

i386-Engine-L™

C/C++ Programmable, 32-bit Microprocessor Module

Based on the Intel i386EX

Technical Manual

1950 5th Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

COPYRIGHT

i386-Engine-L, NT-Kit, and ACTF are trademarks of TERN, Inc.
Am188ES and Am186ES are trademarks of Advanced Micro Devices, Inc.

Paradigm C/C++ is a trademark of Paradigm Systems.
i386EX is a trademark of Intel Corporation.

Microsoft, MS-DOS, Windows95/98/2000 are trademarks of Microsoft Corporation.
IBM is a trademark of International Business Machines Corporation.

Version 2.0

October 28, 2010

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of TERN, Inc.

© 1997-2010
1950 5th Street, Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integration systems. These systems are
integrated with software and hardware that are not 100% defect free. TERN products are
not designed, intended, authorized, or warranted to be suitable for use in life-support
applications, devices, or systems, or in other critical applications. TERN and the Buyer
agree that TERN will not be liable for incidental or consequential damages arising from
the use of TERN products. It is the Buyer's responsibility to protect life and property
against incidental failure.
TERN reserves the right to make changes and improvements to its products without
providing notice.
Temperature readings for controllers are based on the results of limited sample tests; they
are provided for design reference use only.

i386-Engine-L Chapter 1: Introduction

1-1

Chapter 1: Introduction

1.1 Functional Description

The i386-Engine-L™ (IEL) is a low-cost, high performance, C/C++ programmable, 32-bit microprocessor
core module. It is designed for embedded applications that require compactness, low power consumption,
and high reliability. The IEL is an ideal upgrade from the A-Engine-P while increasing reliability,
functionality, and performance. They have the same mechanical dimensions, compatible pin outs,
compatible software drivers, and C/C++ Evaluation Kit (EV-P) or Development Kit (DV-P).

The i386-Engine-L can be integrated into an OEM product as a processor core component. It also can be
used to build a smart sensor, or as a node in a distributed microprocessor system.

Intel386EX
CPU

32 MHz

DMA (2)
16-Bit Timers (3)

Ext. Interrupts (10)
8x3 I/O lines

ADC U12
11 Ch. 12-bit

74HC259 U10

RTC U4

691 U6

UART U8
SCC2961

512-BYTE U5
EEPROM

 ACTF FLASH
256 KW

SRAM
256 KW

SIO0
SIO1
SSIO

DAC
2 ch.
12-bit

J1
20x2

J2
20x2

J8
& J7
18x1

D0-D15
A0-A7

A8-A25

PIO, TXD

PPI U11
8255

Figure 1.1 Functional block diagram of the i386-Engine-L

Measuring 3.6 x 2.3 x 0.3 inches, the i386-Engine-L offers a complete C/C++ programmable computer
system with a 32-bit high performance CPU (i38EX, Intel) and operates at 32 MHz system clock with zero-
wait-state. Features include 256KW surfaced-mounted ACTF Flash and up to an optional 256KW battery-
backed SRAM. A 512-byte serial EEPROM is included on-board. An optional real-time clock provides
information on the year, month, date, hour, minute, and second, and an interrupt signal.

Two DMA-driven serial ports from the i38EX support high-speed, reliable serial communication at a rate of
up to 115,200 baud. An optional UART SCC2691 may be added in order to have a third UART on-board.
All three serial ports support 8-bit and 9-bit communication.

Three PC-compatible 16-bit programmable timers/counters can operate in one of six modes. They can be
used to generate interrupts or count external events, at a rate of up to 4 MHz, or to generate pulse outputs.
Three 8-bit multifunctional, user-programmable I/O ports support up to 10 external interrupts. Four external
interrupts are buffered by Schmitt-trigger inverters and provide active low inputs. The other six interrupts

Chapter 1: Introduction i386-Engine-L

1-2

provide active high inputs. A supervisor chip (LTC691) with power-failure detection, a watchdog timer, and
a red LED are on-board.

The optional 12-bit ADC has 11 channels of analog inputs with sample-and-hold and a high-impedance
reference input. With an analog input range of single ended 0-5V (or 0 to REF), the ADC supports
conversion up to a sample rate of 10KHz. An optional 2 channel 12-bit DAC can provide an analog output
range of 0 to +4.095 volts with 12-bit resolution, making one LSB equal to 1mV. Each channel can sink or
source up to 5mA.

A PPI is installed to provide 24 user-programmable bi-directional TTL level I/Os. These I/Os can be
programmed in 2 eight-bit ports and 2 four-bit nibbles for maximum ability to customize to applications.
These I/O ports can directly drive LCDs or keypads. One such option, available from TERN, offers a 16x2
charater LCD with backlighting as well as an 8x2 keypad that can be driven via the PPI port and a ribbon
cable.

On-board expansion headers provide data lines, address lines, control signals, and pre-decoded chip select
lines for user expansion.

1.2 Features

Standard Features
• Dimensions: IEL: 3.6 x 2.8 x 0.3 inches
• Easy to program in Paradigm C/C++
• Power consumption: 80 mA at 12V with SR
• Power input: +5V regulated DC

+9V to +12 V unregulated DC, or
+9V to +35V unregulated DC with SR only

• 32-bit CPU (i368EX), Intel 80x86 compatible
• High performance, zero-wait-state operation at 32 MHz
• 256KW Flash
• A total of 64MB memory space, with 16 data lines and 26 address lines
• Three 16-bit timer/counters and a watchdog timer
• Two PC-compatible asynchronous serial ports and one synchronous serial port
• Three 8-bit I/O ports with multiplexed functions from i386EX
• Up to 10 external interrupts and 8 internal interrupts.
• 512-byte EE and supervisor chip for power failure, reset and watchdog
• Two DMA channels for data transfer between memory and I/O
• 24 additional bi-directional I/O lines from 82C55
• Interface for LCD, keypads, and slave CPU operation

Optional Features (* surface-mounted components):

• 256KW SRAM*
• 11 channels of 12-bit ADC, sample rate up to 10 KHz*
• 2 channels of 12-bit DAC, 0-4.095V output*
• SCC2691 UART (on-board) supports 8-bit or 9-bit networking

UART comes with RS232 or 485 drivers
• Real-time clock RTC72423*, lithium coin battery*
• Switching Regulator for up to +35V unregulated DC input
• 64MHz system clock upgrade

i386-Engine-L Chapter 1: Introduction

1-3

1.3 Physical Description

The physical layout of the i386-Engine is shown in Figure 1.2.

Figure 1.2 Physical layout of the i386-Engine-L

Power On or Reset

YES

ACTF menu sent out through ser0
STEP 1

Step 2 jumper

NO

set?

at 9600 baud

STEP 2
Go to application
code CS:IP in
EEPROM

0x10 = CS high byte
0x11 = CS low byte
0x12 = IP high byte
0x13 = IP low byte

Figure 1.3 Flow chart for ACTF operation

The “ACTF boot loader” resides in the upper sector of the 256KW on-board Flash chip (29F400). At
power-on or RESET, the “ACTF” will check the STEP 2 jumper. If STEP 2 jumper is not installed, the
ACTF menu will be sent out from serial port0 at 9600 baud. If STEP 2 jumper is installed, the IEL will go
to the jump address stored in the EEPROM (addresses 0x10-0x13) and begin instruction execution from

H0,J6
5x2, 20x2
headers

Location
of Step 2
Jumper

12-bit
ADC

Power
Input

Serial
Port 0

(debug)

Serial
Port 1

RS-232/485
port from
UART

Power
Input

SCC2691

PPI
8255 12-bit

DAC

SRAM

Flash

RTC

J2
20x2

header

J1
20x2

header

Chapter 1: Introduction i386-Engine-L

1-4

that address. For Step 1, the jump address needs to be pointing at the debug kernel residing in the flash at
address 0xFA000. For Step 2, the jump address needs to point at your application which resides in the
battery-backed SRAM with a default location of 0x08000. For Step 3, the jump address must be pointing at
the beginning of you application “.hex” file which resdies at default address of 0x8000 (the beginning of the
flash). The jump address can be set at the ACTF menu using the “Gxxxxx” command where xxxxx is your
five digit address in hexadecimal.

