 4.6 Set port 2 pins 0 through 3 as input.

/I The following global variable defines the pm2 register

unsigned chapm?;

[* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits O through 3 are high. Use OR to set bits high */

pokeb(0xfff0, 0x11, (pm2 =(pm2 |Ox0F)))y/pm2 must be set to new register value

424 Port T

Port T is an 8-bit input port whose threshold vgitaan be changed in 16 steps. Comparator opeliatio
performed through this port. Each Port T inputdasnpared with the selected threshold voltage (VRN

4-6

TinyDrive Chapter 4: Software

> Vth results in a value 1, PTn < Vth results imadue 0. All eight results from PTO to PT7 areltetd to
the port T input latches.

The resulting 8-bit latch can be accessed by thetifon portt_rd(void) which returns the 8-bit result. Vth
can be changed by the functiportt_wr(charvref). The variablerref {0 .. 15} sets the reference voltage
by the following equation: Referencé/th * vref/16. vref = 0 sets Reference = Vth. Vth is connected to
a 10 K pullup resistor network and V#h3.57V. PTO — PT6 are on J2. PTO — PT2 are pulfety 10k
resistors.

void portt_wr(char vref)

where vref is a number to select VREF
vref =0 VTHx 1
vref =1 VTHX1B
vref = 2 VTHXB
vref =3 VTHX®
vref = 4 VTHX%
vref =5 VTHXS
vref = 6 VTHX®
vref =7 VTHXIB
vref = 8 VTHXS
vref =9 VTHXS
vref =10 VTHR/6
vref =11 VTH=/16
vref = 12 VTHR/16
vref =13 VTHS/6
vref = 14 VTHA/6
vref = 15 VTH®/16

char portt_rd(void)
returns an 8-bit character representing the ematpr output if the voltage at PTO < Vref, bit Oslée 1.

4.2.5 Timer Units

The two timers present on the TinyDrive can be useda variety of applications. The timers run at a
maximum of 1/6 of the processor clock rate, whi@tedmines the maximum resolution that can be
obtained.

These timers are controlled and configured throagmode register that is specified using the softwar
interfaces. The mode register is described in dietahapter 9 of the NEC V25 User’'s Manual.

The timers can be used to time execution of yoer-defined code by reading the timer values befmic
after execution of any piece of code. For a sarfidedemonstrating this application, see the sanfid
timer.c in the directorytern\v25\samplesive.

The specific behavior that you might want to impégrnis described in detail in chapter 9 of the NEXS
User's Manual.

void timer0_init

void timerl_init

Arguments: unsigned char mode, unsigned int mdO, unsignenidt
Return values: none

The argumennodeis the value that you wish placed into IFdCO/TMC1 mode registers for configuring
the two timers.

The argumentndO is the modulo timer count and is the timer count.

4-7

Chapter 4: Software TinyDrive

void timer0Q_interrupt
void timerl_interrupt
Arguments: unsigned char i, void interrupt far (* timerO_{3r)
Return values: none

The argument enables the interrupt and (*timerO_isr)() or (*&¢irh_isr)() points to the interrupt servige
routine. The interrupt service routine is callekdewever count 0 is reached, with other behaviosiptes
depending on the value specified for the contrgister.

4.2.6 High-voltage drivers: td_hv

For using the high-voltage drivers, udehv.

void td_hv(char hv, char k);
i

I high voltage drivers

I where

1 hv = 1-20 to select O1 to O20 on T2
1 k=0, Ox is off

I k=1, Oxis on, sinks 350 mA to low

"
4.2.7 Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog infnatsed on the reference voltage supplieBEs+. For
details regarding the hardware configuration, keeHardware chapter.

For a sample file demonstrating the use of the Apl€ase seee_adl12.dnt er n\ v25\ sanmpl es\ ce.

int ce_adl12
Arguments: char c
Return values: int ad_value

The argument selects the channel from which to do the next Agab Digital conversion. A value of O
corresponds to chann&DO, 1 corresponds to chanmeD1, and so on.

The return valuad_valueis the latched-in conversion value from the prasioall to this function. This
means each call to this function actually retuhesvalue latched-in from the previous analog-tatdig
conversion.

For example, this means the first analog-to-digitalversion done in an application will be simtiathe
following:

ce_adl2(0); // Read from channel 0
chn_O0 _data = ce_adl2(0); // Start the next conversion, retrieve val ue.

4.2.8 Digital-to-Analog Conversion

LTC1446 chips may be installed in U18 and U19 stxcKehigh-voltage drivers are not needed. Eaclp chi
offers two channels, A and B, for digital-to-analmmnversion. Details regarding hardware, such a®pts
and performance specifications, can be found irHéwelware chapter.

Sample programs demonstrating the U18 DAL dal2a.9 and the U19 DACtfl_dal2.9 are located in
the directoryt er n\ v25\ sanpl es\ t d.

4-8

TinyDrive Chapter 4: Software

void td_dal2
Arguments: int datl, int dat2
Return value: none

Argumentdatl is the current value to drive to channel A of thé, while argumentat?2 is the value to
drive channel B of the chip.

These argument values should range from 0-40985, witts of millivolts. This makes it possible towe a
maximum of 4.906 volts to each channel.

4.2.9 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timéB) jumper is set, the functidmtwd() must be called every 1.6
seconds of program execution. If this is not et@tibecause of a run-time error, such as an iefiaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led

Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to thé&e ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama rollover in digits in the year 2000. Oneimn
might be to store an offset value in non-volattlerage such as the EEPROM.

A common data structure is used to access andaikerterfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char nminl0; Ten mnute digit.
unsi gned char hourl1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.

