V104™

C/C++ Programmable 16-bit Microprocessor Module
Based on the NEC V25, with a PC/104 Bus

ITEdnaiiidiaadlaydg -

L R LR Ed TR RN

Triyy, fn
..-_"..""ﬁnu MH

-
=
E
L
(]

Y
1
g

L

[]

L

-

L
4
(]

-

[]

n

i

L

E
-

]
Ll
L

R e L ‘

G5 m mom i m m —————EE FECE BB B R

Technical Manual

TrEry

1950 %' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http: //mww.tern.com

COPYRIGHT

V104, A-Drive, V25-Engine, VE232, NT-Kit, and ACTdfe trademarks of TERN, Inc.
V25 is a Trademark of NEC Electronics Inc.
Borland C/C++ is a trademark of Borland Internadiion
Microsoft, MS-DOS, Windows, Windows95, and Windo®sfe trademarks of
Microsoft Corporation.
IBM is a trademark of International Business Maelsit©orporation.

Version 3.00

October 29, 2010

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1995-201C TERIQI

1950 3" Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integratgystems. These systems are
integrated with software and hardware that arel@6€6 defect freeTERN products are
not designed, intended, authorized, or warrantedi® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitimages arising from
the use ofTERN products. It is the Buyer's responsibility to it life and property
against incidental failure.

TERN reserves the right to make changes and improventerts products without
providing notice.

Temperature readings for controllers are baseth@mnesults of limited sample tests; they
are provided for design reference use only.

V104 Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

TheV104 from TERN is a low cost, high performance, C/C+egrammable, 16-bit microprocessor core
module. It is designed for embedded applicatioas iaquire compactness, low power consumption, and
high reliability. TheV104 can be integrated into an OEM product as a processe component. It also
can be used to build a smart sensor, or as a nage€istributed microprocessor system.

’<: PC/104 b
V104 V25 ue
H Int SRAM
16-bit C/C++ CPU (512 bytes) EPROM/Flash U3
Controller 80x86/8088 :> (0xf0000-0xffff, memofy)
Compatible u2 ‘
Time Base Counter
SRAM Ul
ZAA:51327b_ UD% 16-Bit Timers (2) | (0-0xtit, memory)
ch. 12-bit 16-bit counter/DMA (2) Data Vﬂ:> [
Ext. Interrupts (5) Addr
Anal - P Cntl $ UART sCC2691U8
r.la. 0og or | A-bit ADC Digital |/Q Ports (3) (0xc000-0xfff, 1/O)
Dlgltal rﬁ INTL/INT2/NMI j:> Port T with 8 Comparators
110 TTL inputs Ser0 RTC72421 U2
Serl =
HLDRQ/AK [V| (0x8000-0xbfff, I/O)
11 ch. 12-bit ADC
TLC2543 —LN\| PPl 82c55
P01 | POO P03 7|'"NMI “|N/RESET - .. .
ul10 bi-directional 24 1/Qs
SDAV/SCL \/HWD |PFO_|RST

EEPROMU7 MAXe9T* UB| U 7:i> LCD interface

up to 2K Supervisor VRAM

Figure 1.1 Functional block diagram of the V104

Measuring 4.0 x 3.5 x 0.5 inches, ¥M#&04 offers a complete C/C++ programmable computeesystith a

16-bit high performance CPU (NEC V25) and operates MHz with zero-wait-states. Optional features
include up to 512K EPROM/Flash and up to 512K gtbaicked SRAM. A 512-byte serial EEPROM is
included on-board. An optional real-time clock pgd®s information on the year, month, date, hounutd,

second, and 1/64 second, and an interrupt signal.

Two DMA-driven serial ports from the NEC V25 suppbigh-speed, reliable serial communication at a
rate of up to 115,200 baud. An optional UART SCCRGtay be added in order to have a third UART on-
board. All three serial ports support 8-bit anditfebmmunication.

The optional 12-bit ADC has 11 channels of anaigmits with sample-and-hold and a high-impedance
reference input (2.5-5V) that facilitate ratiomettonversion, scaling, and isolation of analogugirg from
logic and supply noise.

The optional 4-channel 12-bit DAC voltage outp@¥ (o 2.5V) are internally buffered by precisiorityn
gain followers with a typical slew rate of 3\ with 5 KQ load. It must be installed with a precision
reference voltage (included) and requires a -5¢rextl power supply.

1-1

V104 Chapter 1: Introduction

A 16-pin LCD interface header supports various $ypeELCD modules. By default, the LCD select lise i
active high.

The optionaME232 provides regulated 5V power and RS232/RS485 drif@rthevV104. TheV104 can
also be installed on th&-Drive to provide regulated 5V power and RS232/RS485%dsivT ERN also
offers custom hardware and software design, basede)'104 or other TERN controllers.

1.2 Features

Standard Features
* Dimensions: 4.0 x 3.5x0.5inches
« Power consumption: 100 mA at 5V, 40 mA standbyhwttandard parts)
e Low power version: 60 mA full speed, 5 mA standitit low power parts)
« Power Input: +5V regulated DC without VE232
e +9V to +12V unregulated DC with VE232
e 16-bit CPU (NEC V25), 8 MHz, Intel 80x86 compatipl&/C++ programmable
« ROM and SRAM up to 1MB, 512-byte EEPROM (or up KB} and 256 bytes built-in-CPU
SRAM
¢ Five external interrupts
e 24 bi-directional digital 1/0 lines
e 8 comparator inputs
* Two 16-bit timers, one 16-bit time base counter
e Two 16-bit counters or DMA. The counter can cowtemal signal rising edges up to 500 KHz
* Two high speed serial ports from the V25 CPU
e Supervisor chip (691) for power failure, reset aradchdog
¢ LCD interface

Optional Features

e 32KB, 128KB, or 512KB SRAM

e 11 channels of 12-bit ADC, sample rate up to 10 KHz

e 4 channels of 12-bit DAC (MAX 537) with 2.5V Refae

e SCC2691 UART (on-board) supports 8-bit or 9-bitwaking

¢ Real-time clock RTC72423, lithium coin battery

e VE232 add-on board for regulated 5V power & RS2FA4B5 drivers
¢« PC104 64-pin connector

e 16x2 character LCD

Figure 1.2 VE232 interface board

1-2

V104 Chapter 1: Introduction

1.3 Physical Description

The physical layout of the V104 is shown in Figlir8.

) J5 24 1/0 lines a2 (-
— B] Jﬁj
6 u12 ’_‘
PPl AD | 33 AD/DA header
i Ry U0 J10

H

; 5
scc % SE PAL V104P1000 g PAL V104P000
Us U V25 Ports
LILR
$ HE LCD 554@ ’W‘

U2
RAM ROM V25 CPU]
RWD .
VE232 interface
L] oRN1
T
il I3l w —)
LI ‘ RN2 c4
WE) {8 AT3F m@-

| PC/104 Bus |

Figure 1.3 Physical layout of the V104

1.4 V104 Programming Overview

Development of application software for the V10sists of three easy steps, as shown in the block
diagram below.

STEP 1 Serial link PC and V104, program in C/C++.
Debug and run application with remote Debugger.

STEP2 Test V104 in the field, away from PC.
Application program resides in the battery-backRAS.

STEP3 Burn application ROM.
Replace Debug ROM, project is complete.

You can program the V104 from your PC via seria lvith an RS232 interface. Your C/C++ program can
be remotely debugged over the serial link at aokfiel 5,000 baud. The C/C++ Evaluation Kit (EV) or
Development Kit (DV) from TERN provides a Borlandd3+ compiler, TASM, LOC31, Turbo Remote

1-3

V104 Chapter 1: Introduction

Debugger, I/O driver libraries, sample programsl batch files. These kits also include a DEBUG ROM
(TDREM_V25) to communicate with Turbo Debugger, a DB9-IDE1CQ{¥25) serial cable to connect the
controller to the PC, and a 9-volt wall transfornfse your Evaluation/Development Kit Technical Manual
for more information on these kits.

After you debug your program, you can test runMthe4 in the field, away from the PC, by changing a
single jumper, with the application program residim the battery-backed SRAM. When the field test i
complete, application ROMs can be produced to oepthe DEBUG ROM. The .HEX or .BIN file can be
easily generated with the makefile provided. Yoy mlkso use the DV Kit or ACTF Kit to download your
application code to on-board Flash.

The three steps in the development of a C/C++ agiidin program are explained in detail below.

1.4.1 Step 1

STEP 1: Debugging
» Write your C/C++ application program in C/C++.
» Connect your controller to your PC via the PC-V28d link cable.

* Use the batch filen bat to compile, link, and locate, or usebat to compile, link locate, download
and debug your C/C++ application program.

PC

PC-V25 Cable

I

DC +9V 300 mA
Wall transformer

Center Negative

VE232 + V104

DC power jack
on the VE232

Figure 1.4 Step 1 connections for the V104

1-4

V104 Chapter 1: Introduction

1.4.2 Step 2

STEP 2: Standalone Field Test.
e Set the jumper on J10 pins 19 and 20 on the V1@u(& 1.5).

» At power-on or reset, if J10 pin 19 (P02) is lolag ICPU will run the code that resides in the bgatter
backed SRAM.

« Ifajumperis on J10 pins 19-20 at power-on oetethe V104 will operate in Step Two mode. If the
jumper is off J10 pins 19-20 at power-on or redet, V104 will operate in Step One mode. The staty
of J10 pin 19 (signal P02 of the NEC V25) is orihecked at power-on or at reset.

PC/104 Bus o. ¢
Step 2 jumper & o » e)
z EyenY an = =
INdo
pin 20=GND, pin 19:P012
EJ\H
V25 CPU ROM RAM
n
1vix g ‘1 LCD 5‘: ni
L i { E scc
UH‘
I
AD DA
an
350 (Lo 'm ““”
I:I” um

Figure 1.5 Location of Step 2 jumper on the V104

1.4.3 Step 3

STEP 3: Generate the application .BIN or .HEX file, mgkeduction ROMs or download your program
FLASH via ACTF.

» If you are happy with your Step Two test, you carbgck to your PC to generate your application
ROM to replace the DEBUG ROMDREM_V25). You need to changeEBUG=1 to DEBUG=0 in
the makefile.

You need to have the DV Kit to complete Step Three.

Please refer to the Tutorial of the Technical Mawdizghe EV/DV Kit for further details on programng
the V104.

1.5 VE232

The VE232 is an interface board for the V104 thawjales regulated +5V DC power and RS232/485
drivers. It converts TTL signals to and from RS28&#hals. You do not need the VE232 if you aregisin
the V104 installed on another TERN controller sastthe P300, PC-Co, MotionC, PowerDrive, or
SensorWatch.

The VE232, shown in Figure 1.6, measures 2.3 x ih&Yes. A wall transformer (9V, 300 mA) with a
center negative DC plug (&=2.0 mm) should be usgubwer the V104 via the VE232. The VE232

1-5

V104 Chapter 1: Introduction

connects to V104 via H1 (2x10 header). SERO (J2)&HER1 (J3) on the VE232 are 2x5-pin headers for
serial ports SERO and SER1. SERO is the defauffrproming port.

SER1 SERO
J ‘ 1.57,2.30
. inch)
p O ® (inc
1489 1488
Us | | U6 H
66 +—H3 pin 3
power JaCk ©© ©© \H3 pin 2
= W
| 5
+7
0.0 VE232

Figure 1.6 The VE232, an interface card for the V104

For further information on the VE232, please refeAppendix B and to the VE232 schematic at theand
this manual.