1.4 i386-Engine-L Programming Overview

Steps for IEL-based product development: (preparation for debugging done at factory by default)

 Preparation for Debugging
• Connect IEL to PC via RS-232 link, 9,600, 8, N, 1
• Power on IEL without STEP 2 jumper installed
• ACTF menu should be sent to PC terminal
• Use “D” command to download “l_debug.HEX” in SRAM
• Use “G” command to run “l_debug”
• Download “3860_115.HEX” to Flash starting at 0xFA000
• Use “G” command to set jump address and run debugger
• Install the STEP2 jumper (J2.2-4)
• Power-on or reset IEL, Ready for Remote debugger

STEP 2: Standalone Field Test
8888Setup Jump Address(default 0x08000), points to your

program in SRAM
8888Power off, install STEP2 jumper, Power on

8888application program running in battery-backed SRAM
(Battery lasts 3-5 years under normal conditions.)

• Write your application program in C
• Build project in Paradigm C++
• Edit, compile, link, locate, download, and remote-debug

STEP 1: Debugging

STEP 3: (DV-P+ACTF Kit only)
• Generate application HEX file with DV-P and ACTF Kit
• Download “L_29F400.HEX” into RAM and Run it
• Download application HEX file into FLASH
• Modify jump address to 0x80000
• Set STEP2 jumper

 Production

There is no ROM socket on the IEL. The user’s application program must reside in SRAM for debugging in
STEP1, reside in battery-backed SRAM for the standalone field test in STEP2, and finally be programmed
into Flash for a complete product. For production, the user must produce an ACTF-downloadable HEX file

i386-Engine-L Chapter 1: Introduction

1-5

for the application, based on the DV-P+ACTF Kit. The “STEP2” jumper (J2 pins 2-4) must be installed for
every production-version board.

Step 1 settings

In order to correctly download a program in STEP1 with Paradigm C++ Debugger, the IEL must meet these
requirements:

1) 3860_115.HEX must be pre-loaded into Flash starting address 0xFA000.

2) The EEPROM must have the correct jump address pointing at 3860_115.HEX, which is the address
0xFA000.

4) The STEP2 jumper must be installed on J2 pins 2-4.`

For further information on programming the i386-Engine-L, refer to the Software chapter.

1.5 Minimum Requirements for i386-Engine-L System Development

1.5.1 Minimum Hardware Requirements

• PC or PC-compatible computer with serial COMx port that supports 115,200 baud
• i386-Engine-L controller with DEBUG ROM kernel 3860_115.hex loaded into flash
• PC-V25 serial cable (RS232; DB9 connector for PC COM port and IDC 2x5 connector for controller)
• center negative wall transformer (+9V 500 mA)

1.5.2 Minimum Software Requirements

• TERN EV-P/DV-P Kit CD-ROM
• PC software environment: Windows95 / 98 / 2000 / XP

The C/C++ Evaluation Kit (EV-P) and C/C++ Development Kit (DV-P) are available from TERN. The EV-
P Kit is a limited-functionality version of the DV-P Kit. With the EV-P Kit, you can program and debug the
i386-Engine-L in Step One and Step Two, but you cannot run Step Three. In order to generate an
application Flash file, and complete a project, you will need the ACTF kit as conjunction with the
Development Kit (DV-P).

i386-Engine-L Chapter 2: Installation

2-1

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical Manual for the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV-P/DV-P disk contains important information about the
installation and evaluation of TERN controllers.

2.2 Hardware Installation

Hardware installation for the i386-Engine-L consists primarily of connecting the microcontroller to your PC
and to power. The debug serial cable must be installed to an open COMx port on the PC side and then to
the debug serial port of you IEL, SER0, which is located at H1. Confirm that the red edge fo the cable
points to pin 1 of the H1 header.

2.2.1 Connecting the i386-Engine-L to the PC

The following diagram (Figure 2.1) illustrates the connection between the i386-Engine-L and the PC. The
i386-Engine-L is linked to the PC via a serial cable (PC-V25).

Overview

• Connect PC-V25 cable:
For debugging (Step One), place ICD connector on H1 (SER0) with
red edge of cable at pin 1

• Connect wall transformer:
Connect 9V wall transformer to power and plug into power jack on
IEL (2-pin header H4, or 2-pin screw terminal J0)

Chapter 2: Installation i386-Engine-L

2-2

 Pin 1 –
Debug Port
corresponds to

red edge of
cable

To COMx
on PC side at
9600 Baud

Figure 2.1 Serial connection between the i386-Engine-L and the PC for debugging (Step
One)

2.2.2 Powering-on the i386-Engine-L

Before connecting any power source to the i386-Engine-L, make sure to verify that the polarity of
the input power source matches the polarity of the power input jack of the i386-Engine-L. Connect a
wall transformer +9V DC output to the IEL DC power jack adapter. There are two locations for the
unregulated power input, J0 (2-pin screw terminal) and H4 (2-pin header). Use one or the other.

The on-board LED should blink twice and remain on after the i386-Engine is powered on or reset (Error!
Reference source not found.).

i386-Engine-L Chapter 2: Installation

2-3

DC Power
Jack adapter

Output from
wall

transformer

Figure 2.2 Location of J0 power jack for +9V DC input

CAUTION: The CPU and the power regulator on the i386-Engine-L can become very
hot while the power is connected.

i386-Engine-L Chapter 3: Hardware

3-1

Chapter 3: Hardware

3.1 Intel386EX Processor

The Intel386EX is based on the Intel386SX. This highly integrated device retains PC functions that are
useful in embedded applications and adds peripherals that are typically needed in embedded systems. The
Intel386EX has new peripherals and an on-chip system interface logic that can minimize total system cost.
The Intel386EX has two asynchronous serial ports, one synchronous serial port, 24 I/Os, a watchdog timer,
interrupt pins, three 16-bit timers, DMA to and from serial ports, and enhanced chip-select functionality.
The i386-Engine-L provides a PC-compatible development platform optimized for embedded applications.

3.2 Intel386EX I/O Lines

The Intel386EX has 24 I/O lines in three 8-bit I/O ports: P1, P2, and P3. The 24 I/O pins on the Intel386EX
are multiplexed with peripheral pin functions, such as serial ports, timer outputs, and chip-select lines. Each
of these pins can be used as a user-programmable input or output signal if the normal shared peripheral pin
function is not needed. Any I/O line can be configured to operate as a high-impedance input, open-drain
output, or complementary output.

After power-on or reset, the I/O pins default to various configurations. The initialization routine provided
by TERN libraries reconfigures some of these pins as needed for specific on-board usage as well. These
configurations, as well as the processor-internal peripheral usage configurations, are listed in Table 3.1.

