

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.tern.com

U-Drive™

C/C++ Programmable User Interface with QVGA TFT and touchscreen.

Supports CAN, Host USB ports, Ethernet, RS232/485, CompactFlash, 24-bit ADCs,
16-bit DACs, Solenoid Drivers, and Relays

Technical Manual

COPYRIGHT

U-Drive, H-Drive, E-Engine, A-Engine86, A-Engine, A-Core86, A-Core, i386-Engine,
MemCard-A, MotionC, VE232, and ACTF are trademarks of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.

Borland C/C++ is a trademark of Borland International.
Microsoft, MS-DOS, Windows, Windows95, and Windows98 are trademarks of

Microsoft Corporation.

Version 1.02

May 27, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1993-2008
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Internet Email: tern@netcom.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
 TERN reserves the right to make changes and improvements to its products
without providing notice.

U-Drive Chapter 1: Introduction
__

1-1

Chapter 1: Introduction

1.1 Functional Description
The U-Drive (UD) is a very low-cost industrial GUI controller, ideal for OEM applications requiring a user
interface. The ultra-bright, wide viewing angle active TFT color display with touch screen is attractive, and easy to
program. Other peripherals on the board make this board a powerful and comprehensive industrial user interface
and control solution.
DISPLAY
The onboard LCD controller (S1D13075, EPSON) has internal 80KB image buffer, supporting QVGA color graphic
LCDs with 320x240 pixels. The integrated TFT display is ultra-bright (rated at up to 750 nits), with brightness
controlled by external DC power input (8-11V). An accurate touch screen controller (ADS7846) supports 4-wire
resistive touch screen.
All components are installed on single PCB, mounted on the backside of the QVGA TFT for easy integration into
user applications. Comprehensive, user-friendly software libraries and samples are provided. User can easily design
their custom functions keys, text, logo, and graphics. Supported by the CompactFlash-based file system (up to 2
GB), 20 user screens can be displayed per second via DMA transfer.
USB
A Host USB controller can be installed to provide two Host USB ports. Port 1 can interface to USB
keyboard/mouse, allowing a flexible mechanism for accepting user input in addition to touch screen. Port 2 supports
a hot-removable USB flash disk, using a simple command set to manipulate a FAT filesystem format. No other USB
specific firmware programming is required on the controller side.
COMMUNICATIONS
A Controller Area Network (CAN) controller (SJA1000, 20 MHz clock) is available. It supports network baud rates
up to 1M-bit per second. Software drivers allow access to all CAN controller registers, as well as a buffering
software layer.
A Fast Ethernet Module can be installed to provide 100M Base-T network connectivity. This Ethernet module has a
hardware LSI TCP/IP stack, implementing TCP/IP, UDP, ICMP and ARP support in hardware. Socket-based
software drivers allow the U-Drive to be used as a web or SMTP server.
Also available are 4x RS232 and 2x RS485 serial ports.
INDUSTRIAL I/O
There are 30+ TTL I/Os, 4 mechanical relays (200V, 0.5 Amp.), 4 opto-couplers and 14 solenoid drivers
(sinking/sourcing 350 mA at 50V each). The solenoid drivers can be hardware configured to be high voltage (0-30V)
inputs. Three 16-bit CPU internal timer/counters support timing and external counting.
There are up to a total of 31 ADC inputs and 12 DAC outputs:
4 ch.16-bit parallel ADC chip (AD7655, 1 MHz, 0-5V), 24-bit ADC (LTC2448�5KHz�0-1.25V) configurable for
8 ch. differential or 16 ch. single-ended input channels. A 12-bit ADC (TLC2543, 10KHz�0-5V) provides 11 ch.
analog inputs. Eight ch. 16-bit DACs (LTC2600, 0-5V, 10 KHz), and four ch. 12-bit parallel DAC (DA7625, 200
KHz, 0-2.5V) are available.

Chapter 1: Introduction H-Drive

1-2

Features:

* 6.5 x 4.8 inches, 1x86 CPU, program in C/C++

* Ultra-bright 5.7” QVGA Color TFT display

* 4-wire analog touch screen controller

* Host USB ports for user-input (keyboard/mouse)

* 256 KW SRAM, 256 KW Flash, 512 bytes EEPROM

* 30+ TTL I/O, 3 16-bit timer/counters, RTC, Battery

* 4 mechanical relays, 4 Opto-coupler inputs.

* 14+ solenoid drivers or high voltage inputs (0-30V DC)

* 11 ch. 12-bit ADCs, 4 ch. 16-bit ADCs, 16 ch. 24-bit ADCs

* Precision reference and on-board temperature sensor

* 8 ch. 16-bit DACs, 4 ch. 12-bit DAC

* Controller Area Network (CAN2.0B) port

* 4 RS232/and 2 RS485 serial ports

* 100 M Ethernet with hardware TCP/IP stack

* Switching regulator, 50 mA standby, 160 mA at 12V

* CompactFlash with Windows compatible file system support

U-Drive Chapter 1: Introduction
__

1-3

1.2 Physical Description

The physical layout of the UD is shown below.

Figure 1.1 Physical layout of the U-Drive

PPI
High Speed ADC, DAC

Step 2 Jumper

J2, PIOs

2 RS485
From QUART

ANALOG
HEADER

TFT
TouchScreen

Compact Flash
interface

COM0 (DEBUG)
&

COM1 RS232

100M BaseT
Ethernet

USB Host ports
1 & 2

12V Power
Input

High Voltage I/Os

Hardware
Configuration

2 RS232 ports
from QUART

Chapter 1: Introduction H-Drive

1-4

Step 1 settings

In order to talk to UD with Paradigm C++, the UD must meet these requirements:

1) EE40_115.HEX must be pre-loaded into Flash starting address 0xFA000.

2) The SRAM installed must be large enough to hold your program.

For a 32K SRAM, the physical address is 0x00000-0x07fff
For a 128K SRAM, the physical address is 0x00000-0x01ffff
For a 512K SRAM, the physical address is 0x00000-0x07ffff

3) The on-board EEPROM must have a jump address for the EE40_115.HEX with starting address of 0xFA000.

4) The STEP2 jumper must be installed on J2 pins 38-40.

For further information on programming the UD, refer to the manual on the TERN CD under:
tern_docs\manuals\software_kit.pdf.

Figure 1.2 Flow chart for ACTF operation

The “ACTF boot loader” resides in the top protected sector of the 512KB on-board Flash chip (29F400).

By default, in the factory, before shipping, the DEBUG kernel (EE40_115.hex) is pre-loaded
in the Flash starting at 0xFA000, and the RED STEP2 jumper is installed, ready for
Paradigm C++ debugger. User does not need to download a DEBUG kernel to start with.

At power-on or RESET, the “ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the ACTF
menu will be sent out from serial port0 at 19200 baud for a UD.
If the STEP 2 jumper is installed, the “jump address” located in the on-board serial EEPROM will be read out and
then jump to that address. A DEBUG kernel “EE40_115.hex” for the UD can be downloaded, residing in
“0xFA000” of the 512KB on-board flash chip.

Power On or Reset

YES

Go to Application Code CS:IP

STEP 2

ACTF menu sent out through ser0
STEP 1

Step 2 jumper

NO

set?
CS:IP in EEPROM:

0x10=CS high byte
0x11=CS low byte
0x12=IP high byte
0x13=IP low byte

at 19200 baud

U-Drive Chapter 1: Introduction
__

1-5

1.3 U-Drive Programming Overview

Steps for product development:

 Preparation for Debugging(DONE in Factory !)
 • Connect board to PC via RS-232 link, 19,200, 8, N, 1

• Power on board without STEP 2 jumper installed
• ACTF menu should be sent to PC terminal
• Use “D” command to download “L_TDREM.HEX” in SRAM
• “G04000” to run “L_TDREM”
• Download “c:\tern\186\rom\ae86\EE40_115.HEX” to Flash
• “GFA000” to setup EEPROM and run remote debugger
•Power-off, Install the STEP2 jumper
(J2.38-40) • Power-on reset board, Ready for Remote debugger

STEP 2: Standalone Field Test
8888”G08000” setup EEPROM Jump Address, points to

application code resides in battery backed SRAM
8888Install STEP2 jumper, then power on

8888Application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.)

• Start Paradigm C++, run “led.ide” or “test.ide”
• Download code to target SRAM.
• Edit, compile, link, locate, download, and remote-debug

STEP 1: Debugging

STEP 3: DV-P Kit
• Generate application HEX file with DV-P and ACTF Kit
• ACTF “D” to download “L_29F400.HEX” into SRAM
• Download application HEX file into FLASH
• Modify EEPROM jump address to 0xC0000
• Set STEP2 jumper

 Production

There is no ROM socket on the UD. The user’s application program must reside in SRAM for debugging in STEP1,
reside in battery-backed SRAM for the standalone field test in STEP2, and finally be programmed into Flash for a
complete product. For production, the user must produce an ACTF-downloadable HEX file for the application,
based on the DV-P+ACTF Kit. The “STEP2” jumper (J2 pins 38-40) must be installed for every production-version
board.

U-Drive Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the “tern_docs\Software_kit.pdf” Technical manual on TERN CD, for information on
installing software.

2.2 Hardware Installation

Hardware installation consists primarily of connecting the microcontroller to your PC.

2.2.1 Connecting the UD to the PC

The UD is linked to the PC via a serial cable (DB9-IDE) which is supplied with TERN EV-P / DV-P Kits.

The UD communicates through SER0 by default. Install the 5x2 IDE connector on the SER0 H4 pin header.
Powering-on the UD.

By factory default setting:

1) The RED STEP2 Jumper is installed. (Default setting in factory)
2) The DEBUG kernel is pre-loaded into the on-board flash starting at address of 0xFA000. (Default setting
in factory)
3) The EEPROM is set to jump address of 0xFA000. (Default setting in factory)

Connect +9-12V DC to the DC power terminal. The screw terminal at the corner of the board is positive
12V input and the other terminal is GND (see figure for details). A power jack adapter (seen below) is
included with the TERN EV-P/DV-P kit. It can be used to connect the output of the power jack adapter and
the UD. Note that the output of the power jack adapter is center negative.

The on-board LED should blink twice and remain on, indicating the debug kernel is running and ready to
communicate with Paradigm C++ TERN Edition for programming and debugging.

Overview
• Connect PC-IDE serial cable:

For debugging (STEP 1), place IDE connector on SER0 with red
edge of cable on side of H1 pin 1 (See Fig. 2.1). This DEBUG
cable is a 10-pin IDE to DB9 cable, made by TERN.

• Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack
using power jack adapter supplied with EV-P/DV-P Kit

Chapter 2: Installation H-Drive

2-2

Figure 2.1 Location of Power input, DEBUG Cable, CAN port and Termination Resistor

9-12V
Power plug

(center negative)

H4: COM0
RS232 Port
(Debug Port)

Termination Resistor
for CAN bus

CAN
H9

U-Drive Chapter 2: Installation

2-3

RED
STEP2
Jumper

Terminal for
TFT

Backlighting

+9V to +12V
DC power input

RED
 LED

U-Drive Chapter 3: Hardware

 3-1

Chapter 3: Hardware

3.1 Am186ES/R8820/IA186 - Introduction

The Am186ES controllers uses 16-bit external data bus, are higher-performance, more integrated versions of the
80C188 microprocessors which uses 8-bit external data bus. In addition, the Am186ES has new peripherals. The on-
chip system interface logic can minimize total system cost. The Am186ES has two asynchronous serial ports, 32
PIOs, a watchdog timer, additional interrupt pins, a pulse width demodulation option, DMA to and from serial ports,
a 16-bit reset configuration register, and enhanced chip-select functionality.

There are a total of three compatible CPU chips can be used:
R8820 from RDC is a drop-in replacement 5V, 40MHz chip for the AM186ES, AM186ES (AMD, 5V, 40 MHz),
R8820 (RDC, 5V, 40 MHz), and IA186ES (INNOVASIC, 5V, 40 MHz). The multiple sources of the CPU can
support longer life time. The technical specifications and discussions in this manual are based on AM186ES.

By default, the UD uses 5V 40 MHz R8820 and low power 55ns SRAM.
There are three pads on the PCB for battery. One pad is ground, and the other two pads allowing a 3V backup
lithium battery is installed in two different positions:

3.2 Am186ES – Features

3.2.1 Clock and crystal

Due to its integrated clock generation circuitry, the Am186ES microcontroller allows the use of a times-one crystal
frequency. The design achieves 40 MHz CPU operation, while using a 40 MHz crystal.

The system CLKOUTA signal is routed to J1 pin 4, default 40 MHz.

CLKOUTA remains active during reset and bus hold conditions. The initial function ae_init(); disables CLKOUTA
and CLKOUTB with clka_en(0); and clkb_en(0);

You may use clka_en(1); to enable CLKOUTA=CLK=J1 pin 4.

The R8820 uses a 40 MHz crystal.

Debug kernels for Paradigm C++ TERN Edition are available:

c:\tern\186\rom\ae86\EE40_115.hex

The EE40_115.hex will allow 40 MHz UD talk to Paradigm C++ TERN Edition at 115,200 baud.

By default, the EE40_115.hex is pre-programmed for the 40 MHz UD.

User can use software to setup the CPU speed:

 outport(0xfff8,0x0103); // PLLCON, 20MHz crystal, 0103=40 MHz, 0107=80MHz

Chapter 3: Hardware U-Drive

3-2

3.2.2 External Interrupts and Schmitt Trigger Input Buffer

There are eight external interrupts: INT0-INT6 and NMI.

INT0, J2 pin 8, used by CAN controller(SJA1000).
/INT1, J2 pin 6, free to use.
INT2, J2 pin 19, used by Touchscreen controller(ADS7846)
INT3, used by QUART INTA
/INT4, J2 pin 33, used by 100M BaseT Ethernet
INT5=P12=DRQ0, used by LED/EE/HWD/RTC
INT6=P13=DRQ1, J2 pin 11, used by QUART INTB
/NMI, J2 pin 7, used by MAX691 as PFO

Some of external interrupt inputs, /INT0, /INT1, /INT2, /INT4 and /NMI, are buffered by Schmitt-trigger inverters
(U9, 74HC14), in order to increase noise immunity and transform slowly changing input signals to fast changing and
jitter-free signals. As a result of this buffering, these pins are capable of only acting as input.

These buffered external interrupt inputs require a falling edge (HIGH-to-LOW) to generate an interrupt.

The UD uses vector interrupt functions to respond to external interrupts. Refer to the Am186ES User’s manual for
information about interrupt vectors.

