

ACTFTM
for

TERN 16-bit Embedded Microcontrollers

Technical Manual

 TERN, Inc. All Rights Reserved.
Portions  Borland International. All Rights Reserved.

Portions  Paradigm Systems. All Rights Reserved.

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

i386-Engine, A-Engine, V25-Engine, and MemCard are trademarks of TERN, Inc.
LOC31, TD31, BC31, TDREM-xx, ACTF are trademarks of TERN, Inc.

Am188ES is a Trademark of Advanced Micro Devices, Inc.
Borland C++ 3.1 and Turbo Debugger are trademarks of Borland International.
Microsoft, MS-DOS Hyper Terminal and Windows are trademarks of Microsoft

Corporation.
LOCATE, DEBUG/RT and PDREM are trademarks of Paradigm Systems.

Version 3.00

June 23, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1997-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

ACTF™ Chapter 1: Introduction
__

 1-1

Chapter 1: Chapter 1: Introduction

1.1 What is ACTF™?

ACTF™ is a FLASH version of ACTR™. It is a unique firmware in a Flash EEPROM (AMD29F010/040).
ACTF™ can communicate with a PC via a terminal, such as PC windows terminal, setup to 19200**, 8, N,
1, via serial link. By typing text commands, you can download your complete application for a finished
product.
The ACTF/ACTR™ provides an interactive menu and on-line help for you, so you do not have to dig into
manuals. ACTF/ACTR™ not only provides you an easy access to C functions, but also allows you to
download a remote debugger kernel for your C/C++ program development, operate the controller and
exercise C functions immediately.

A functional flowchart of ACTF™ is shown below:

 Power on or Reset

STEP2 Jumper on ?

Yes

Recover the CS:IP jump address from EEPROM

Recover the CS:IP of the last GO command
 or

RUN the program starting at the CS:IP

No SEND out MENU over SER0 at 19200**, N, 8, 1

RUN ACTF/ACTR

See ACTF/ACTR MENU and Functions for
details.

 Starting Data logging and waiting for ASCII commands

Process Commands

**NOTE: BAUD Rate will differ based on the controller. See Appendix E for details.

Whether downloading a debug kernel for development or for your finished application, an intermediate
load utility must be downloaded first (you can not run code out of and program the flash simultaneously).
This load utility is downloaded into the SRAM, which then erases the Flash and prepares for downloading
into the flash. Chapter 2 of this manual goes into more detail about downloading.

ACTF™ can be used in your final product. After successfully downloading your application into the Flash,
setting the power up jump address, and setting a jumper, your application will at every power-on/reset.

ACTF™ Chapter 1: Introduction
__

 1-2

1.2 Minimum Requirements

1.2.1 Minimum Hardware Requirements
• The same minimum hardware requirements for the controller you are using, plus:
• Either ACTF surface-mounted flash or ACTF Flash Chip (DIP package)

1.2.2 Minimum Software Requirements
• TERN Paradigm C/C++ Development Kit (DV-P)

* The capabilities of ACTF kit are included with your full DV-P development package.

1.3 Hardware and PC-ACTF Communication
The ACTF utility can be installed on your controller in two different ways: either in the on-board flash or
with a TERN ACTF Flash chip (DIP package).

If your TERN controller uses a 32-pin ROM socket, it will be necessary to replace the TERN DEBUG
ROM with the ACTF chip. As with installing any DIP package into a socket, it is necessary to align pin 1
of the DIP package with pin 1 of the socket. In this case make sure that the notch in the ACTF chip
(indicating pin 1) is aligned with the notch in the ROM socket (also indicating pin 1).

See Figure 1.1 for ACTF ROM (DIP) installation.

Figure 1.1 ACTF ROM Chip (DIP Package)

ACTF ROM (DIP) Chips

• 186-based boards (both 128KB and 512KB): ACTF_AE (except A-Core-88TM)

• A-Core-88: ACTF_AC

• 386-based boards (both 128KB and 512KB): ACTF_IE

• V25-based boards (128KB only): ACTF_V25

These chips can be purchased from TERN with immediate availability.