1.6 Minimum Requirementsfor V104 System Development

1.6.1 Minimum Hardware Requirements

» PC or PC-compatible computer with serial COMx gbat supports 115,200 baud
* V104 controller with DEBUG ROMDREM_V25
* VE232 interface board *
» DB9-IDE10 (PC-V25) serial cable (RS232; DB9 connedbr PC COM port and IDC 2x5 connector
for controller)
» center negative wall transformer (+9V 500 mA)
* NOTE: the VE232 is not needed if you are using ¥#104 installed on another controller

1.6.2 Minimum Software Requirements
« TERN EV/DV Kit installation diskettes

* PC software environment: DOS, Windows 3.1, Winddys8 Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Developmitt (DV) are available from TERN. The EV Kit
is a limited-functionality version of the DV Kit. itth the EV Kit, you can program and debug the Vi04
Step One and Step Two, but you cannot run StepeT hmeorder to generate an application ROM/Flalgh fi
make production version ROMs, and complete theegtojou will need the Development Kit (DV).

1-6

V104 Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical manual for the “C/@eavelopment Kit and Evaluation Kit for TERN
Embedded Microcontrollers” for information on infitey software.

The README.TXT file on the TERN EV/DV disk containsportant information about the installation
and evaluation of TERN controllers.

2.2 Hardwar e Installation

Overview
« Install VE232 (if applicable):
H1 connector of VE232 installs on J2 of the V104
e Connect PC-V25 cable:

For debugging (Step One), place connector on SEROrad edge
of cable at pin 1

» Connect wall transformer:
Connect 9V wall transformer to power and plug iptaver jack

Hardware installation for the V104 consists prifyaoif connecting the microcontroller to your PCorkhe
V104, the VE232 must be used to supply regulatedep@nd RS232 drivers to the V104. If you are gisin
the V104 installed on another controller, pleasterréo the technical manual for that controller for
installation information.

2.2.1 Connecting the VE232 to the V104

PC/104 Bus
T -

E—1

e
|
o

TO T o S
sl
H1 ;;D[[%JZ [
” S)
®
@

£in

K V25 CPU ROM RAM

7©D© %MW o I
@} D \ aﬁsco*\

I E" oo m‘m o

ﬁiﬂ

ﬂnm

h

10—y

Q_‘w LNH

Figure 2.1 Before installing the VE232 on the V104

2-1

V104 Chapter 2: Installation

QO =oRE———Jo
MuE|

el —
EE S

: ©

=%

@

I

@

@

] oo@DB
0000

i

O O

Figure 2.2 After installing the VE232 on the V104

Install the VE232 interface with the H1 (10x2) setlconnector on the upper half of the J2 (dual row
header) of the V104. Figure 2.1 and Figure 2.2 st@WE232 and the V104 before and after instaltati

2.2.2 Connecting the V104 to the PC

The following diagram (Figure 2.3) illustrates tb@nnection between the V104, VE232, and the PC. The
V104 is linked to the PC via a serial cable (PC-)/25

The TDREM_V25 DEBUG ROM communicates through SERO by defaultdh the 5x2 IDC connector
on the SERO header of the VE232MPORTANT: Note that the red side of the cable must point to pin 1

of the VE232 H1 header. The DB9 connector should be connected to one of @&is COM Ports (COM1
or COM2).

Red side of serial

cable corresponds To SERO Indication of pin 1 of

?Epé%/lsg;faders for ~or SER1 headers for SERO & SER1
N — *SE 1/SERO
/

1
a1]
To COM1 . (m) oG 5
or COM2 e 3 —
IDE 1 S
connector H1 on||: S
VE232|= Dg
D%
i = 000 .
comector 32 of V104 sasr, .

5, W et

o0 o =

V104

Figure 2.3 Connecting the V104 and VE232 to the PC

2-2

V104 Chapter 2: Installation

2.2.3 Powering-on the V104

Connect a wall transformer +9V DC output to the BEDC power jack.
The on-board LED should blink twice and remain @iarahe V104 is powered-on or reset (Figure 2.4).

PC/104 Bus

A | = =

E O [O ol |
[.
[] .

S
©
DE @
D ROM RAM
N e
=

Figure 2.4 The LED blinks twice after the V104 is powered-on or reset

2-3

V104 Chapter 3: Hardware

Chapter 3: Hardware

3.1V251/0O Ports

V25 (UPD70320 NEC) is the CPU of the V104. The M2BU has 32 /O lines which are basically
organized as three bi-directional I/O ports(PO+2)J a comparator input port T. The 24 bi-directioli@l
lines are multiplexed with different functions. Oii@ line can be specified as an input, outputa aontrol
line. There are three Special Function RegisteFR[Sassociated with each poRort Mode Control
Register (PMCO, PMC1, PMC2port M ode Register (PMO, PM1, PM2), arrbrt Data Register (PO, P1,
P2). The SFRs are memory mapped. You can writeant these registers via

pokeb(0xfff0, 0x??, Ox!!); or peekb(0xfffO, 0x??);
where ?7? is the register offset address, !! ictmrol/data byte.
SFR addresses are listed in the NEC V25 User's Mlahable 3-2, page 3-8. Port operation tables are
listed in the NEC V25 User’s Manual Figure 7-5,,7a6d 7-7 in page 7-2 and page 7-3.
For example, in order to use port 0 PO5 as ouymut,need program port 0 in 3 steps:

1) program the PMCO register and set PMCO bit 5#ich defines P05 as 1/O function.

2) program PMO register and set PMO bit 5=0, widefines P05 as output.

3) Write a “1” to PO data register bit 5, the P @gn the V104 J2-5 should be high (5V).
Write a “0” to PO data register bit 5, the R0 on the V104 J2-5 should be low (0V).

Some /O lines are used by the V104 system asl |stéow:

POO /0 EEPROM (U7 pin 6) clock SCL

PO1 I/0 EEPROM (U7 pin 5) data SDA

P02 /0 J10 pin 19. If low, jump to application codbich
starting address is defined in the on board EBFR0x10 to 0x13).

PO3* 110 J7 pin 1. HWD (Hit watchdog)

P0O4* 110 WDO (Read watchdog output, U6 pin 14).

PO5* /0 on board LED control

P06 /0 J10 pin 18.

P07 clock out J1 pin 40, CLKOUT, 8 MHz as system clock

P10 NMI J4 pin 2.

P11* INTPO J10 pin 17, External Interrupt Inpufdlling edge effective.
V104™ U8 SCC2691 UART interrupt.

P12 INTP1 J1 pin 50, External Interrupt Inputdllifg edge effective.

P13 INTP2 J1 pin 48, External Interrupt Inputdlifg edge effective.

P14* /0 J2 pin 10, may be used as RTS1 for SER1.

P15 /10 J10 pin 16.

P16* 110 J2 pin 14, may be used as RTSO for SERO.

P17 RDY J10 pin 15, V25 ready signal, used for moaét states, U5.12.

P20 1/O(DRO0) J1 pin 36, counter 0/DMA channel Ouest, rising edge active.
P21 1/0(DA0)J1 pin 34, DMA channel 0 Ack, actiws, U5.6.

P22 /0 J2 pin 3.

P23 le] J2 pin 17, counter 1/DMA1/EN485 for SCCARS driver.
P24 /0 J10 pin 6 and ADC SCLK.
P25 110 J10 pin 5 and ADC DIN.
P26 /0 J10 pin 4 and ADC DOUT.
P27 /0 J10 pin 3 and ADC /CS.
PTO INPUT J10 pin 14.

PT1 INPUT J10 pin 13.

PT2 INPUT J10 pin 12.

PT3 INPUT J10 pin 11.

PT4 INPUT J10 pin 10.

3-1

Chapter 3: Hardware V104

PT5 INPUT J10 pin 9.
PT6 INPUT J10 pin 8.
PT7* INPUT J10 pin 7.

P00, P01, P05, P07, P17, P24-27 are used by sgsteérADC. While using the DEBUG EPROM, P02 is
used to select STEP 1 (DEBUG mode) or STEP 2 (atand mode) during the power on or reset, see Fig
1.2a for detail. P17 is assigned as RDY signairfeerting more wait states in order to interfacthwsiow
LCD modules. If you do not need LCD functions, yoay assign P17 as a I/O function line and cutadf th
pin on the U5 PAL pin 12. I/O lines with * markedeaoptionally used by system or application. For
example, P05 is used for on board LED control,RB is also can be used as for application, ifdomot
need LED. P03 can be used to hit watchdog or carsee for your application, if you do not use waltadp.

Due to SFR registers of PMCO0-2, PM0-2 are writeypimhage registers are assigned to locations irothe
board EEPROM at:

PMO 0x08 ee rd(0x08); oree wr(0x08, pmO);
PMCO 0x09 ee rd(0x09); oree_wr(0x09, pmcO0);
PM1 OxOa ee rd(0x0a); oree wr(Ox0a, pml);
PMC1 OxOb ee rd(0x0b); oree wr(0Ox0b, pmcl);
PM2 0xOc ee rd(0x0c); oree_wr(0x0c, pm2);
PMC2 0x0d ee rd(0x0d); oree wr(0x0d, pmc2);
The ee rd() andee wr() functions are very slow. The EEPROM is only niiedi by theve init();. Other

functions may change the PMCx and PMx registerfionitt modifying the EEPROM. If you need fast
access the image registers, you may use SRAM Vesiatstead.

After ve_init(void);, the initial register control bytes are teh into EEPROM. You may use these image
registers to determine the status of the port. Yiaay also need to update these registers in your
applications. The port0-2 are initialized by tleeinit(void) as listed below:

void ve_init(void){

pokeb(0xfff0, 0x02, 0x80) ; /* Set PMCO PO7=CLK */

pokeb(0xfff0, 0x01, 0xd7); /* Set PMD for input, PO5=LED P03=HWD
out put */

pokeb(Oxfff0, Ox0a, 0x80); /* Set PMCL P17 for READY */

pokeb(Oxfff0, 0x09, Oxaf); /[* Set PML for input, P14=RTS1, P16=RTSO
QUTPUT */

pokeb(Oxfff0, 0x12, 0x00); /* Set P20-P27 for port node */

pokeb(Oxfff0, Ox11, Oxf7); /[* Set PMR for input, P23=EN485 out put */
}

The portdata registers can be read and write. In order to nyoalifly one bit, you need to read back the
data byte from that data register first, then ddAND operation on that bit.

For example, you can manipulate P05 to low or kigh these functions:

pokeb(Oxf f f 0, 0x00, (unsi gned char) (peekb(0xfffO0, 0)&0xdf)); /* Set
PO5=l ow */

pokeb(0xf ff0, 0x00, (unsi gned char) (peekb(0xfff0,0)]|0x20)); /* Set
PO5=hi gh */

3.2 Memory Mapped Devices

All CPU-on-chip peripherals are memory mapped. They controlled by a bank of 256-byte special
function registers (SFRs). SFRs can be relocatédmil M-byte V25 memory space. Most of the CPU-on-
chip peripherals can be reached from J2 and J10.