Chapter 4: Software TinyDrive

unsi gned char wk; Day of the week.
}TIM

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret O on success and returns 1 in case of etrci, as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tadekday, year10, year1, month10, month1l, day10, dayl, hour10,
hour1, minutel0, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsi gned char t[{14] ={ 5, 9, 8 0, 6, 0, 5 1, 3, 5 5, 3, 0},

Delay

In many applications it becomes useful to pauserkeéxecuting any further code. There are functions
provided to make this process easy. For applicatibat require precision timing, you should use th
hardware timers provided on-board for this purpose.

void delayO
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Twual time that it waits depends on processordspse
well as interrupt latency. The code is functiopadlentical to:

VWhile(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoafp
iterations. Again, this function is highly depentapon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr .

4-10

TinyDrive Chapter 4: Software

void ve_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing cocterf
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prgtedy in the header fileser0.h and serl.h in the
tern\ v25\i ncl ude directory.

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits fommunication with the PC. As a result, you will
not be able to debug code directly written foragport 0.

Two asynchronous serial ports are integrated inNB€ V25 CPU: SERO and SER1. Both ports have
baud rates based on the 8 MHz clock.

By default, SERO is used by the DEBUG ROM for aggtion download/debugging in Step One and Step
Two. We will use SER1 as the example in the follmyvdiscussion; any of the interface functions trat
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial port dse,
please realize that some pins might be shared atliter peripheral functions. This means that irader
limited cases, it might not be possible to use réaoe serial port with other on-board controllenétions.

For details, you should see chapter 11 of the N6 Mser's Manual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor forghecessor frequency.

The following table shows the function argumentattbxpress each baud rate, to be used in TERN
functions.

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 76,800

13 115,000
14 230,000
15 460,800
16 1 Meg

Table 4.1 Baud rate values

4-11

Chapter 4: Software TinyDrive

After initialization by callings1_i ni t (), SERL1 is configured as a full-duplex serial pord & ready to
transmit/receive serial data at one of the spetifi@ baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by macro semperation. In terms of receiving, there is nosafe
overhead or interrupt latency for user applicaiwagrams even at the highest baud rate. Macrocgervi
transfer allows efficient handling of incoming datd’he user only has to check the buffer status wit
serhit1() and take out the data from the buffer wgit ser 1() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howg\he transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy \
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size i6iz), mode (hode), and baud ratebfud) are specified by the user with
sl init().The mode is the setting value for the serial porttrol register. A value dixC9 will set the
serial port in the following manner:

transmit enable, receive enable, no parity, 8 Haa 1 stop bit

Due to the nature of high-speed baud rates andipessffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer witht ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4kEer
will be able to store data for approximately foacands.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and rethenoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates ratalis available in the buffer.

You can usget ser 1() to get the serial input data byte by byte usingd-from the buffer. The in_tail
pointer will automatically increment after eveget ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @l _cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sersi1() to transmit a
character string. You can put data into the trahsing buffer,s1_out _buf, at any time using this
method. The transmit ring buffer addresvyf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othase, it will
continue to take out the data from the out buffex] transmit. After you caput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘'’ charadte‘?’. The translated HEX file is then transted out
of SERO. This sample program can be foundenn\ v25\ sanpl es\ ve.

4-12

TinyDrive Chapter 4: Software

Software Interface
Before you can use the serial ports, they mushitialized.

There is a data structure containing importanias@ort state information that is passed as argtitoethe
TERN library interface functions. The@OM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #egial communication ports more practical. Sinadlows
you to monitor the current value of the buffer @sdociated pointer values, you can watch the trias&m
process.

The two serial ports have similar software integfcAny interface that makes reference to egbear serO
can be replaced withll or serl, for example. Each serial port should use its @@M structure, as defined
in ve.h

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */

unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* Input buffer HEAD ptr */

int in_size; /[* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /1 transmit nacro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsigned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */

unsi gned char byte_del ay; /* V25 macro service byte delay */
} com

sn_init
Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitle specified parametermodeis the serial control
register valueb is the baud rate value shown in Table 4.1. Tharaggntsbuf andisiz specify the input-
data buffer, andbuf andosiz specify the location and size of the transmit idfer.

If mode = 0xc9, the serial ports are initialized &bit, 1 stop bit, no parity communication.

There are a couple different functions used fandmaission of data. You can actually place dathiwithe
output buffer manually, incrementing the head aildbiuffer pointers appropriately. If you do natllcone

4-13

Chapter 4: Software TinyDrive

of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedis Hlows you to control when you wish the transios
of data within the outbound buffer to begin. Ottlee interrupts are enabled, it is dangerous to jpugatie
the values of the outbound buffer, as well as tidaes of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one bytaitch into the transmit buffer for the appropriate sepiart. The return valug
returns one in case of success, and zero in ay o#ise.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferserhitn() should be called befor
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsen
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again, this
function assumes thaerhitn has been called, and that there is a charactesmirgsthe buffer.

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffstr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callgytetser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null characterstia byte
array, and the returnedlue is the only definite indicator of the number otdxyread. Normally, we
suggest that thgetsersandputsersfunctions only be used with ASCII character stsinif you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Y%

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv

4-14

TinyDrive Chapter 4: Software

flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yowcheck and set the value of these 1/O pins appatalyi
for whatever form of flow control you wish to imphent. Before using these functions, you shouldeonc
again be aware that the peripheral pin function gmiusing might not be selected as needed. FRailgje
please refer to the NEC V25 User’'s Manual.

char sn_cts(void)
Retrieves value oETS pin.

void sn_rts(char b)
Sets the value ®RTS to b.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset efau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délvenhardware as well as disabling the interrupt.

clean_sen
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial I/O ports available orNBE V25 processor have many other features thattmig
be useful for your application. If you are trufhterested in having more control, please read @hdyit of
the User’s Manual for a detailed discussion of pfhatures available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are profmyg inscc.hin thet er n\ v25\ i ncl ude directory.