PIO Peripheral Power-On/Reset i386-Engine-L Pin No. i386-Engine-L Initial

P10 DCD0# weak pullup J2 pin 14 Input with pullup
P11 RTS0# weak pullup J2 pin 27 Output
P12 DTR0# weak pullup J2 pin 18 Input with pullup
P13 DSR0# weak pullup J2 pin 20 Input with pullup
P14 RI0# weak pullup J2 pin 12 Input with pullup
P15 LOCK# weak pullup EE U5.5 I/O with pullup
P16 HOLD Input with pulldown J2 pin 11 Input with pulldown
P17 HLDA Output with pulldown J2 pin 13 Input with pulldown
P20 CS0# Output with pullup LT691 U6.13 SRAM select
P21 CS1# Output with pullup J2 pin 37 Input with pullup, MM select
P22 CS2# Output with pullup U13.4 Latch data for decoder
P23 CS3# Output with pullup J2 pin 10 Input with pullup
P24 CS4# Output with pullup J2 pin 3 Input with pullup
P25 RXD0 Input with pulldown J2 pin 32 RXD0
P26 TXD0 Output with pulldown J2 pin 34 TXD0
P27 CTS0# Input with pullup J2 pin 36 Input with pullup
P30 TOUT0 Output with pulldown J2 pin 17 Input with pulldown
P31 TOUT1 Output with pulldown J2 pin 19 Input with pulldown
P32 INT0 Input with pulldown J2 pin 21 Input with pulldown
P33 INT1 Input with pulldown J2 pin 23 Input with pulldown
P34 INT2 Input with pulldown J2 pin 24 Input with pulldown
P35 INT3 Input with pulldown J2 pin 29 Input with pulldown
P36 PWDOWN Input with pulldown J2 pin 30 Input with pulldown
P37 COMCLK Input with pulldown J2 pin 35 Input with pulldown

Table 3.1 I/O pin default configuration after power-on or reset

Chapter 3: Hardware i386-Engine-L

3-2

The 24 PIO lines, P10-P17, P20-P27, and P30-P37 are configurable via 8-bit registers, PnDIR and PnLTC.
The value settings are listed as follows:

Pin Configuration Desired Pin State PnDIR PnLTC

High-impedance input high impedance 1 1

Open-drain output 0 1 0

Complementary Output 1 0 1

Complementary Output 0 0 0

Table 3.2 Value settings for PIO lines

TERN libraries can be used to manipulate these IO pins for you. C functions provided in the library
ie.lib and found in the header file ie.h can be used to initialize these PIO pins at run-time. Details for
these can be found in the Software chapter.

Some of the I/O lines are used by the i386-Engine-L system for on-board components (Table 3.3). We
suggest that you do not use these lines unless you are sure that you are not interfering with the operation of
such components (i.e., if the component is not installed).

Signal Pin Function
P22 = /CS2 (N/A) U10 74H138 decoder for RTC, SCC, PPI chip select
/CS5 (N/A) U13 74HC259 (decoder) chip for internal signals T0 to T7
RI1 J2.38 STEP 2 jumper
P15 U5.5 EEPROM SDA = U10.16 ADC DOUT

Shared with U10 TLC2543 ADC and U5 24C04 EE data input
The ADC and EE data output can be tri-state, while disabled

P20 = /CS0 (N/A) U6.13 for SRAM chip select, base memory address 0x0000
P26 = TxD0 J2.34 SER0 transmit for default debug ROM
P25 = RxD0 J2.32 SER0 receive for default debug ROM
/INT5 J2.8 i386-Engine-L U8 SCC2691 UART interrupt.

Table 3.3 Functions of reserved I/O lines on the i386-Engine-L

At reset, the internal PC/AT-compatible peripherals are mapped into DOS I/O space, of which only 1 Kbyte
is used. The DEBUG ROM and ie_init() enables Expanded I/O space. The registers associated with
the integrated peripherals are mapped in the address range of 0f000 to 0f8ffh.

There are four additional external interrupt lines (/INT4, /INT5, /INT6, /INT7) which are not shared with
PIO pins. These active-low-only lines are all buffered by Schmitt-triggers. For further details regarding
these external interrupt pins, refer to the External Interrupt section below (3.3).

The specifications for these I/O pins state that they can sink up to 8 mA.

If you need further details regarding the Input/Output Ports, please refer to Chapter 16 of the Intel386EX
Embedded Microprocessor User’s Manual in the Intel_docs directory from the root of the TERN CD.

3.3 External Interrupts and Schmitt Trigger Input Buffer

There are 10 external interrupt inputs that the user can adapt for his/her own use.

The master interrupt controller 82C59A supports six ACTIVE HIGH pins on the header J2:

 INT0 = P32 = J2.21, vector=0x41
 INT1 = P33 = J2.23, vector=0x45
 INT2 = P34 = J2.24, vector=0x46

i386-Engine-L Chapter 3: Hardware

3-3

 INT3 = P35 = J2.29, vector=0x47, IR7 share with Spurious Interrupts
 INT8 = P31 = J2.19, vector=0x43 share with SIO1
 INT9 = P30 = J2.17, vector=0x44 share with SIO0

The slave interrupt controller 82C59A has six pins, ACTIVE LOW at J2 header:

 /INT4 = J2.33, vector=0x48
 /INT5 = J2.8, vector=0x49
 /INT6 = J2.6, vector=0x4c
 /INT7 = J2.15, vector=0x4e

The WDTOUT (Watchdog Timer) interrupt uses vector=0x4f, and the NMI (Non-Maskable Interrupt) at
pin J2.7 uses vector=0x2. The NMI interrupt can not be disabled by software, and is raised on a rising
edge. /INT5, J2 pin 8, is used by the on-board optional SCC2691 UART if installed.

You must provide a low-to-high (rising) edge to generate an interrupt for the ACTIVE HIGH interrupt
inputs and a high-to-low (falling) edge to generate an interrupt for the ACTIVE LOW interrupt inputs.

A spurious interrupt is defined as an interrupt that is "Not Valid." A spurious interrupt on any IR line
generates the same vector number as an IR7 request. The spurious interrupt, however, does not set the in-
service bit for IR7. Therefore, an IR7 interrupt service routine must check the interrupt service routine
register to determine if the interrupt source is either a valid IR7 (the in-service bit is set) or a spurious
interrupt (the in-service bit is cleared).

Four external interrupt inputs, /INT4-7, are buffered by Schmitt-trigger inverters (U7) in order to increase
noise immunity and transform slowly-changing input signals to fast-changing and jitter-free signals.

U7A
/INT7=J2.1
5

INT7 =U7.2

U7B
/INT6=J2.6 INT6 =U7.3

U7C
/INT5=J2.8 INT5 =U7.6

U7D
/INT4=J2.33 INT4 =U7.8

Figure 3.1 External interrupt inputs

The i386-Engine-L uses vector interrupt functions to response to external interrupts. Please refer to the
Intel386EX User’s Manual for detailed information about interrupt vectors, and to the Software chapter of
this manual (Chapter 4) on how to associate these interrupt vectors with your own interrupt service routine.

3.4 Timer Control Unit

The timer/counter unit has three 16-bit programmable counters: timer0, timer1, and timer2. They can be
driven by a pre-scaled value of the processor clock or by external timers. The counters support six different
operating modes. Only mode2 and mode3 are periodic modes, in which the counters are reloaded with the
user-selected count value when they reach terminal count. For details regarding the modes in which the
timers operate, please refer to Chapter 10 of the Intel386EX manual.

Chapter 3: Hardware i386-Engine-L

3-4

The timers provided can be used in several applications. They can be used to act as counters, generate
interrupts, and to output repeating pulses with user-specified widths.

Timers can generate pulse outputs at the J1/J2 headers:

Timer 0 output=TOUT0=P30=J2 pin 17
Timer 1 output=TOUT1=P31=J2 pin 19
Timer 2 output=TOUT2=J1 pin 4

Timers can use internal or external clock as clock inputs.