Pin 1 Pin 1 Pin 1

Notch near Pin 1

ACTF™ Chapter 1: Introduction
__

 1-3

If your TERN controller uses on-board surfaced mounted flash, then the ACTF utility already resides in the
upper-most sector of the flash. Then to communicate with the ACTF utility, you must setup a hyper
terminal on your PC, or use the RTLOAD utility from within the Paradigm C/C++ environment. Figure 1.2
shows a surface-mounted flash chip.

Figure 1.2 ACTF Surface-mount Flash chip.

To communicate with the ACTF utility, you need to set up a serial terminal at your PC. Because the
HyperTerminal can be very slow, it is recommended that you use RTLOAD (the terminal communication
utility included with Paradigm C/C++).

To access RTLOAD:

Step 1.3-1:
Open Paradigm C/C++ and select ‘Tool’ from the top menu bar. Select ‘RTLOAD’ from the drop down
menu. (Figure 1.3)

Figure 1.3 Opening RTLOAD

Step 1.3-2:
Select the baud rate you require (19200 baud default). Use F5 to cycle through available baud rates.
Again, see Appendix E for baud rate details. (Figure 1.4)

Figure 1.4 RTLOAD Utility; Use F5 for Baud Rate selection.

ACTF™ Chapter 1: Introduction
__

 1-4

Step 1.3-3:
Select the COM port in which you have your TERN controller connected. Use F4 to cycle through
available ports. (Figure 1.5)

Figure 1.5 Use F4 for COM port selection.

Step 1.3-4:
Upon setup of the RTLOAD terminal, power on your TERN controller with the red Step-2 jumper OFF!
Refer to your controller’s technical manual for location of Step-2 jumper. You should see the ACTF menu
at the terminal. (Figure 1.6)

Figure 1.6 ACTF Menu in RTLOAD utility.

You are now setup to run ACTF commands, and/or download debug kernels and application .HEX files.

ACTF™ Chapter 2: Downloading
__

 2-1

Chapter 2: Code/Product Development

2.1 Introduction

This chapter will lead you through the many uses of the ACTF utility. The ACTF utility can be used for a
number of things. If your are using a AM186/88 or SC520 based controller with surfaced-mounted flash
you can use it to first download a debug kernel to allow for code development via Paradigm C/C++. Or, if
you are using an ACTF Flash chip, you may be using the ACTF utility solely to download your already
developed ACTF downloadable application .HEX file into the flash for a finished product. In either case
this chapter will guide you through the steps.

2.2 Downloading a Debug Kernel into Flash (ROM & Surface-mount)

All TERN controllers installed with surface-mounted flash, that do not use a ROM socket, require a debug
kernel to be downloaded into the flash for communication with the Paradigm C/C++ software for product
development (these boards include any 186ES/ER, select 386, and 586 boards).

By default this is already done for you at the factory, but since the sector where the debug kernel resides is
not protected, it can be erased easily. This downloading into the surfaced-mounted flash is done using the
ACTF utility which resides in the top sector of the surface-mounted flash. The top sector is protected, so
you won’t be able to inadvertently erase the ACTF utility.

This section will guide you through downloading a debug kernel into the surfaced-mounted flash.

DOWNLOAD

Assuming you followed the instructions in Chapter 1, you should see the ACTF menu in the RTLOAD
terminal.

Figure 2.1 ACTF Menu

ACTF™ Chapter 2: Downloading

2-2

Note that the ACTF utility only recognizes UPPER CASE characters.

To download a debug kernel:

Since the ACTF utility runs out of the Flash and you can’t program the flash and run code out of it at the
same time, you must download another utility into the SRAM first, which will do the actual programming.