3.2.3 Asynchronous Serial Ports

The Am186ES CPU has two asynchronous serial channels: SER0 and SER1. Both asynchronous serial ports
support the following:

• Full-duplex operation
• 7-bit, 8-bit, and 9-bit data transfers
• Odd, even, and no parity
• One stop bit
• Error detection
• Hardware flow control
• DMA transfers to and from serial ports
• Transmit and receive interrupts for each port
• Multidrop 9-bit protocol support
• Maximum baud rate of 1/16 of the CPU clock speed
• Independent baud rate generators

The software drivers for each serial port implement a ring-buffered DMA receiving and ring-buffered interrupt
transmitting arrangement. See the samples files s1_echo.c and s0_echo.c (\tern\186\samples\ae).

3.2.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable timers: Timer0, Timer1, and Timer2.

Timer0 and Timer1 are connected to external pins:

Timer0 output = P10 = J2 pin 12
Timer0 input = P11 = U7 EEPROM data
Timer1 output = P1 = J2 pin 29, used for on-board beeper
Timer1 input = P0 = J2 pin 20

Timer0 input P11 is used and shared by on-board EE, not recommended for other external use.

The timer can be used to count or time external events, or can generate non-repetitive or variable-duty-cycle
waveforms.

U-Drive Chapter 3: Hardware

 3-3

Timer2 is not connected to any external pin. It can be used as an internal timer for real-time coding or time-delay
applications. It can also prescale timer 0 and timer 1 or be used as a DMA request source.

The maximum rate at which each timer can operate is 10 MHz (on a 40MHz board), since each timer is serviced
once every fourth clock cycle. Timer output takes up to six clock cycles to respond to clock or gate events. See the
sample programs timer02.c and ae_cnt1.c in the tern\186\samples\ae directory.

3.2.5 PWM outputs and PWD

The Timer0 and Timer1 outputs can also be used to generate non-repetitive or variable-duty-cycle waveforms. The
timer output takes up to 6 clock cycles to respond to the clock input. Thus the minimum timer output cycle is 25 ns x
6 = 150 ns (at 40 MHz).

Each timer has a maximum count register that defines the maximum value the timer will reach. Both Timer0 and
Timer1 have secondary maximum count registers for variable duty cycle output. Using both the primary and
secondary maximum count registers lets the timer alternate between two maximum values.

MAX. COUNT A

MAX. COUNT B

Pulse Width Demodulation can be used to measure the input signal’s high and low phases on the /INT2=J2 pin 19,
assuming the QUART is not installed.

3.2.6 Power-save Mode

The UD can be used for low power consumption applications. The power-save mode of the Am186ES reduces
power consumption and heat dissipation, thereby extending battery life in portable systems. In power-save mode,
operation of the CPU and internal peripherals continues at a slower clock frequency. When an interrupt occurs, it
automatically returns to its normal operating frequency.

Chapter 3: Hardware U-Drive

3-4

3.3 Am186ES PIO lines

The Am186ES has 32 pins available as user-programmable I/O lines. Each of these pins can be used as a user-
programmable input or output signal, if the normal shared function is not needed. A PIO line can be configured to
operate as an input or output with or without a weak pull-up or pull-down, or as an open-drain output. A pin’s
behavior, either pull-up or pull-down, is pre-determined and shown in the table below.

After power-on/reset, PIO pins default to various configurations. The initialization routine provided by TERN
libraries reconfigures some of these pins as needed for specific on-board usage, as well. These configurations, as
well as the processor-internal peripheral usage configurations, are listed below in Table 3.1.

PIO Function Power-On/Reset status UD Pin No. UD Initial

P0 Timer1 in Input with pull-up J2 pin 20 Input with pull-up
P1 Timer1 out Input with pull-down J2 pin 29, Beeper Input with pull-down
P2 /PCS6/A2 Input with pull-up J2 pin 24 I/O chips select
P3 /PCS5/A1 Input with pull-up J2 pin 15 Input with pull-up
P4 DT/R Normal J2 pin 38 Input with pull-up Step 2
P5 /DEN/DS Normal J2 pin 30 Input with pull-up
P6 SRDY Normal J2 pin 35 Input with pull-down
P7 A17 Normal N/A A17
P8 A18 Normal N/A A18
P9 A19 Normal J2 pin 10 A19=/INT2, touchscreen
P10 Timer0 out Input with pull-down J2 pin 12 Input with pull-down
P11 Timer0 in Input with pull-up EEPROM Input with pull-up
P12 DRQ0/INT5 Input with pull-up N/A Output for LED/EE/HWD
P13 DRQ1/INT6 Input with pull-up J2 pin 11; QUART Input with pull-up
P14 /MCS0 Input with pull-up J2 pin 37, TFT Input with pull-up
P15 /MCS1 Input with pull-up J2 pin 23 Input with pull-up
P16 /PCS0 Input with pull-up J1 pin 19 /PCS0
P17 /PCS1 Input with pull-up HC138 U31.4,5 /PCS1
P18 CTS1/PCS2 Input with pull-up J2 pin 22, Ethernet Input with pull-up
P19 RTS1/PCS3 Input with pull-up J2 pin 31 Input with pull-up
P20 RTS0 Input with pull-up J2 pin 27 Input with pull-up
P21 CTS0 Input with pull-up J2 pin 36 Input with pull-up
P22 TxD0 Input with pull-up J2 pin 34 TxD0
P23 RxD0 Input with pull-up J2 pin 32 RxD0
P24 /MCS2 Input with pull-up J2 pin 17 Input with pull-up
P25 /MCS3 Input with pull-up J2 pin 18 Input with pull-up
P26 UZI Input with pull-up J2 pin 4, USB RST Input with pull-up*
P27 TxD1 Input with pull-up J2 pin 28 TxD1
P28 RxD1 Input with pull-up J2 pin 26 RxD1
P29 /CLKDIV2 Input with pull-up J2 pin 3; USB AC4 Input with pull-up*
P30 INT4 Input with pull-up J2 pin 33;JP1.2 (ET) Input with pull-up
P31 INT2 Input with pull-up J2 pin 19; TouchS Input with pull-up

* Note: P26 and P29 must NOT be forced low during power-on or reset.

Table 3.1 I/O pin default configuration after power-on or reset

U-Drive Chapter 3: Hardware

 3-5

The 32 PIO lines, P0-P31, are configurable via two 16-bit registers, PIOMODE and PIODIRECTION. The settings
are as follows:

MODE PIOMODE reg. PIODIRECTION reg. PIN FUNCTION

0 0 0 Normal operation
1 0 1 INPUT with pull-up/pull-down
2 1 0 OUTPUT
3 1 1 INPUT without pull-up/pull-down

UD initialization on PIO pins in ae_init() is listed below:

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The C function in the library ae_lib can be used to initialize PIO pins.

void pio_init(char bit, char mode);

Where bit = 0-31 and mode = 0-3, see the table above.

Example: pio_init(12, 2); will set P12 as output

 pio_init(1, 0); will set P1 as Timer1 output

void pio_wr(char bit, char dat);

pio_wr(12,1); set P12 pin high, if P12 is in output mode
pio_wr(12,0); set P12 pin low, if P12 is in output mode

unsigned int pio_rd(char port);
pio_rd (0); return 16-bit status of P0-P15, if corresponding pin is in input mode,
pio_rd (1); return 16-bit status of P16-P31, if corresponding pin is in input mode,

Some of the I/O lines are used by the UD system for on-board components (Table 3.2). We suggest that you not use
these lines unless you are sure that you are not interfering with the operation of such components (i.e., if the
component is not installed).

You should also note that the external interrupt PIO pins INT1 and 4 are not available for use as output because of
the inverters attached. The input values of these PIO interrupt lines will also be inverted for the same reason. As a
result, calling pio_rd to read the value of P31 (INT2) will return 1 when pin 19 on header J2 is pulled low, with the
result reversed if the pin is pulled high.

Signal Pin Function

P2 /PCS6; J2.24 U14(74HC138) I/O chip select for RTC, PPI, CAN,…
P4 /DT; J2.38 STEP2 jumper
P11 Timer0 in Shared with EEPROM data input
P13 /INT6; J2.11 QUART INTB
P14 /MCS0, J2.37 SED1375,TFT controller
P18 /CTS1; J2.22 100M BaseT Ethernet
P22 TxD0; J2.34 Default SER0 debug

Chapter 3: Hardware U-Drive

3-6

Signal Pin Function

P23 RxD0; J2.32 Default SER0 debug
P26 UZI; J2.4 USB RST
P27 TxD1; J2.28 Serial Port 1 Transmit
P28 RxD1; J2.26 Serial Port 1 Receive
P29 /CLKDIV2; J2.3 USB AC4
P30 INT4; J2.33 Ethernet interrupt JP1.2
P31 INT2; J2.19 Touchscreen controller

Table 3.2 I/O lines used for on-board components

3.4 I/O Mapped Devices

3.4.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port) or
outportb(port,dat). These functions will transfer one byte or word of data to the specified I/O address. The external
I/O space is 64K, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may use the function void io_wait(char wait) to define the I/O wait
states from 0 to 15. The system clock is 25 ns (or 50 ns), giving a clock speed of 40 MHz (or 20 MHz). Details
regarding this can be found in the Software chapter, and in the Am186ES User’s Manual.

The table below shows more information about I/O mapping.

I/O space Select Location Usage

0x0000-0x00ff /PCS0 J1 pin 19=P16 USER*
0x0100 /UR2 U31.15, U20.9 QUART UR2 select
0x0120 /UR3 U31.14, U20.13 QUART UR3 select
0x0140 /UR4 U31.13, U20.49 QUART UR4 select
0x0160 /UR5 U31.12, U20.53 QUART UR5 select
0x0180 /RSTC U31.11 CAN Hardware Reset
0x01A0 /RDU U31.10 Read USB
0x01C0 /WRU U31.9 Write USB
0x01E0 /CF U31.7 CompactFlash select
0x0600 /RTC U14.15 Real Time Clock select
0x0620 /PPI U14.14 U5 PPI chip select
0x0640 /PP U14.13 U33 PPI chip select
0x0660 /CAN U14.12 CAN SJA1000 chip select
0x0680 /RDK U14.11 Read Status inputs on U8
0x06A0 /LA U14.10 Write page register for ET
0x06C0 /DA U14.9 Write to DAC7625
0x06E0 /AD U14.7 Read AD7655
0x0200 /PCS2 JP1.5 Ethernet select

*PCS0 may be used for other TERN peripheral boards.

To illustrate how to interface the UD with external I/O boards, a simple decoding circuit for interfacing to an 82C55
parallel I/O chip is shown in Figure 3.1.

U-Drive Chapter 3: Hardware

 3-7

/WR

/RD

/SEL20

A0
A1

D0-D7

/CS

/WR

/RD

82C55

RST P00-P07

P10-P17

P20-P27

1

/PCS0

A7

6VCC

4

3

2

5

A5

A6 /SEL20

/SELF0

/SELC0
/SELA0
/SEL80

/SEL60
/SEL40

14

13

12

11

10

9
7

NC15

74HC138

C

A

B

G2A

G2B
G1

Y2

Y3

Y4

Y5

Y6
Y7

Y1

Y0

Figure 3.1 Interface to external I/O devices

The function ae_init() by default initializes the /PCS0 line at base I/O address starting at 0x00. You can read
from the 82C55 with inportb(0x020) or write to the 82C55 with outportb(0x020,dat). The call to inportb(0x020)
will activate /PCS0, as well as putting the address 0x00 over the address bus. The decoder will select the 82C55
based on address lines A5-7, and the data bus will be used to read the appropriate data from the off-board
component.

3.4.2 SID13075

The SID13075 is a color/monochrome LCD graphics controller with an embedded 80K Byte SRAM display buffer.
The LCD controller can achieve up to 20 frames per second and support 256 colors. A unique aspect of the ST is the
CompactFlash storage working in concert with this LCD controller. With this design, the x186 can DMA images
directly from the CompactFlash into the image buffer to achieve higher performance. Because of the 80KB image
buffer, the function call ud_init(); re-defines the upper half of the memory map to accommodate this buffer. After
calling ud_init(); the memory map will be as in the following diagram: (diagram not to scale)

Chapter 3: Hardware U-Drive

3-8

 0xFFFFF

0x00000

0x80000

SRAM

LCD Image
Buffer

80K Byte

ACTF Sector 16KB

0x94000

0xC0000

This range of the
memory not used

when image buffer
enabled

Flash
mapping

RAM
mapping

0xFC000

Flash Map for
User

~ 240KB

Figure 3.2 Memory Map after ud_init(); to accommodate Image Buffer

Sample code has been provided in the tern\186\samples\ud directory to illustrate the process of transferring an
image from the Compact Flash into the Image Buffer. It is mandatory that slc_init(); be called so as to re-initialize
the memory map to accommodate the image buffer. Note that the entire ROM/Flash mapping is 512KB, but the re-
mapping of the ROM/Flash only allows configuring to certain sizes. Thus the map available for the user then
becomes 256KB, starting from 0xC0000 and going to 0xFFFFF, yet the ACTF utility occupies the top 16KB sector,
again reducing the usable Flash to the range 0xC0000 to 0xFC000, or about 240KB. It is possible to map the Image
Buffer into the SRAM, leaving all 512KB of Flash space for the user. This would require the user to re-define the
/LMCS line used to select the SRAM. Refer to the AM186ES manual chapter 5 for details on how to re-map the
SRAM. This re-mapping of the Image Buffer into the SRAM would also require the DMA process from the
Compact Flash to the LCD controller to be altered. Refer to sample code in the \tern\186\samples\ud directory.

3.4.3 Touch Screen Controller

The ADS7846E is a 12-bit sampling ADC with a synchronous serial interface and low on-resistance switches for
driving touch screens. The ADS7846E is routed to a 4-pin terminal at H2/H16 which connects to a flax cable to
drive the touch screen. This controller allows the user to specify the touch screen resolution needed a particular
application. See sample program that allows for calibration of touch screen in \tern\186\samples\ud directory. The
sample program is “ud_grid.c”. This sample is already included in the pre-made project “ud.ide” in the
\tern\186\samples\ud directory.

U-Drive Chapter 3: Hardware

 3-9

3.4.4 Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the UD has several functions: watchdog timer,
battery backup, power-on-reset delay, power-supply monitoring, and power-failure warning. These will significantly
improve system reliability.

Watchdog Timer

The watchdog timer is activated by setting a jumper on J4 of the UD. The watchdog timer provides a means of
verifying proper software execution. In the user's application program, calls to the function hitwd() (a routine that
toggles the P12=HWD pin of the MAX691) should be arranged such that the HWD pin is accessed at least once
every 1.6 seconds. If the J4 jumper is on and the HWD pin is not accessed within this time-out period, the watchdog
timer pulls the WDO pin low, which asserts /RESET. This automatic assertion of /RESET may recover the
application program if something is wrong. After the UD is reset, the WDO remains low until a transition occurs at
the WDI pin of the MAX691. When controllers are shipped from the factory the J4 jumper is off, which disables the
watchdog timer.