To count external events, the timer clock inputs are routed to the J2 headers:

Timer 0 clock in=/INT4=J2 pin 33
Timer 1 clock in=/INT6=J2 pin 6
Timer 2 clock in=TCLK2=J2 pin 9

These timers can be used to count or time external events.

To use the timers to generate interrupts, a few different options are available. Timer 1 has its output signal,
OUT1, connected to IR2 of the slave 82C59. The Timer 2 output, OUT2, is connected to IR3 of the slave
82C59. The Timer 0 output, OUT0, is connected to IR0 of the master 82C59.

The maximum external pulses input rate is 4 MHz (32MHz default system clock => 16MHz CPU
operation, 4 CPU clocks to respond to external event => 4MHz maximum external input) . Please see the
sample program timer.c and counter0.c in tern\386\samples\ie for details regarding the timers,
counters, and their applications.

3.5 Clock

With an on-board 32 MHz oscillator, the i386-Engine-L operates at 16 MHz system processor clock speed.
The processor clock is used by serial ports and timers. The default SERCLK for serial ports is 8 MHz, and
the default pre-scaled PSCLK for the timers is 8 MHz. The maximum timer output is 4 MHz. For details
regarding how to change the PSCLK pre-scale register, see the sample programs timer.c and
counter0.c in \386\samples\ie.

3.6 Serial Ports

The i386-Engine-L has three asynchronous serial channels. Two are Intel386EX-internal: SER0, SER1.
One external UART SCC2691 is located at U8. They can operate in full-duplex communication mode. The
SER0 and SER1 use DMA for receiving and for interrupt-driven transmit. The UART SCC2691 is
interrupt-driven for both transmitting and receiving. For more information about the external UART
SCC2691, refer to Appendix B.

With the DEBUG ROM kernel residing in the on-board flash (3860_115.HEX downloaded into flash at
address 0xFA000 by default at factory) installed, the internal serial port SER0 is used by the i386-Engine-L
for DEBUG programming with the PC. It uses 57,600 Baud rate, as default, for programming. It is possible
to use both SER0 and SER1 in applications. The user can use SER0 to debug an application program for
SER1, and then convert the SER1 code to SER0, since they are identical. The application programs can be
combined and downloaded via SER0 in STEP1, and then run in STEP2. Application programs can use both
SER0 and SER1 at the same time, but it cannot be debugged over SER0 at the same time.

Complete interrupt/DMA-driven software serial port drivers are included in the EV-P/DV-P Kit. Please
refer to Chapter 4 (Software) for more details regarding the implementation of the serial port drivers, as
well as their application.

i386-Engine-L Chapter 3: Hardware

3-5

3.7 Power-Save-Mode

The i386-Engine-L is an ideal core module for low power consumption applications. The power-save mode
of the Intel386EX processor reduces power consumption and heat dissipation, thereby extending battery life
in portable systems. In power-save mode, operation of the CPU and internal peripherals continues at a
slower clock rate. When an interrupt occurs, it automatically returns to its normal operating rate.

The RTC72423 on the i386-Engine-L has a VOFF signal routed to J1 pin 9. The VOFF is controlled by the
battery-backed RTC72423. It will be in tri-state for the external power-off and become active-low at the
programmed time interrupt. The user may use the VOFF line to control an external switching power supply
that turns the power supply on/off.

3.8 Memory Map for RAM/ROM

The Intel386EX supports a memory space of up to 64 MB with 26 address lines (A0-A25).

At power-on, the i386-Engine-L operates in Real-mode, which offers only 1 MB of memory space using
segmentation. The DEBUG ROM kernel operates in Real-mode as well, and does not use A20-A25.

The lower memory chip select /CS0 is mapped into memory space of 0x00000 to 0x7ffff. This is used for
up to 256KW of SRAM. The default wait state on the SRAM is set to 3 cycles, but can be shortened if
desired.

The upper memory chip select /UCS is mapped into memory space of 0x80000 to 0xfffff and is used for the
256KW of surfaced-mounted ACTF Flash. The default wait state for this component is two cycles. For
details regarding how these components are initialized in ie_init() with these specifications, please
refer to the chapter on Software.

In certain applications, you might also choose to re-map the memory address space differently to other chip
select lines. This might become useful if you have off-board memory components you also wish to access
using poke/peek. Please see the sample file ie_cs16.c in tern/386/samples/ie/ for an example of this
application.

During development, your code and data segments will be mapped to specific locations within this memory
space. Details regarding how this is done during product development can be found in the Technical
Manual of the Evaluation/Development Kit.

3.9 I/O Mapped Devices

3.9.1 I/O Space

External I/O devices can use I/O mapping for access. You can access such I/O devices with inportb(port) or
outportb(port,dat). These functions will transfer one byte of data to the specified I/O address.

The external I/O space size is 64KB, ranging from 0x0000 to 0xffff.

The default I/O access time is 15 wait states. You may modify the wait states by re-programming the Chip-
select Low Address register from 0-15 cycles. The CPU clock speed is 16 MHz. Details regarding this can
be found in the Software chapter, and in the Intel386EX Embedded Microprocessor User’s Manual. Slower
components, such as most LCD interfaces, might find the maximum programmable wait state of 15 cycles
still insufficient.

For details regarding the chip select unit, please see Chapter 14 of the Intel386EX Embedded
Microprocessor User’s Manual.

The table below shows more information about I/O mapping:

I/O space Select Signal Location Usage

Chapter 3: Hardware i386-Engine-L

3-6

I/O space Select Signal Location Usage

0x8000-0x80ff /CS6 J1 pin 19 = /CS6 User
0xa090-0xa09f /CS2 U13.4 = P22 chip select decoder
0xb000-0xb0ff /CS5 None (U9-74HC259) Internal Usage (T0-T7)

Not mapped /CS0 N/A SRAM
Not mapped /CS1,

/CS3
J2 pin 37 = P21,

J2 pin 10 = P23
Reserved for future TERN use

Not mapped /CS4 J2 pin 3 = P24 User

A total of eight pre-decoded chip-select lines are available on the IEL. These include the UCS (upper chip
select), and signals CS0-6. The upper chip select is dedicated for boot-up ROM use. Some others are used
for on-board internal usage and not available via I/O mappings, but there are several available for user
expansion components.

Chip select lines 1 and 3 (/CS1, /CS3) are used in some special versions of the IEL, as well as in some
peripheral boards (such as the MemCard). If you are sure you are not using TERN controllers that use
these chip-select lines, you could also use them for other user external I/O peripherals.

To use one of the chip select lines, you must map the appropriate line to a free base I/O address. After
configuring the PIO pin appropriately for this peripheral function (normal-mode operation), you can
directly outport to that address with appropriate data. The address bus and data bus should then be
connected to your I/O component if needed.

To illustrate how to interface the i386-Engine-L with external I/O boards, a simple decoding circuit for
interfacing to an external 82C55 I/O chip is shown.

/SELA0C0

/WR

/RD

A0/BLE
A1

D0-D7

/CS

/WR

/RD

82C55
RST

P00-P07

P10-P17

P20-P27

1

/CS2=P22

A6

6 A7

4

3
2

5

A4
A5 /SCC

/PPI
/SC4
/SC3
/SC2
/SC1
?RTC

14
13
12
11
10
9
7

15

74HC138

C

A
B

G2A
G2B
G1

Y2
Y3
Y4
Y5
Y6
Y7

Y1
Y0

Figure 3.2 Interface i386-Engine-L to external I/O devices

The function ie_init() by default initializes the /CS2 line at base I/O address starting at 0xA090 (Y1),
so Y4 in this example will correspond to I/O address 0xA0C0. You could read from the 82C55 in this
example with inportb(0xA0C0) or write to the 82C55 with outportb(0xA0C0,dat). The call to inportb will
activate /CS2, as well as putting the address 0x8090 over the address bus. The decoder will select the
82C55 based on address lines A4-6, and the data bus will be used to read the appropriate data from the off-
board component.