Step 2.2-1:

Type upper case ‘D’ and press ENTER. You will see “Ready to receive Intel Extend HEX file”

Figure 2.2 Ready to Download File into SRAM

Step 2.2-2:

Press F8 to select the file which will be downloaded into the SRAM. Then type in the file necessary for
your controller. A quick discussion of which files are needed is listed below Figure 2.3.

Figure 2.3 Selecting the necessary SRAM file (186ES Example shown).

ACTF™ Chapter 2: Downloading
__

 2-3

Step 2.2-2 (continued):

RAM LOADER FILES (for Debug Kernel loading)

188ES-based Controllers

• \tern\186\rom\lo_ee128.hex (for DIP 128KB Flash)

• \tern\186\rom\lo_ee512.hex (for DIP 512KB Flash, or Flashcore-BTM controller)

186ES-based Controllers

• \tern\186\rom\ae86\l_tdrem.hex (for 20 or 40 MHz - 186ES/R8820 CPU’s)

186ER-based Controllers

• \tern\186\rom\re\l_debug.hex

386-based Controllers

• \tern\386\rom\l_debug.hex (for surface-mount flash on SerialDriveTM)

• \tern\386\rom\lo_ee128.hex (for DIP 128KB Flash)

• \tern\386\rom\lo_ee512.hex (for DIP 512KB Flash)

586-based Controllers

• \tern\586\rom\l_29f400.hex

Once the correct SRAM file is selected, press Enter. When ready, press F6 to commence download. A
stream of ‘U’s (or ‘W’s in the case of 512KB DIP Flash) indicates the download is progressing. Once the
download is complete, the terminal will prompt the user for the next step (Figure 2.4).

Figure 2.4 Download into SRAM complete.

ACTF™ Chapter 2: Downloading

2-4

Step 2.2-3:

After SRAM download is complete, the user must execute this code. To do this, we must jump to the
starting address where this code resides in the SRAM. This address is designated as 0x04000 on all
controllers, with all SRAM loader files.

NOTE: Executing the loader file means erasing the sector in which the Debug Kernel will be loaded. On
boards using DIP ACTF Flash and 586-based boards, the loader file will erase the ENTIRE flash (except
for the ACTF sector of course).

If you are using a DIP ACTF Flash on a 386-Engine (IE,IEP,etc), the loader will jump to 0x04000 and
erase the Flash on its own. You will not need to type ‘G04000’ in this case. If this is the situation, skip to
Step 2.2-4.

Using the ACTF command ‘G’ (Go To address), type G04000, then press ENTER.

IMPORTANT NOTE: An error may occur with some loader files after using G04000. This is an
unintentional software bug. To bypass this error, simply type G04000 again after the error message.
(Figure 2.5)

Figure 2.5 Download into SRAM complete (186ES Examp le shown).

Step 2.2-4:

After ‘G04000’ has been typed and the user has pressed ENTER, the loader will go through and erase
(prepare) the necessary sector where the Debug Kernel will be loaded. Note that this will take longer on
586-based controllers and DIP ACTF Flash boards, since the entire flash will be erased.

Once the erase procedure is complete, the user should see a ready statement such as ‘Ready to receive
TREM???.HEX file at 19200 baud’.

Press F8 to choose the necessary file.

This time, we will be choosing the Debug Kernel itself. This file name will differ based on which controller
is in question. A quick discussion of the different Debug Kernels is listed below Figure 2.6.

Step 2.2-4 (continued):

G04000 may give
an error.

G04000 after the
error message
bypasses the bug.

ACTF™ Chapter 2: Downloading
__

 2-5

Figure 2.6 Selecting the Debug Kernel (186ES Exampl e shown).

NOTE: Below each listed Debug Kernel is the Jump Address (execution point of the code) for that
particular kernel.