3.2.1 Interrupts

V25 has a built-in high performance interrupt cohér that can control multiple processing of 1#mupt
sources. Five of these interrupt sources, NMI,PRTINTP1, INTP2, and INT are external and accéssib
via memory mapped SFRs. The MAX691/LTC691 PFO (Rdvelure Output) pin is connected to NMI

3-2

V104 Chapter 3: Hardware

via J4 pin 2-3. The user may connect the PFI (Pdvwadlure Input) pin of MAX691 to an external voleag
divider to monitor the power voltage level (Figl8d). The PFI pin has been pulled high to VCC with
10K resistor on the V104. When the external DC podveps and the voltage on the PFI (J2 pin 8)ss le
than 1.3 V, the MAX691 will pull down PFO pin, atdMI will occur. You can write a NMI interrupt
service routine to meet your requirements (see tehalp “External Interrupts” for setting an NMI s&re
routine). V25 CPU has three different methods spomding to an interrupt: vector interrupt funcspn
register bank switching functions, and macro serfimctions. V104 uses vector interrupt. Refer bater

4 and the NEC V25 User's Manual for informationathariting interrupt service routines.

External Resistor Divider for Power Failure Detent

9-14 V(8.35 V min) i VCC = +5V |
|
| |
|
47K ! 0K i
: PFI of MAX691
! 2.3V min)
2K ; :
l —— PT7 |
| |
! |
! |
‘ |

Figure 3.1 Using PFI to monitor power voltage level

3.2.2 Comparator Input Port (PORTT)

Port T is an 8-bit comparator input port. The sti@d voltage VTH can be fixed to VCC or connedtzd
variable voltage source. Software can set the eatsr voltage to one of 16 levels (1/16xVTH to
16/16xVTH). It provide users with an easy and irengive way to measure analog input signals. VTH is
pulled high to VCC via a 10K resistor on board.

3.2.3 External Event Counters/ DMA

V25 has two DMA channels, DMAO and DMA1. The DMArtmllers can be used as 16-bit external event
counters. After you set a 16-bit counter value oaanter O or counter 1 with

counterQ_init(unsigned int cnt0); oczounter0_init(unsigned int cntO);
Every rising edge input signal on J1 pin 36 (P2ROD will decrement the counter 0. Every rising edge
input signal on J2 pin 17 (P23) will decrement tbenter 1. Be aware of P20 is also used as /LDakign
the 12-bit DAC. An interrupt will occur, after catimg to zero. You need an interrupt service roatsdrve
the counter interrupt. For more detail, please sae sample program in TERN disk,
a:\samples\vel\ve_count.c.
The V104 supports DMAO only. There are four difftr®MA transfer modes, selectable by software. For
memory to memory DMA transfer, the DMAAKO is nottige. For memory to I/O DMA transfer, the
DMAAKO asserts every DMA cycle. P21 and P20 carubed as I/O pins. For more information refer to
Section 6 of the V25 User's Manual.

3.2.4 Clock and Timers

A built-in clock generator supplies various clottkithe CPU and peripheral hardware. The V104 udss a
MHz crystal. Default system clock output after iaization is 8 MHz on CLK line (pin 40 of J1). One
clock cycle is 125 ns. The normal bus cycle requireo clock cycles, which is 250 ns. With builtvimit
state generation, up to 2 wait states can be gteftdditional wait states can be inserted by utliegRDY
line. With the default initialization of 2 wait $&s, EPROMSs of 120 ns to 150 ns can be used. Mzeysl
may be required to support slow I/O devices, sichGD (Liquid Crystal Display).

The time base counter operates continuously simeé/1.04 is powered on. It provides clock signails f
two 16-bit timers, baud rate generator, refreshingmrefresh address, and time base interrupt stdlaay.
CLKOUT(P07) and /REFRQ are two outputs of the timase counter. The CLKOUT output to peripheral
hardware. /REFRQ may be used to refresh DRAM im applications. A time base interrupt is generattd
4 different intervals, 128 us, 1.024 ms, 8.192 ans] 131.072 ms, selectable by software.

3-3

Chapter 3: Hardware V104

Two 16-bit timer units, TMO and TM1, can operateinterval timer mode or one-shot timer mode. The
TOUT=P15 is available on pin 16 of J10.

3.2.5 Serial Channels

The V104 has three serial channels: two internaRUASERO, SER1 and one external UART SCC2691
(U8). They can operate in full-duplex communicatimode. These serial ports may be used as interrupt-
driven. For more information about the external JARCC2691, refer to Appendix C.

The internal serial channels can operate in aspncus mode and 1/O interface mode. In asynchronous
mode, the start/stop bit transmit/receive metho@nyployed so that bit synchronization and character
synchronization are obtained by the start bit./@ interface mode, data is transferred in synchzation

with the controlled serial clock. Each internaligkechannel includes serial data input RxDn, sedigia
output TxDn, and Clear-to-Send signal input (CTSKays tie CTSO and CTS1 to GND, in order to
operate SERO and SER1. SERO also has a serial dogut SCKO, which outputs high level in
asynchronous mode, and functions as the transauk dutput pin in interface mode.

For SERO and SER1, a built-in baud rate generaorbe used to select standard baud rates fromal10 t
1.25 M. One of these internal serial ports is Usgthe V104 for programming with the PC. It use§,000
Baud rate for programming. It is possible to usehi®ERO and SER1 in applications. The user can use
SERO to debug an application program for SER1, thed use SER1 to debug application programs for
SERO. The application programs can be combineddandhloaded via either serial channel. Application
program using both SERO and SER1 can run at the sama, but not debug at the same time.

3.2.6 Halt and Stop Mode

The V104 is an ideal core module for low power emngtion applications, such as a battery operated
instrument. V25 has two standby modes, which ardwgdalt(); and stop(); In the HALT mode, the CPU
clock is stopped and program execution is haltkd, registers are retained, and peripheral hardware
continues to function. The total power consumpigapproximately 10 mA. The HALT mode is released
by interrupt input or reset input. In STOP modéchicks stop, but data in registers and RAM ateined.

The total power consumption is less than 4 mA. SR®©P mode only can be released by NMI input or
reset input.

3.3 1/0 Space M apped Devices

External I/O device use /0O mapping. You may acdé3swith inportb(port) or outportb(port,dat);. The
external I/O space is 64K, ranging from 0x0000 x&fD In the 1/O space of 0x0000-0x7fff, the I/@eess
time is 500 ns. In the 1/O space of 0x8000-0xffffe 1/0 access time is 250 ns. Table 5.3 shows mor
information of I/O mapped devices:

I/0 space time(ns) Decodes Usage
0x0010-0x3fff >500 ns USER
0x4000-0x40ff >500 ns lcd3
0x4100-0x41ff >500 ns lcd4
0x8000-0xbfff >250 ns RTC
0xc000-0xcOff >250 ns E=SCC
0xc100-0xc1ff >250 ns PPI

Table 3.1 Information for interface with 1/0O space mapped devices

3.3.2 Programmable Peripheral I nterface (82C55A)

Ull PPI (82C55) is a low-power CMOS programmablealfel interface unit for use in microcomputer
systems. It provides 24 I/O pins that may be iitliglly programmed in two groups of 12 and used in
three major modes of operation.

3-4

V104 Chapter 3: Hardware

In MODE 0, the two groups of 12 pins can be progresah in sets of 4 and 8 pins to be inputs or outputs
In MODE 1, each of the two groups of 12 pins carpbegrammed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshakimgirterrupt control signals. MODE 2 is a strobeéd b
directional bus configuration.

C T T T T T T T 1
|—J GROUP 1
Port 2 0 Output
(Lower)

1 Input

Port 1 0 Output

1 Input

Mode 0 Mode 0

1 Mode 1

GROUP 2

Port 2 0 Output

(Upper)

1 Input

Port 0 0 Output

1 Input

Mode 00 Mode O

01 Mode 1

1X Mode 2

Command 0 Bit
Select manipulatior
1 Mode

Selec:

Figure 3.2 Mode Select Command Word

The V104 maps U11, the 82C55/uPD71055, in I/O spa®xC100 to OxC103.

The Command Register = 0xC103.

Port 0 = 0xC100.
Port 1 = 0xC101.
Port 2 = 0xC102.

The following code example will set all ports tatjput mode:

out port b(0xC103, 0x80) ; /* Mode 0 all output selection. */

out port b(0xC100, 0x55) ; /* Sets port O to alternating high/low I/0O
pins. */

out port b(0xC101, 0x55); /* Sets port 1 to alternating high/low /0O
pins. */

out port b(0xC102, 0x55) ; /* Sets port 2 to alternating high/low I/0O
pins. */

To set all ports to input mode:
out port b(0xC103,0x9f); /* Mode O all input selection. */
You may read the ports with:

i nportb(0OxC100); /* Port 0O */
i nportb(0OxC101); /* Port 1 */
i nportb(0xC102); /* Port 2 */

3-5

Chapter 3: Hardware V104
This returns an 8-bit value for each port, withtebit corresponding to the appropriate line ongbs.

You will find that numerous on-board componentsametrolled using PPI lines only. You will needuse
PPI1 access methods to control these, as well.

The V104 J5 header pin layout is as follows:

Pin1=110 Pin2=GND

Pin3=111 Pin4=GND

Pin5=112 Pin 6 = GND

Pin7 =113 Pin 8 = GND

Pin9=114 Pin 10 = GND
Pin 11 =115 Pin 12 = GND
Pin 13 =116 Pin 14 = GND
Pin 15 =117 Pin 16 = GND
Pin 17 =120 Pin 18 = GND
Pin 19 =121 Pin 20 = GND
Pin 21 =122 Pin 22 = GND
Pin 23 =123 Pin 24 = GND
Pin 25 =124 Pin 26 = GND
Pin 27 =125 Pin 28 = GND
Pin 29 =126 Pin 30 = GND
Pin 31 =127 Pin 32 =GND
Pin 33 =100 Pin 34 = GND
Pin 35 =101 Pin 36 = GND
Pin 37 =102 Pin 38 = GND
Pin 39 =103 Pin 40 = GND
Pin 41 =104 Pin 42 = GND
Pin 43 =105 Pin 44 = GND
Pin 45 =106 Pin 46 = GND
Pin 47 =107 Pin 48 = GND
Pin49 =VCC Pin50=GND

For more information on this device, please refethe NEC uPD71055 datasheet (415-960-6000).

3.3.3RTC72421

A real-time clock RTC72421 (EPSON, U4) is mappethia I/O address space 0x8000-0xbffff. It must be
backed up with a lithium coin battery. The RTC nba&yaccessed via software driveis init() or rtc_rd();
(see Chapter 4). Details are listed in Appendix D.

3.3.4 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped in tedddress space 0xc000-0xcOff. The SCC2691 has
a full-duplex asynchronous receiver/transmitteiquadruple buffered receiver data register, an riapér
control mechanism, programmable data format, saetBaud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit countenér, an on-chip crystal oscillator, and a multignse
input/output including RTS and CTS mechanism. FRare information, refer to Appendix C. The
SCC2691 on the V104 may be used as a network SthART. The RxD and TxD signals are routed to the
J2 header for connecting to a VE232. Use J1 pRR$485-) and pin 4 (RS485+) on the VE232 to join the
multi-drop RS485 twist pair network. The MPO and IMiRe routed to J9 of the V104.

3.4 Other Devices

3.4.1 MAX691

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the V104 has several functions that
significantly improve system reliability:

3-6

V104 Chapter 3: Hardware

« watchdog timer
» power-failure warning
e battery backup
e power-on-reset delay
* power-supply monitoring
The V104 uses P03 to hit the watchdog timer via-27

Watchdog Timer

The watchdog timer is activated by setting a jumperJ7 pins 1-2 of the V104. The watchdog timer
provides a means of verifying proper software eteou In the user's application program, callste
function hitwd() (a routine that toggles the PO3=HWD pin of the M3®1) should be arranged such that
the HWD pin is accessed at least once every 1dnsisc If the J7 1-2 jumper is on and the HWD pinat
accessed within this time-out period, the watchtogr pulls the WDO pin low, which asserts /RESET.
This automatic assertion of /RESET may recoveraghgication program if something is wrong. Aftee th
V104 is reset, WDO remains low until a transitiators at the WDI pin of the MAX691. When contradler
are shipped from the factory the J7 jumper iswffich disables the watchdog timer.