The Am186ES has an internal watchdog timer. This is disabled by default with ae_init().

Chapter 3: Hardware U-Drive

3-10

J4 – Watchdog Header

Battery Backup Protection

The backup battery protection protects data stored in the SRAM and RTC. The battery-switch-over circuit compares
VCC to VBAT (+3 V lithium battery positive pin), and connects whichever is higher to the VRAM (power for
SRAM and RTC). Thus, the SRAM and the real-time clock RTC72423 are backed up. In normal use, the lithium
battery should last about 3-5 years without external power being supplied. When the external power is on, the
battery-switch-over circuit will select the VCC to connect to the VRAM.

U-Drive Chapter 3: Hardware

 3-11

3.4.5 EEPROM

A serial EEPROM of 512 bytes (24C04), or 2K bytes (24C16) can be installed in U4. The UD uses the P12=SCL
(serial clock) and P11=SDA (serial data) to interface with the EEPROM. The EEPROM can be used to store
important data such as a node address, calibration coefficients, and configuration codes. It typically has 1,000,000
erase/write cycles. The data retention is more than 40 years. EEPROM can be read and written by simply calling the
functions ee_rd() and ee_wr().

A range of lower addresses in the EEPROM is reserved for TERN use. Details regarding which addresses are
reserved, and for what purpose, can be found in Appendix C of this manual.

3.4.6 Programmable Peripheral Interface (82C55A)

Two PPI chips(U5 and U33) are included on the UD.

The PPI (82C55) is a low-power CMOS programmable parallel interface unit for use in microcomputer systems. It
provides 24 I/O pins that may be individually programmed in two groups of 12 and used in three major modes of
operation.

In MODE 0, the two groups of 12 pins can be programmed in sets of 4 and 8 pins to be inputs or outputs. In MODE
1, each of the two groups of 12 pins can be programmed to have 8 lines of input or output. Of the 4 remaining pins,
3 are used for handshaking and interrupt control signals. MODE 2 is a strobed bi-directional bus configuration.

7 6 012345

G R O U P 1
P o r t 2

(L o w e r)

P o r t 1

M o d e

0

1

0

1

0

1

O u tp u t

In p u t

O u tp u t

In p u t

M o d e 0

M o d e 1

G R O U P 2
P o r t 2

(U p p e r)

P o r t 0

M o d e

0

1

0

1

0 0

0 1

O u tp u t

I n p u t

O u tp u t

I n p u t

M o d e 0

M o d e 1

M o d e 21 X

C o m m a n d
S e le c t

0

1

B i t
m a n ip u la t i o n

M o d e
S e le c t

Figure 3.3 Mode Select Command Word

The UD maps U5 /PPI, at base I/O address of 0x0620, and U33 /PP at based address of 0x640.

Use U5 PPI as programming example,

the Command Register = 0x0626; Port 0 = 0x0620; Port 1 = 0x0622; and Port 2 = 0x0624.

The following code example will set all ports to output mode:
outportb(0x0626,0x80); /* Mode 0 all output selection. */
outportb(0x0620,0x55); /* Sets port 0 to alternating high/low I/O pins. */
outportb(0x0622,0x55); /* Sets port 1 to alternating high/low I/O pins. */
outportb(0x0624,0x55); /* Sets port 2 to alternating high/low I/O pins. */

Chapter 3: Hardware U-Drive

3-12

To set all ports to input mode:
outportb(0x0626,0x9f); /* Mode 0 all input selection. */

You may read the ports with:
inportb(0x620); /* Port 0 */
inportb(0x622); /* Port 1 */
inportb(0x624); /* Port 2 */

This returns an 8-bit value for each port, with each bit corresponding to the appropriate line on the port.

3.4.7 Real-time Clock (RTC72423)

If installed, the real-time clock RTC72423 (EPSON, U10) is mapped in the I/O address space 0x0600. It must be
backed up with a lithium coin battery. The RTC is accessed via software drivers rtc_init() or rtc_rd() (see Appendix
D and the Software chapter for details).

It is also possible to configure the real-time clock to raise an output line attached to an external interrupt, at 1/64
second, 1 second, 1 minute, or 1 hour intervals. This can be used in a time-driven application, or the VOFF signal
can be used to turn on/off the controller using an external switching power supply, LM2575. An example of a
program showing a similar application can be found in tern\ae\samples\ve\poweroff.c.

3.4.8 Optocouplers

4 opto-couplers can be installed in U27on the UD, providing high voltage opto-isolation capability. They can be
used for digitals inputs, relay contact monitoring, or power line monitoring. Typical ON time is 3µs, while typical
OFF time is 5µs. All opto-coupler inputs are routed to the high voltage header J8. Both OTx+ and OTx- are
available. User can provide both positive and negative signals to each opto-coupler.

User can also tie all negative inputs(OTx-) to GND, via the hardware configuration header H11.

U-Drive Chapter 3: Hardware

 3-13

The TTL status signals output from opto-couplers are routed to PPI(U33) L20-L23. So the PPI(U33) port2 lower
nibble must be programmed as inputs in order to read opto-coupler status.

The opto-couplers (PS2701-4) are arranged in 4 opto-isolators per package. The data sheet for the opto-coupler
package can be found in \tern_docs\parts\ps2701.pdf, on TERN CD-ROM.

3.4.9 Reed Relays

There are 4 Reed Relays can be installed on the UD. The Reed Relay offers high speed switching compared to
electromechanical relays, a specification of 200 V, maximum 1 Amp carry current, 0.5 Amp switching, and 100
million times operation. The relays are driven by U33 PPI L24-L27. We need to program the U33 PPI port2(P27-
P24) as outputs. All relay contacts(S1-4 and N1-4) are routed to J8. See tern\186\samples\UD\ud_relay.c and
\tern_docs\parts\relay9007.pdf for details.

One relay(S1) can be used to control the TFT backlighting. Install a jumper on H3 will route the +12VI power to
relay contact, N1. While the relay is on, the N1=S1, so the TFT/LCD backlighting connecting at H5(or H05) will be
powered on.

3.4.10 Hardware configurable Protective high voltage inputs or outputs

In order to support high voltage digital signal input up to 30V, Darlington Transistor Arrays (ULN2003A) can be
installed in U28, and U29. The maximum input voltage is 30V. The input pin has 12.7K resistance load to the GND.
You have to provide a pulled high signal input. A valid input low voltage is less than 0.8V, and a valid input high
voltage is higher than 3V and less than 30V.

Digital Input upto 30V DC

Darlington Transistor

ULN2003A

Am188ES PIO

5V

K

10 K

2.7 K

 OUT

 GND

Figure 3.4 Darlington Transistors used as Protective High Voltage Inputs.

U28 and U29 may be set as input or output. By factory default, both are output. The input and output orientation for
U28 and U29 is illustrated below. Follow these illustrations carefully to prevent damage to the chips. In addition,
the ULN2003 chips may be replaced with a resistor pack to provide digital inputs or outputs to the terminal blocks.

Chapter 3: Hardware U-Drive

3-14

ULN2003 installed for INPUT

ULN2003 installed for OUTPUT

U28 or U29

Figure 3.5 Locations of user configurable Darlington Transistor Arrays.

ULN2003A has high voltage, high current Darlington transistor arrays, consisting of seven silicon NPN Darlington
pairs on a common monolithic substrate. All channels feature open-collector outputs for sinking 350 mA at 50V, and
integral protection diodes for driving inductive loads. Peak inrush currents of up to 600 mA sinking are allowed. By
default, ULN2003 are installed in U28 and U29 to provide high-voltage sinking outputs. Optional high-voltage
sourcing output chips (UDS2982) can be installed.

H11 is designed to be a hardware configuration header:

Jumper short PIN19=PIN20 and PIN23=PIN24 to force G=GND and G1=GND to support ULN2003 as sink drivers.
In order to use UDS2982 sourcing drivers in U28 and U29:
Short PIN20=PIN22 and PIN24=PIN26 to force G=+12VI and G1=+12VI
Short PIN19=PIN21 and PIN23=PIN25 to force K=K1=GND.

User may provide external sourcing voltage at G and G1, and not short G, G1 to +12VI, if do not want to use +12VI
as sourcing power.

High voltage I/Os are routed to J8

U-Drive Chapter 3: Hardware

 3-15

These outputs may be paralleled to achieve high-load capability, although each driver has a maximum continuous
collector current rating of 350 mA at 50V. The maximum power dissipation allowed is 2.20 W per chip at 25
degrees C (°C).
ULN2003A is a sinking driver. An example of typical application wiring is shown below.

K +12V

H6.2

+12V

GND/SUB

GND/SUB

Power Supply

Solenoid

O1

ULN2003 TinyDrive

Figure 3.6 Drive inductive load with high voltage/current drivers.

3.4.11 USB

The UD integrates an Embedded USB Host controller(Vinculum VNC1L, FTDI). Not only is it able to habdle the
USB Host Interface, and data transfer functions but owing to the inbuilt MCU and embedded Flash memory,
Vinculum can encapsulate the USB device classes as well. When interfacing to mass storage devices, such as USB
Flash drives, Vinculum also transparently handles the FAT File structure communicating via parallel FIFO interface
with a simple command set. The onboard hardware fully handles USB stack processing, and provides for high-speed
bi-directional 8-bit parallel communication. The hardware interface includes 384 bytes of FIFO transmit buffer, and
128 bytes of FIFO for the receiving buffer, making this an ideal low-overhead solution for all embedded

Chapter 3: Hardware U-Drive

3-16

applications. No USB specific firmware programming is required on the controller side. The USB interface is seen
as a transparent Parallel FIFO buffer tasked with transferring data back and forth with the remote host. The only
control signals needed are “ready to transmit” and “data received” signals.

Two Host USB ports are provided on the UD. Port 1 (upper) can interface to a USB keyboard/mouse. Port 2 (lower)
supports a USB Flash Disk. Simple commands can handle FAT file system applications. No USB specific firmware
programming is required on the controller side. This is already taken care of in factory. Signal AC6 is jumpered to
GND (H10.2=H10.3), while AC5 is pulled up to support Parallel FIFO operation. H1 is designed to be a VNC1L
USB chip programming port, while H10.2=H10.1.
For more detailed information regarding this pre-loaded firmware, see DS_VNC1L_FW_VDAP.pdf in the
Tern_docs\parts\USB directory (on any TERN CD).

3.4.12 100 MHz BaseT Ethernet

An WizNet™ Fast Ethernet Module can be installed to provide 100M Base-T network connectivity. This Ethernet
module has a hardware LSI TCP/IP stack. It implements TCP/IP, UDP, ICMP and ARP in hardware, supporting
internet protocol DLC and MAC. It has 16KB internal transmit and receiving buffer which is mapped into host
processor’s direct memory. The host can access the buffer via high speed DMA transfers. The hardware Ethernet
module releases internet connectivity and protocol processing from the host processor. It supports 4 independent
stack connections simultaneously at a 4Mbps protocol processing speed. An RJ45 8-pin connector is on-board for
connecting to 10/100 Base-T Ethernet network. A software library is available for Ethernet connectivity.
Figure 3.4 (above) shows the location of the Ethernet module. See samples httpd_fs.c and tcp_echo.c in
\tern\186\samples\i2chip directory for software details. These samples are also prebuilt into the i2chip.ide project,
available in this same directory. Use the TERN_EE definition in Local Options>Defines for software compatibility.

3.4.13 QUAD UART

A QUAD UART (TL16C754B, U20) with 3.6864 MHz crystal can be installed to provide additional 4 serial ports.
Two ports are supported with RS232 drivers for 232-level communication on header H6 and H06. Other two ports
use RS485 drivers. Both RS485 ports are on header H7.

See sample ud_echo.c in the \tern\186\samples\UD directory for RS232 echo and RS485 transmit code.

3.4.14 CompactFlash Interface

By utilizing the compact flash interface on the UD, users can easily add widely used 50-pin CF standard mass data
storage cards to their embedded application. TERN software supports Linear Block Address mode, and 16-bit FAT
flash file system. Users can write files to the CompactFlash card or read files from the CompactFlash card. Users can
also transfer files to a PC via the CF reader port.

U-Drive Chapter 3: Hardware

 3-17

CF cards can also be used as a means to store images and data to be displayed onto the TFT/LCD. This allows users
to have access to unlimited images to be used in an application in conjunction with the LCD. As discussed above, the
AM186ES supports DMA to allow images/data to be transferred directly to the image buffer for increased speed.

Sample code and function prototypes are available to assist in creating applications which use the file system to
access the CF. Refer to the target \tern\186\samples\UD\fs_cmds1.axe. This sample uses the source code
\tern\186\samples\flashcore\fs_cmds1.c. Also, for a complete listing of file system function prototypes and data
types, refer to the header files “fileio.h” and “filegeo.h” found the \tern\186\include directory.

3.4.15 ADS8344 16-bit ADC

The ADS8344(U35) is an 8 channel, 16-bit sampling analog-to-digital converter with a synchronous serial interface.
Input voltage range goes from 0V to 5V. The precision reference (LT1019 or REF02) installed at location U37
provides the 5V reference voltage ADS8344. Three control lines drive the ADS8344; /CS = AD12, CLK = CK, and
DIN = DI.

Refer to \tern\186\samples\ud\ud_ad16.c for sample code. The effective maximum sampling rate is 10KHz.

The ADS8344 can support 8 single-ended inputs or 4 differential inputs. By default TERN software drivers use 8
single ended inputs. This mode can be changed via the control byte.

All 16-bit analog inputs are routed to the J11 Analog Header.

3.4.16 16-bit, 8-channel DAC(LTC2600)

The LTC2600(U36) is an eight channel 16-bit digital-to-analog converter (DAC) in an SO-8 package. It is complete
with a rail-to-rail voltage output amplifier capable of driving up to 15mA. It uses a 3-wire SPI compatible serial
interface and has an output range of 0-REF volts, making 1 LSB equal to REF/65535 V. The 5V reference voltage is
provided by U37 LT1019/REF02.

Eight DAC outputs are routed to the Analog Header(J11).

Refer to the sample code, \tern\186\samples\UD\UD_da16.c for an example on driving the DAC. Refer to the DAC
data sheet for additional specifications; \tern_docs\parts\ltc2600.pdf.

Chapter 3: Hardware U-Drive

3-18

3.4.17 24-bit, 16-channel ADC(LTC2448)

A 24-bit LTC2448 sigma-delta ADC can be installed. The LTC2448 chip offers 8 ch. differential or 16 ch. single-
ended input channels. Variable speed/resolution settings can be configured. A peak single-channel output rate of 5
KHz can be achieved.