The SCC is a component that is used to providéra éisynchronous port. It uses the 8 MHz systesnkcl
for driving serial communications. The divisors dadction arguments for setting up the baud rateHis
third port are different than for SERO and SERL1.

Function Argument | Baud Rate

110
150
300
600
1200
2400
4800
9600 (default)
19,200
31,250
62,500

© 00 ~NOO U~ WNPRE

[y
o

(=Y
(=Y

4-15

Chapter 4: Software TinyDrive

Function Argument | Baud Rate

12 125,000
13 250,000

Unlike the other serial ports, macro service trangf not used to fill the input buffer for SCCstead, an
interrupt-service-routine is used to place charadt&o the input buffer. If the processor does nespond
to the interrupt—because it is masked, for example—interrupt service routine might never be able t
complete this process. Over time, this meansmaiht be lost in the SCC as bytes overflow.

Special control registers are used to define hav3BC operates. For a detailed description of texgis
MR1 andMR2, please see Appendix C of this manual. In mosRNE&pplications, MR1 is set @57,
and MR2 is set t@®x07. This configures the SCC for no flow control (RTSTS not used/checked), no
parity, 8-bit, normal operation. Other configuraticare also possible, providing self-echo, evengmtity,
up to 2 stop bits, and 5 bit operation, as wel@®matic hardware flow control.

Initialization occurs in a manner otherwise similarSERO and SER1. AOM structure is once again
used to hold state information for the serial pofte in-bound and out-bound buffers operate asrbef
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned charsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue ba as defined in the table above. The valuesirand
m2 specify the values to be stored irM&®1 andMR2. As discussed above, these values are normally
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, armif andosiz define the output buffer.

After initializing the serial port, you must alsetaup the interrupt service routine. The SCC26%RU
takes up external interrupfNTO on the CPU, and you must set up the appropridterupt vector to
handle this. An interrupt service routingsc_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

intO_init(1, scc_isr);
By default, the SCC is disabled for bdtiansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deedegou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomalsedile showing RS232 full duplex communications,
please sege_scc.dn the directoryt er n\ v25\ sanpl es\ ve.

RS485 is slightly more complex to use than RS2B%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i8Br installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you wallso need to place the
RS485 driver in transmission mode as well. Thiddee by usingcc_rts(1) This uses pin MPO (multi-
purpose output), found on the J1 header. While areureceiving data, the RS485 driver will needbéo
placed in receive mode usisgc_rts(0)

4-16

TinyDrive Chapter 4: Software

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallyshea
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofetbe
functions are disabled by default. If you are gdr8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send andvedenction of the SCC2691. One major use ofehes
functions is to disable send and receive. If yaiusing RS485, you will need to use this featunerw
transitioning from transmission to reception, amfrreception to transmission.

Transmission and reception of data using the S@Crsst ways identical to SERO and SER1. The
functions used to transmit and receive data aréssimFor details regarding these functions, pe@ser to
the previous section.

putser_scc
See: putsern

putsers_scc
See: putsersn

getser_scc
See: getsern

getsers_scc
See: getsersn

Flow control is also handled in a mostly similastfeon. The CTS pin corresponds to the MPI pincivtis
not connected to either of the headers. The REgiresponds to the MPO pin found on the J1 header

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.

scc_close
See: sn_cl ose

4-17

Chapter 4: Software TinyDrive

serhit_scc
See: sn_hit

clean_ser_scc
See: clean_sn

Occasionally, it might also be necessary to chbekstate of the SCC for information regarding extbat
might have occurred. By callingcc_err, you can check for framing errors, parity erroifsp@rity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val

The returned valueal will be in the form of OABC0000 in binary. Bit & 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit Glicates an over-run error.

4.5 Functions in VEEE.OBJ

The 512-byte serial EEPRON24C04) provided on-board provides easy storage of ndati® program
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe

changed often. Access to the EEPROM is quite slowmpared to memory access on the rest of the

controller.
Part of the EEPROM is reserved for TERN use sptifi for this purpose.

Addresse€)x00 to Ox1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, the jump address ftapSTwo, and other data that is of a more permametoire.

The rest of the EEPROM memory spa@e?0to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedlat to the specifiediddr. The return value is 0 in success.
ee rd
Arguments: int addr

Return value: int data

This function returns one byte of data from thec#fjedl address.

4.6 Samples

Sample programs for the TinyDrive may be founchim following directories:
C\tern\v25\sanpl es\ve
C\tern\v25\sanples\td
C. \tern\v25\sanpl es\ce

4-18

TinyDrive Appendix A: TinyDriveversion A Layout

Appendix A: TinyDriveversion A Layout

All dimensions are in inches.