DEBUG KERNELS

188ES-based Controllers

• \tern\186\rom\af_0_115 (for DIP 128KB, 512KB Flash, and Flashcore-BTM controller)

� Address: 0xE0000

186ES-based Controllers

• \tern\186\rom\ae86\ae86_115.hex (for 20, 40 MHz - 186ES/R8820 CPU’s)

� Address: 0xFA000

• \tern\186\rom\ae86\ee80_115.hex (for 80 MHz - R1120 CPU)

� Address: 0xFA000

186ER-based Controllers

• \tern\186\rom\re\re40_115.hex (for 40 MHz)

� Address: 0xFA000

• \tern\186\rom\re\re80_115.hex (for 80 MHz)

� Address: 0xFA000

386-based Controllers

• \tern\386\rom\3860_115.HEX

� Address: 0xFA000

586-based Controllers

• \tern\586\rom\5860_115.HEX

� Address: 0x80000

When the proper file is typed in, press ENTER.

ACTF™ Chapter 2: Downloading

2-6

Step 2.2-5:

Press F6 to commence download of the .HEX file into the Flash. A stream of ‘V’s will indicate the
progressing download of the file.

Once the download is complete, then most** boards will reset, and the ACTF menu will reappear.

Now you may jump to the .HEX file’s address (listed above) using the ‘G’ command.

Figure 2.7 Jumping to the Debug Kernel (186ES Examp le shown).

**Some boards like the SerialDriveTM will not reset, but will instruct the user to power the board off, then
power it on again, effectively doing a manual reset and bringing up the ACTF menu.

Step 2.2-6:

After the user has jumped to the file’s starting address, install the Step-2 jumper. The controller will then
jump to and execute the file on power-up!

Debug Kernel: The LED should double-blink on power-up, indicating the Debug Kernel has been
successfully executed from Flash.

NOTE: Step-2 jumpers differ by controller. Refer to the controller-in-question’s PDF manual for details.

Figure 2.8 Step-2 (Red) Jumper (CEye TM Example shown).

After complete
download, jump address
is given.

ACTF Menu reappears

Using ‘G’ command to
jump to file address.

ACTF™ Chapter 2: Downloading
__

 2-7

2.3 Generating an ACTF Downloadable .HEX file for User Application

This section assumes that you have successfully developed and debugged your application, and it is ready to
be programmed into the ACTF Flash using the Paradigm C/C++ TERN Edition with Development Kit. It
is important to note that the ACTF downloadable .HEX file is different than a non-ACTF .HEX file which
is used to burn into an EPROM .

To generate an ACTF downloadable .HEX file:

Step 2.3-1:

Launch Paradigm C/C++ TERN Edition

Step 2.3-2:

Open the correct project, and select the target you wish to create a .HEX file for.

Step 2.3-3:

Right-mouse click on the “.axe” node and select ‘Target Expert’.

Figure 2.9 “Target Expert”

Step 2.3-4:

In the ‘Target Expert’ window, change the ‘target connection’ from PDREMOTE/ROM to No Target/ROM.

Figure 2.10 Setting the target.

Step 2.3-5:

Right-mouse click on the config node of your target and select ‘Edit node attributes’. You want to change
this config file to the actf config file. You want to change the config file used in your project to a copy of
one of these standard configuration files.

186/188 CPU Boards(No onboard i2chip Ethernet module): \tern\186\config\actf186.cfg

186 CPU Boards(w/ onboard i2chip Ethernet module;SLCTM /STTM /GETM): \tern\186\config\slc186.cfg

386 CPU Boards: \tern\386\config\actf386.cfg

586 CPU Boards: \tern\586\config\586.cfg

Figure 2.11 Setting the ACTF configuration.

Step 2.3-6:

ACTF™ Chapter 2: Downloading

2-8

After you have selected the new config file, open it for editing (double-click on it).

Step 2.3-7:

Among the first statements of the config file are define statements which select the value FLASH.

NOTE: ACTF386.CFG for 386-based controllers will contain a line for board selection. User must select
correct controller number before proceeding.

Figure 2.12 ACTF386.CFG Controller Selection.

Un-comment the correct statement to match the size of your flash (all surface-mounted flash are 512KB,
while the ACTF Flash chips can be 128KB or 512KB).