The LTC2448 switches the analog input to a 2 pf capacitor at 1.8MHz with an equivalent input resistance of 110K
ohm. The ADC works well directly with strain gages, current shunts, RTDs, resistive sensors, and 4-20mA current
loop sensors. The ADC can also work well directly with thermocouples in the differential mode. A precision
reference with an internal temperature sensor (LT1019/REF02, 5V) can provide local temperature measurement for
thermocouple applications. This 5V reference will grant a 0-2.5V analog input range per channel.

Inputs are routed directly to the Analog Header(J11). It should be noted that J11 pin 3=TMP corresponds to
LTC2448 analog input B15, which is tied to the temperature pin on REF02 chip. This input cannot be used regularly
if the temperature pin is still connected. The TMP pin can be lift out the U37 socket pin 6, if user wants to use all 16
ADC inputs. The software source sample code is at c:\tern\186\samples\UD\UD_ad24.c.

3.4.18 High Speed 16-bit ADC(AD7655)

The unique 16-bit parallel ADC (AD7655, 0-5V) supports ultra high-speed (1 MHz conversion rate) analog signal
acquisition. The AD7655 (U12) contains two low noise, high bandwidth track-and-hold amplifiers that allow
simultaneous sampling on two channels. Each track-and hold amplifier has a multiplexer in front to provide a total of
4 channels analog inputs. The parallel ADC achieves very high throughput by requiring only two CPU I/O
operations (one start, one read) to complete a 16-bit ADC reading.
With a precision external 2.5V reference(U0, LT1009), the AD7655 accepts 0-5V analog inputs at 16-bit resolution,
yielding 65536 counts/5000mV = 13 LSB/ mV.
The 4 high speed analog inputs(AA1, AA2, AB1, AB2) are available on J6.

See sample program \tern\186\samples\ud\ud_ad.c for details on reading the ADC. Refer to the data sheet for
additional specifications; \tern_docs\parts\ad7655.pdf, from the root of the TERN installation CD-ROM.

3.4.19 DAC7625, 300KHz 12-bit DAC

The DAC7625(U11) is a parallel 12-bit D/A converter. This device includes 4 voltage output channels with an
output range of 0-2.5V. It accepts 12-bit parallel input data and has double-buffered DAC input logic.

The DAC7625 has an average settling time of 5 µs, with a maximum settling time of 10µs. Refer to the sample
program ud_da.c in the \tern\186\samples\ud directory for an example.

The 4 high speed analog outputs(DA1, DA2, DA3, DA4) are available on J6.

U-Drive Chapter 3: Hardware

 3-19

3.4.20 TFT Support

A Color QVGA TFT (320x240 pixels, 5.7”) display can be installed. Aluminum Bezel is available.
This TFT is installed on the back side of the UD.

3.4.21 CAN(Controller Area Network)

The U-Drive can support an on-board Controller Area Network (CAN) controller(SJA1000, Philips). It supports
network baud rates up to 1M-bit per second. Software drivers allow access to all CAN controller registers, as well as
a buffering software layer.

The CAN bus is a balanced (differential) 2-wire interface running over either a Shielded Twisted Pair (STP), Un-
shielded Twisted Pair (UTP), or Ribbon cable.

CAN Bus Electrical Interface Circuit

A number of different data rates are defined, with 1Mbps (Bits per second) being the top end, and 10kbps the
minimum rate. Cable length depends on the data rate used. Normally all the devices in a system transfer uniform and
fixed bit-rates. The maximum line length is 1Km, 40 meters at 1Mbps. Termination resistors are used at each end of
the cable. The worst-case transmission time of an 8-byte frame with an 11-bit identifier is 134 bit times (that's 134
microseconds at the maximum baud rate of 1Mbits/sec).

The CAN Bus interface uses an asynchronous transmission scheme controlled by start and stop bits at the beginning
and end of each character. This interface is used, employing serial binary interchange. Information is passed from
transmitters to receivers in a data frame. The data frame is composed of an Arbitration field, Control field, Data
field, CRC field, ACK field. The frame begins with a 'Start of frame' [SOF], and ends with an 'End of frame' [EOF]
space. The data field may be from 0 to 8 bits.

Chapter 3: Hardware U-Drive

3-20

The CAN bus pinout on H9 is shown below. It is a compact 0.1” spacing 3x2 pin header. User can use a IDE10-DB9
flat cable from TERN to connect the U-Drive CAN signals to an external standard DB9 CAN connector in the field.

The Application for CAN bus includes automotive and industrial field bus.
A low speed CAN bus may be employed to operate window and seat controls in a vehicle. A high speed CAN bus
may be employed for engine management, brake control, Engine Sensors, and Anti-Skid Systems.

3.4.22 Power Supplies

The UD board without TFT panel can be powered by 2 ways:

1) Regulated external 5V DC power via J2.39=VCC and J2.40=GND, or J1.1=VCC and J1.2=GND..

2) Unregulated 9V to 12V DC power via two pin screw terminals(T1) while a 5V linear regulator(LM7805, U00) or
9V to 30V unregulated DC with an optional switching regulator(LM2575) is installed. There is a polarity protection
diode installed for the screw terminal input DC power. The LM7805 is rated for 1A current, and can take as high as
35V. However, due to the linear regulation, all the input voltage has to drop to 5V, if the voltage drop with the
current (300+ mA) is generating a lot of heat. Using the switching regulator, much less heat is generated.

If using the Reed Relay(See chapter on Reed Relays) to control the TFT backlighting, the DC power input to both
the UD and TFT(with LED backlighting) must in 9-11V range. The TFT backlighting can take 9V to 11V. The
higher the DC power voltage, the brighter the LED backlighting.

The UD also requires regulated 3.3V DC power for the Ethernet, which is already taken care of on the 3.3V (U14)
regulator.

U-Drive Chapter 3: Hardware

 3-21

3.5 Headers and Connectors

3.5.1 Expansion Headers J1 and J2

There are two 20x2 0.1 spacing headers for expansion. Most signals are directly routed to the Am186ES processor.
These signals are 5V only, and any out-of-range voltages will most likely damage the board.

Chapter 3: Hardware U-Drive

3-22

3.5.2 Connector J6, AD7655, DAC7625, and PPI

3.5.3 Analog Header J11 for ADS8344, LT2448, and LT2600 DAC outputs

3.5.4 Hardware Configuration Header H11

U-Drive Chapter 3: Hardware

 3-23

3.5.5 High Voltage Header J8

3.5.6 UART RS232 and RS485 Headers

3.5.7 CAN Interface H9

Chapter 3: Hardware U-Drive

3-24

3.5.8 U-Drive Jumper/Header Summary

Connector Default Setting Usage

J1(20x2) Address, Data, and Control bus signals for expansion

J2(20x2) PIN38=PIN40 CPU PIO lines, STEP2 jumper on PIO4

J4(2x1) Watchdog Enable

J5(3x1) PIN1=PIN2 5V or 3.3V CPU select

J6(20x2) PPI(U5), AD7655, DA7625

J7(2x1) DC power input

J8(20x1) High voltage I/O, Reed relays, Opto-couplers

J10(4x2) Host USB Port1 and Port2

J11(20x2) Analog I/O, LT2448, ADS7644, DAC2600

H1(3x2) Host USB VNC1L firmware programming port

H2(4x1) Touch Screen Flex cable connector

H3(2x1) Reed Relay N1=+12VI

H4(5x2) COM0 for RS232 DEBUG

H04(5x2) COM1 RS232

H5(T2) Screw terminal for TFT Backlighting

H05(4x1) Header for TFT backlighting

H6(5x2) QUART (Tx2, Rx2) RS232

H06(5x2) QUART (Tx3, Rx3) RS232

H7(5x2) QUART (X4, X5) RS485

H8(2x1) VOFF=0 will shut off the Switching Regulator

H9(3x2) CAN Interface

H10(3x1) USB VNC1L Program(PIN1=PIN2) or RUN(PIN2=PIN3)

H11(13x2) PIN 19=20, 23=24 Hardware configuration

U-Drive Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

For details regarding software function prototypes and sample files demonstrating their use, please refer to
the Software Glossary in Appendix C.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory will
be used to activate appropriate chip-select lines and the corresponding hardware component responsible for
handling this data.

 Chapter 4: Software U-Drive

4-2

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment address
is shifted left by four bits and added to the offset to find the 20-bit address. This address is then output over
the address bus, and the hardware component mapped to that address should return either an 8-bit or 16-bit
value over the data bus. If there is no component mapped to that address, this function will return random
garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often when
working with processor registers that are mapped into I/O space and must be accessed using either one of
these functions. This is also the function used in most cases when dealing with user-configured peripheral
components.

When dealing with processor registers, be sure to use the correct function. Use outport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most hardware
options added to TERN controllers are mapped into I/O space, since memory space is valuable and is
reserved for uses related to the code and data. Using I/O mappings, the address is output over the address
bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 AE.LIB
AE.LIB is a C library for basic UD operations. It includes the following modules: AE.OBJ, SER0.OBJ,
SER1.OBJ, SCC.OBJ, and AEEE.OBJ. You need to link AE.LIB in your applications and include the
corresponding header files. The following is a list of the header files:

Include-file name Description

AE.H timer/counter, Watchdog
SER0.H Internal serial port 0
SER1.H Internal serial port 1
AEEE.H on-board EEPROM

U-Drive Chapter 4: Software

4-3

4.2 Functions in AE.OBJ

4.2.1 U-Drive Initialization

ae_init

This function should be called at the beginning of every program running on UD controllers. It provides
default initialization and configuration of the various I/O pins, interrupt vectors, sets up expanded DOS I/O,
and provides other processor-specific updates needed at the beginning of every program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind, the
basic effects of ae_init are described below. For details regarding register use, you will want to refer to the
AMD Am186ES Microcontroller User’s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such
that:

Address space for the ROM is from 0x80000-0xfffff (to map MemCard I/O window)
512K ROM Block size operation.
Three wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can

actually be set to zero wait state if you require increased performance (at a risk of stability in
noisy environments). For details, see the UMCS (Upper Memory Chip Select Register)
reference in the processor User’s manual.

outport(0xffa0, 0x80bf); // UMCS, 512K ROM, 0x80000 -0xfffff

Initialize LCS (Lower Chip Select) for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.
Three wait state operation. Reducing this value can improve performance.
Disables PSRAM, and disables need for external ready.

outport(0xffa2, 0x7fbf); // LMCS, base Mem address 0x0000

Initialize MMCS and MPCS so that MCS0 and PCS0-PCS6 (except for PCS4) are configured so:

MCS0 is mapped also to a 256K window at 0x80000. If used with MemCard, this
chip select line is used for the I/O window.

Sets up PCS5-6 lines as chip-select lines, with three wait state operation.
outport(0xffa8, 0xa0bf); // s8, 3 wait states
outport(0xffa6, 0x81ff); // CS0MSKH

Initialize PACS so that PCS0-PCS3 are configured so that:

Sets up PCS0-3 lines as chip-select lines, with fifteen wait state operation.
The chip select lines starts at I/O address 0x0000, with each successive chip select line addressed

0x100 higher in I/O space.
outport(0xffa4, 0x007f); // CS0MSKL, 512K, enable C S0 for RAM

Configure the two PIO ports for default operation. All pins are set up as default input, except for P12
(used for driving the LED), and peripheral function pins for SER0 and SER1.

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1,
// P16=PCS0, P17=PCS1=PPI

outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P 2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

The chip select lines are by default set to 15 wait states. This makes it possible to interface with many
slower external peripheral components. If you require faster I/O access, you can modify this number down
as needed. Some TERN components, such as the Real-Time-Clock, might fail if the wait state is decreased
too dramatically. A function is provided for this purpose.

 Chapter 4: Software U-Drive

4-4

void io_wait
Arguments: char wait
Return value: none.

This function sets the current wait state depending on the argument wait.
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

4.2.2 External Interrupt Initialization

There are up to eight external interrupt sources on the UD, consisting of seven maskable interrupt pins
(INT6-INT0) and one non-maskable interrupt (NMI). There are also an additional eight internal interrupt
sources not connected to the external pins, consisting of three timers, two DMA channels, both
asynchronous serial ports, and the NMI from the watchdog timer. For a detailed discussion involving the
ICUs, the user should refer to Chapter 7 of the AMD Am186ES Microcontroller User’s Manual.

TERN provides functions to enable/disable all of the eight external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service routine
that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors correctly
for the specified external interrupt line.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled must
be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be handled
first, and a higher priority interrupt will interrupt any current interrupt handlers. So, if the user chooses to
clear the in-service bit for the interrupt currently being handled, the interrupt service routine just needs to
issue the nonspecific EOI command to clear the current highest priority IR.

To send the nonspecific EOI command, you need to write the EOI register word with 0x8000.
outport(0xff22, 0x8000);

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will act
as the interrupt service routine. The overhead on the interrupt service routine, when executed, is about 20
µs.

By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

void int0_init(unsigned char i, void interrupt far (* int0_isr)());
void int1_init(unsigned char i, void interrupt far (* int1_isr)());
void int2_init(unsigned char i, void interrupt far (* int2_isr)());

U-Drive Chapter 4: Software

4-5

void int3_init(unsigned char i, void interrupt far (* int3_isr)());
void int4_init(unsigned char i, void interrupt far (* int4_isr)());
void int5_init(unsigned char i, void interrupt far (* int5_isr)());
void int6_init(unsigned char i, void interrupt far (* int6_isr)());
void int7_init(unsigned char i, void interrupt far (* int7_isr)());
void int8_init(unsigned char i, void interrupt far (* int8_isr)());
void int9_init(unsigned char i, void interrupt far (* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

Two ports of 16 I/O pins each are available on the UD. Hardware details regarding these PIO lines can be
found in the Hardware chapter.

Several functions are provided for access to the PIO lines. At the beginning of any application where you
choose to use the PIO pins as input/output, you will need to initialize these pins in one of the four available
modes. Before selecting pins for this purpose, make sure that the peripheral mode operation of the pin is
not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ae_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 11 of the AMD Am186ES User’s Manual.

Please see the sample program ae_pio.c in tern\186\samples\ae. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be quite slow when accessing the PIO pins. Depending on the pin
being used, it might require from 5-10 µs. The maximum efficiency you can get from the PIO pins occur if
you instead modify the PIO registers directly with an outport instruction Performance in this case will be
around 1-2 µs to toggle any pin.

The data register is 0xff74 for PIO port 0, and 0xff7a for PIO port 1.

void pio_init
Arguments: char bit, char mode
Return value: none

bit refers to any one of the 32 PIO lines, 0-31.

mode refers to one of four modes of operation.