NMI INT2 INT1| i19 i18 i17 | i16 i15 i14 | i13 i12 GND| i11i10i9 | i8i7 i6 i5i4i3 | i2i1 GND
0.13,292 4.73,2.92
0, 3.41 / \ 4.86, 3.41
o
T
NMI INT2 NTY 19 N8 W7 W6 15 N4 113 N2 GND INA 11OA \9A IBA 17A IBA 15A 14A I3A\ 12A A GND
= RPE O] RPA 9] RP0 o] ®aa]
P e [RP7o] RF30] | RP9 o]
T %7 151 021~
u J3| || vio
RN2L L3 I L8 F
o= LI L
|_[o] u3 "
o

U2 1 mim

u2

| 3] RN || RN @ us "

RN (etﬂ 2 o " us | -

ZSREEI _&_U" N—— - I & BI
3 N

Jo u:b o1 I JLD

2 16 RN gy RN3

U9 — Io] Io] T~ L | T13

G\ 119 4 | Ute 4 | ™ .JI | Ut 4 | 15 4|:|J5

T2

GND 020 \19 013 017 016 015 014 013 012 ON 010 09 08 07 06 05 04 03 02/01 GND 12vI K

|
0,0 \ ° \

0.13, 0.62 473082 860

GND 020 019 018 017 016| 015 014 013| 012011010 | 09 08 07 |06 05 04

03 02 01 GND +12V K

A-1

Appendix A: TinyDriveversion A Layout TinyDrive

TinyDriveversion B Layout

0.17,3.18
0.13,2.92 4.73,2.92
0.00, 3.41 / \ 4.86, 3.41
O/ O 0O O O O O 0O 0O O o0 O o o o o oo O\QO O

0000000000000 O0OO0CO0OOO0OCOCCO
0000000000000 O00O0O0O0O0O0

oo® |

|:| U2 ul
O

Ol:| -E U4

u19 % u1s % u17

oooo|
0 00 0o
C
-
N
(&
w

<
~ 12

0000

co0o0o0
C
[y
w

|%|
O

J8

°

O OO0 O 0O O O 0O Oo0O 0O 0O 0O 0O 0 o0 o0 o

0.00, 0.00 4.86, 0.00

0.13,0.62 4.73,0.82
0.17,0.23

Appendix B: UART SCC2691 TinyDrive

Appendix B: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
/ICEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

AO-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

XUCLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TXD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bit6 | Bits | Bit4 [Bit3 [Bit2 [Bit1 [Bito
RxRTS RXINT Error __ ParityMode___ Parity Type Bits per Character
0=no 0=RxRDY 0 = char 00 = with parity 0=Even 00=5
1=vyes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0 =Data
1=Addr

B-1

TinyDrive Appendix B: UART SCC2691
MR2 (Mode Register 2):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
Tx (add 0.5 to cases 0-7 if channel is 5 hits/character)
00 = Norma 0=no 0=no 0=0.563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0625 5=0.875 9=1625 D=1.875
10 = Local loop 2=0.688 6=0938 A=1688 E=1.938
11 = Remote loop 3=0.750 7=1000 B=1750 F=2.000
CSR (Clock Select Register):
[Bit7 [Bit6 [Bit5 [Bit4 | Bit3 | Bit2 | Bit1 | BitO |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] = 0:
0= 50 1=110 2=1345 3= 200 0= 50 1=110 2=1345 3= 200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=384k D=Timer E=MPI-16x F=MPI-1x C=384k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B = 1800 8=2400 9=4800 A =7200 B = 1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 T | Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX Rx Rx
0 = no command 8=sart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=yes 1=yes 1=yes 1=yes
2 =reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C =reset MPI
5 = reset break change change INT
INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Received Framing Parity Overrun TXEMT TxRDY FFULL RXRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes 1=yes
* * *
Note:

* These status hits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these hits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are

reset when the corresponding data character is read from the FIFO.

B-2

Appendix B: UART SCC2691 TinyDrive
ACR (Auxiliary Control Register):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 T | Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode

0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rate set 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)

transmitter 1= off 4 =RxC (1x)
1= Baud 3 = counter, crystal or external normal 5= RxC (16x)
rate set 2, clock (XxI/CLK) 6 =TXRDY
see CSR 4 =timer, MPI pin 7 =RxRDY/FFULL
bit format 5 =timer, MPI pin divided by

16

6 = timer, crystal or external
clock (x/CLK)
7 = timer, crystal or external

clock (x/CLK) divided by 16
ISR (Interrupt Status Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 [Bit2 | Bit1 | Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
l=yes 1=high l=yes l=yes l=yes l=yes l=yes
IMR (Interrupt Mask Register):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n
CTUR (Counter/Timer Upper Register):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 [Bit2 | Bit1 [Bito |
[crlag | cmpg | ora | corpal | cmpag | oo | aTl9 | ot |
CTLR (Counter/Timer Lower Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |

| cTm | crle | cmrg | oTrl4 | ¢T3 | otz | ory | oo |

B-3

TinyDrive

Appendix C: RTC72421 / 72423

Appendix C: RTC72421 / 72423

Function Table

Address Data
Az | A, | A; | Ay | Register | 3 D, D, Do Count Remarks
Value
0 (0 0 |0 |9 S3 S S S 0~9 1-second digit register
0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register
0 (0 1 ({0 | My mig | miy miy, [mig 0~-9 1-minute digit register
0 (O 1|1 Mk Migq Misg | Migg | 0~5 10-minute digit register
0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register
0 |1 |0 |1 | Hg PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1
0 |1 110] dg dy d, d; 0~9 1-day digit register
0 |1 1 (1 Do dgy | dig 0-~3 10-day digit register
1]0 0 |0 | MQ mog | mo, mo, [mo, | 0~9 1-month digit register
1]0 0 |1 MQg mo | 0~1 10-month digit register
1 0 1 0 Y Ys Y4 Yo Y1 0~9 1-year digit register
1 |0 1]1 Yo Yso | Yao Yoo | Y10 0~9 10-year digit register
1 |1 0|0 | W vy W, Wy 0~6 Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj | Flag
1 |1 110 Reg E qt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test 24/12 Stop Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse

2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)

Data bit| PM/AM INT/STD 24/12
PM INT 24
AM STD 12

5) Test bit should be "0".