Power -failure Warning and Battery Backup

If a jumper is put on the J4 1-2, then the NMI @cected to the PFO (Power Failure Output) pirhef t
MAX691. When the power failure is sensed by thé [tk of the MAX691 (lower than 1.3 V, Figure 3.1),
the PFO pulls NMI low, and an NMI interrupt occumsfore the power-failure occurs. You may design a
NMI service routine to take protect actions beftive +5V drops and processor dies. The battery-Bwitc
over circuit compares VCC to VBAT (+3 V lithium bety positive pin), and connects whichever is highe
to the VRAM (power for SRAM and RTC). Thus, the AR and the real-time clock RTC72421 are
backed up. The lithium battery will last about®yfears in normal use. When the external powen,ste
battery-switch-over circuit will select the VCCd¢onnect to the VRAM.

\ J1 = PC/104 Bus

J6 Memory Select

0,¢
J2 VE232 interface O, = a0)~ > ROM 32-64K 1-2
| [———™ - - ROM >64K 2-3
fries sin RAM 32-128K 5-6
e RAM > 128K 4-5
EPROM 8-9
EJ** Elgsl\? ;-182K 10-11
STEP 2 Jumper V25 CPU ROM RAM

PO2and GND _, LED

Zn -
e —
37 LIVLX ey o LCD Ha HSZ

Enable WD 1-2 < [3 1T sce) JIsccmPompl
Enable EE R/W 4-5 r o : > “"ﬁw N

J10V25 IO lines 4 M 5 rrc E W

e : - PPI
DA no » J4 VOFF NMIPFO
33ADC, DAC €\ A& o] % 5 é
3.5x4.0 \ 1_—vin un =
" Qj%% | J5 24 1/0 lines ° f
J8 RESET ¢

Figure 3.3 Jumper settings on the V104

3-7

Chapter 3: Hardware V104
3.4.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesC@4)), or 2K bytes (24C16) can be installed in U7.
The V25-Engine uses the P00=SCL (serial clock) 8&@d=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store importatd such as a node address, calibration
coefficients, and configuration codes. It typigdias 1,000,000 erase/write cycles, and the d&gatien is
more than 40 years. EEPROM can be read and writtdoy simply calling the functionse rd() and

ee wr().

3.4.3 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, susisesapproximation, 11 channels, serial interface,
analog-to-digital converter. It has three contrgluts (/CS=P27; CLK=P24; DIN=P25) and is desigreed f
communication with a host through a serial triestattput(DOUT=P26). If P27 is low, the TLC2543 will
have output on P26. If P27 is high, the TLC2548ismbled and P24, P25, P26 are free. P27 is phitgd
by a 10K resistor on board. The TLC2543 has antop-t4 channel multiplexer that can select any @ne
11 inputs or any one of three internal self-tedtages. The sample-and-hold function is automéatiche
end of conversion, the end-of-conversion outputsgb&h to indicate that conversion is complete.
TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingida
isolation of analog circuitry from logic and supptpise. A switched-capacitor design allows low-erro
conversion over the full operating temperature eafthe analog input signal source impedance shmaild
less than 5Q and capable of slewing the analog input voltage 60 pF capacitor.

You may read the ADC with the function in the librace_ad12(ch);
In order to operate the TLC2543, five V25 1/O lirsee used as listed below:

/ICS Chip select = P27, high to low transitioades DOUT, DIN and CLK.
low to high transition disables DOUT, DIN and KCL

DIN P25, serial data input

DOUT P26, 3-state serial data output.

CLK I/O clock = P24

REF+ Upper reference voltage(normally VCC)

REF- Lower reference voltage(normally GND)

VvCC Power supply, +5 V input

GND Ground

The analog inputs ADO to AD10, REF+, GND, and VG€ available at J3 connector.

3.4.4 12-bit DAC (MAX537)

The MAX537 combines four 12-bit, voltage outputitigto analog converters and four precision output
amplifiers in a 16 pin chip. The MAX537 operategshnt5V power supply. Each DAC has a double-
buffered input. A 16-bit serial word is used todadata into input/DAC register. The V104 uses PRD=/
P21=DAC /CS, P24=SCLK, and P25=SDI to operate theX&B7. The REF+ of the MAX537 is 2.5V
provided by U14. You may write the DAC with the @tion in the libraryv104 dal2(ch, dat);

3.5 Jumpersand Headers

There are 14 jumpers and connectors on the V104.

Name Size Function

J1 32x2 PC/104 compatible bus

J2 10x2 VE232 interface

J3 10x2 Analog inputs, analog outputs and referenc
J4 3x1 VOFF, /INMI and /PFO

J5 25x2 24 bi-directional I/O pins, +5V and GND

J6 12x1 Memory selection, see Figure 3.3

3-8

V104 Chapter 3: Hardware
J7 5x1 pin 1=2 Enable watchdog timer.
pin 3=4, Enable EEPROM write protection, pin 4wbwrite protection
J8 2x1 Reset.
J9 2x1 SCC2691 MPO and MPI
H1 8x2 LCD interface
H2 2x1 UART SCC2691 MPO and MPI

V104 Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@ewvelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and pram@ming tools.

For details regarding software function prototyped sample files demonstrating their use, pledse t@
the Software Glossary in Appendix F.

Guidelines, awareness, and problems in an interrupdriven environment

Although the C/C++ Development Kit provides a simdbw cost solution to application engineers, some
guidelines must be followed. If they are not feled, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Renia¢bugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgrering problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel runmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatijpmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset magduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an 1/0 address space and a memory address
space. /O address space ranges fox@000to Oxffff, or 64 KB. Memory address space ranges from
0x00000to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwareplicit accesses to I/O and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in 1/O or memory space, and yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfiiions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3égment
argument is left shifted by four and added todffeet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, apokeb is used for writing 8 bits.

The process of placing data into memory space ntbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsjp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

4-1

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a speciféldt@ss in memory space. Once agains#gmentaddress
is shifted left by four bits and added to tiféset to find the 20-bit address. This address is theput over
the address bus, and the hardware component mépgieat address should return either an 8-bit vatug
16-bit value over the data bus. If there is no jponent mapped to that address, this function eilinn
random garbage values every time you try to petekthrat address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

D
)

This function is used to place ttata into the appropriataddressin /O space. It is used most often wh
working with processor registers that are mapptali©® space and must be accessed using eithesfone
these functions. This is also the function usesh@st cases when dealing with user-configured perad
components.

When dealing with processor registers, be sureéahe correct function. Useitport if you are dealing
with a 16-bit register.

inport/inportb
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@cspace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipiEsase refer to the Hardware chapter of thisrtieeh
manual.

4.1VE.LIB

VE.LIB is a C library for basic V104 operations.iricludes the following modules: VE.OBJ, SER0.OBJ,
SER1.0BJ, SCC.OBJ, VEEE.OBJ. You need to link VB.Lh your applications and include the
corresponding header files. The following is adikthe header files:

Include-file name | Description

VE.H PPI, timer/counter, ADC, DAC, RTC, Watchdog
SERO.H Internal serial port 0

SER1.H Internal serial port 1

SCC.H External UART SCC2691

VEEE.H on-board EEPROM

4.2 Functions in VE.OBJ

4.2.1 V104 I nitialization

VE_init
This function should be called at the beginningewéry program running on V104 core controllers. It

provides default initialization and configuratiohthe various 1/O pins, interrupt vectors, setsespanded
DOS I/0, and provides other processor-specific tgglaeeded at the beginning of every program.

ve_init will initialize the I/O pin functions and storegtnitial register control bytes into the EEPROM€gs
Appendix E). You may use these image registerseterthine the status of the port but you must update
these registers in your applications. The port®e2igitialized as shown below:

void ve_init(void){
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */
pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, L. ED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for REXDBY
pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, #ARTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for pordde */

4.2.2 External Interrupt I nitialization

There are up to five external interrupt sourcesthien V104, consisting of four maskable interruptspin
(INTP2-INTPO, INT) and one non-maskable interruptMI). There are also additional internal interrupt
sources not connected to the external pins, camgistf two timers, a time base counter, two DMA
channels, both asynchronous serial ports, andNME from the watchdog timer. For a detailed discussion
involving the interrupts, the user should refechapter 4 of the NEC V25 CPU User's Manual.

TERN provides functions to enable/disable all of #xternal interrupts. The user can call any ef th
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isieitn pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBRN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

At the end of interrupt handlers, the user shoulda finish interrupt routine. This can be donmgishe
fint() function.

void intpx_init
Arguments: unsigned char i, void interrupt far(* intpx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd

other physical hardware details, see the Hardwaapter). The first argumenindicates whether this

particular interrupt should be enabled or disabl€de second argument is a function pointer thtaet
as the interrupt service routine.

By default, the interrupts are all disabled aftgtialization. To disable them again, you can edgbe call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in titatan not be masked (disabled). The defaultwiR
return on interrupt.

void nm _init(void);

void intpO_init(unsigned char i, void interrupt far(* intO_isr)());
void intpl_init(unsigned char i, void interrupt far(* intl_isr)());
void intp2_init(unsigned char i, void interrupt far(* int2_isr)());

4-3

void tinmerO_init(unsigned char i, void interrupt far(* tinerO_isr)());
void tinmerl_init(unsigned char i, void interrupt far(* tinerl_isr)());
:)(0));

void timer2_init(unsigned char i, void interrupt far(* tinmer2_isr
void time_base_ init(char i, void interrupt far(*time_base_isr)())

4.2.31/0O Initialization

There are two ports of 16 1/0 pins available on\M€4. Hardware details regarding these PIO lirsgsle
found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatimere
you choose to use the PIO pins as input/output,wiprobably need to initialize these pins in aofethe
four available modes. Before selecting pins fas gurpose, make sure that the peripheral modeatiper
of the pin is not needed for a different use witthie same application.

You should also confirm the PIO usage that is deedrabove withinve_init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not availabledar y
application. There are several PIO lines that aexlfor other on-board purposes. These are altitledc
in some detail in the Hardware chapter of this mézdl manual. For a detailed discussion of thedddts,
please refer to chapter 7 of the NEC V25 User’s bdn

Please see the sample prograortx.c in t er n\ v25\ sanpl es\ ve. You will also find that these
functions are used throughout TERN sample fileanast applications do find it necessary to re-apnfe
the PIO lines.

The functiongort_wr andport_rd can be quite slow when accessing the Port 1/0. fiihe maximum
efficiency you can get from the Port I/O pins occifiyou modify the Port registers directly with an
outport instruction instead of usingprt_wr /port_rd.

See the Hardware chapter for Port register addsesse

void port_init
Arguments: char p, unsigned char pmc, unsigned char pm
Return value: none

p refers to Port O, Port 1 or Port2.

pmc refers to the 8-biport mode control register value for pog.
e A'O bit sets the pin to I/O mode
A1 bit sets the pin to CONTROL mode

pm refers to the 8-biport mode register value for pog. This register is valid for pins only /O mode gin
 A'O’ bit sets the pin to output
A1 bit sets the pin to input

char port_rd

Arguments: char p

Return value: byte indicating Port I/O status for port p.