• 0, High-impedance Input operation
• 1, Open-drain output operation
• 2, output
• 3, peripheral mode

unsigned int pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned 16-bit value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char bit, char dat
Return value: none

 Chapter 4: Software U-Drive

4-6

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Timer Units

The three timers present on the UD can be used for a variety of applications. All three timers run at 1/4 of
the processor clock rate (10MHz based on 40MHz system clock, or one timer clock per 100ns), which
determines the maximum resolution that can be obtained. Be aware that if you enter power save mode, that
means the timers will operate at a reduced speed as well.

These timers are controlled and configured through a mode register which is specified using the software
interfaces. The mode register is described in detail in chapter 8 of the AMD Am186ES User’s Manual.

Pulse width demodulation is done by setting the PWD bit in the SYSCON register. Before doing this, you
will want to specify your interrupt service routines, which are used whenever the incoming digital signal
switches from high to low, and low to high. It is important to note the the interrupt latency generated by the
ISRs that handle a signal transition will define the time resolution the user will be able to achieve.

The timers can be used to time execution of your user defined code by reading the timer values before and
after execution of any piece of code. For a sample file demonstrating this application, see the sample file
timer.c in the directory tern\186\samples\ae.

Two of the timers, Timer0 and Timer1 can be used to do pulse-width modulation with a variable duty
cycle. These timers contain two max counters, where the output is high until the counter counts up to
maxcount A before switching and counting up to maxcount B.

It is also possible to use the output of Timer2 to pre-scale one of the other timers, since 16-bit resolution at
the maximum clock rate specified gives you only 150 Hz. Only by using Timer2 can you slow this down
even further. The sample files timer02.c and timer12.c, located in tern\186\samples\ae, demonstrate this.

The specific behavior that you might want to implement is described in detail in chapter 8 of the AMD
Am186ES User’s Manual.

void t0_init
void t1_init
Arguments: int tm, int ta, int tb, void interrupt far(*t_isr)()
Return values: none

Both of these timers have two maximum counters (MAXCOUNTA/B) available. These can all be specified
using ta and tb. The argument tm is the value that you wish placed into the T0CON/T1CON mode
registers for configuring the two timers.

The interrupt service routine t_isr specified here is called whenever the full count is reached, with other
behavior possible depending on the value specified for the control register.

void t2_init
Arguments: int tm, int ta, void interrupt far(*t_isr)()
Return values: none.

Timer2 behaves like the other timers, except it only has one max counter available.

U-Drive Chapter 4: Software

4-7

4.2.5 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J5) jumper is set, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop or
stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

The real time clock only allows storage of two digits of the year code, as reflected below. As a result,
application developers should be careful to account for a roll-over in digits in the year 2000. One solution
might be to store an offset value in non-volatile storage such as the EEPROM.

See sample ud_rtc.axe in c:\tern\186\samples\ud\ud.pdl

There is a common data structure used to access and use both interfaces.
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.
 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc16_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

 Chapter 4: Software U-Drive

4-8

int rtc16_rds
Arguments: char* time_string
Return value: int error_code

This function places the current value of the real time clock as a printable ASCII string into the character
array time_string. The array should have a size of 15 bytes. This function returns 0 on success and returns
1 in case of error, such as the clock failing to respond.

Void rtc16_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.

If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the byte
array would be initialized to:

unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use hardware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

while(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ae_reset

U-Drive Chapter 4: Software

4-9

Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\186\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the Am186ES CPU: SER0 and SER1. Both ports have
baud rates based on the 40 MHz clock, and can operate at a maximum of 1/16 of that clock rate.

By default, SER0 is used by the DEBUG ROM for application download/debugging in Step One and Step
Two. We will use SER1 as the example in the following discussion; any of the interface functions which are
specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port for use,
please realize that some pins might be shared with other peripheral functions. This means that in certain
limited cases, it might not be possible to use a certain serial port with other on-board controller functions.
For details, you should see both chapter 10 of the Am186ES Microprocessor User’s Manual and the
schematic of the UD provided on the CD in the tern_docs\schs directory.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These baud
rates are achieved by specifying a divisor for 1/16 of the processor frequency.

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 40 MHz system clock.

Function Argument Baud Rate

1 110
2 150
3 300
4 600
5 1200
6 2400
7 4800
8 9600
9 19,200 (default)
10 38,400
11 57,600
12 115,200
13 250,000
14 500,000
15 1,250,000

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

 Chapter 4: Software U-Drive

4-10

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the receiving
serial data stream into the memory by DMA1 operation. In terms of receiving, there is no software overhead
or interrupt latency for user application programs even at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user only has to check the buffer status with serhit1() and
take out the data from the buffer with getser1(), if any. The input buffer is used as a circular ring buffer,
as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Port 0/1 Control Register
(SP0CT/SP1CT) if necessary, as described in chapter 10 of the Am186ES manual for asynchronous serial
ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user does
not take out the data from the ring buffer with getser1() before the ring buffer is full, new data will
overwrite the old data without warning or control. Thus it is important to provide a sufficiently large buffer
if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4 KB buffer
will be able to store data for approximately four seconds without overwrite.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If there
is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise, it will
continue to take out the data from the out buffer, and transmit. After you call putser1() and transmit
functions, you are free to do other tasks with no additional software overhead on the transmitting operation.
It will automatically send out all the data you specify. After all data has been sent, it will clear the busy flag
and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?’. The translated HEX file is then transmitted out
of SER0. This sample program can be found in tern\186\samples\ae.

U-Drive Chapter 4: Software

4-11

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ae.h.

typedef struct {
 unsigned char ready; /* TRUE when ready * /
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status * /
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FL AG */
 unsigned char in_full; /* input buffer fu ll */
 unsigned char *out_buf; /* Output buffer * /
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer F LAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service oper ation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segmen t */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segm ent */
 unsigned int out_offs; /* output buffer offs et */
 unsigned char byte_delay; /* V25 macro service byt e delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value shown
in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, and no parity communication.

 Chapter 4: Software U-Drive

4-12

There are a couple different functions used for transmission of data. You can place data within the output
buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one of the
following functions, however, the driver interrupt for the appropriate serial-port will be disabled, which
means that no values will be transmitted. This allows you to control when you wish the transmission of data
within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate the
values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return value
returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns one
in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are working
with byte arrays, the single-byte versions of these functions are probably more appropriate.

U-Drive Chapter 4: Software

4-13

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once again
be aware that the peripheral pin function you are using might not be selected as needed. For details, please
refer to the Am186ES User’s Manual.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

The asynchronous serial I/O ports available on the Am186ES Processor have many other features that might
be useful for your application. If you are truly interested in having more control, please read Chapter 10 of
the AM186ES manual for a detailed discussion of other features available to you.

4.4 Functions in AEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board allows easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step Two, and other data that is of a more permanent nature.

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

 Chapter 4: Software U-Drive

4-14

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

4.5 Analog-to-Digital Conversion

Two ADC chip can be installed on the UD.

4.5.1 ADS8344 (16-bit, 8 channels)

The ADC unit provides 8 channels of analog inputs(0-5V) based on the 5V reference voltage supplied by
LT1019(U37). For details regarding the hardware configuration, see the Hardware chapter.

For a sample file demonstrating the use of the ADC, please see ud_ad.c in tern\186\samples\UD.

unsigned int ud_ad8344 (c)
Arguments: unsigned char c
Return values: unsigned int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel AD0, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

ud_ad8344(0); // Read from channel 0
chn_0_data = ud_ad8344(0); // Start the next conver sion, retrieve value.

4.5.2 LT2448 (24-bit 16 channels)

Delta-Sigma ADC LTC2448

The LTC2448 ADC (U11) provides 16 channels of 0-2.5V analog single-ended (24 differential) inputs. The
following functions will drive the 24-bit ADC. The order of functions given here should be followed in
actual implementation.

 void ad24_setup(unsigned char chip, unsigned int control_byte);

 void ad24 _rd(unsigned char* raw);

The control byte, control_byte, drives the LTC2448 in 16 channel single-ended mode with value 0xb000.

In code, the control byte is calculated this way:

 ch_sel=0; //select channel

 control_byte=control_byte+speed[10]; //add speed desired to 0xb000

 control_byte=control_byte+(ch_sel<<8); //add channel selection w/ 8 bit left shift

U-Drive Chapter 4: Software

4-15

NOTE: “ch_sel” and the desired channel signal do not match up. Instead use the following scheme to select
the desired signal on the board:

 ch_sel On U34
chip

Header
J11 pin

0 B00 18
1 B02 16
2 B04 14
3 B06 12
4 B08 10
5 B10 8
6 B12 6
7 B14 4
8 B01 17
9 B03 15
10 B05 13
11 B07 11
12 B09 9
13 B11 7
14 B13 5
15 B15(TMP) 3

The LTC2448 also supports 8 channel differential mode. This can be achieved by changing the control byte
passed to the ‘ad24_setup’ routine to 0xa0000 (speed and channel selection is added on the same way as in
single-ended mode). See the LTC2448 data sheet for details on how to define the control byte,
‘LTC2448.pdf’ in the tern_docs\parts directory.

For a sample file demonstrating the use of the ADC, please see ud_ad24.c in tern\186\samples\ud.

This sample is also included in the ud.ide test project in the tern\186\samples\ud directory.

4.6 Digital-to-Analog Conversion

The LT2600 provides 8 channels of 16-bit digital to analog conversion. For software purposes, we must
initialize the clock (SCK), data-in (SDI), and chip select (/DA):

void da_16 ()
Arguments: unsigned char mod, unsigned int dac
Return values: none

The argument mod selects the channel to write to. A value of 0x3[Y], where [Y]=0-7, corresponds to
channels V1-V8 respectively. Alternatively, 0x3f corresponds to all channels.
The argument dac is ranged from 0 to 0xffff, on a 5-volt scale.

da_16(0, 0); // Output zero voltage at V1
da_16(0, 0xffff); // Output 5V voltage at V1

For sample DAC code, see ud_da16.c in the \tern\186\samples\ud directory.

 Chapter 4: Software U-Drive

4-16

4.7 QUART TL16C754B
The four UART ports from the QUART TL16C754B require separate driver code outside of ae.lib. The
file quart.c in the \tern\186\samples\ud directory provides this code. A prebuilt project ud.ide in the same
directory includes ud_echo.c, which is a sample of QUART software usage.
There is no library as of yet to enclose these drivers, so this file must be included in any project node using
the QUART chip.

4.8 USB

The VNC1L chip using the Vinculum VDAP firmware is configured to provide 2 host USB ports. Port 1 is
used to interfacing to a USB Keyboard or mouse, while Port 2 is used for USB Flash Disk interface.

The document concerning all details of this firmware is in the \tern_docs\parts\USB directory on the
TERN CD, under the title DS_VNC1L_FW_VDAP.pdf.

Pages 10-13 of this document list out the entire firmware command set when communicating with the
VNC1L, as well as the responses expected from the chip. In the \tern\186\samples\ud directory, hd_ser1.c
can be used to talk to the VNC1L through a hyperterminal over serial port 1.

There are key bits to examine when transmiting/receiving data from the VNC1L.

Other samples include keyboard.c (USB Keyboard sample) and usb_disk.c (USB Flash disk sample). Both
of which are located in \tern\186\samples\UD.

4.9 Controller-Area-Network (CAN) Interface

The U-Drive optionally provides the Philips SJA1000 stand-alone CAN controller. This controller allows
the U-Drive to communicate over a Controller Area Network, a popular protocol and bus standard for
microcontroller communication.

BACKGROUND
Controllers communicate over a CAN network using frames, at a specified baud rate. Controllers can send
and receive equally on the CAN network, with the underlying chipset handling collision detection and basic
buffering.

In simplified form, each transmitted frame consists primarily of:

- Recipient address (11-bits);

- Data bytes (0-8 bytes);

- Protocol information (CRC consistency, and other bits indicating frame properties).

A controller initializes the CAN chipset by defining the class of messages it wants to receive. This is done
by defining an 8-bit address value as well as an 8-bit mask. The masked address value is used to compare
to the highest 8-bits of all incoming frames; qualifying frames are received and inserted into a buffer for the
application to handle. Unlike many other networking schemes, frames travelling on a CAN bus do not
identify who the sender is, and does not necessarily indicate a specific recipient.

Transmitted and received packets are buffered both in the hardware chipset (up to 64 bytes), as well as the
interrupt-driven TERN firmware drivers (buffer size defined by application).

U-Drive Chapter 4: Software

4-17

TERN firmware drivers are configured to use the SJA1000 in BasicCAN mode only. More advanced
features may be available by directly accessing the SJA1000’s control registers. The datasheet for the
SJA1000 may be found on the TERN development CD in the directory \tern_docs\parts.

SOFTWARE INTERFACE
The CAN driver software interface is shown in the header file: \tern\186\include\can.h.

The library file for the U-Drive implementation is at location: \tern\186\lib\can.lib, and
\tern\186\lib\large\can_l.lib.

CAN messages are defined using this CanMsg structure (similar to SJA1000 hardware representation):

typedef struct _can_msg {
 UCHAR8 descriptor[2];
 UCHAR8 data[8];
} CanMsg;

The two-byte descriptor field consists of message ID (11 bits), Remote-Transmission-Request/RTR flag (1
bit), and Data Length Code/DLC value (4 bits). These fields can be accessed on a message using these
macros defined in can.h:

 SET_CAN_MSG_ID(msg, val)
 READ_CAN_MSG_ID(msg)
 SET_CAN_MSG_RTR(msg, val)
 READ_CAN_MSG_RTR(msg)
 SET_CAN_MSG_DLC(msg, val)
 READ_CAN_MSG_DLC(msg)

TERN firmware drivers use a ring-buffer to store messages for transmit and receipt. The overall
mechanism is similar to standard serial port implementation (see section 4.1). The best sample
demonstrating these functions is: \tern\186\samples\cane\can_echo.c

int can_set_hw
Arguments: unsigned char board_type
Return values: none

This function configures the CAN port according to the architecture of your board. This function should be
called first, before any other CAN function is accessed. Available board_type values are defined in
can.h. If this call is not accurate, the CAN port can not be accessed.

For the U-Drive, this call should read:

can_set_hw(BOARD_UD);

int can_init
Arguments: unsigned char baud, CanMsg* inputBuf, int iSize, CanMsg*
outputBuf, int oSize, unsigned char address, unsigned char mask
Return values: 0 for success, non-zero error code.

This function is used to initialize message buffer support for the CAN port.