C-1

Appendix D: Serial EEPROM Map TinyDrive

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations aeal U/ system software. Application programs mustse
these locations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO_receive, used by ser0.c

0x05 SERO_transmit, used by ser0.c

0x06 SER1_receive, used by serl.c

0x07 SERL1_transmit, used by serl.c

0x10 CS high byte, used by ACTR™

0x11 CS low byte, used by ACTR™

0x12 IP high byte, used by ACTR™

0x13 IP low byte, used by ACTR™

0x18 MM page register 0

0x19 MM page register 1

Oxla MM page register 2

0x1b MM page register 3

D-1

TinyDrive Appendix E: Software Glossary

Appendix E: Software Glossary

The following is a glossary of library functiong fine TinyDrive.

void ve_init(void) ve.h

Initializes the V25 processor. The followinglietsource code fae init()
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */

pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, PO5=LED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */

pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

pokeb(0xfff0,0x11,0xf7);// Set PM2 for input, P23=E N485 output

Reference: led.c

void ve_reset(void) ve.h

Resets the V25 processor.

void delay _ms(int m) ve.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ve.h

Toggles P05 used for led.

Var: i- Led on or off

Reference: led.c

void delayO(unsigned int t) ve.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple for loop up to t.

Reference:

E-1

Appendix E: Software Glossary TinyDrive

void halt(void) ve.h

Enables HALT standby mode, which halts the systiewkao reduce power consumption.
Peripheral CPU devices (serial ports, timers, DMA will not be effected. System clock restored
by interrupt.

Reference: ve halt.c

void hitwd(void) ve.h

Hits the watchdog timer using PO3. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See the Hardware chapter of this manual for more information on the MAX691.

void port_init(char p, char pmc, char pm) ve.h
Initializes 1/0 port mode control and port mode.

Var: p=port0,1or2.
The PMC andPM variables define each pin of the 8-bit port sedct
For examplePM = 0xfO would set bits 0 — 3 as low and bits 4 — 7 as.high

pmc = CONTROL or I/O mode (0 =1/0; 1 = CONTROL).
pm = 1/O pin as input or output(O = output; 1 =in put).

Reference: portx.c

void port_wr(char p, char dat) ve.h

Writes a bit to a Port I/O line. Port I/O line mim in an output mode

Var. p—Port0, 1, 0r2
dat — 8-bit data for port p

Reference: portx.c

unsigned int port_rd(char p) ve.h

Reads an 8-bit I/O port.

Var: port—0: Port 0
1: Portl
2: Port 2

Reference: portx.c

E-2

TinyDrive Appendix E: Software Glossary

void portt_wr(char vref) ve.h

Selects reference voltage for the comparator ippreit

Var: vref — {0 ... 15} defines reference as follow S
reference = Vth * vref/16.
For vref — 0: reference = Vth.

Vth : Threshold voltage =3.57V

Reference: portt.c

char portt_rd(void) ve.h

Reads from the 8-bit comparator input port. Red8+bit value.

bit =0, PT, < Vref

bit=1, PT,> Vref

where PT is the input voltage and Vref is the selectedshodd voltage.

Reference: portt.c

void outport(int portid, int value) dos.h

Writes 16-bitvalue to I/O addresgortid.

Var: portid — /O address
value — 16 bit value

void outportb(int portid, int value) dos.h

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 8 bit value

int inport(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 16-bit value.

Var: portid — 1/0 address

int inportb(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 8-bit value.

Var: portid — 1/0 address

E-3

Appendix E: Software Glossary TinyDrive

int ee wr(int addr, unsigned char dat) veee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ve ee.c

int ee_rd(int addr) veee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ve_ee.c

void rtc_init(unsigned char * time) ve.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = mon10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = secl10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtc_rd(TIM *r) ve.h

Reads from the real-time clock.

Var: *r— Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, min10, hounlr1@o
unsigned char dayl, day10, monl, monl0, yearll@ea
unsigned char wk;
}TIM;

Reference: rtc.c
void timerQ_init(unsigned char mode, int md0, int tm0); ve.h

E-4

TinyDrive Appendix E: Software Glossary

void timer1_init(unsigned char mode, int mdO, int tm0O);

Timer 0, 1 initialization.
Var: mode — TMC Timer mode. See ch. 9 for the TMC register

tm — Count time for the count down timer.
md — Count time for the modulo timer.

Reference: timer.c, timerO.c, timerl.c

void timerQ_interrupt(char i, void interrupt far (*timer0_isr)()); ve.h
void timerl_interrupt (char i, void interrupt far (*timer1_isr)());

Initialization for timer interrupts.

Var: i—1: enable, O: disable.
timer #_isr — pointer to interrupt service.

Reference: timer0.c, timerl.c

void nmi_init(void interrupt far (* nmi_isr)()); ve.h
void intpO_init(unsigned char i, void interrupt far (*intp0_isr)());
void intpl_init(unsigned char i, void interrupt far (*intpl_isr)());
void intp2_init(unsigned char i, void interrupt far (*intp2_isr)());

Initialization for interrupts 0 through 2 and NMilgn-Maskable Interrupt).

Var: i—1: enable, O: disable.
int #_isr — pointer to interrupt service.

Reference: intpx.c

void S0_init(char m, char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void sl _init(char m, char b, unsigned char* ibuf, intisiz, serl.h

unsigned char* obuf, int osiz, COM *c¢) (void);

Serial port 0, 1 initialization.

Var: m — mode for serial control register.

b — baud rate.
ibuf — pointer to input buffer array

isiz — input buffer size

obuf — pointer to output buffer array
osiz — ouput buffer size
c — pointer to serial port structure. See VE.H for COM
structure.