Each bit of the returned 8-bit value indicatesdbeent I/O value for the Port 1/0 pins in pprt
void pio_wr

Arguments: char p, char dat

Return value: none

Writes an 8-bit value to popt Only changes status of I/O mode output pins.

Example 4.1 Set port 0 as /O, bits 0 — 3 as input, 4 — 7 as tput.

port_init(0, 0x00, 0xf0);
p = Port O,
pmc = 0 (1/0),
pmO0-3=1, pm4-7=0.

Example 4.2 Set pins 20 and 23 as DMA Request. All other port gins as output.

port_init(2, 0x09, 0x00);
p = Port 2,
pmc = bit 0 and 3 = 1 (Control), all others = 0 (1/O)
pm = all 0s. Since pins 20 and 23 are control fumsjothepm field is not
relevant.

In most cases it is only necessary to change the vd one or two pins in the port data registéncs the
port data register is a read/write register, passible to mask the pins that do not need to @harg this
case, theoort_init function cannot be used. Instead, the port dagester can be directly accessed using the
poke andpeek functions.

Example 4.3 Using bitwise OR to set a single bit high, set pia3 high without
modifying the other pins. Assume all port 2 is oydut and that all pins
are low.

pokeb(0xfff0, 0x10, (unsigned charpéekb(0xfff0, 0x10)| 0x08));

Assuming that all of port 2 is outputting low, theekb function will return a value o
0x00. A bitwise ‘OR’ with the valu®x00 and the maskx08 equalsOx08.
Port 2 now outputex08.

Example 4.4 Using bitwise AND to reset a single bit low, set pi23 low without
modifying the other pins. Assume settings are theame after executing
Example 4.3.

pokeb(0xfff0, 0x10, (unsigned charpgéekb(0xfff0, 0x10)& OxF7));

Assuming the settings from Example 4.3 are stéisent, thgeekb function should returr
a value of0x08. A bitwise ‘AND’ with the valuedx08 and the masRxF7
equalsOx00. Port is again set @x00 (all pins low).

While the port data registers are read/write registthe port control registemnc and pm are not.
Modifying only certain pins in these registers riegsi the use of global variables to store the \sbfdhese
registers. This means that any changes tqihe or pm registers must be accounted for in the global
variable. As in the previous example, the bitw3R and AND expressions can be used to mask the
register bits.

Example 4.5 Set port 2 pins 0 through 3 as output.

/I The following global variable defines the pm2 register

unsigned chapm?;

4-5

/* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits 0 through 3 are low. Use AND to set bitslow */

pokeb(0xfff0, Ox11, (pm2 = (pm2 & OxFO)));//pm2 must be set to a new register
value

Example 4.6 Set port 2 pins 0 through 3 as input.

/I The following global variable defines the pm2 register
unsigned chapm?;

[* assume pm2 has been correctly maintained. The following code will modify the pm2
register such that bits 0 through 3 are high. Use OR to set bits high */

pokeb(0xfff0, 0x11, (pm2 =(pm2 |Ox0F)));//pm2 must be set to new register value
424 Port T

Port T is an 8-bit input port whose threshold vgdtaan be changed in 16 steps. Comparator opeliatio
performed through this port. Each Port T inputdasnpared with the selected threshold voltage (VRN

> Vth results in a value 1, PTn < Vth results imadue 0. All eight results from PTO to PT7 arechegd to
the port T input latches.

The resulting 8-bit latch can be accessed by thetifon portt_rd(void) which returns the 8-bit result. Vth
can be changed by the functiportt_wr(charvref). The variablerref {0 .. 15} sets the reference voltage
by the following equation: Referencevth * vref/16. vref = 0 sets Reference = Vth. Vth is connected to
a 10 K pullup resistor network and V#h3.57V. PTO — PT6 are on J2. PTO — PT2 are puledyy 10k
resistors.

void portt_wr(char vref)

where vref is a number to select VREF
vref=0 VTHx 1
vref=1 VTHX16
vref =2 VTHXB
vref =3 VTHXIB
vref =4 VTHX46
vref=5 VTHXB
vref =6 VTHX1®
vref =7 VTHXIB
vref =8 VTHXS
vref=9 VTHX1®
vref =10 VTHR/6
vref =11 VTH#/16
vref =12 VTHR/6
vref =13 VTHS8/16
vref = 14 VTHAR/16
vref = 15 VTH®/16

char portt_rd(void)
returns an 8-bit character representing the epatpr output if the voltage at PTO < Vref, bit Osi6e 1.

4-6

4.25 Timer Units

The two timers present on the V104 can be used fariety of applications. The timers run at a mmaxin
of 1/6 of the processor clock rate, which determitie maximum resolution that can be obtained.

These timers are controlled and configured throaginode register that is specified using the softwar
interfaces. The mode register is described in dietahapter 9 of the NEC V25 User’'s Manual.

The timers can be used to time execution of yoer-defined code by reading the timer values befmt
after execution of any piece of code. For a sarfidedemonstrating this application, see the saiid
timer.c in the directorytern\v25\samples\ve.

The specific behavior that you might want to impégris described in detail in chapter 9 of the NEXS
User's Manual.

void timerQ_init

void timerl_init

Arguments: unsigned char mode, unsigned int mdO, unsignetint
Return values: none

The argumentnodeis the value that you wish placed into IFdC0O/TMC1 mode registers for configuring
the two timers.

The argumentndO is the modulo timer count and is the timer count.

void timer0Q_interrupt
void timerl_interrupt
Arguments: unsigned char i, void interrupt far (* timer0_{3r)
Return values: none

The argument enables the interrupt and (*timerQ_isr)() or (*&¢irh_isr)() points to the interrupt servige
routine. The interrupt service routine is callekdewever count 0 is reached, with other behaviosiptes
depending on the value specified for the contrgister.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timéB) jumper is set, the functidmitwd() must be called every 1.6
seconds of program execution. If this is not ei@tiecause of a run-time error, such as an iefiaip or
stalled interrupt service routine, a hardware regiébccur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to thé&e ofledd.

Real-Time Clock

The real-time clock can be used to keep track af time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usingtarace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altresu
application developers should be careful to accéama roll-over in digits in the year 2000. Onédusion
might be to store an offset value in non-volattlerage such as the EEPROM.

A common data structure is used to access andaikerterfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten mnute digit.
unsi gned char hourl1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

} TIM

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the tisaé clock within the argumenmtstructure. The structure
should be allocated by the user. This functioarret O on success and returns 1 in case of etrcn, as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tadekday, year10, year1, month10, month1, day10, dayl, hour10,
hour1, minutel0, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t88 byte
array would be initialized to:

unsi gned char t[{14] ={ 5, 9, 8 0, 6, 0, 5 1, 3, 5 5, 3, 0},;

Delay

In many applications it becomes useful to pauserkeéxecuting any further code. There are functions
provided to make this process easy. For applicatibat require precision timing, you should use th
hardware timers provided on-board for this purpose.

void delayO
Arguments: unsigned int t

4-8

Return value: none

This function is just a simple software loop. Tdwual time that it waits depends on processordspee
well as interrupt latency. The code is functiop&dientical to:

While(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a kaieay ofcount size pointed to bwptr.

void ve_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.0BJ

The functions described in this section are prgtedy in the header fileser0.h and serl.h in the
tern\ v25\i ncl ude directory.

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits G@mmunication with the PC. As a result, you will
not be able to debug code directly written foragport 0.

Two asynchronous serial ports are integrated inNBE€ V25 CPU: SERO and SER1. Both ports have
baud rates based on the 8 MHz clock.

By default, SERO is used by the DEBUG ROM for aggtion download/debugging in Step One and Step
Two. We will use SER1 as the example in the follmyvdiscussion; any of the interface functions trat
specific to SER1 can be easily changed into functialls for SERO. While selecting a serial portise,
please realize that some pins might be shared atiter peripheral functions. This means that inaier
limited cases, it might not be possible to useréageserial port with other on-board controllendtions.

For details, you should see chapter 11 of the N6 Mser's Manual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisor forgtecessor frequency.

The following table shows the function argumentatthxpress each baud rate, to be used in TERN
functions.

Function Argument | Baud Rate

Function Argument | Baud Rate
1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400

11 57,600

12 76,800

13 115,000
14 230,000
15 460,800
16 1 Meg

Table 4.1 Baud rate values

After initialization by callings1 i nit (), SER1 is configured as a full-duplex serial paort & ready to
transmit/receive serial data at one of the spetifi@ baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by macro sempEration. In terms of receiving, there is nosafe
overhead or interrupt latency for user applicatiwagrams even at the highest baud rate. Macrocgervi
transfer allows efficient handling of incoming datahe user only has to check the buffer status wit
serhitl() and take out the data from the buffer wgilt ser 1() , if any. The input buffer is used as a
circular ring buffer, as shown in Figure 4.1. Howg\the transmit operation is interrupt-driven.

ibuf in_tail in_head ibuf+isiz

vy ¥
[[T T]

1 |

Figure 4.1 Circular ring input buffer

The input bufferipuf), buffer size i6iz), mode (hode), and baud ratebfud) are specified by the user with
sl init().The mode is the setting value for the serial porttrol register. A value dixC9 will set the
serial port in the following manner:

transmit enable, receive enable, no parity, 8 Hata 1 stop bit

Due to the nature of high-speed baud rates andhp@sffects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer wigat ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4<Ber
will be able to store data for approximately foacands.

4-10

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and rethenoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates ratalis available in the buffer.

You can usget ser 1() to get the serial input data byte by byte usingd-from the buffer. The in_tail
pointer will automatically increment after evaggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @l cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsing buffer,s1_out _buf, at any time using this
method. The transmit ring buffer addresdyf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgqtiwill disable the transmit interrupt. Othése, it will
continue to take out the data from the out buffery transmit. After you cajput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘.’ charadte‘?’. The translated HEX file is then transiait out
of SERO. This sample program can be foundénn\ 186\ sanpl es\ ve.

Software Interface
Before you can use the serial ports, they mushitialized.

There is a data structure containing importanas@ort state information that is passed as argtiteetie
TERN library interface functions. TheOM structure should normally be manipulated only BRN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufnd associated pointer values, you can watch the
transmission process.

The two serial ports have similar software integfac Any interface that makes reference to eitideor
serQ can be replaced withl or serl, for example. Each serial port should use its @@M structure, as
defined inve.h.

typedef struct ({
unsi gned char ready; /* TRUE when ready */
unsi gned char baud,;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* Input buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* 1 nput buffer HEAD ptr */

int in_size; /* I nput buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_nt; /* Input buffer FLAG */
unsi gned char in_full; /[* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /* Qutput buffer MI */

unsi gned char tnso; /1l transmit macro service operation
unsi gned char rts;

4-11

unsi gned char dtr;
unsi gned char en485;
unsi gned char err;
unsi gned char node;
unsi gned char cr; /* scc CR register */
unsi gned char sl ave;
unsi gned int in_segm /* input buffer segnment */
unsi gned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */
unsi gned int out_offs; /* output buffer offset */
unsi gned char byte_del ay; /* V25 macro service byte delay */
} CoM
sn_init

Arguments: unsigned char b, unsigned char* ibuf, inisiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitle specified parametermodeis the serial control
register valueb is the baud rate value shown in Table 4.1. Tharaggntsbuf andisiz specify the input-
data buffer, andbuf andosiz specify the location and size of the transmit idfer.