Addresses

• 128KB Flash -> 0xE0000

• 256KB Flash -> 0xC0000

• 512KB Flash -> 0x80000

Figure 2.13 Setting Flash size.

NOTE: If “slc186.cfg” is required, the lowest starting address for the code MUST be 0xC0000, with
FLASH 256 defined.

Step 2.3-8:

Re-build your target by right-mouse clicking on the ‘.axe’ node and selecting Build Node. This will generate
a .HEX file with the same name as your target.

Figure 2.14 Building the .HEX file.

Step 2.3-9:

You now have an ACTF downloadable .HEX file ready to program into the ACTF flash. You will find this
file in the folder where your project is contained (working directory).

Confirm that you have a current .hex file by verifying modification date and time.

ACTF™ Chapter 2: Downloading
__

 2-9

2.4 Downloading ACTF .HEX files for User Application

You now have successfully written, debugged, and generated your ACTF downloadable .HEX file (section
2.3), You are ready to download it into the ACTF flash. Recall that the ACTF flash comes in two forms: the
surface-mounted flash and the DIP ACTF Flash chip, which installs into the controller’s ROM socket.
Protocol for downloading .HEX files into each is discussed below.

FLASH-BASED PERFORMANCE

Please note that on some platforms, code will execute slower once it's programmed into Flash ROM. This
is typically the case when your board clock rate is 80 MHz or faster (including all 586-based systems).
When debugging, code runs out of SRAM, which due to architectural reasons can run quite a bit faster with
higher clock rates.

If this is unacceptable, TERN does offer some custom startup options that allow your code to be burnt into
Flash ROM, but continue to run out of SRAM at powerup. If you're interested, please contact TERN
technical support for assistance.

2.4.1 Downloading into Surface-mounted or ROM Flash

This section shows how to program surface-mounted flash. This is EXACTLY the same procedure that was
used in downloading the Debug Kernel (Section 2.2).

Step 2.4-1:

Once again, open RTLOAD application inside Paradigm C/C++ environment. Power on your TERN
controller without the Step-2 jumper installed.

Step 2.4-2: (Start Download)

See Step 2.2-1

Step 2.4-3: (Downloading RAM loader utility)

See Step 2.2-2

Note: Use the following RAM loading files instead of the ones mentioned in Step 2.2-2. For a list of
exactly which loader file is required for your controller, refer to Appendix E.

RAM LOADER FILES (for user .HEX file loading)

V25-based Controllers

� \tern\v25\rom\lo_ee128.hex

188ES-based Controllers

� \tern\186\rom\lo_ee128.hex (for DIP 128KB Flash)

� \tern\186\rom\lo_ee512.hex (for DIP 512KB Flash, or Flashcore-BTM controller)

186ES-based Controllers

� \tern\186\rom\ae86\l_29f400.hex (for 20 / 40 / 80 MHz - 186ES/R8820/R1120 CPU’s)

186ER-based Controllers

ACTF™ Chapter 2: Downloading

2-10

� \tern\186\rom\re\l_29f40r.hex

386-based Controllers (See Appendix D for optional Flash)

� \tern\386\rom\l_29f400.hex (for surface-mount flash on SerialDriveTM)

� \tern\386\rom\lo_ee128.hex (for DIP 128KB Flash)

� \tern\386\rom\lo_ee512.hex (for DIP 512KB Flash)

586-based Controllers

� \tern\586\rom\l_29f400.hex

Step 2.4-4: (Erasing Flash Sectors)

See Step 2.2-3

Step 2.4-5: (Selecting user .HEX file)

After ‘G04000’ has been typed and the user has pressed ENTER, the loader will go through and erase
(prepare) all the sectors that are not protected in the Flash.

Once the erase procedure is complete, the user should be a ready statement such as ‘Ready to receive
TREM???.HEX file at 19200 baud’.

Press F8 to choose the necessary file.