Baud

110
150
300
600
1200

GO WNPR T

E-5

Appendix E: Software Glossary TinyDrive
b Baud
6 2400
7 4800
8 9600
9 19,200 (default)
10 38,400
11 57,600
12 76,800
13 115,000
14 230,000
15 460,800
16 1 Meg

Reference: S0_echo.c, s1_echo.c, sl 0.c
void scc_init(unsigned char m1, unsigned char m2, unsigned char b, scc.h

unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1
m2 = SCC691 MR2

b

— baud rate.

ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0siz — ouput buffer size
€ — pointer to serial port structure.
structure.

See VE.Hfor COM

ml bit

Definition

I—‘I\)-FU'IO?\I
o w

(RXRTS) receiver request-to-send control, 0=no, 1
(RXINT) receiver interrupt select, 0=RxRDY, 1=FIF
(Error Mode) Error Mode Select, 0 = Char., 1=Bloc
Parity Mode), 00=with, 01=Force, 10=No, 11=Spe
(Parity Type), 0=Even, 1=0dd

bits) 00=5, 01=6, 10=7, 11=8

=yes
O FULL

cial

=

Definition

who

Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R
(TXRTS) Transmit RTS control, 0=No, 1= Yes

(CTS Enable Tx), 0=No, 1=Yes

Stop bit), 0111=1, 1111=2

emote loop

oo~NoOoUuh~hwWNER T

TinyDrive Appendix E: Software Glossary

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putserO(unsigned char ch, COM *¢); ser0.h
int putser1(unsigned char ch, COM *¢); serl.h
int putser_scc(unsigned char ch, COM *¢); scc.h

Output 1 character to serial port. Characterbéllsent to serial output with interrupt isr.

Var: ch — character to output
C — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c¢); ser0.h
int putsersl(unsigned char *str, COM *c); serl.h
int putsers_scc(unsigned char ch, COM *c); scc.h

Outputs a character string to serial port. Charagiiébe sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure

Reference: serl sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *¢); scc.h

Checks input buffer for new input characters. Retu if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure

Reference: S0_echo.c, s1_echo.c, sl 0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getser 1(COM *c); serl.h
unsigned char getser_scc(COM *c¢); scc.h

Retrieves 1 character from the input buffer. Asssithatserhit routine was evaluated.

Var: c — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers scc(COM *c, int len, unsigned char *str); scc.h

E-7

Appendix E: Software Glossary TinyDrive

Retrieves a fixed-length character string fromitiput buffer. If the buffer contains less charaster
than the length requestedt; will contain only the remaining characters frore thuffer. Appends
a ‘\0’ character to the end af. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string length
str — pointer to output character string

Reference: serl.h, ser0.h for source code.

TinyDrive

Appendix F: TinyDrive Part List

Appendix F: TinyDrive Part List

Item Quantity Reference Part Description
1 1 Bl Cain Lithium Battery, PCB mounting, 3V
2 7 C1,C2,C3,C6,C8,C9,C15,C14 Ceramic Capacitor 0.01 uf 16V
3 2 C4,C5 Ceramic Capacitor ,15 PF 16V
4 6 C7,C10,C11,C12,C13,C16 Aluminum El. Capacitor, Radial, 10UF35V
5 1 D1 Diode, 1IN5817
6 1 Jo DC power jack, @ 2mm, DJ-005
7 1 J3 20x2, 0.025" sgr header, Configuration jumpers
8 3 J4,35,36 2x1, 0.025" sgr header, Reset
9 2 J7,J8 5x2, 0.025" sgr header, RS232 ser0/1
10 1 L1 Red LED
11 1 N1 RJ11 phone jack, 6 contacts, JACK6
12 1 R1 1/4 w metal film resistor, 2K
13 1 R2 1/4 w metal film resistor, 10.7K
14 1 R3 1/4 w metal film resistor, 1K
15 1 R4 1/4 w metal film resistor, 10K
16 5 RN1,RN2,RN3,RN5,RN6 resistor network, 10 pin 9 resistors, 10K
17 2 R5,R7 resistor, /4w, 680Q
18 2 R6,R8 resistor, /4w, 220Q
19 1 R9 resistor, 1/4w, 300K
20 7 RP1,RP2,RP3,RP4,RP5,RP6,RP7 resistor pack, isolated, 8 pin, 4 resistors, 1K
21 2 T1,T2 Terminal block, 24 position each
22 1 Ul SRAM, 32K/128K/256K /512K, 100 ns, low power
23 1 U2 CPU, NEC, PD70320_V 25, 84 pin PLCC
24 1 u3 EPROM, 32K/64K /256K, 120-150 ns
25 1 U4 Real-time clock, 18pin dip, EPSON RTC72421-B
26 1 U5 AMD PAL16V8Q
27 1 U6 Supervisor chip, 16 pin dip, MAX691/LTC691
28 1 u7 EEPROM, 128 -64K bits, 8 pin dip, 24C01
29 1 us UART SCC2691, Segnetic UART, 24 pin dip, 0.3w
30 1 U9 T0O220, +5V requlator, LM 7805
31 1 ui10 12-bit ADC, Tl LTC2543, 20pin dip, 11 channels
32 1 Uil Negative voltage convertor, ICL7662
33 1 u12 RS232 transmitter, 75C188/1488
34 1 u13 RS232 receiver, 75C189/1489
35 1 ui4 R$485/422 transceiver, 75176/LTC485
36 2 U15,U16 8-bit latch, 74HC259
37 3 Ul17,U18,U19 Darlington transistor array, ULN2003
38 1 u20 reference zener, 2.5V/5V, LM285
39 1 u21 Electronic switch, TK112XX
40 1 XTAL1 low profile crystal, 16MHZ