If mode = 0xc9, the serial ports are initialized &bit, 1 stop bit, no parity communication.

There are a couple different functions used fangmaission of data. You can actually place dathiwithe
output buffer manually, incrementing the head aildbiuffer pointers appropriately. If you do natllcone
of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedisEtlows you to control when you wish the transios
of data within the outbound buffer to begin. Otite interrupts are enabled, it is dangerous to pudatie
the values of the outbound buffer, as well as tidaes of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one bytaitch into the transmit buffer for the appropriate sepiart. The return valug
returns one in case of success, and zero in aey o#ise.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated charactengtinto the transmit buffer. The return valueurets one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferserhitn() should be called befor
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufte this serial port.

getsen
Arguments: COM *c

Y

4-12

Return value: unsigned char value

This function returns the current byte frem in_buf, and increments thia_tail pointer. Once again, this
function assumes thaerhitn has been called, and that there is a charactesmirgsthe buffer.

getsers
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffstr with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage ret¢ASCII: 0x0d) is retrieved.

This function makes repeated callgttser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null charactershia byte
array, and the returnalue is the only definite indicator of the number otdésyread. Normally, we
suggest that thgetsersandputsersfunctions only be used with ASCII character stsinij you are working
with byte arrays, the single-byte versions of tHesetions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission awtiving of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yocheck and set the value of these 1/O pins appatalyi
for whatever form of flow control you wish to imphent. Before using these functions, you shoulceonc
again be aware that the peripheral pin function gmiusing might not be selected as needed. FRailgje
please refer to the NEC V25 User’'s Manual.

char sn_cts(void)
Retrieves value o€ TS pin.

void sn_rts(char b)
Sets the value ®RTS to b.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset efau
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting délvenhardware as well as disabling the interrupt.

clean_sen
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

4-13

The asynchronous serial 1/0 ports available olNBE V25 processor have many other features thattmig
be useful for your application. If you are trufhterested in having more control, please read @hdyit of
the User’'s Manual for a detailed discussion of pfeatures available to you.

4.4 Functions in SCC.0OBJ

The functions found in this object file are profmyg inscc.hin thet er n\ v25\ i ncl ude directory.

The SCC is a component that is used to providéra éisynchronous port. It uses the 8 MHz systesnkcl
for driving serial communications. The divisors dadction arguments for setting up the baud rateHis
third port are different than for SERO and SERL1.

Function Argument | Baud Rate

110

150

300

600
1200
2400
4800
9600 (default)
19,200
31,250
62,500
125,000
250,000

© 0 ~NOO UL~ WNPR

e el
w N P o

Unlike the other serial ports, macro service trangf not used to fill the input buffer for SCCslead, an
interrupt-service-routine is used to place charadt&o the input buffer. If the processor does nespond
to the interrupt—because it is masked, for examphe-interrupt service routine might never be able t
complete this process. Over time, this meansmaiht be lost in the SCC as bytes overflow.

Special control registers are used to define hav3EC operates. For a detailed description of tergis
MR1 andMR2, please see Appendix C of this manual. In mosRNE&pplications, MR1 is set @57,
and MR2 is set t@x07. This configures the SCC for no flow control (RT&TS not used/checked), no
parity, 8-bit, normal operation. Other configuraticare also possible, providing self-echo, evenymatity,
up to 2 stop bits, and 5 bit operation, as weli@®matic hardware flow control.

Initialization occurs in a manner otherwise simitarSERO and SER1. A&OM structure is once again
used to hold state information for the serial pofte in-bound and out-bound buffers operate agrbef
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned chardigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue ba as defined in the table above. The valuesirand
m2 specify the values to be stored ilrM&®1 andMR2. As discussed above, these values are normallyj
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, armif andosiz define the output buffer.

4-14

After initializing the serial port, you must alsetaup the interrupt service routine. The SCC26%RU
takes up external interrupfNTO on the CPU, and you must set up the appropridterupt vector to
handle this. An interrupt service routingsc_isr() has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

intO_init(1, scc_isr);
By default, the SCC is disabled for bdtiansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deedegou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomaledile showing RS232 full duplex communications,
please sege_scc.dn the directoryt er n\ v25\ sanpl es\ ve.

RS485 is slightly more complex to use than RS28%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i8Br installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you willso need to place the
RS485 driver in transmission mode as well. Thiddee by usingcc_rts(1) This uses pin MPO (multi-
purpose output), found on the J1 header. While amureceiving data, the RS485 driver will needbé¢o
placed in receive mode usisgc_rts(0)

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallyshea
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_e/scc_rec_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofethe
functions are disabled by default. If you are gdr8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_rec_reset
Arguments: none
Return value: none

This function resets the state of the send andvwedenction of the SCC2691. One major use ofdéhes
functions is to disable send and receive. If yaiusing RS485, you will need to use this featunerw
transitioning from transmission to reception, amfrreception to transmission.

Transmission and reception of data using the S@Cn®ost ways identical to SERO and SER1. The
functions used to transmit and receive data aréssimFor details regarding these functions, peaser to
the previous section.

putser_scc
See: putsern

putsers_scc
See: putsersn

4-15

getser_scc
See: getsern

getsers_scc
See: getsersn

Flow control is also handled in a mostly similastieon. The CTS pin corresponds to the MPI pincivlis
not connected to either of the headers. The REgiresponds to the MPO pin found on the J1 header

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.

scc_close
See: sn_cl ose

serhit_scc
See: sn_hit

clean_ser_scc

See: clean_sn

Occasionally, it might also be necessary to chbekstate of the SCC for information regarding extbat
might have occurred. By callingcc_err, you can check for framing errors, parity erroifspérity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val

The returned valueal will be in the form of 0OABCO0000 in binary. Bit & 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit @licates an over-run error.

4.5 Functions in VEEE.OBJ

The 512-byte serial EEPRON4CO04) provided on-board provides easy storage of ndati® program
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite stmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addresse€x00 to Ox1f on the EEPROM is reserved for system use, incudonfiguration information
about the controller itself, the jump address f@pSTwo, and other data that is of a more permametoire.

The rest of the EEPROM memory spa@e20to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedan to the specifiedddr. The return value is 0 in success.

4-16

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from thec#fjedl address.

4.6 V104 Sample Programs for DAC & LCD

The following sample programs supporting the DACdarCD can be found in the
c:\tern\v25\ sanpl es\ v104 directory:

V_ct_da.c
V104_da.c
V104 _dac.c
V104 lcd.c
V104 _ppi.c

4-17

V104 Appendix A: V104 L ayout

Appendix A: V104 L ayout

All dimensions are in inches.

0.317, 3.825 3.50, 4.00
0.125,3.850
mJ B 241/0 lines o L (¢H-3.375, 3.883
] [o ‘ g
v | 3325 3733
N UB
AD
PPI DA J3 AD/DA header
2
J7 L
LG I %mj?
U
SCC PAL V104P1000 PAL V104P000
[e[9% E 125 ports
L1
Uz
0.358, 2.225 |
RAM ROM V25 CPU]
R‘m VE232 interface
0.125, 0.317 o T ~"M 4 3425,0.633
! I3l \ \m J2
N \ - o
o o ooy (4} 3.375,0317
3.325,0.183

A-1

V104 Appendix B: VE232 Pin Layout

Appendix B: VE232 Pin Layout

All dimensions are in inches.

-0.22, 2.30 1.38, 2.30
WA (kR (@)
] Hp
U A ul
{7 F—
[LI |
3l
1
-0.22, 1.175 U 9
C G
3 1 R4 U2
s,
DI
0.00, 0.00 138, 0.0

COMPONENT SIDE

10-21-1994

V104 Appendix C: UART SCC2691

Appendix C: UART SCC2691

1. Pin Description

D0-D7 Data bus, active high, bi-directional, and having 3-State
ICEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

AO0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

XUCLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TxD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit 7 | Bit6 | Bit5 | Bit4 HETE [Bit2 [Bit1 [Bito
RxRTS RXINT Error __ ParityMode___ Parity Type Bits per Character
0=no 0=RxRDY 0 =char 00 = with parity 0=Even 00=5
l=vyes 1=FFULL 1= block 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0 =Data
1=Addr

V104 Appendix C: UART SCC2691

MR2 (Mode Register 2):
[Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
Tx (add 0.5 to cases 0-7 if channel is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0.625 5=0875 9=1625 D=1.875
10 = Local loop 2=0688 6=0938 A=1688 E=10938
11 = Remote loop 3=0.750 7=1.000 B=1750 F=2.000
CSR (Clock Select Register):
[Bit7 | Bit6 | Bit5 | Bit4 [BIit3 [Bit2 [Bit1 [Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] =0:
0= 50 1=110 2=1345 3=200 0= 50 1=110 2=1345 3=200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=38.4k D=Timer E=MPI-16x F=MPI-1x C=38.4k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A=7200 B = 1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
Miscellaneous Commands Disable Enable Disable Enable
TX TX RXx Rx
0 = no command 8=gart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=vyes 1=yes 1=vyes 1=yes
2 =reset receiver A = assert RTSN
3 =reset transmitter B = negate RTSN
4 =reset error status C=reset MPI
5 = reset break change change INT
INT D =reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes
* * *

Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are
reset when the corresponding data character is read from the FIFO.

C-2

V104 Appendix C: UART SCC2691

ACR (Auxiliary Control Register):

[Bit7 [Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode
0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rateset 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)
transmitter 1= off 4 =RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (x2/CLK) 6 =TxXRDY
see CSR 4 =timer, MPI pin 7 =RxXRDY/FFULL
bit format 5 =timer, MPI pin divided by
16
6 = timer, crystal or external
clock (x1/CLK)
7 =timer, crystal or external
clock (x1/CLK) divided by 16

ISR (Interrupt Status Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes

IMR (Interrupt Mask Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n

CTUR (Counter/Timer Upper Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |

| cTag | crpa | crpyy | otz | otqa | otlig | cm9 | cmrg |
CTLR (Counter/Timer Lower Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |

[T | cmiel | cmis) | crg | orig) | cm2 | cry [oo I

C-3

V104

Appendix D: RTC72421 / 72423

Appendix D: RTC72421 / 72423

Function Table

Address Data
Az | A, | A; | Ay | Register | 3 D, D, Do Count Remarks
Value
0 (0 0 |0 |9 S3 S S S 0~9 1-second digit register
0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register
0 (0 1 ({0 | My mig | miy miy, [mig 0~-9 1-minute digit register
0 (O 1|1 Mk Migq Misg | Migg | 0~5 10-minute digit register
0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register
0 |1 |0 |1 | Hg PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1
0 |1 110] dg dy d, d; 0~9 1-day digit register
0 |1 1 (1 Do dgy | dig 0-~3 10-day digit register
1]0 0 |0 | MQ mog | mo, mo, [mo, | 0~9 1-month digit register
1]0 0 |1 MQg mo | 0~1 10-month digit register
1 0 1 0 Y Ys Y4 Yo Y1 0~9 1-year digit register
1 |0 1]1 Yo Yso | Yao Yoo | Y10 0~9 10-year digit register
1 |1 0|0 | W vy W, Wy 0~6 Week register
1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D
Adj | Flag
1 |1 110 Reg E qt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Test 24/12 Stop Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse

2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)

Data bit| PM/AM INT/STD 24/12
PM INT 24
AM STD 12

5) Test bit should be "0".