It is important to note that RTLOAD is a DOS-based program, and only accepts files/paths in 8.3 naming
format . You may need to rename your application file.

The user must type in the file name (including its path). For example: C:\Tern\186\Samples\AE\LED.HEX

Once the file is typed in, press ENTER.

Step 2.4-6: (Loading user .HEX file and executing code)

Recall that depending on how the user defined FLASH in the configuration file, the start address of the
application will differ:

• #define FLASH 128 -> 0xE0000

• #define FLASH 256 -> 0xC0000

• #define FLASH 512 -> 0x80000

See Step 2.2-5 > Download file and jump to address (mentioned above) based on user-configuration file.

and then

See Step 2.2-6 > Set step-2 jumper.

ACTF™ Appendix A:16-bit Surface-Mounted Flash
__

 A-1

Appendix A: 16-bit Surfaced-Mounted ACTF Flash

The following memory-mapping layout corresponds to users of the 186ES and 186ER-
based controllers. With the step 2 jumper off, the ACTF utility will boot at power-up.
With the step 2 jumper set, the CPU will read the CS:IP jump address from the on-board
EEPROM and jump to that address for execution. The jump address can be set by you to
point at the debug kernel, for code development, or to the start of your user application in
the Flash/SRAM. The jump address can be set at the ACTF menu or by writing to the
EEPROM in software (example: c:\tern\186\samples\ae\step2.c).

0x80000

0x00000

0x7FFFF

0x04000

SRAM

Location of
load utility

0x08000

0x20000

64KW

256KW

FLASH
(AM29F400)

256KW

Debug kernel for
AMD186ES
based boards

ACTF utility
resides here
(Protected)

0xFA000

0xFC000

Starting address of
debug kernel for

186ES and 186ER-
based controllers.

Starting address of
ACTF utility. Boots

on power-up without
step 2 jumper set

For programming the
AM29F400,

“l_tdrem.hex”, and
“l_29f400.hex” will
reside here. Run it

with ‘G04000’

ACTF™ Appendix B: ROM Mapping (DIP Package)
__

 B-1

Appendix B: ROM Mapping (DIP Package)

The following layout corresponds to the memory mapping of 188ES, Flashcore-BTM, or
386-based controllers (using DIP Flash). With the step 2 jumper off, the ACTF utility
will boot from top protected sector of Flash (AM29F040B). With the step 2 jumper set,
CPU will read CS:IP jump address from on-board EEPROM and jump to that location for
execution. The jump address can be set to 0xE0000 for debugging, or to anywhere in the
Flash/SRAM that holds your user application for stand alone operation. Note that the
128KB Flash will start from 0xE0000, not 0x80000.

0x80000

0x00000

0x7FFFF

0x04000

SRAM

Location of
load utility

0x08000

0x20000

128KB

512KB

FLASH
(AM29F40B)

512KB

Debug kernel for
FlashCore

“af_0_115.hex”

ACTF utility
resides here
(Protected)

0xE0000

0xF0000

Starting address of
debug kernel

(“af_0_115.hex”), run
with “GE0000” at

ACTF menu

Starting address of
ACTF utility. Boots

on power-up without
step 2 jumper set

For programming the
AM29F40B,

“lo_ee512.hex” or
“lo_ee128.hex” will
reside here. Run with

‘G04000” at ACTF menu

ACTF™ Appendix C: 586-Engine Mapping
__

 C-1

Appendix C: 586-Engine Mapping

The following layout corresponds to the memory-mapping of the 586-Engine. With the
step 2 jumper off, the ACTF utility will boot from the top protected sector of the Flash
(AM29F400). With the step 2 jumper on, the CPU will check for a valid battery back-up.
If the battery back-up is validated, CPU will read CS:IP from CMOS SRAM and jump to
that location for execution. If no battery back-up, CPU will write 0x80000 to CMOS
SRAM and then jump to that location for execution. The CS:IP jump address can be set
at the ACTF menu with a ‘G’ command. (See 586-Engine technical manual)