Baud - specifies the baud rate to be used for communication; supported values are defined in can.h. These
include: 1MHz, 500KHz, 250KHz, 125KHz, 100KHz, 50KHz, 20KHz, and 10KHz. Note: at higher baud
rates, termination resistors may be required on your TERN board for clean transmit and receive.

 Chapter 4: Software U-Drive

4-18

inputBuf, iSize – these variables represent the ring-buffer allocated for receiving messages.
inputBuf should be a CanMsg array, while iSize indicates the size of the array. TERN drivers will inject
messages into this array on an interrupt-driven basis.

outputBuf, oSize – similar to above; these variables represent the ring-buffer allocated for buffering
messages to be transmitted.

address, mask – these two byte values are used to determining which messages transmitted on the
CAN network should be “received”. For all messages, the mask value and the first 8-bits of the message
address are AND’ed together, and then compared to the address value.

void can_transceiver_enable
Arguments: unsigned char enable
Return values: none

After software drivers have been enabled, the CAN transceiver must still be enabled using a digital output
pin. Once the transceiver is enabled, the port will be connected to the CAN bus, and able to
transmit/receive messages.

On the U-Drive, the transceiver is controlled using PPI pin I17. If you’re also using the PPI port in your
own application, you will want to avoid calling this function, and instead access the pin directly:

 outportb(PPI3,0x99); // ppi mode 0, P1 outputs, ot her all input
 outportb(PPI1,0x7F); // P17/I17=RS low for CAN, tr anceiver ON

void can_hit
Arguments: none
Return value: non-zero if packet received, 0 if receive buffer is empty.

Use this function to determine whether a packet has been received and buffered. Call this function before
calling can_get() to retrieve actual message.

void can_get
Arguments: CanMsg* message
Return value: none

This function is used to retrieve a CAN message, after can_hit() has already been called. The argument
should be a pointer to a separately allocated CanMsg variable. The next message in the receive buffer will
be copied into this variable. Note: Make sure’message’ points to an allocated area of memory!

void can_put
Arguments: CanMsg* message
Return values: none.

This function adds message to the transmit buffer. Messages in the transmit buffer are sent on a FIFO
basis.

U-Drive Chapter 4: Software

4-19

void can_flush
Arguments: none
Return values: none.

This function can be used to make sure the transmit buffer does not over-flow. It will not return until all
currently buffered messages are fully transmitted, and the transmit buffer is completely empty.

 Appendix A: U-Drive Mechanical Dimensions
 All dimensions are in inches.

3.942, 3.958

0.125, 3.292

3.425, 3.292

0.158, 0.892

0.25, 0.133

0.00, 0.00

4.192, 3.958

4.25, 0.133

4.367, 0
2.483, 0.667 3.208, 0.667

0.158, 3.442

0.667, 3.083

0.25, 6.133

4.367, 6.442

3.942, 4.708

4.5, 6.525

3.358, 5.342

4.308, 5.508

0.00, 6.442

4.192, 4.708

 Appendix B: U-Drive Heaters

UD Appendix C: Software Glossary

C-1

Appendix C: Software Glossary
The following is a glossary of library functions for UD.

void ae_init(void) ae.h

 Initializes the AM188ES processor. The following is the source code for ae_init()
 outport(0xffa0,0xc0bf); // UMCS, 256K ROM, 3 wait states, disable AD15-0

outport(0xffa2,0x7fbc); // 512K RAM, 0 wait states
outport(0xffa8,0xa0bf); // 256K block, 64K MCS0, PCS I/O
outport(0xffa6,0x81ff); // MMCS, base 0x80000
outport(0xffa4,0x007f); // PACS, base 0, 15 wait

outport(0xff78,0xe73c); // PDIR1, TxD0, RxD0, TxD1, RxD1, P16=PCS0, P17=PCS1=PPI
outport(0xff76,0x0000); // PIOM1
outport(0xff72,0xec7b); // PDIR0, P12,A19,A18,A17,P2=PCS6=RTC
outport(0xff70,0x1000); // PIOM0, P12=LED

outportb(0x0103,0x9a); // all pins are input, I20-23 output
outportb(0x0100,0);
outportb(0x0101,0);
outportb(0x0102,0x01); // I20=ADCS high
clka_en(0);
enable();

Reference: led.c

void ae_reset(void) ae.h

 Resets AM188 processor.

void delay_ms(int m) ae.h

Approximate microsecond delay. Does not use timer.

Var: m – Delay in approximate ms

Reference: led.c

void led(int i) ae.h

Toggles P12 used for led.

Var: i - Led on or off

Reference: led.c

Appendix C: Software Glossary HD

C-2

void delay0(unsigned int t) ae.h

Approximate loop delay. Does not use timer.

Var: m – Delay using simple for loop up to t.

Reference:

void pwr_save_en(int i) ae.h

Enables power save mode which reduces clock speed. Timers and serial ports will be effected.
Disabled by external interrupt.

Var: i – 1 enables power save only. Does not disa ble.

Reference: ae_pwr.c

void clka_en(int i) ae.h

Enables signal CLK respectively for external peripheral use.

Var: i – 1 enables clock output, 0 disables (saves current when
disabled).

Reference:

void hitwd(void) ae.h

Hits the watchdog timer using P03. P03 must be connected to WDI of the MAX691 supervisor
chip.

Reference: See Hardware chapter of this manual for more information on the MAX691.

void pio_init(char bit, char mode) ae.h

Initializes a PIO line to the following:
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 Mode – above mode select

Reference: ae_pio.c

UD Appendix C: Software Glossary

C-3

void pio_wr(char bit, char dat) ae.h

Writes a bit to a PIO line. PIO line must be in an output mode
mode=0, Normal operation
mode=1, Input with pullup/down
mode=2, Output
mode=3, input without pull

Var: bit – PIO line 0 - 31
 dat – 1/0

Reference: ae_pio.c

unsigned int pio_rd(char port) ae.h

Reads a 16 bit PIO port.

Var: port – 0: PIO 0 - 15
 1: PIO 16 – 31

Reference: ae_pio.c

void outport(int portid, int value) dos.h

Writes 16-bit value to I/O address portid.

Var: portid – I/O address
 value – 16 bit value

Reference: ae_ppi.c

void outportb(int portid, int value) dos.h

Writes 8-bit value to I/O address portid.

Var: portid – I/O address
 value – 8 bit value

Reference: ae_ppi.c

int inport(int portid) dos.h

Reads from an I/O address portid. Returns 16-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

Appendix C: Software Glossary HD

C-4

int inportb(int portid) dos.h

Reads from an I/O address portid. Returns 8-bit value.

Var: portid – I/O address

Reference: ae_ppi.c

int ee_wr(int addr, unsigned char dat) aeee.h

Writes to the serial EEPROM.

Var: addr – EEPROM data address
 dat - data

Reference: ae_ee.c

int ee_rd(int addr) aeee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr – EEPROM data address

Reference: ae_ee.c

UD Appendix C: Software Glossary

C-5

void io_wait(char wait) ae.h

Setup I/O wait states for I/O instructions.

Var: wait – wait duration {0…7}
wait=0, wait states = 0, I/O enable for 100 ns
wait=1, wait states = 1, I/O enable for 100+25 ns
wait=2, wait states = 2, I/O enable for 100+50 ns
wait=3, wait states = 3, I/O enable for 100+75 ns
wait=4, wait states = 5, I/O enable for 100+125 ns
wait=5, wait states = 7, I/O enable for 100+175 ns
wait=6, wait states = 9, I/O enable for 100+225 ns
wait=7, wait states = 15, I/O enable for 100+375 ns

Reference:

void rtc16_init(unsigned char * time) c:\tern\186\samples\slc\slc_rtc.c

Sets real time clock date, year and time.

Var: time – time and date string
 String sequence is the following:

time[0] = weekday
time[1] = year10
time[2] = year1
time[3] = mon10
time[4] = mon1
time[5] = day10
time[6] = day1
time[7] = hour10
time[8] = hour1
time[9] = min10
time[10] = min1
time[11] = sec10
time[12] = sec1

unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: slc_rtc.c

int rtc16_rd(TIM *r) c:\tern\186\samples\slc\slc_rtc.c

Reads from the real time clock.

Var: *r – Struct type TIM for all of the RTC data

typedef struct{
 unsigned char sec1, sec10, min1, min10, hour1, hour10;
 unsigned char day1, day10, mon1, mon10, year1, year10;
 unsigned char wk;

} TIM;

Reference: slc_rtc.c

Appendix C: Software Glossary HD

C-6

int rtc16_rds(char * time_string) c:\tern\186\samples\slc\slc_rtc.c

Reads from the real time clock in ASCII string form.

Var: *time_string – 15 byte character array
String sequence is the following:

time[0] = weekday
time[1] = year1000
time[2] = year100
time[3] = year10
time[4] = year1
time[5] = mon10
time[6] = mon1
time[7] = day10
time[8] = day1
time[9] = hour10
time[10] = hour1
time[11] = min10
time[12] = min1
time[13] = sec10
time[14] = sec1
time[15] = ‘\0’

Reference: slc_rtc.c

void t2_init(int tm, int ta, void interrupt far(*t2_isr)()); ae.h
void t1_init(int tm, int ta, int tb, void interrupt far(*t1_isr)());
void t0_init(int tm, int ta, int tb, void interrupt far(*t0_isr)());

Timer 0, 1, 2 initialization.

Var: tm – Timer mode. See pg. 8-3 and 8-5 of the A MD CPU Manual

ta – Count time a (1/4 clock speed).
tb – Count time b for timer 0 and 1 only (1/4 clock).

Time a and b establish timer duty cycle (PWM). See
hardware chapter.

 t #_isr – pointer to timer interrupt routine.
Reference: timer.c, timer1.c, timer02.c, timer2.c, timer0.c timer12.c

void nmi_init(void interrupt far (* nmi_isr)()); ae.h
void int0_init(unsigned char i, void interrupt far (*int0_isr)());
void int1_init(unsigned char i, void interrupt far (*int1_isr)());
void int2_init(unsigned char i, void interrupt far (*int2_isr)());
void int3_init(unsigned char i, void interrupt far (*int3_isr)());
void int4_init(unsigned char i, void interrupt far (*int4_isr)());
void int5_init(unsigned char i, void interrupt far (*int5_isr)());
void int6_init(unsigned char i, void interrupt far (*int6_isr)());

Initialization for interrupts 0 through 6 and NMI (Non-Maskable Interrupt).

UD Appendix C: Software Glossary

C-7

Var: i – 1: enable, 0: disable.

 int #_isr – pointer to interrupt service.
Reference: intx.c

void s0_init(unsigned char b, unsigned char* ibuf, int isiz, ser0.h
 unsigned char* obuf, int osiz, COM *c) (void);

void s1_init(unsigned char b, unsigned char* ibuf, int isiz, ser1.h
 unsigned char* obuf, int osiz, COM *c) (void);

Serial port 0, 1 initialization.

Var: b – baud rate. Table below for 40MHz and 20MHz Clocks.
 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

b baud (40MHz) baud (20MHz)
1 110 55
2 150 110
3 300 150
4 600 300
5 1200 600
6 2400 1200
7 4800 2400
8 9600 4800
9 19200 9600
10 38400 19200
11 57600 38400
12 115200 57600
13 23400 115200
14 460800 23400
15 921600 460800

Reference: s0_echo.c, s1_echo.c, s1_0.c

Serial port 0, 1 initialization.

Var: m1 = SCC691 MR1

m2 = SCC691 MR2
b – baud rate. T able below for 8MHz Clock.

 ibuf – pointer to input buffer array
 isiz – input buffer size
 obuf – pointer to output buffer array
 osiz – ouput buffer size

c – pointer to serial port structure. See AE.H for COM
structure.

m1 bit Definition
7 (RxRTS) receiver request-to-send control, 0=no, 1 =yes
6 (RxINT) receiver interrupt select, 0=RxRDY, 1=FIF O FULL
5 (Error Mode) Error Mode Select, 0 = Char., 1=Bloc k
4-3 (Parity Mode), 00=with, 01=Force, 10=No, 11=Spe cial
2 (Parity Type), 0=Even, 1=Odd
1-0 (# bits) 00=5, 01=6, 10=7, 11=8

Appendix C: Software Glossary HD

C-8

m2 bit Definition
7-6 (Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R emote loop
5 (TxRTS) Transmit RTS control, 0=No, 1= Yes
4 (CTS Enable Tx), 0=No, 1=Yes
3-0 (Stop bit), 0111=1, 1111=2

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putser0(unsigned char ch, COM *c); ser0.h
int putser1(unsigned char ch, COM *c); ser1.h

Output 1 character to serial port. Character will be sent to serial output with interrupt isr.

Var: ch – character to output
 c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsers0(unsigned char *str, COM *c); ser0.h
int putsers1(unsigned char *str, COM *c); ser1.h

Output a character string to serial port. Character will be sent to serial output with interrupt isr.

Var: str – pointer to output character string
 c – pointer to serial port structure

Reference: ser1_sin.c

int serhit0(COM *c); ser0.h
int serhit1(COM *c); ser1.h

Checks input buffer for new input characters. Returns 1 if new character is in input buffer, else 0.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

unsigned char getser0(COM *c); ser0.h
unsigned char getser1(COM *c); ser1.h

Retrieve 1 character from the input buffer. Assumes that serhit routine was evaluated.

Var: c – pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

UD Appendix C: Software Glossary

C-9

int getsers0(COM *c, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); ser1.h

Retrieves a fixed length character string from the input buffer. If the buffer contains less characters
than the length requested, str will contain only the remaining characters from the buffer. Appends
a ‘\0’ character to the end of str. Returns the retrieved string length.

Var: c – pointer to serial port structure

len – desired string length
str – pointer to output character string

Reference: ser1.h, ser0.h for source code.

Appendix D: RTC72421 / 72423 U-Drive

D-1

Appendix D: RTC72421 / 72423

Function Table

 Address Data
A3 A2 A1 A0 Register D3 D2 D1 D0 Count

Value
 Remarks

0 0 0 0 S1 s8 s4 s2 s1 0~9 1-second digit register

0 0 0 1 S10 s40 s20 s10 0~5 10-second digit register

0 0 1 0 MI1 mi8 mi4 mi2 mi1 0~9 1-minute digit register

0 0 1 1 MI10 mi40 mi20 mi10 0~5 10-minute digit register

0 1 0 0 H1 h8 h4 h2 h1 0~9 1-hour digit register

0 1 0 1 H10 PM/AM h20 h10 0~2
or
0~1

PM/AM, 10-hour digit
register

0 1 1 0 D1 d8 d4 d2 d1 0~9 1-day digit register

0 1 1 1 D10 d20 d10 0~3 10-day digit register

1 0 0 0 MO1 mo8 mo4 mo2 mo1 0~9 1-month digit register

1 0 0 1 MO10 mo10 0~1 10-month digit register

1 0 1 0 Y1 y8 y4 y2 y1 0~9 1-year digit register

1 0 1 1 Y10 y80 y40 y20 y10 0~9 10-year digit register

1 1 0 0 W w4 w2 w1 0~6 Week register

1 1 0 1 Reg D 30s
Adj

IRQ
Flag

Busy Hold Control register D

1 1 1 0 Reg E t1 t0 INT/
STD

Mask Control register E

1 1 1 1 Reg F Test 24/ 12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;

 2) Mask AM/PM bit with 10's of hours operations;

 3) Busy is read only, IRQ can only be set low ("0");

 4)

Data bit PM/AM INT/STD 24/12
 1 PM INT 24
 0 AM STD 12

 5) Test bit should be "0".