3.9.2 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON, U4) is mapped in the I/O address space 0xa0a0. It must
be backed up with a lithium coin battery. The RTC may be accessed via software drivers rtc_init() or
rtc_rd(); (see Chapter 4, Software for details).

i386-Engine-L Chapter 3: Hardware

3-7

3.9.3 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped into the I/O address space at 0xa090. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, a quadruple buffered receiver data register, an interrupt
control mechanism, programmable data format, selectable baud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit counter/timer, an on-chip crystal oscillator, and a multi-purpose
input/output including RTS and CTS mechanism. The MPO is routed to J1 pin 3. The MPI is not
connected.

For more detailed information, refer to Appendix B. The SCC2691 on the i386-Engine-L may be used as a
network 9-bit UART (for the TERN NT-Kit).

The RxD (J1 pin 5), TxD (J1 pin 7), and MPO (J1 pin 3) are TTL-level signals. You can select either an
RS-232 or RS-485 driver to be configured with the UART when ordering. Refer to the sample code,
386_scc.c, in the c:\tern\386\samples\iel directory for a sample on the UART SCC2691.

3.9.4 Programmable Peripheral Interface (82C55A)

U11 PPI (82C55) is a low-power CMOS programmable parallel interface unit for use in microcomputer
systems. It provides 24 I/O pins that may be individually programmed in two groups of 12 and used in
three major modes of operation.

In MODE 0, the two groups of 12 pins can be programmed in sets of 4 and 8 pins to be inputs or outputs.
In MODE 1, each of the two groups of 12 pins can be programmed to have 8 lines of input or output. Of
the 4 remaining pins, 3 are used for handshaking and interrupt control signals. MODE 2 is a strobed bi-
directional bus configuration.

 7 6 0 1 2 3 4 5

G R O U P 1
P o r t 2

(L o w e r)

P o r t 1

M o d e

0

1

0

1

0

1

O u tp u t

I n p u t

O u tp u t

I n p u t

M o d e 0

M o d e 1

G R O U P 2
P o r t 2

(U p p e r)

P o r t 0

M o d e

0

1

0

1

0 0

0 1

O u tp u t

I n p u t

O u tp u t

I n p u t

M o d e 0

M o d e 1

M o d e 2 1 X

C o m m a n d
S e le c t

0

1

B i t
m a n ip u la t i o n

M o d e
S e le c t

Figure 3.3 Mode Select Command Word

Chapter 3: Hardware i386-Engine-L

3-8

The i386-Engine-Lmaps U11, the 82C55 at base I/O address 0xA0F0.

The ports/registers are offsets of this I/O base address.

The Command Register = 0xA0F3; Port 0 = 0xA0F0; Port 1 = 0xA0F1; and Port 2 = 0xA0F2.

The following code example will set all ports to output mode:
outportb(0xA0F3,0x80); /* Mode 0 all output selection. */
outportb(0xA0F0,0x55); /* Sets port 0 to alternating high/low I/O pins. */
outportb(0xA0F1,0x55); /* Sets port 1 to alternating high/low I/O pins. */
outportb(0xA0F2,0x55); /* Sets port 2 to alternating high/low I/O pins. */

To set all ports to input mode:
outportb(0xA0F3,0x9f); /* Mode 0 all input selection. */

You can read the ports with:
inportb(0xA0F0); /* Port 0 */
inportb(0xA0F1); /* Port 1 */
inportb(0xA0F2); /* Port 2 */

This returns an 8-bit value for each port, with each bit corresponding to the appropriate line on the port.

3.10 Other Devices

A number of other devices are also available on the i386-Engine-L. Some of these are optional, and might
not be installed on the particular controller you are using. For a discussion regarding the software interface
for these components, please see the Software chapter.

3.10.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. With it installed, the i386-Engine-L has several
functions: watchdog timer, battery backup, power-on-reset delay, power-supply monitoring, and power-
failure warning. These will significantly improve the system reliability.

Watchdog Timer

 J9
Location of
Watchdog
Jumper.

Figure 3.4 Location of watchdog timer enable jumper

i386-Engine-L Chapter 3: Hardware

3-9

The watchdog timer is activated by setting a jumper on J9 of the i386-Engine-L. The watchdog timer
provides a means of verifying proper software execution. In the user's application program, calls to the
function hitwd() (a routine that toggles the T6=HWD pin of the 691) should be arranged so that the HWD
pin is accessed at least once every 1.6 seconds. If the J9 jumper is on and the HWD pin is not accessed
within this time-out period, the watchdog timer pulls the WDO pin low, which asserts /RESET. This
automatic assertion of /RESET may recover the application program if something is wrong. After the i386-
Engine-L is reset, the WDO remains low until a transition occurs at the WDI pin of 691. When controllers
are shipped from the factory the J9 jumper is off, which disables the watchdog timer.

The Intel386EX has an internal watchdog timer. This is disabled by default with ie_init().

Power-failure Warning and Battery Backup

When power failure is sensed by the on-board supervisor chip 691, it will reset the board if the VCC is less
than 4.5V. The battery-switchover circuit compares VCC to VBAT (+3 V lithium battery positive pin), and
connects whichever is higher to the VRAM (power for SRAM and RTC). Thus, the SRAM and the real-
time clock RTC72423 are backed up. In normal use, the lithium battery should last about 3-5 years without
the external power being supplied. When the external power is on, the battery-switch-over circuit will select
the VCC to connect to the VRAM.

3.10.2 EEPROM

A serial EEPROM of 512 bytes (24C04, default) or 2Kbytes (24C16) can be installed in U5. The i386-
Engine-L uses the T7=SCL (serial clock) and P15=SDA (serial data) to interface with the EEPROM. The
EEPROM can be used to store important data, such as a node address, calibration coefficients, and
configuration codes. It has typically 1,000,000 erase/write cycles. The data retention is more than 40 years.
EEPROM can be read and written by simply calling functions ee_rd() and ee_wr().

A range of lower addresses in the EEPROM is reserved for TERN use. Details regarding which addresses
are reserved, and for what purpose, can be found in Appendix D of this manual.

3.10.3 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, successive-approximation, 11-channel, serial interface,
analog-to-digital converter. Three output lines from U10 74HC259 are used to handle the ADC, with
/CS=T0; CLK=T2; and DIN=T1.

The ADC digital data output communicates with a host through a serial tri-state output (DOUT=P10). If
T0=/CS is low, the TLC2543 will have output on P15. If T0=/CS is high, the TLC2543 is disabled and P15
is free. The TLC2543 has an on-chip 14-channel multiplexer that can select any one of 11 inputs or any
one of three internal self-test voltages. The sample-and-hold function is automatic. At the end of
conversion, the end-of-conversion (EOC) output goes high to indicate that conversion is complete. On the
i386-Engine-L, this output is not connected.

TLC2543 features differential high-impedance inputs that facilitate ratiometric conversion, scaling, and
isolation of analog circuitry from logic and supply noise. A switched-capacitor design allows low-error
conversion over the full operating temperature range. The analog input signal source impedance should be
less than 50Ω and capable of slewing the analog input voltage into a 60 pF capacitor.