0x80000

0x00000

0x7FFFF

0x04000

SRAM

Location of
load utility

0x08000

0x20000

64KW

256KW

FLASH
(AM29F400)

256KW

Debug kernel
(5860_115.hex)
for 586-Engine

ACTF utility
resides here
(Protected) 0xFC000

Starting address of
debug kernel for

586-Engine, run with
‘G80000’ at ACTF

menu

Starting address of
ACTF utility. Boots

on power-up without
step 2 jumper set

For programming the
AM29F400,

“l_29f400.hex” will
reside here. Run it

with ‘G04000’

ACTF™ Appendix D: 16-bit Flash Programming for 386 based boards

 D-1

Appendix D: 16-bit Flash Programming for 386-Based Boards

Overview
On the TERN i386-Engine-P (IE-P), i386-Engine-M (IE-M), and i386-Drive (ID), an
optional 16-bit Flash can be installed for non-volatile storage of completed applications.
In past documentation, this was referred to as ‘Step Three’ of the TERN development
process.

This Guide explains the process of compiling a completed application into a .HEX file,
and then downloading this .HEX file into the on-board Flash for automatic power-up
execution. The flash chip (U15) is a surface mounted, 16-bit 256KW blank flash
(Am29F400BT).

Before you start following this guide, you should already be able to compile and
download your application into the battery-backed SRAM from within the debugger.
You should also be able to successfully run your application from the battery backed
SRAM in stand-alone mode (Step Two of the development process).

Minimum Requirements:
TERN Paradigm C++ Development Kit (DV-P Kit)
i386-Engine-P, i386-Engine-M, i386-Drive with the 16-bit Flash (U15, Am29F400).
A Debug ROM (IE16_115, or IE8_115) should be
installed in the 32-pin DIP socket.

Memory Mapping:
Memory for the 16-bit Flash configuration is shown in
figure 1. The Debug ROM is located at the top of the
memory map and is the first block to execute after
power-on/reset.

Flash memory is mapped starting at address 0x80000.

Generating a HEX File (Section 2.3 for more details)
For this procedure, refer to the sample project
\tern\386\rom\flash_ie16.ide as guide for the correct
final configuration.

1) For your target application (led_iep in the
sample), you must first change the configuration
file from the one used during debugging. This
allows you to generate a .HEX file as output, as
well as relocating the file to the appropriate
memory addresses for Flash.

Change the configuration node from 386.cfg to actf386.cfg (you can right-click
on the .cfg node, and then choose ‘Edit Node Attributes’) to point to a copy of:

0x00000

0xFFFFF

0x80000

IE DEBUG
32K 0xF8000

0xBFFFF 16-bit
Flash
256K

 SRAM
512K

0x7FFFF

Figure 1: Memory mapping
configuration

ACTF™ Appendix D: 16-bit Flash Programming for 386 based boards

 D-2

\tern\386\config\actf386.cfg.

2) In this new configuration file, make sure the correct options are selected for your
board. Double-check the BOARD type, as well as the Flash size (should be 512).

3) Right-click on the .axe node (led_iep.axe) and select ‘Target Expert’. Change the
‘Target Connection’ option to: ‘No Target/ROM’.

4) Right-click on the .axe node again, and choose ‘Build Node’. A .HEX file named
after your target will be created in your working (or output) directory
(led_iep.hex, for this sample).

Downloading a HEX file into the 16-bit Flash

NOTE: Be sure that the ‘Step 2’ address is setup correctly to 0x08000. If you are not
sure, run step2.c in the debugger for your controller. A step2 target is made available
for you in flash_ie16.ide; just download and run it.

The downloading process requires an intermediate loading program, l_f16.c, to prepare
the 16-bit Flash, and to receive the final HEX file. This file is located in
C:\TERN\386\ROM\.

Download the l_f16.axe application into your controller using the debugger. After the
debugger has downloaded the program, terminate the debug session (Debug->Terminate
Debug Session) immediately without running ; l_f16 tries to use the serial port 0, and
will crash your debugger.