V104 Appendix E: Serial EEPROM Map

Appendix E: Serial EEPROM Map

Part of the on-board serial EEPROM locations aeal U/ system software. Application programs mustse
these locations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO_receive, used by ser0.c

0x05 SERO_transmit, used by ser0.c

0x06 SER1_receive, used by serl.c

0x07 SERL1_transmit, used by serl.c

0x10 CS high byte, used by ACTR™

0x11 CS low byte, used by ACTR™

0x12 IP high byte, used by ACTR™

0x13 IP low byte, used by ACTR™

0x18 MM page register 0

0x19 MM page register 1

Oxla MM page register 2

0x1b MM page register 3

V104 Appendix F: Software Glossary

Appendix F: Software Glossary

The following is a glossary of library functions fine V104.

void ve_init(void) ve.h

Initializes the V25 processor. The followinglietsource code fae init()
pokeb(0xfff0,0x02,0x80); /* Set PMCO PO7=CLK */

pokeb(0xfff0,0x01,0xd7); /* Set PMO for input, PO5=LED P03=HWD output */
pokeb(0xfff0,0x0a,0x80); /* Set PMC1 P17 for READY */

pokeb(0xfff0,0x09,0xaf); /* Set PM1 for input, P14=RTS1,P16=RTS0 OUTPUT */
pokeb(0xfff0,0x12,0x00); /* Set P20-P27 for port mode */

pokeb(0xfff0,0x11,0xf7);// Set PM2 for input, P23=E N485 output

Reference: led.c

void ve_reset(void) ve.h

Resets the V25 processor.

void delay _ms(int m) ve.h

Approximate microsecond delay. Does not use timer.

Var: m — Delay in approximate ms

Reference: led.c

void led(int 1) ve.h

Toggles P05 used for led.

Var: i- Led on or off

Reference: led.c

void delayO(unsigned int t) ve.h

Approximate loop delay. Does not use timer.

Var: m — Delay using simple for loop up to t.

Reference:

F-1

V104 Appendix F: Software Glossary

void halt(void) ve.h

Enables HALT standby mode, which halts the systiewkato reduce power consumption.
Peripheral CPU devices (serial ports, timers, DMA will not be effected. System clock restored
by interrupt.

Reference: ve_halt.c

void hitwd(void) ve.h

Hits the watchdog timer using P0O3. P03 must bexeoted to WDI of the MAX691 supervisor
chip.

Reference: See the Hardware chapter of this manual for more information on the MAX691.

void port_init(char p, char pmc, char pm) ve.h
Initializes 1/0 port mode control and port mode.

Var: p=port0,1or2.
The PMC andPM variables define each pin of the 8-bit port sadct
For examplePM = 0xfO would set bits 0 — 3 as low and bits 4 — 7 as.high

pmc = CONTROL or I/O mode (0 =1/0; 1 = CONTROL).
pm = 1/O pin as input or output(0 = output; 1 =in put).

Reference: portx.c

void port_wr(char p, char dat) ve.h

Writes a bit to a Port I/O line. Port I/O line mim in an output mode

Var. p—Port0, 1, 0r2
dat — 8-bit data for port p

Reference: portx.c

unsigned int port_rd(char p) ve.h

Reads an 8-bit I/O port.
Var: port—0: Port 0

1: Port1l
2: Port 2

Reference: portx.c

F-2

V104 Appendix F: Software Glossary

void portt_wr(char vref) ve.h

Selects reference voltage for the comparator ippreit

Var: vref — {0 ... 15} defines reference as follow S
reference = Vth * vref/16.
For vref — 0: reference = Vth.

Vth : Threshold voltage =3.57V

Reference: portt.c

char portt_rd(void) ve.h

Reads from the 8-bit comparator input port. Red8+bit value.

bit =0, PT, < Vref

bit=1, PT,> Vref

where PT is the input voltage and Vref is the selectedghodd voltage.

Reference: portt.c

void outport(int portid, int value) dos.h

Writes 16-bitvalue to I/O addresgortid.

Var: portid — /O address
value — 16 bit value

void outportb(int portid, int value) dos.h

Writes 8-bitvalue to 1/0 addresgortid.

Var: portid — 1/0 address
value — 8 bit value

int inport(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 16-bit value.

Var: portid — 1/0 address

int inportb(int portid) dos.h

Reads from an 1/O addrepsrtid. Returns 8-bit value.

Var: portid — 1/0 address

F-3

V104 Appendix F: Software Glossary

int ee wr(int addr, unsigned char dat) veee.h

Writes to the serial EEPROM.

Var: addr — EEPROM data address
dat - data

Reference: ve ee.c

int ee_rd(int addr) veee.h

Reads from the serial EEPROM. Returns 8-bit data

Var: addr — EEPROM data address

Reference: ve_ee.c

void rtc_init(unsigned char * time) ve.h

Sets real time clock date, year and time.

Var: time — time and date string
String sequence is the following:
time[0] = weekday
time[1] = yearl0
time[2] = yearl
time[3] = mon10
time[4] = monl
time[5] = day10
time[6] = dayl
time[7] = hour10
time[8] = hourl
time[9] = min10
time[10] = minl
time[11] = secl10
time[12] = secl
unsigned char time[]={2,9,8,0,7,0,1,1,3,1,0,2,0};
/* Tuesday, July 01, 1998, 13:10:20 */

Reference: rtc_init.c

intrtc_rd(TIM *r) ve.h

Reads from the real-time clock.

Var: *r— Struct type TIM for all of the RTC data
typedef struct{
unsigned char secl, sec10, minl, min10, hounlr1@o
unsigned char dayl, day10, monl, monl0, yearll@ea
unsigned char wk;
}TIM;

Reference: rtc.c
void timerQ_init(unsigned char mode, int md0, int tm0); ve.h

F-4

V104 Appendix F: Software Glossary

void timer1_init(unsigned char mode, int mdO, int tm0O);

Timer 0, 1 initialization.
Var: mode — TMC Timer mode. See ch. 9 for the TMC register

tm — Count time for the count down timer.
md — Count time for the modulo timer.

Reference: timer.c, timerO.c, timerl.c

void timerQ_interrupt(char i, void interrupt far (*timer0_isr)()); ve.h
void timerl_interrupt (char i, void interrupt far (*timer1_isr)());

Initialization for timer interrupts.

Var: i—1: enable, O: disable.
timer #_isr — pointer to interrupt service.

Reference: timer0.c, timerl.c

void nmi_init(void interrupt far (* nmi_isr)()); ve.h
void intpO_init(unsigned char i, void interrupt far (*intp0_isr)());
void intpl_init(unsigned char i, void interrupt far (*intpl_isr)());
void intp2_init(unsigned char i, void interrupt far (*intp2_isr)());

Initialization for interrupts 0 through 2 and NMilgn-Maskable Interrupt).

Var: i—1: enable, O: disable.
int #_isr — pointer to interrupt service.

Reference: intpx.c

void S0_init(char m, char b, unsigned char* ibuf, intisiz, ser0.h
unsigned char* obuf, int osiz, COM *c) (void);
void sl _init(char m, char b, unsigned char* ibuf, intisiz, serl.h

unsigned char* obuf, int osiz, COM *c¢) (void);

Serial port 0, 1 initialization.

Var: m — mode for serial control register.

b — baud rate.
ibuf — pointer to input buffer array

isiz — input buffer size

obuf — pointer to output buffer array
osiz — ouput buffer size
c — pointer to serial port structure. See VE.H for COM
structure.

Baud

110
150
300
600
1200

GObrhWNPR T

F-5

V104

Appendix F: Software Glossary

b Baud

6 2400

7 4800

8 9600

9 19,200 (default)
10 38,400
11 57,600
12 76,800
13 115,000
14 230,000
15 460,800
16 1 Meg

Reference: S0_echo.c, s1_echo.c, sl 0.c

void scc_init(unsigned char m1, unsigned char m2, unsigned char b,

unsigned char* ibuf,int isiz, unsigned char* obuf,int osiz, COM *c)

Serial port 0, 1 initialization.

Var: ml=SCC691 MR1
m2 = SCC691 MR2

b

— baud rate.

ibuf — pointer to input buffer array
isiz — input buffer size
obuf — pointer to output buffer array
0siz — ouput buffer size
€ — pointer to serial port structure.
structure.

See VE.H for COM

ml bit

Definition

I—‘I\)-FU'IO’\I
o w

(RXRTS) receiver request-to-send control, 0=no, 1
(RXINT) receiver interrupt select, 0=RxRDY, 1=FIF
(Error Mode) Error Mode Select, 0 = Char., 1=Bloc
Parity Mode), 00=with, 01=Force, 10=No, 11=Spe
(Parity Type), 0=Even, 1=0dd

bits) 00=5, 01=6, 10=7, 11=8

=yes
O FULL

cial

=

Definition

who

Modes) 00=Normal, 01=Echo, 10=Local loop, 11=R
(TXRTS) Transmit RTS control, 0=No, 1= Yes

(CTS Enable Tx), 0=No, 1=Yes

Stop bit), 0111=1, 1111=2

emote loop

oo~NoUuh~hwWNR T

scc.h

V104 Appendix F: Software Glossary

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putserO(unsigned char ch, COM *¢); ser0.h
int putser1(unsigned char ch, COM *¢); serl.h
int putser_scc(unsigned char ch, COM *¢); scc.h

Output 1 character to serial port. Characterbéllsent to serial output with interrupt isr.

Var: ch — character to output
C — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int putsersO(unsigned char *str, COM *c¢); ser0.h
int putsersl(unsigned char *str, COM *c); serl.h
int putsers_scc(unsigned char ch, COM *c); scc.h

Outputs a character string to serial port. Charagiiébe sent to serial output with interrupt isr.

Var: str — pointer to output character string
C — pointer to serial port structure

Reference: serl sin.c

int serhitO(COM *c); ser0.h
int serhit1(COM *c); serl.h
int serhit_scc(COM *¢); scc.h

Checks input buffer for new input characters. Retu if new character is in input buffer, else 0.

Var: ¢ — pointer to serial port structure

Reference: S0_echo.c, s1_echo.c, sl 0.c

unsigned char getserO(COM *c); ser0.h
unsigned char getser 1(COM *c); serl.h
unsigned char getser_scc(COM *¢); scc.h

Retrieves 1 character from the input buffer. Asssithatserhit routine was evaluated.

Var: c — pointer to serial port structure

Reference: s0_echo.c, s1_echo.c, s1_0.c

int getsersO(COM *c¢, int len, unsigned char *str); ser0.h
int getsers1(COM *c, int len, unsigned char *str); serl.h
int getsers scc(COM *c, int len, unsigned char *str); scc.h

F-7

V104 Appendix F: Software Glossary

Retrieves a fixed-length character string fromitiput buffer. If the buffer contains less charaster
than the length requestedt; will contain only the remaining characters frore thuffer. Appends
a ‘\0’ character to the end af. Returns the retrieved string length.

Var: ¢ — pointer to serial port structure

len — desired string length
str — pointer to output character string

Reference: serl.h, ser0.h for source code.

V104 Appendix G: Graphic LCD Interface

Appendix G: Graphic LCD Interface

A Graphic LCD with 240x64 pixels can be interfaoet104 LCD header H1.
A special PAL V104LCDO must be installed replacWi04P100.
A special cable matching the pin-out of the GLCDstrhie custom made.

A sample program “v104_glc.c” can be tested.

1,1

Pin 1

240, 64

There is a simple demo program to show the uskeoTX711A or UG-24B-03 graphic LCD.

This demo program gives some of the basic grajitviaries that can be expanded to fulfill many & traphic
needs the user might have.