A reference voltage less than VCC (+5V) can be provided for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +5V can be used for this purpose, and connected to the
REF+ pin (J6.2, REF+ is shorted to VCC at the factory by default but is complete user selectable).

The CLK signal to the ADC is toggled through the 74HC259 (U10), and serial access allows a conversion
rate of up to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines are used, as listed below:

Pin Label Description

Chapter 3: Hardware i386-Engine-L

3-10

AD0-AD10 11 analog signal inputs. The signal source impedance should be less than 50Ω, and
capable of slewing the analog input voltage into a 60pF capacitor.

/CS Chip select = T0, high to low transition enables DOUT, DIN and CLK, low to
high transition disables DOUT, DIN and CLK.

DIN T1, serial data input

DOUT P15 of Intel386EX, 3-state serial data output.

EOC Not Connected, End of Conversion, high indicates conversion complete and data
is ready

CLK I/O clock = T2

REF+ Upper reference voltage (normally VCC, J6.2, set to VCC by default)

REF- Lower reference voltage (tied to ground by design)

VCC Power supply, +5 V input

GND Ground

The analog inputs AD0 to AD9 are available at header H0, and can be connected to your signal sources
from there. AD10, REF+, GND, VCC are available at header J6.

3.10.4 Dual 12-bit DAC

The LTC1446 is a dual 12-bit digital-to-analog converters (DACs) in an SO-8 package. It is complete with
a rail-to-rail voltage output amplifier, an internal reference and a 3-wire serial interface. The LTC1446
outputs a full-scale of 4.096V, making 1 LSB equal to 1 mV.

The buffered outputs can source or sink 5 mA. The outputs swing to within a few millivolts of supply rail
when unloaded. They have an equivalent output resistance of 40Ω when driving a load to the rails. The
buffer amplifiers can drive 1000pf without going into oscillation.

The DAC is installed in U14 on the i386-Engine-L. The outputs are routed to header J6 pins 6 and 8.

Refer to TERN’s CD-ROM under the root directory, then tern_docs/parts for the technical data sheet.

3.11 Headers and Connectors

3.11.1 Expansion Headers J1 and J2

There are two 20x2, 0.1 spacing headers for i386-Engine-L expansion. Most signals are directly routed to
the Intel386EX processor. These signals are 5V only, and any out-of-range voltages will most likely
damage the board.

i386-Engine-L Chapter 3: Hardware

3-11

 J1 Signal

VCC 1 2 GND
MPO 3 4 TOUT2
RxD 5 6 GND
TxD 7 8 D0
VOFF 9 10 D1
BHE 11 12 D2
D15 13 14 D3
/RST 15 16 D4
RST 17 18 D5
/CS6 19 20 D6
D14 21 22 D7
D13 23 24 GND
M/IO 25 26 A7
D12 27 28 A6
/WR 29 30 A5
/RD 31 32 A4
D11 33 34 A3
D10 35 36 A2
D9 37 38 A1
D8 39 40 BLE

J2 Signal

GND 40 39 VCC
DCD1 38 37 P21
P27 36 35 P37
TxD0 34 33 /INT4
RxD0 32 31 /RTS1
P36 30 29 P35
TxD1 28 27 P11
RxD1 26 25 DTR1
P34 24 23 P33
/CTS1 22 21 P32
P13 20 19 P31
P12 18 17 P30
/RDY 16 15 /INT7
P10 14 13 P17
P14 12 11 P16
P23 10 9 TCLK2
/INT5 8 7 NMI
/INT6 6 5
RI1 4 3 P24
GND 2 1 DSR1

Table 3.4 J1 and J2, 20x2 expansion ports

Signal definitions for J1:

VCC +5V power supply
GND Ground
TOUT2 Intel386EX pin 91, timer2 output, 4 MHz maximum
RxD data receive of UART SCC2691, U8
TxD data transmit of UART SCC2691, U8
MPO Multi-Purpose Output of SCC2691, U8
VOFF real-time clock output of RTC72423 U4, open collector
D0-D15 Intel386EX 16-bit external data lines
A1-A7 Intel386EX lower address lines
/RST reset signal, active low
RST reset signal, active high
/CS6 /CS6, Intel386EX pin 2, ie_init(); set it up as I/O chip select line at

address 0x8000
M/IO Intel386EX pin 27, high for memory, low for I/O operation
BHE Intel386EX pin 39, high byte enable
/WR Intel386EX pin 35, active low when write operation
/RD Intel386EX pin 34, active low when read operation

Signal definitions for J2:

VCC +5V power supply, < 300 mA
GND ground
Pxx Intel386EX PIO pins
R/W inverted from Intel386EX pin 30, W/R
TxD0 Intel386EX pin 131, transmit data of serial channel 0
RxD0 Intel386EX pin 129, receive data of serial channel 0

Chapter 3: Hardware i386-Engine-L

3-12

TxD1 Intel386EX pin 112, transmit data of serial channel 1
RxD1 Intel386EX pin 118, receive data of serial channel 1
P27=/CTS0 Intel386EX pin 132, Clear-to-Send signal for SER0
/CTS1 Intel386EX pin 113, Clear-to-Send signal for SER1
P11=/RTS0 Intel386EX pin 102, Request-to-Send signal for SER0
/RTS1 Intel386EX pin 110, Request-to-Send signal for SER1
/INT4-7 Schmitt-trigger buffered active low interrupt inputs
P32-35=INT0-3 active high interrupt inputs
TCLK2 timer2 clock input
NMI Non-mask interrupt
DSR1, DCD1,

RI1, DTR1
Serial port 1 handshake lines

RI1 J2 pin 4 Used as Step Two jumper

i386-Engine-L Chapter 4: Software

4-1

Chapter 4: Software
Please refer to the Technical Manual of the “C/C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and programming tools.

Guidelines, awareness, and problems in an interrupt driven environment
Although the C/C++ Development Kit provides a simple, low cost solution to application engineers, some
guidelines must be followed. If they are not followed, you may experience system crashes, PC hang-ups,
and other problems.

The debugging of interrupt handlers with the Remote Debugger can be a challenge. It is possible to debug
an interrupt handler, but there is a risk of experiencing problems. Most problems occur in multi-interrupt-
driven situations. Because the remote kernel running on the controller is interrupt-driven, it demands
interrupt services from the CPU. If an application program enables interrupt and occupies the interrupt
controller for longer than the remote debugger can accept, the debugger will time-out. As a result, your PC
may hang-up. In extreme cases, a power reset may be required to restart your PC.

For your reference, be aware that our system is remote kernel interrupt-driven for debugging.

The run-time environment on TERN controllers consists of an I/O address space and a memory address
space. I/O address space ranges from 0x0000 to 0xffff, or 64 KB. Memory address space ranges from
0x00000 to 0xfffff in real-mode, or 1 MB. These are accessed differently, and not all addresses can be
translated and handled correctly by hardware. I/O and memory mappings are done in software to define
how translations are implemented by the hardware. Implicit accesses to I/O and memory address space
occur throughout your program from TERN libraries as well as simple memory accesses to either code or
global and stack data. You can, however, explicitly access any address in I/O or memory space, and you
will probably need to do so in order to access processor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped memory.

This is done with four different sets of similar functions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsigned int/unsigned char data
Return value: none

These standard C functions are used to place specified data at any memory space location. The segment
argument is left shifted by four and added to the offset argument to indicate the 20-bit address within
memory space. poke is used for writing 16 bits at a time, and pokeb is used for writing 8 bits.