Start a terminal program (either Hyperterminal, or Tools->RTLOAD within the Paradigm
environment), and configure it for 19200 baud, no parity, 8 bit, 1 stop bit operation. See
chapters 1 & 2 for RTLOAD usage.
Place the red “Step 2 jumper” on the board (refer to your controller manual if you’re not
sure where this is), and then reset the controller with the STEP2 jumper installed.

ACTF™ Appendix D: 16-bit Flash Programming for 386 based boards

 D-3

Figure 2: Sample session with l_f16

l_f16 erases the onboard Flash, and prepares it for receiving your downloaded
application. After you see the message:

 ‘Ready to receive Intel Extend HEX file at 19200 baud’

… the board is ready to receive the .HEX file you generated in the previous step.

Send the .HEX file over as a text file (within Hyperterminal, choose Transfers->Send
Text File). You will see a series of V fill up your screen as the file is received and
written to the onboard Flash. Upon completion, the step 2 jump address in the EEPROM
will need to be rewritten to point at 0x80000(by running step2.c again but modifying
code for address 0x80000, not 0x08000) , the starting address of your application.

Now, each time you power up the controller with the step 2 jumper in place (and the
DEBUG ROM in the socket), your application resident at 0x80000 will automatically
begin executing. To start the debug kernel instead (in order to debug a new application),
just remove the step 2 jumper. Remember, the jump address is now at 0x80000, and you
will need to run step2.c again before running an application out of the battery-backed
SRAM.

ACTF™ Appendix E: BAUD Rates/Loader Files
__

 E-1

Appendix E: BAUD Rates/Loader Files

Table E.1 lists the BAUD rates that Tern controllers use to communicate, based on system
frequency. This frequency is dependant on the Processor used as well as the crystal.
Default rates are in bold. The third column indicates the loader file (into SRAM) needed prior
to downloading the user application (.HEX) into Flash (Section 2.4, step 2.4-3).

Controller

Serial Port 0 BAUD Rate

Loader File

586D 19200 (133MHz) \tern\586\rom\l_29f400.hex
586E 19200 (133MHz) \tern\586\rom\l_29f400.hex
586P 19200 (133MHz) \tern\586\rom\l_29f400.hex
A104* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex

A104S* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex
AC* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex

AC86 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
AE* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex

AE86 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
AE86D 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
AE86P 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
AEP* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex
BBA* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex
CEye 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex

EE 9600 (80MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
EL 9600 (80MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex

FB** 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex
FN 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
GE 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
ID* 19200 (33MHz) \tern\386\rom\lo_ee128.hex OR lo_ee512.hex
IE* 19200 (33MHz) \tern\386\rom\lo_ee128.hex OR lo_ee512.hex
IEL 9600 (32MHz) or 19200 (64MHz) \tern\386\rom\lo_ee128.hex OR lo_ee512.hex

IEM* 19200 (33MHz) \tern\386\rom\lo_ee128.hex OR lo_ee512.hex
IEP* 19200 (33MHz) \tern\386\rom\lo_ee128.hex OR lo_ee512.hex

MD88* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex
RA 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex
RB 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex
RD 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex
RE 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex
RM 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex
RL 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex
SC 19200 (80MHz) \tern\186\rom\re\l_29f40r.hex

SCA 9600 (80MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
SD 9600 (32MHz) or 19200 (64MHz) \tern\386\rom\ l_29f400.hex
SL* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex
ST 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex

ST1 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
TD20/40* 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\lo_ee128.hex OR lo_ee512.hex

TD86 9600 (20MHz) or 19200 (40MHz) \tern\186\rom\ae86\l_29f400.hex
Table E.1 BAUD Rate and Loader File by Controller

* Boards using ACTF ROM Flash (DIP Package).
** FB contains surface-mount flash, but uses same loader files as 188ES ROM Flash boards.