For V104 U5=PAL V104LCDO0.PDS
H1 pin 15=LCD2=/IORD; H1 pin 16=/RST (added wice\Mt104 U4 pinl5)
Special Cable made for converting V104 H1 signal§tCD header:

GLCD240x64 V104 H1i
pin 20 -> G\D|<- pin 19

D7 D6 pi nl-> D7 D6 <- pin2

D5 D4 D5 D4

D3 D2 D3 D2

D1 DO D1 DO

/| RST LCD RW

A0 LCD A0 VLC

LCD2 R'W G\D VCC

VLC VCC pinl5 -> LCD2 /RST| <- pin 16
pin 2-> GND G\D|<- pin 1l

VLC = -8.0 V provided via VE232 (modified)
Users should also refer to the TOSHIBA T6963C(Dattfik LCD Control LSI) data sheet.

V104

Appendix H: Interface to MemCard-A

Appendix H: Interfaceto MemCard-A

The following diagramsiillustrate how to connect the V104 to the MemCard-A via TTL pins, using acable.

o) J5 241/0 lines ‘ Ja:“
=l L?J:I
J10
RAM ROM V25 CPU
D—M;—gm_l;'_\; v —
4 O
% PC/104 Bus é
V104
V104
J3
O|o
O O
O O
O O
O O
O O
O @ |GND
O @ |VCC
O O
00|20
J10 BOEE
P27 @ O
P25| @ @ | P24
PT7| @ @ |PT6
O O
O O
O O
O @ |P15
O @ | P06
O O

V104-MMA
L/ cable
~
— =7 H3)
—OoL__ L8 =R
s — O — u13 1
e
" O
H us €S8900
U1l
O E—— (@)
MemCard-A
ONG®)
ONG®)
ONG®)
OO
OO
VCC| @ @ | GND
IRST=P12 | @ @ | AO=P27
/259=P25 | @ @ |Al1=P24
DO=P15| @ @ | A2=P06
D24=PT7 Q|. D12=PT6
H3
MemCard-A

BRI

BIEXBEEEBE B

XTALL Us Voo o vee u3 uL
e e = TEEEaeE .
T or E 1 or
D W ToMHZ Ala 3 8 LcDl A 3 8/ Al8P 1 320 1 2 M
Sci [REFR @ a Ao 412 Loy A7 4|13 RII7 MR ALe 2|yt YECIST A At62| A18 YOO I31 A15
SDA TRST 10PF 513 & R A6 5113 EI67 A5 3|2 /PEMIg0o AT TAIa3| A1 AL [B0 2
P02 VCC LOPF P62 P EsTTOD ITosTB 6 |2 Sf A5 A Az 2|15 Mo A1s ALza| A% B2 o RwW
HWD Xz IMEQ 7112 & TPP e 7112 $ Y A7 5|12 AldI5g A3 A7 5| a22 RWHs Atz
VDO X1 ca [TOSTE 8,5 of [IE TR TVREO R = A6 e e [27 A8 A6 6 ad e 2728
1T GAD o RW 9,4 op |12 PL7 RW ol o [12 BAE A5 710 o [26A9 A5 7o o [26- A9
FO5 ™ VTH 0] 8, L [T 0] 2, QML A B 95 AT Agl e N9 o5 AL
P0G r1C DI PCAP A3 olqd MlmoaTven “Azold MLL2aTwveo
PALIOVE PALIGV: A 10 LB a0 “Amtola AE [A0
11 8181818(8(7(71717) 7 V104P100. PDS V104P000. PDS Al 11 22 JROM _ALIL 22| RAM
1(0{o|s| 7{e|5|43|2|1|4|3]2|]0] 6|4l 7{6|5 Al /CE Al /CEL
U10 voe w A0 12 % o 21 Dr AO1Z | A% o [21 07
2 > >,
BELEBEESRMATERIRIE w B Yol (e S0, IR B R B
65 43210DROSWESD ~DH N A 31 A2 oK [ZB_P24 VCC_ Bl NE X1 X6 5] oo D4 [28 5] o D [28
K12 | po7/ cLK LEST FT pT7 [-L4 _PT7 21 A3 DIN[EL P25 AQ A0 cS1 A5 LRST 6l D8 [LL 6l e D8 L
3] oo EQEB E pTe | L3 _PT6 AD4 5|04 pour | L6 P26 Al 5] oo |14 D0
2] 20 Q Fefzrrs A e UL p15 P27 V) - D0 M3 o1 PROVI0Z4 RANE 71024
5152 PD70320_v25 P12 [71 Al 7] AR recs P12 REFH A3 7| 2 D 2 o2 33 J1
6 V25 3 Abr 8 3 GND /1RO B T ADIO 1 2 VB 1 2 G\D
D3 PT3 13 AD7 REF- J/RD DB 1o o2
7 PT2 9 2 ADLO aD 9 0 RW ADO 3 4 VA J5 73 24 RST
g > PT2 PTL 10| AD8 ADLO T —Aps G\D VR a5 2 6 ve 0 D65 6 _VCC
D5 PT1 0 G\D ADO 72421 a7 2 D 1 12 BT S8
D6 PTO Lr L5 3 4 o Ol
0 7 %7_ [TC2543 AD6 O D 2 5 0_-5V
29 oy P17/ RDY A 25 ot 2 5 6 25 o9
A0 P16/ SCKO o 7 8 o O
22 p15 v c10 3 1 4 > 13 -12v
21 m P15/ TOUT o 9 10 o O
23 P14 D2 D5 + AD3 15 6 VCC 5 DL 15
24| A2 P14/ | NT/ PQLL =5 1 cs A A 7 REFT 1112 7 +12VI
A3 P13/ | NTP2/ | NTAK |R&——=3 E = 6 13 14 =
25| ‘ne b1o | NPy (61 P2 DO D7 g DI PCAP DI PCAP ADL__19 ADO 7 s 18 | ORDYLO G
554 A5 P11/ 1 NTPO |27 PR RS e HDRD20 15—q171s A:AEIJENT%D 5 5
28] A8 P1O/NM_—28—557 3/3(213(33/3(313(2 39 HDRD20 T22 41920 Als 25 2 O %6 /o
A7 P27/ HLDRQ gla[7e/saz2| ol w11 21 22 Al 25 o 6
291 a7 P -DR2 57 P26 VMo 33 2122 A7 27 58 TTORD
301 a9 P25/TCL [28—F22- | o= 40 RDDDDNDDDDY 28 117 H—d2 s 1 20, Z 25 26 AL6 29 30
AL0 P24/ DAL -2 /WR S0123C4567D P17 P13 1 4 27 28 3 32
2 P P 54 _p23 07 41 T 27 HDRD2 P27 3 P2 2 33 34_p21
ALL 2 22P23/DRL PO7 P16 £ 2 O © 2 & 29 30 2 35 65 o=
06 42 26 (15 HDRD2 P25 5 5 P24 2 Al3_35 36_P20
o 12 PO6 P15 o 31 32 o O
017 0543 £96 P18 155 T 00 3132 A2 370 Q738 TREFE
D VDT 0444 2 3 J8 59 01 AT 39 K
B, ¥RL 2] Poa P13 [ACTETENGY g £ 0 35 36 25 o2
0CD0G NC NC 23— LRST 4 T3 o T2 02 37 38 9 o O
03~ 21 pog p1o [2Z 112 PT1 18 5 o 14 P 3 39 40 A9 43 5 o
02 3] Fo3 P12 21111 P17 15 6 P15 04 3949 A8_45 46
o1 4] £o2 F1d 20110 FDRD2 T 17 8 P06 05 a1l A7 47 2 P13
00 5] Fol P10 (1o 123 HDRD2 2 19 0 06 a3 a8 A6 49 2 S50 Pi2
JTORD 6 /G P PPPPP 18 120 07 A5 51 5
/RD CNAA2N2 2255 P22 o= 47 48 ﬁo 05—3
SD107C65401 Pl 8255 3 —=———q 4950 A3 55 0 O 56 BALE
FDRDS Az 57 2 & 58 vee
1l11f1(afal1]1 PPl 8255 1 22 5L 5 S O
1O MAP 7/8lo[o[2(2/3|4/5/6 2 AT 59 2 ST60 0s5C
0XC000 SCC PPI {21 3 A0 613 ST62 o
0XC100 PPI GD 120 M w63 3 §T64 Gw
0X4000 LCD3 T 174 z
GND TXO0 0X4100 LCD4 A 175 HL HDRD64
- &b 0X8000 RTC 77| 126 = D71 2 D6
E— Uz vee H 3 Z
RL 1 80 D35 52
<|:| P23 VCC R2 L1 2] A9 Ve Crwe o S G S O
cs LEH AI** Po5 3| a2 oy B SCL ool 0 2 0 TTOWR J6
/RST|DIPCAP = 10K 2] {2, S5 soA A0 112 2 ViC 1
PCAP us voe 1K LED GD 13 Y, 3
NRD 1 rp veo 249 24004 Loz 15 3 S16 3
XD 2] gp /WR R/ W 2
Us X0 3| BB /R[5 uL2 HDRD16 2
PO el v VB 1[s oollé Ve u13 vee o) HDRDL6 c3 H
o >
VBAT 1l\g Ror [28 RST. ML Slh\p~ pz (20 VA Z2lon oo —1MNc +sv |49 10UP3SV y 7
VRAM 2 5/ RST 9 D3 -5V__3 2 ALCAP2 RS
VO / RST a2 D3 VSS VDD 8
VOoC__3 W 2 8 7 2 3 osc voc VLC DI PCAP
Voo AL >4 D AGND TP |3 G\D CLK Y AE 9
GD 21 \p ceal (3 TRAM AL Bl 4, D5 L + 51 RAB RCD 2 10K
5| SN E Iz rrRam B9 49 s 6] R RD a1 14 3V c7
6| POV SEo g 10| 3% P a5 or p20 7| PONPECO 10 poa os ul4 R4 voe &
7l pro[f0/PFO RsT 11l 2 B [IaE P25 8| gy’ Scs 9 P2l REE+ v R3
8 5 PE 3 3 PIT VLC DI PCAP FDRS12
— 1 ©ss PRI = VAXG37 Lvegs 220 HDRS12
VAXGOT
R4 J2 COPYRI GHT 1995, STE ALL Rl GHTS RESERVED.
RML 10 vin B2 19 10 RS 10110 P 16122 A 10100 @b 1 2 vce
9 P17 5 9 9 TI1 9 122 9 T0L. Pz 3 ° 97
B P16 [B 8 SCL 5112 8 123 § 102 GO 5 VBAT
7 pi5 7 7 SDA 7 113 7 124 7103 ~ TXD0 7 PEI
6 Pla 3 6 P02 6 14 6 125 6104 R0 99 3 P14
5 P13 5 5 D 5 115 5 126 5 105 o 2 RXD TERN STE
Z = AN 7 WO 4116 4127 2706 TXDI 13 7 Pl6
3 PRIl [T 3 3 P05 3 117 3 3107 ROLI5 S N Title
2 /T NM 2 2 P06 2120 2 2 P23 17 TX vioa
Tvce 1 vce T voe TvcC T-vce Tvee @b 19 8 § 5V i
10K RNIOSL 10K RNIOSL 10K RN1OSL 10K RNIOSL 10K RNIOSI 10K RN1OSL 10K RNLOSL Lm0 Si ze[Docunent Number
DRO2 B V104- MAN. SCH
Dat e: January 17, 2000 [Sheet 1 of