The process of placing data into memory space means that the appropriate address and data are placed on
the address and data-bus, and any memory-space mappings in place for this particular range of memory will
be used to activate appropriate chip-select lines and the corresponding hardware component responsible for
handling this data.

peek/peekb
Arguments: unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specified address in memory space. Once again, the segment
address is shifted left by four bits and added to the offset to find the 20-bit address. This address is then
output over the address bus, and the hardware component mapped to that address should return either a 8-

Chapter 4: Software i386-Engine-L

4-2

bit or 16-bit value over the data bus. If there is no component mapped to that address, this function will
return random garbage values every time you try to peek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char data
Return value: none

This function is used to place the data into the appropriate address in I/O space. It is used most often
when working with processor registers that are mapped into I/O space and must be accessed using either
one of these functions. This is also the function used in most cases when dealing with user-configured
peripheral components.

inport/inport
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data from components in I/O space. You will find that most hardware
options added to TERN controllers are mapped into I/O space, since memory space is valuable and is
reserved for uses related to the code and data. Using I/O mappings, the address is output over the address
bus, and the returned 16 or 8-bit value is the return value.

For a further discussion of I/O and memory mappings, please refer to the Hardware chapter of this technical
manual.

4.1 IE.LIB
IE.LIB is a C library for basic i386-Engine operations. It includes the following modules: IE.OBJ,
SER0.OBJ, SER1.OBJ, SCC.OBJ, and IEEE.OBJ. You need to link IE.LIB in your applications and
include the corresponding header files. The following is a list of the header files:

Include-file name Description

IE.H PIO, timer/counter, ADC, DAC, RTC, Watchdog,
SER0.H internal serial port 0
SER1.H internal serial port 1
SCC.H external UART SCC2691
IEEE.H on-board EEPROM

4.2 Functions in IE.OBJ

4.2.1 i386-Engine-L Initialization

ie_init

This function should be called at the beginning of every program running on i386-Engine-L core
controllers. It provides default initialization and configuration of the various I/O pins, interrupt vectors, sets
up expanded DOS I/O, and provides other processor-specific updates needed at the beginning of every
program.

There are certain default pin modes and interrupt settings you might wish to change. With that in mind, the
basic effects of ie_init are described below. For details regarding register use, you will want to refer to the
Intel386EX Embedded Processor User’s manual.

Initialize the upper chip select to support the default ROM. The CPU registers are configured such that:

i386-Engine-L Chapter 4: Software

4-3

Address space for the ROM is from 0x80000-0xfffff.

512K ROM operation (this works for the 32K ROM provided, also)

Two wait state operation (allowing it to support up to 120 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state.

outport(0xf43a, 0x0008); // UCSADH, 0x80000-0xfffff, 512K ROM
outport(0xf438, 0x0102); // UCSADL, bs8, 2 wait states
outport(0xf43e, 0x0007); // UCSMSKH
outport(0xf43c, 0xfc01); // UCSMSKL, enable UCS

Initialize CS0 for use with the SRAM. It is configured so that:

Address space starts 0x00000, with a maximum of 512K RAM.
8 bit operation with 3 wait states. Once again, you can set the same register to a lower wait state if

you desire faster operation.
outport(0xf402, 0x0000); // CS0ADH, base Mem address 0x0000
outport(0xf400, 0x0103); // CS0ADL, bs8, 3 wait states
outport(0xf406, 0x0007); // CS0MSKH
outport(0xf404, 0xfc01); // CS0MSKL, 512K, enable CS0 for RAM

Initialize the chip select used for RTC and SCC (UART).

The I/O Address for the RTC is at 0xa0a0. (See samples\ie\rtc_init.c and rtc.c for RTC usage.
The I/O Address for the SCC is at 0xa090. (See samples\ie\ie_scc.c).
These are initialized to 16 wait states.

outport(0xf412, 0x0280); // CS2ADH, RTC/SCC I/O addr=0xa0a0/0xa090
outport(0xf410, 0x000f); // CS2ADL, 0x000f=16 wait
outport(0xf416, 0x0003); // CS2MSKH
outport(0xf414, 0xfc01); // CS2MSKL, 32 enable CS2=RTC/SCC

Initialize chip select U9, which is used for internal signals T0-T7.

I/O address is 0xb000.
outport(0xf42A, 0x02c0); // CS5ADH, 259 base I/O address 0xb000
outport(0xf428, 0x0001); // CS5ADL, 0x0001=1 wait
outport(0xf42E, 0x0003); // CS5MSKH
outport(0xf42C, 0xfc01); // CS5MSKL, 256 enable CS5=259

This chip select line, CS6, is provided for the user’s use. Many users choose to attach peripheral
boards to the headers provided on the controllers. It is possible to attach a 74HC259 decoder, for
example, which could then be used to select a number of off-board user components. This line is at
pin 19 of header J1. For details regarding this and the other chip select line, refer to the Hardware
chapter of this manual.

I/O address for this is 0x8000. A wait-state of 32 has been set initially for easier interface with
slower devices. This value can be decreased as well by changing the value of the register.

outport(0xf432, 0x0200); // CS6ADH, base I/O address 0x8000
outport(0xf430, 0x001f); // CS6ADL, 0x001f=32 wait
outport(0xf436, 0x0003); // CS6MSKH
outport(0xf434, 0xfc01); // CS6MSKL, 256 enable CS6

Configure the three PIO ports for default operation.
outportb(0xf820, 0x00); // P1CFG
outportb(0xf822, 0x65); // P2CFG,TXD0,RXD0,CS2=P22=RTC/SCC, 0=RAM
outportb(0xf824, 0x00); // P3CFG

Configure serial port 1, DMA, interrupts, timers.
outportb(0xf826, 0x1f); // PINCFG,CS5,CTS1,TXD1,DTR1,RTS1
outportb(0xf830, 0x00); // DMACFG
outportb(0xf832, 0x00); // INTCFG
outportb(0xf834, 0x00); // TMRCFG
outportb(0xf836, 0x01); // SIOCFG,SIO0 use SERCLK

Chapter 4: Software i386-Engine-L

4-4

Configure PIO ports as input
outportb(0xf862, 0xff); // P1LTC
outportb(0xf864, 0xff); // P1DIR
outportb(0xf86a, 0xff); // P2LTC
outportb(0xf86c, 0xff); // P2DIR
outportb(0xf872, 0xff); // P3LTC
outportb(0xf874, 0xff); // P3DIR

4.2.2 External Interrupt Initialization

The i386-Engine offers two cascaded interrupt controllers to handle internal and external interrupts. Each
interrupt controller is functionally identical to a 82C59A. Combined, the cascaded interrupt controllers can
handle up to 10 external interrupts, and eight internal interrupts. For a detailed discussion involving the
ICUs, the user should refer to Chapter 9 of the Intel386EX Embedded Microprocessor User’s Manual.
Figure 9-1, in particular, shows interrupts that share the same IR and thus cannot be used at the same time.

You should note that if an IR on the slave 82C59 is activated, IR2 on the master must also be activated
before the interrupt handler is called.

TERN provides functions to enable/disable all of the 10 external interrupts. The user can call any of the
interrupt init functions listed below for this purpose. The first argument indicates whether the particular
interrupt should be enabled, and the second is a function pointer to an appropriate interrupt service routine
that should be used to handle the interrupt. The TERN libraries will set up the interrupt vectors correctly
for the specified external interrupt line.

If you are dealing with external interrupts, you might need to disable the particular interrupt being handled
while processing within the interrupt service routine. The interrupt control unit is sensitive to certain non-
qualified external interrupts that come from sources such as mechanical switches. In such a situation,
repeated interrupts (in the thousands) might be generated, crashing the system. Disabling such an interrupt
for a length of time will make sure that you isolate such interrupts.