UD 0 Serial EEPROM Map

 1

Serial EEPROM Map
Part of the on-board serial EEPROM locations are used by system software. Application programs must not use
these locations.

0x00 Node Address, for networking
0x01 Board Type 00 VE
 10 CE
 01 BB
 02 PD
 03 SW
 04 TD
 05 MC
0x02
0x03
0x04 SER0_receive, used by ser0.c
0x05 SER0_transmit, used by ser0.c
0x06 SER1_receive, used by ser1.c
0x07 SER1_transmit, used by ser1.c

0x10 CS high byte, used by ACTR™
0x11 CS low byte, used by ACTR™
0x12 IP high byte, used by ACTR™
0x13 IP low byte, used by ACTR™

0x18 MM page register 0
0x19 MM page register 1
0x1a MM page register 2
0x1b MM page register 3

Date: February 19, 2008 Sheet 1 of 2

Size Document Number REV

B UD1-M.SCH

Title

U-DRIVE

TERN

D5
D4
D3
D2
D1
D0

GND

GND
CLK

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

/RST
RST

D15

VCC

ALE

P15

VCC

/RTS0

/RTS1

P14

P1

P6
/INT4

 1 2
 3 4
 5 6
 7 8
 9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J2

VRAM

/RST
D0

D1

GND

RXD0

TXD1
RXD1

TXD0
/CTS0

P5

P4

P2

A1

A2

A3

VCC

VOFF

/RTC STD
 1

/CS 2

NC 3

ALE 4

A0 5

NC
 6

A1 7

NC 8

A2 9

A3 10

/RD 11

G 12

VCC
24

X2 23

X1 22

NC 21

CS1 20

D0
19

NC 18

NC 17

D1 16

D2 15

D3 14

/WR 13

U10 72423
VOFFA0

 1

A1 2

A2 3

A3 4

A4 5

/CS
 6

D0 7

D1 8

D2 9

D3 10

VCC 11

GND 12

D4 13

D5 14

D6 15

D7 16

/WR 17

A5 18

A6 19

A7 20

A8 21

A16 22

A15
44

A14 43

A13 42

/OE 41

/UB 40

/LB
39

D15 38

D14 37

D13 36

D12 35

GND 34

VCC 33

D11 32

D10 31

D9 30

D8 29

NC 28

A12 27

A11 26

A10 25

A9 24

A17 23

U3

RAM44

A15
 1

A14 2

A13 3

A12 4

A11 5

A10
 6

A9 7

A8 8

NC 9

NC 10

/WR 11

/RST 12

NC 13

NC 14

RY 15

NC 16

A17 17

A7 18

A6 19

A5 20

A4 21

A3 22

A2 23

A1 24

A16
48

/BY 47

GND 46

D15 45

D7 44

D14
43

D6 42

D13 41

D5 40

D12 39

D4 38

VCC 37

D11 36

D3 35

D10 34

D2 33

D9 32

D1 31

D8 30

D0 29

/OE 28

GND 27

/CE 26

A0 25

U1 29F800

3V
 1

WAIT 2

D15 3

D14 4

D13 5

D12 6

D11 7

D10 8

D9 9

5V 10

D8 11

D7 12

D6 13

D5 14

D4 15

D3 16

D2 17

D1 18

D0 19

GND 20

G
N
D

8
0

R
/
W

7
9

W
E
1

7
8

W
E
0

7
7

R
D

7
6

B
S

7
5

C
S

7
4

/
R
S
T

7
3

G
N
D

7
2

B
C
L
K

7
1

A
0

7
0

A
1

6
9

A
2

6
8

A
3

6
7

A
4

6
6

A
5

6
5

A
6

6
4

A
7

6
3

A
8

6
2

3
V

6
1

GND
60

A9 59

A10 58

A11 57

A12 56

A13 55

A14 54

A15 53

5V 52

CLKI 51

GND 50

CNF0 49

CNF1 48

CNF2 47

CNF3 46

A16 45

TEST 44

LCDPWR 43

DRDY 42

3V 41

3
V

2
1

G
P
0

2
2

F
D
1
1

2
3

F
D
1
0

2
4

F
D
9

2
5

F
D
8

2
6

G
N
D

2
7

S
H
I
F
T

2
8

5
V

2
9

F
D
7

3
0

F
D
6

3
1

F
D
5

3
2

F
D
4

3
3

F
D
3

3
4

F
D
2

3
5

F
D
1

3
6

F
D
0

3
7

L
I
N
E

3
8

F
R
A
M
E

3
9

G
N
D

4
0

U22

SED1375

A4

GND
/RD

RST

D3
D2
D1
D0

D2
D3
/WR

VCC
GND

P25

/CTS1
P0

P10

P26

/INT0
/INT1VCCD7

D6
D5
D4 /WR

/RD

P16
D14
D13

D12

D11
D10
D9
D8

P24

P13

P3

P29

/NMI

D7
D6

A0
A1
A2

GND

A3
A4
A5
A6
A7

I22
I20

I25
I27
I07
I05
I03
I01

VCC

I23
I21

I26
I24

I06
I04
I02
I00
GND 1 2

 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J6

I23

CK

DI
AD24

/CST

AD12
DA16
A0B

RS
I07
I06
I05
I04

I03
I02
I01
I00

/WR /WR 40

P07 41

P06 42

P05 43

P04 44

NC 1

P03 2

P02 3

P01 4

P00 5

/RD 6

R
S
T

3
9

D
0

3
8

D
1

3
7

D
2

3
6

D
3

3
5

N
C

3
4

D
4

3
3

D
5

3
2

D
6

3
1

D
7

3
0

V
D
D

2
9

P17 28

P16 27

P15 26

P14 25

P13 24

NC 23

P12 22

P11 21

P10 20

P23 19

P22 18/
C
S

7

G
N
D

8

A
1

9

A
0

1
0

P
2
7

1
1

N
C

1
2

P
2
6

1
3

P
2
5

1
4

P
2
4

1
5

P
2
0

1
6

P
2
1

1
7

U5

PPI8255
/RST

WDI

RST

/RAM

WDO

P12

/LCS

 1 2
J4

HDRD2

VRAM
VBAT

VCC
GND

/LL

VB 1

VO 2

VCC 3

GND 4

BON 5

/LL 6

OSI 7

OSS
 8

RST 16

/RST 15

WDO 14

CEI 13

CEO 12

WDI 11

PFO 10

PFI
 9

U6
MAX691

GND

X+
Y+
X-
Y-

AN11
AN12

GND
XCK
LP
YD
GND

FD9

5V

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

H1533FLZ

5V
5V

CK

DI
BY
DOT

GND
GND

GND

R25

DA1
DA2

D4

/RST
/INT2

/CST5V 1

X+ 2

Y+ 3

X-
 4

Y- 5

GD 6

I3 7

I4 8

CK 16

CS 15

DI 14

BY
13

DO 12

PI 11

5V 10

RF 9

U23 ADS7843

GND

VCC

/DA

DA3
DA4

A1
A2

RF+ 1

VB 2

VA
 3

VSS 4

GND 5

RST 6

LD 7

D0
 8

D1 9

D2 10

D3 11

D4 12

D5
 13

D6 14

RF- 28

VC 27

VD
26

VDD 25

NC 24

CS 23

A0 22

A1
21

R/W 20

D11 19

D10 18

D9 17

D8
16

D7 15

U11

DAC7625

PFI
PFO

A1
A2

GND

I27 I26
I25
I24

/RD

/PPI
I20
I21

I22

R25
GND

GND
AA2

AB1

AB2 DA1
DA2
GND
GND
GND
GND
GND

AA1
AA2
AB2
AB1

DA3
DA4

GND

RXD0
TXD0

RST
TXD1
RXD1

/RXF

A3VCC
GND
P26

RST
/AD

VCC

GND
D0
D1
D2
D3

/PPI

I/O

VCC
GND

RXD0
TXD0

RST

A1
A2

/RST

/WR
/RD

/RTS1
5V

TXD1
RXD1

/RXF

ACK

/TXE

WRU
/RDU

INT3
P13

P17

D0
D1
D2
D3
D4
D5
D6
D7

DI
CK
/PP

P26

P29 AD12
AD24

DA16

BY24
DO24
BY12
DO12

V33
VOFF
RS

ALE
/INT0

A7
A6

A5
/WRU

A3

D15
D14
D13
D12D8

D9
D10
D11

A4

/CAN

GND

GND

GND
A2

R25
GNDAA1

5V
A0B

AG 1

AV 2

A0 3

BYTE
 4

A/B 5

DG 6

IMPUL 7

S/P 8

D0 9

D1 10

D2 11

D3 12

A
G

4
8

A
G

4
7

I
N
A
1

4
6

I
N
A
N

4
5

I
N
A
2

4
4

R
E
F
A

4
3

R
E
F
B

4
2

I
N
B
2

4
1

I
N
B
N

4
0

I
N
B
1

3
9

R
E
F
G

3
8

R
E
F

3
7

DV 36

CNV 35

PD 34

RST
33

CS 32

RD 31

EOC 30

BSY 29

D15 28

D14 27

D13 26

D12 25
D
4

1
3

D
5

1
4

D
6

1
5

D
7

1
6

O
G
N
D

1
7

O
V

1
8

D
V

1
9

D
G
N
D

2
0

D
8

2
1

D
9

2
2

D
1
0

2
3

D
1
1

2
4

U12
AD7655

GND

GND

GND

GND

GND

D4D5

D0D1
D2D3

/RST1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP2 HD28

GND

GND

A6 A5
A4 A3

A7

/WR /RD
RST

/INT4V33

LA3
LA5LA4

LA2

LA6

LA0
LA1

/CTS1

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP1 HD28

/PPI

GND
D15
D14
D13
D12
D11

/RTCA
 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0
15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U14