L) TOP100. PDS voo S ,/6C TDP00O. PDS STE COPYRI GHT 1995, ALL R GHTS RESERVED.
/RST G\D LK Q
1 S ADO 1 20 veo9 AB 2] K 3VIig /i orD w3 UL
2 HDRD2 AD0 VCC 1 or
c2 ADL 2 9 Ald 3 8 /N2
3 Al 3] ADL EQC 75 poy A5 4]!2 B[a77 vee
4 e AD2 CLK 13 &
7 P25 9 5 6 JROM Al18 1 320 Al81 32 VRAM
5 DI Poap AD3 DIN = 12 o VPP VCC Al8 VDD
2 GND ADA 5|40 A [16 P26 P21 6| 2 g [15 /MRD_ A6 2| xte pomlEla AL62| nr8 P [BL A1s
° Sen ADE 6| Aoe LB P2z INREQ 71,2 & [IAT R Al5 3| a2 /PRS0 AR TATA3| 1S o5 (B0 CEZ
: c3 SDA K6 Al 71 ADe Rers P14 REF+ JTOSTB 81,5 ST [A37SCC A2 4| ata AN [29°AI4 TAIZ4| A5 o[29 KW
02| e J9 HDRDLO Al 3 _GD W9 2 /NI A7 5 28 A3 _A7 5 28 A3
9 Hy AD7 REF- 18 @ A7 AL3 A7 A13 (28 AL
WD X2 +12v1 1 2 ap ‘D6 ADLO [L2 ADLO 0] o ;e AL A6 o ‘s [27 A8 A6 6] e e [27 A8
DI PCAP VDO X1 485- 3 4 485- 10| cnp | ADe [21_AD9 A5 7] ‘ac ‘a9 [26 A9 A5 7] ‘nc ‘a9 [2629
ke oD 485F 5O &% 485+ PALIGVE A8 J925AT TAars| e Y [25 AL
fo2) P05 rvoc 7 5 [TC2543) VeC A3 9|a3 R[22 T7NRD TA3 9|k PLt [2Z WD
¢ P06 ric /JRT_ 92 & 10 awp HL /1ORD 1 240 A2 10 (23 Al0. _A210 [23 Al0_
R - 1 2 5]LRD VCC 53 1142 A0 S5TRom 1142 ALO 55
11 818181818/ 7 4 :‘g 3 4 D4 ;RXXB 3] XD /VWRISS glow 2(1) 21~ BTy ﬁ(l) 2]AL /CELIST 37RAM
D PCAP 1{0|9|8| 7|6|5|43|2|1/4|3|2|1|0] o|&| 7|6|5 o o 3lTx0 Do A0 D7 |2 A0 D7 |2
5 VPO 21 DL 3 20 3 20
ci+ 2+ D O Mol 5] WO DL 55 i Do D6 T3 14| 20 D6 T3
PPI PPPPPG/ /| R/ | VXXGVI s BPeve I 5~ o oD "G ¢ W AD WPl D2 73 D1 D5 -1g 7 D1 D5 73
00C00000NM M/ RRD2ZINTC w2 c11 L cio S o A2 D3 D2 D4 D2 D4
65 43210DROSWESD ~ DH AQ_11 2 ViC Al I~ o1 28 6] oo D3 [L7 6] D D3 X7
CLKI2 | bo7/ aLk [EST ET pr7 |24 c-| co- ab 13 2 Oz vee A8 "5 o [L7 D5
3 EQEB E 73 5 6 CLK__ 9 6 PROMLO24 VRAM RAM271024
S) PT6 X1 D6
1 141 5y PT5 |2 10153 D7 (2 D7 1
5 PD70320_V25 71 u12 Voo HDRD16 RST 11 4 7SCC 8
2 D2 PT4 (£ RST /EN
V25 cir 1 116 Q 12| 3 P11 DI PCAP
D3 PT3 [3 C1+ vcc GND /I NT
D4_17] o3 p1o 69 P2 Vr 2|t &5 E5 e
5| op 2 s T o34 $BMEaTTxm SCC2691 RP8 RP10
o %2 P15 8 0 G 4| S, mPEsrRxo RP1 RP4 Al 1 2 ADS 1 2
7 20 o5 P17/ Ry |66 P17 & 5| St R Raor 1A 1 2 _ADO 3 1 2 PTL ADL 3 AP 3 4
AQ 21 o) Pr6/ ScRG 85 P V- 6] T Xt 2A__3 1 43 PT2 5 ADIO 5 6 {sum
Al 22 ') Plo/ TOUT |64 P15 TIXD0 7] 120 12 [L0 _IXDO 3A__5 6_AD2 5 & 6 PT3 Al 7 8 {sum 7 8
A2 23 3 RXD0 8 5 aA_ 7 Al 67 7
AE—5 A2 P14/ | NT/ POLL R2I R2O RPY
A3 P13/ | NTP2/ | NTAK |R&—==
A4 25 3 [UEARNS = NAXZ32A RP2 RP5 1 2 RNG
A5 26| ne P11/ 1 NTPO 60 P11 5A 1 2 117 1 2 P15 ADB__3 10
AS 27| h2 Siore oM u13 Voo 6A 3 2 A 118 3 2 P16 AD6__5 5 9 _PT7
A7 28 45 Poy DR [D8 P27 C3+ 1l yoo]Le 7A 5 Al 119 5 6 PT7 ADI__7 SUM 8 PTO
A8 2 57 P26 V+ 2 5 G\D BA 7 AD? 7 7 PTL
-~ A8 P26/ H DAK [2L—129 § V+ G\D o0 e
ALO31] RS P I [55 P2 &, Moriscrgg RP3 RP6 RP7 5 T3