74HC138

BP1

BEEP

X+
Y+
X-
Y-

A6
A5

1
2
3
4

H2

2434

D10
D9
D8
D7
D6
D5

1
2
3
4

H16

253X

X+
Y+
X-
Y-

GND

GND

FD2
FD1
FD0

FD10
FD5
FD4
FD3

GND
DRDY
V33
V33
GND
V33

FD6
FD7
FD8
FD11

10
 9
 8
 7
 6
 5
 4
 3
 2
 1RN1 10K

RN10S1

/RST
RST

/INT4
/INT4
INT4

P1

VCC

/RST

A7

P2

VCC

/NMI

VCC

/RDK
/LA

/CAN

/TXE

ACK

1A 1

1Y 2

2A 3

2Y 4

3A 5

3Y 6

G 7

V 14

6A 13

6Y 12

5A 11

5Y 10

4A 9

4Y 8

U7

74HC14Z

/PP

/DA
/AD

GND
A2 A1
A0

V33

VCC/RDK
/RDK

BY

1G 1

1A1 2

2Y4 3

1A2 4

2Y3 5

1A3 6

2Y2 7

1A4 8

2Y1 9

GND 10

VCC 20

2G 19

1Y1 18

2A4 17

1Y2 16

2A3 15

1Y3 14

2A2 13

1Y4 12

2A1 11

U8

244V

D0D7

GND
D6D7
V33

LA0
LA1
LA2
LA3

D1 3 Q1 2

D2 4 Q2 5

D3 7 Q3 6

D4 8 Q4 9

D5 13 Q5 12

D6 14 Q6 15

D7 17 Q7 16

D8 18 Q8 19

CLK 11

CLR 1

U9

74HC273

D0
D1
D2
D3 D4

D3
D2
D1
D0

D11

GND
GND
GND

A2
A1
A4

/RD
/WR

P29
P13

P17

D14
D13
D12

D15

/RD D4
D5
D6
D7

/RST

/RTS1
5V

WRU
/RDU

/TXE

ACK

INT3

AD12
AD24

BY24

DA16

/CAN

DO12

DO24
BY12

VOFF
RS

/INT0
A5

D14
D13
D12

D15
V33

P11
P12
GND

/PP
CK
DI
V33
ALE

A7
A6

/WRU

D11
D10
D9
D8

GND A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U4

24C04S

D7
D6

D5 D10
D9

D8
GND GND

VCC

/RST
/LA

LA5
LA6
LA7

LA4D4
D5
D6
D7

DOT
D1D6

D5

DO24

BY24
D4

D2

D3

NMI

INT1
/INT1

/WRU
WRU

/RXF

DO12

R2

680

L1

LED

GND

INT0
/INT0

P29

/NMI

/INT0
/INT1

P17

P26 GND

/INT2
INT2/INT2

VCC
PFI

R1

VCC R5

GND
GND

V53
V33

VCC

1
2
3

J5

HDRS3

VCCVCC

5V5V

VCC

C2

C8

C19 C20
V53
C3

5V

VCC

C62 C63
5V 5V

C24 C14

P11

P6

V53 V33 V33
C7 C16 C17

VCC R6

VCC R7

V53
C5

 1 2
H0

HDRD2

V33 V33
C60 C61

5V

VCC
VC

C1
V33

C4

C6

C9 C10

C13 C18

C22

V33
C15 C02

P12

X2 X1
XTAL1

40MHZ
C11

10PF

C12
10PF

VBAT
- 1 + 2

+
 3

B1

BTH1

VCC
R25

U0

LM285

R3

220
C23
CAPNP

Date: February 19, 2008 Sheet 2 of 2

Size Document Number REV

B UD2-M.SCH

Title

U-DRIVE I/O

TERN/STE

GND

OT1-
OT2-

S1 N1
S2
S3
S4

N2
N3
N4

+12VI

OT1+
OT2+

VCCGND

HIGH VOLTAGE HEADER

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J8

HDRD40

OT1-
OT2-
OT3-
OT4-

GND
GND
GND
GND
VCC5V

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26

H11

HDRD26

CONFIGURATION HEADERL17
L16
L15
L14
L13
L12
L11
L10 U0

U1
U2
U3
U4
U5
U6
U7

G1 K1

I1
 1

I2 2

I3 3

I4 4

I5 5

I6
 6

I7 7

I8 8

VS 9

O1
18

O2 17

O3 16

O4 15

O5 14

O6
13

O7 12

O8 11

G 10

U29

UDS2982

KG
L00
L01
L02
L03
L04
L05
L06
L07 I1

 1

I2 2

I3 3

I4 4

I5 5

I6
 6

I7 7

I8 8

VS 9

O1
18

O2 17

O3 16

O4 15

O5 14

O6
13

O7 12

O8 11

G 10

U28

UDS2982

H0
H1
H2
H3
H4
H5
H6
H7

REF

GND

GND

GND

GND

GNDAD24

CK
DIDO24

BY24

C51

1UF

REF

G 1

BY 2

EXT 3

G 4

G 5

G 6

COM 7

A0 8

A1 9

A2 10

A3 11

A4 12

S
K

3
8

S
D
O

3
7

C
S

3
6

F
0

3
5

S
D
I

3
4

G

3
3

G

3
2

G 31

RF- 30

RF+ 29

VCC 28

MXO- 27

AI- 26

AI+ 25

MXO+ 24

A15 23

A14 22

A13 21

A12 20
A
5

1
3

A
6

1
4

A
7

1
5

A
8

1
6

A
9

1
7

A
1
0

1
8

A
1
1

1
9

U34
LTC2449

VCC

L17

VCCD7
D6
D5
D4

RST

/WR /WR 40

P07 41

P06 42

P05 43

P04 44

NC 1

P03 2

P02 3

P01 4

P00 5

/RD 6

R
S
T

3
9

D
0

3
8

D
1

3
7

D
2

3
6

D
3

3
5

N
C

3
4

D
4

3
3

D
5

3
2

D
6

3
1

D
7

3
0

V
D
D

2
9

P17 28

P16 27

P15 26

P14 25

P13 24

NC 23

P12 22

P11 21

P10 20

P23 19

P22 18/
C
S

7

G
N
D

8

A
1

9

A
0

1
0

P
2
7

1
1

N
C

1
2

P
2
6

1
3

P
2
5

1
4

P
2
4

1
5

P
2
0

1
6

P
2
1

1
7

U33

PPI8255

D3
D2
D1
D0

GND

/TXD0
/RXD0

/TXD1
/RXD1

 1 2
 3 4
 5 6
 7 8
 9 10

H4

 1 2
 3 4
 5 6
 7 8
 9 10

H04

COM0 DEBUG 232

COM1 RS232

GND

 1 2
 3 4
 5 6
 7 8
 9 10

H6
/TX2
/RX2
CT2

RT2

RT3

CT3
/RX3
/TX3

GND

 1 2
 3 4
 5 6
 7 8
 9 10

H06

QUART1 RS232

QUART2 RS232

L07
L06
L05
L04

L03
L02
L01
L00
/RD

L23

L11

L13

L15

L22

L10

L12

L14

L16

B01
B02
B03
B04

B00

10
 9
 8
 7
 6
 5
 4
 3
 2
 1RN3 10K

RN10S1

TMP

B12
B13
B14

5V

VCC

 8
 7
 6
 5
 4
 3
 2
 1RN4 10K

RN8S1

L21

L22

L23

VCC

10
 9
 8
 7
 6
 5
 4
 3
 2
 1RN2 10K

RN10S1

VCC

L00
L01
L02
L03
L04
L05
L06
L07 L17

L16
L15
L14
L13
L12
L11
L10

G

G1
+12VIK

K1 +12VI
GND

GND

OT3-
OT4-

OT3+
OT4+

GND

U0U1
U2U3
U4U5
U6U7

H0H1
H2H3
H4H5
H6H7

GNDGND

N1
+12VI GND

S11
2

H3

HDRS2

1
2

H5

T2

S1 1
2
3
4

H05

HDRS4
GND
GND

VCC
S3

N3

VCC
S4

N4
L26 L27

COTO SIP REED RELAY-9007

1
2
3
4

S2

REL4

1
2
3
4

S3

REL4

1
2
3
4

S4

REL4

VCC
S1

N1

VCC
S2

N2
L24 L25

1
2
3
4

S1

REL4

L20
B05
B06
B07 B09

B10
B11

B08

AD0 1

AD1
 2

AD2 3

AD3 4

AD4 5

AD5 6

AD6
 7

AD7 8

COM 9

SHD 10

VCC 20

CLK
19

CS 18

DIN 17

BSY 16

DOU 15

GND
14

GND 13

VCC 12

REF 11

U35

ADS8344

VCC

GND
RT3

A1
L27 L26

L25
L24
L20
L21

C7+

C7-
V+

A2
GND

/PP

C1+ 1

V+ 2

C1- 3

C2+ 4

C2-
 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I 13

R1O
12

T1I 11

T2I 10

R2O 9

U21

MAX232D

QUART3+4 RS485

VCC

GND
C1+
V+

GND

GND

X4-
X4+ X5+

X5-

GND

C1+ 1

V+ 2

C1- 3

C2+
 4

C2- 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I
13

R1O 12

T1I 11

T2I 10

R2O 9

U17

MAX232D

 1 2
 3 4
 5 6
 7 8
 9 10

H7

TXD0
RXD0

/TXD0
/RXD0

C1-
C2+
C2-
V-

VCC

GND
C5+

C5-

/TXD1
/RXD1

TXD1
RXD1

V+
/TX3

C1+ 1

V+ 2

C1-
 3

C2+ 4

C2- 5

V- 6

T2O 7

R2I
 8

VCC 16

GND 15

T1O
14

R1I 13

R1O 12

T1I 11

T2I 10

R2O
 9

U19

MAX232D

C1-

C1+

C2-

C2+

C5+
C7-

C8+
C8-

C7+

C8+
GND

V-
CT2
RT2

RX4

/RT4

C26

C27
C30

C31C32

VCC

/RT2
/CT2
/RT3
/CT3
CT3

X4-
X4+

RO 1

/RE 2

DE
 3

DI 4

VCC 8

B 7

A
 6

GND 5

U38

LTC485

AD1
AD2
AD3
AD4
AD5
AD6
AD7
COM
5V

AD0

X7
C44

GND

CK

REF

5V

5V

DI
BY12
DO12

AD12

PRG
GND

1
2

H8

1
2
3

H10

HDRS3

VOFF

X8

AD6 1

AD7 2

ALE 3

/CS
 4

/RD 5

/WR 6

CKO 7

VS1 8

XT1
 9

XT2 10

MOD 11

VD3 12

TX0 13

TX1
 14

AD5 28

AD4 27

AD3 26

AD2
25

AD1 24

AD0 23

VD1 22

VS2 21

RX1
20

RX0 19

VD2 18

/RT 17

/IT 16

VS3
15

U40

SJA1000

XTAL4
20MHZ

C45
10PF

+12VI

+12VI
GND

1
2

T1

T2

 1 2
J7

HDRD2

B12B13
B14TMP

B10B11

B00
B02B03
B04

B01

B09 B08

B05
B06 B07

GND 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J11
ANALOG HEADER

VCC

CANHCANL

GND

GND 1 2

 3 4

 5 6

H9

HDRD6

CAN INTERFACE

GND
VCC

D0BD1B

D2BD3B

 1 2

 3 4

 5 6

H1

HDRD6

USB PROGRAM PORT

V8V7
V5 V6
REF

V1V2
V3V4

VCC

GND
GND

AD0AD1
AD2AD3
AD4AD5
AD6AD7
COM

CANM

R19

R4

AC6

CANH

CANL

/RST

V8
V7

VCC

V5
V6

DI

GND 1

V1 2

V2 3

V3
 4

V4 5

REF 6

/CS 7

SCK 8

VCC 16

V8 15

V7 14

V6
13

V5 12

/CR 11

SDO 10

SDI 9

U36

LTC2600

VCC

X5-
X5+

GND
V1
V2
V3
V4

CK
DA16
REF

RO
 1

/RE 2

DE 3

DI 4

VCC
 8

B 7

A 6

GND 5

U39

LTC485

C5-

C6-

C6+
C8-

VCC
D0B

D1B
D2B

D3B

TX4

RX5
GND

TX5
/RT5

C33

GND

V+

C6+
C6-
V-

GND

D4B
D5B

D6B
D7B

C28

/RX3
RX3
TX3
TX2
RX2

/TX2
/RX2

V-

VCC

RX2

/CT2

NC 1

NC 2

DSRA 3

CTSA 4

DTRA 5

VCC 6

RTSA 7

INTA 8

CSA 9

TXA 10

IOW 11

TXB 12

CSB 13

INTB 14

RTSB 15

GND 16

DTRB 17

CTSB 18

DSRB 19

NC 20

N
C

8
0

C
D
A

7
9

R
I
A

7
8

R
X
A

7
7

G
N
D

7
6

D
7

7
5

D
6

7
4

D
5

7
3

D
4

7
2

D
3

7
1

D
2

7
0

D
1

6
9

D
0

6
8

I
N
T
S

6
7

V
C
C

6
6

R
X
D

6
5

R
I
D

6
4

C
D
D

6
3

N
C

6
2

N
C

6
1

NC 60

DSRD 59

CTSD 58

DTRD 57

GND 56

RTSD 55

INTD 54

CSD 53

TXD 52

IOR 51

TXC 50

CSC 49

INTC 48

RTSC 47

VCC 46

DTRC 45

CTSC 44

DSRC 43

NC 42

NC 41
N
C

2
1

N
C

2
2

C
D
B

2
3

R
I
B

2
4

R
X
B

2
5

C
K
S
E
L

2
6

N
C

2
7

A
2

2
8

A
1

2
9

A
0

3
0

X
1

3
1

X
2

3
2

R
S
T

3
3

R
X
R
D
Y

3
4

T
X
R
D
Y

3
5

G
N
D

3
6

R
X
C

3
7

R
I
C

3
8

C
D
C

3
9

N
C

4
0

U20

16C754

C29

GND

RX5

BY12

/RT5
V33

ACKV33
P29

/TXE
/RXF

/RDU
WRU

R9

R10

GND
TMP

NC 1

IN 2

TEMP 3

GND 4

NC 8

HEAT 7

OUT 6

TRIM 5

U37

LT1019

V+
V+
C50

1UF

GND USB1+BD7

R12 27

R13

R17
100K

C43

1UF

REF GND
VCC

TX0

RX0
5V

GNG 1

VO 2

VI 3 VO 4

U24

BB1117

DP1

CANH
CANL

RSTXD 1

G 2

V+ 3

RXD 4

RS 8

CANH 7

CANL 6

REF 5

U41

MCP2551 A7
A6
A5

/RST
P17

/RDU
/WRU

/UR2
/UR3
/UR4
/UR5

A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U31

74HC138

/RSTC

C52

OT1 I1+ 1

I1- 2

I2+ 3

I2- 4

I3+ 5

I3- 6

I4+ 7

I4- 8

O1+ 16

O1- 15

O2+ 14

O2- 13

O3+ 12

O3- 11

O4+ 10

O4- 9

U27

NECOPTO

L20

GND 1

D3 2

D4 3

D5 4

D6 5

D7 6

/CE1 7

A10 8

/OE 9

A9 10

A8 11

A7 12

VCC 13

A6 14

A5 15

A4 16

A3 17

A2 18

A1 19

A0 20

D0 21

D1 22

D2 23

WP 24

CD2 25

CD1 26

D11 27

D12 28

D13 29

D14 30

D15 31

/CE2 32

/VS1 33

/RD 34

/WR 35

/WE 36

RDY 37

VCC 38

/CS 39

VS2 40

RST 41

/WT 42

/IP 43

/REG 44

BV2 45

BV1 46

D8 47

D9 48

D10 49

GND 50

U26 CF

GND

GND

GND

GND
L21

L22

L23

OT1-
OT2

OT3

OT4

OT2-

OT3-

OT4-

OT1OT1+
OT2+ OT2

 1 2
 3 4
 5 6
 7 8

RP1 10K

V33
/CF

D7
D6
D5
D4
D3
D2
D1
D0 D0B

D1B
D2B
D3B
D4B
D5B
D6B
D7BA1 2 B1 18

A2 3 B2 17

A3 4 B3 16

A4 5 B4 15

A5 6 B5 14

A6 7 B6 13

A7 8 B7 12

A8 9 B8 11

G 19

DIR 1

U32

HCT245

+12V

VCC

GND
V33

R8
1M

123 45

U25

LM2575

DM1

DP2
DM2

X3
C39

C34
C35

D0B
D1B
D2B
D3B
D4B
D5B

D6B
D7B USB1-

USB2+
USB2-

X4

XTAL3
12MHZ

R14

R15 27

C40

R16

180

R18
100K

V33
GND

GND

X3
X4

AC7
AC6

V33

R11

G 1

VCC 2

AVC 3

XIN 4

XO 5

AG 6

PLL 7

TST 8

RST 9

PRG
 10

BD0 11

BD1 12

A
C
7

4
8

A
C
6

4
7

A
C
5

4
6

A
C
4

4
5

A
C
3

4
4

A
C
2

4
3

A
C
1

4
2

A
C
0

4
1

V
C
I
O

4
0

G
N
D

3
9

A
D
7

3
8

A
D
6

3
7

AD5 36

AD4 35

AD3 34

AD2 33

AD1 32

AD0 31

VCIO 30

USB2M 29

USB2P 28

GND
27

USB1M 26

USB1P 25B
D
2

1
3

B
D
3

1
4

B
D
4

1
5

B
D
5

1
6

V
C
I
O

1
7

B
D
6

1
8

B
D
7

1
9

B
C
0

2
0

B
C
1

2
1

B
C
2

2
2

B
C
3

2
3

G
N
D

2
4

U30

USB-H

/UR5

/UR4

VCC

TX5

TX4

/RT4

/RD

/UR3

/UR2

GND

TX2

TX3

/CT3

/WR

/RT3

/RT2
INT3

P13

RX3
VCC

A2
A1

A3

X5 X6

GND
RX4

X5
X6
RST

C25

XTAL2
3.684

C38

V33

PLL

PRG
P26
GND

BD7
GND

GND

DP1
DM1

DP2
DM2
V33

USB2+
USB2-

PL
C41

27PF

5V 5

M1 6

P1
 7

G 8

5V 1

M2 2

P2
 3

G 4

J10

USB-A

5V

LX1
GND
VCC

+12V

I1 330uH

+12V+12VI

D1

1N5817 D2

1N5817
C36

C37

USB1+
USB1-

PLL
C42

1UF

GND

VOFF

5V
5V

GND V+
GND

NC 1

PG
 2

GND 3

EN 4

5V 8

5V
 7

9V 6

9V 5

U18

TPS765

/RD
P17

OT3+
OT4+

OT3
OT4