A1132] 297 D PP r23/ DRI |54 P23 - 5| &S0 Rioll2 /CTs1 9A 1 2 _AD8 /INM 1 2 /NMI 1 2 4 PT4
;1 8 %3 V- v S airia 0A 3 Al P17 3 T P12~ 3 3 PT5
C15 R CTRCT/ 77 RTSO__7 T20 T2I 0 P16 1A~ 5 ADIO J/INT25 3 P13 5 2
+ AAAAAAAAXGTXXTIXD VDT CTsq 8] f2P Fal 9 7crso 5 7 PT0. 7INTL 7 Piz. TNV 7 8 sumt 1 SUML
—H 1111111 1DNSDDSDRI DACI I— TOK RNIOSL
DI PCAP 234567890D001110CDO0C RP8S1 RP8S1 RP8S1
J3
o6 331333(313(44444 4444 4BI3153 P22 1 2 uis uiz
3(2|5/8|7(819[0|1|2|3{4|5|6| 7|5 o[3|2|2 3 P22 1 56 2
Sy AL2 Ic =+ A+ Vi V- /RST P02 3 Zie) D0 13[5 pl4ver w21 1M 570]16 O
Soe— O O—F 5
AL3 P22 o1l co1el L c17 il PO6 S 6 QB V20 V20 21 5g5c[15
DI PCAP ~Al4d P21 01 s 7 c14 a7 R S—% 0 1lg, H[E VIO VIO 3|3Ricriar e
AT V c3- - 10UF35y 10UF35 DI PCAP Rt 0 2 CO'_O / RT Al 213 Gl Mvs Vs apiclizo
c18 AL ke mb 113 ST A2 31 Si[oVir VIrolgpic[iz &
+ P20 13 4\ 10 V16 V16 6 1 o6
R 15 2 S 16 14 &b 1 7] 8B 6C 15
TXDL VOFF GND_ /HVL po Vi5 V15 287G o7
C DI PCAP 9 | oD J6 ur vee T 7o S8 TRSTI5d & & & [Tz via 5| P eK
c16 D0 RXDL_~ /CTSO 1 2 /CTS1 10 voo |89 TPrO19 2 920
10UF35V c N TXD0_ "DRO2 2] 0 v G — al S RrRwW 7AHC259 ULN2003
J8 HDRDIO VCC | DI PCAP 3] A3 sy 6sa suM 23 2 21 Aw u16
1 2 7} 5 SDA 25 26 _Al8 D013 4 V13 u1s
[T 32 S—7crs1 J7 HDRDLO 35 VSS ~ SDA a7 27 2 S8 ALY b g 5VI2 V4 110 o)
o5 = 2
e e I e fmssre, gy S0 Uohmeds
_ HDRD2 3 3 s1 8 313B3C
D 9 10 /RXD0_ 5 RTSO c13 u14 vce D _33 34 G A2 313 i[9 Vi1 4] 2o e I3 o
o o 7 3 10UF35V RXD 1 [o oo L8 SUM_35 36_SUML 0_V8 V10 5 cliz a2
s b TR S0 D 7] 7 485- Vee 37 2 S 38 wee /HV2 14 @ IT vy Vi SB5C T 613
_—0 O—— R4 !/ RE B 5o © G (03] 6B 6C
P23 3| 6 485+ D3 SUNR T 15 2 V6 V8 0 _Ol4
VBAT 1 6 RST XD 4] PF A5 SO S O CLR Q7 81 /B7C 9 <x
VB RST Dl G\D G K
VRAM 2] o /st [0 /RST 10 HDRD40 7aFCZ5
VCC 3| v woo [L4 WO VCCR3 L1 [Tca8s5 R10 ULN2003
D4 3 1 RAM ve AR P05 u20 R8 VCC REF+
5] S & TRAM + ;V"Vr uLe
—21 BON CEO 5% 220
R vl R 1K LED Al P05 1[5 c |16 Q5
7 0 7 PFO LNR85 10UF35V p1a__2 5 016
—Z2l sl PFO P 2B 2C
8 9 _PF R6 P15 3 4 _oL7
—81 css PrI 3B 3C
RL R2 6 a]3B3CM3 G
VAXGO L PFI +12V w 20 5] epaS[12 0
VOFF__ 1[0 voe 24 VRAM 21 6] pecdl @
RNL_ vCC 2K 10. 7K +12V I TIVER 2 23 R\2 P23 7 0
LM2575 /Cs X2 - 7B 7C =o—
P22 11, |20 _3Ine X1 22 8l kL9 K
P24_72] 3,519 P25 vee 2| G2 P05
P26 3 8 P27 A0 5 20 / RST 7 ULN2003
318 A0 CS1
NV 41597 1L PIL —L8inc Do 3 E15
12 5 6 P13 AT 8 P16
P4 6] 21815 P17 g| AL NC =7~ P20
6 15 S NC NC f=ft— STE/ TERN
oA 71513 [12 P02 A2 o\ N 6 D1 21
VD 3 1C A3 5 CC [Titie
PO5 813 5 TRet e -omnm A D2 =7
506 107 42 11 pr| 1INS817 330uH 330uf 35V ap 12| /F° DRy TINY_DRI VE- B
ALCAP5 Si ze |[Docunment Numnber REV|
RN76 72423 B 1D B. SCH
RN768 COPYRI GHT 1995, STE ALL Rl GHTS RESERVED. 72423S -
Dat e: Cct ober 31, 1999 [Sheet 1 of 1