At the end of interrupt handlers, the appropriate in-service bit for the IR signal currently being handled must
be cleared. This can be done using the Nonspecific EOI command. At initialization time, interrupt
priority was placed in Fully Nested mode. This means the current highest priority interrupt will be handled
first, and a higher priority interrupt will interrupt any current interrupt handlers. Thus, if the user chooses to
clear the in-service bit for the interrupt currently being handled, the interrupt service routine just needs to
issue the nonspecific EOI command to clear the current highest priority IR.

On the i386-Engine-L, the overhead of executing the interrupt service routine is approximately 30 µs using
a 32 MHz controller.

To send the nonspecific EOI command, you need to write the OCW2 word with 0x20 (see Figure 9-14 in
the Intel386EX manual for details regarding this command word).

To clear the master 82C59, you will need to do:
outportb(0xf020, 0x20);

If the IR that has just been handled is on the slave 82C59, you must clear its in-service bit first. After this,
you must also send another Nonspecific EOI command to the master 82C59, since the slave interrupt was
only transmitted to the core after IR2 on the master 82C59 was raised. So, you will need to have code
similar to:

outportb(0xf0a0, 0x20) ;
outportb(0xf020, 0x20) ;

i386-Engine-L Chapter 4: Software

4-5

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any one of the external interrupt channels (for pin locations and
other physical hardware details, see the Hardware chapter). The first argument i indicates whether this
particular interrupt should be enabled or disabled. The second argument is a function pointer which will act
as the interrupt service routine.
By default, the interrupts are all disabled after initialization. To disable them again, you can repeat the call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in that it can not be masked (disabled). The default ISR will
return on interrupt.

void int0_init(unsigned char i, void interrupt far(* int0_isr)());
void int1_init(unsigned char i, void interrupt far(* int1_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* int4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_init(unsigned char i, void interrupt far(* int8_isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nmi_init(void interrupt far (* nmi_isr)());

4.2.3 I/O Initialization

There are three ports of 8 I/O pins available on the i386-Engine-L. Hardware details regarding these PIO
lines can be found in the Hardware chapter.

There are several functions provided for access to the PIO lines. At the beginning of any application where
you choose to use the PIO pins as input/output, you will probably need to initialize these pins in one of the
four available modes. Before selecting pins for this purpose, make sure that the peripheral mode operation
of the pin is not needed for a different use within the same application.

You should also confirm the PIO usage that is described above within ie_init(). During initialization,
several lines are reserved for TERN usage and you should understand that these are not available for your
application. There are several PIO lines that are used for other on-board purposes. These are all described
in some detail in the Hardware chapter of this technical manual. For a detailed discussion toward the I/O
ports, please refer to Chapter 16 of the Intel386EX Embedded Processor User’s Manual.

Please see the sample program ie_pio.c in tern\386\samples\ie. You will also find that these
functions are used throughout TERN sample files, as most applications do find it necessary to re-configure
the PIO lines.

The function pio_wr and pio_rd can be slower when accessing the PIO pins. The maximum efficiency you
can get from the PIO pins occur if you instead modify the PIO registers directly with an outport instruction
Performance in this case will be around 1-2 us to toggle any pin.

Chapter 4: Software i386-Engine-L

4-6

void pio_init
Arguments: char port, char bit, char mode
Return value: none

Port and bit refer to the specific PIO line you are dealing with. P10-P17 are in port 1, P20-P27 are in port
2, and P30-P37 are in port 3. Bit 0 refers to Pn0 in each port, while bit 7 is used for Pn7.
Mode refers to one of four modes of operation.

• 0, High-impedance Input operation
• 1, Open-drain output operation
• 2, output
• 3, peripheral mode

unsigned char pio_rd:
Arguments: char port
Return value: byte indicating PIO status

Each bit of the returned byte value indicates the current I/O value for the PIO pins in the selected port.

void pio_wr:
Arguments: char port, char bit, char dat
Return value: none

Writes the passed in dat value (either 1/0) to the selected PIO.

4.2.4 Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog inputs based on the reference voltage supplied to REF+. For
details regarding the hardware configuration, see the Hardware chapter.

For a sample file demonstrating the use of the ADC, please see ie_ad12.c in tern\386\samples\ie.

int ie_ad12
Arguments: char c
Return values: int ad_value

The argument c selects the channel from which to do the next Analog to Digital conversion. A value of 0
corresponds to channel AD0, 1 corresponds to channel AD1, and so on.

The return value ad_value is the latched-in conversion value from the previous call to this function. This
means each call to this function actually returns the value latched-in from the previous analog-to-digital
conversion.

For example, this means the first analog-to-digital conversion done in an application will be similar to the
following:

ie_ad12(0); // Read from channel 0
chn_0_data = ie_ad12(0); // Start the next conversion, retrieve value.

i386-Engine-L Chapter 4: Software

4-7

4.2.5 Digital-to-Analog Conversion

One LTC 1446 chip is available on the i386-Engine-L in positions U14. Each chip offers two channels, A
and B, for digital-to-analog conversion. Details regarding hardware, such as pin-outs and performance
specifications, can be found in the Hardware chapter.

A sample program demonstrating the DAC can be found in ie_da12.c in the directory
tern\386\samples\ie.

void ie_da
Arguments: int dat1, int dat2
Return value: none

Argument dat1 is the current value to drive to channel A of either chip, while argument dat2 is the value to
drive channel B of each chip.

These argument values should range from 0-4095, with units of millivolts. This makes it possible to drive a
maximum of 4.906 volts to each channel.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC691 offers an excellent way to monitor improper
program execution. If the watchdog timer (J9) is connected, the function hitwd() must be called every 1.6
seconds of program execution. If this is not executed because of a run-time error, such as an infinite loop or
stalled interrupt service routine, a hardware reset will occur.

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds.

void led
Arguments: int ledd
Return value: none

Turns the on-board LED on or off according to the value of ledd.

Real-Time Clock

The real-time clock can be used to keep track of real time. Backed up by a lithium-coin battery, the real
time clock can be accessed and programmed using two interface functions.

There is a common data structure used to access and use both interfaces.
typedef struct{
 unsigned char sec1; One second digit.
 unsigned char sec10; Ten second digit.
 unsigned char min1; One minute digit.
 unsigned char min10; Ten minute digit.
 unsigned char hour1; One hour digit.
 unsigned char hour10; Ten hour digit.
 unsigned char day1; One day digit.
 unsigned char day10; Ten day digit.
 unsigned char mon1; One month digit.

Chapter 4: Software i386-Engine-L

4-8

 unsigned char mon10; Ten month digit.
 unsigned char year1; One year digit.
 unsigned char year10; Ten year digit.
 unsigned char wk; Day of the week.
} TIM;

int rtc_rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the real time clock within the argument r structure. The structure
should be allocated by the user. This function returns 0 on success and returns 1 in case of error, such as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a value into the real-time clock. The argument t should be a null-
terminated byte array that contains the new time value to be used.

The byte array should correspond to { weekday, year10, year1, month10, month1, day10, day1, hour10,
hour1, minute10, minute1, second10, second1, 0 }.
If, for example, the time to be initialized into the real time clock is June 5, 1998, Friday, 13:55:30, the byte
array would be initialized to:
unsigned char t[14] = { 5, 9, 8, 0, 6, 0, 5, 1, 3, 5, 5, 3, 0 };

Delay
In many applications it becomes useful to pause before executing any further code. There are functions
provided to make this process easy. For applications that require precision timing, you should use hardware
timers provided on-board for this purpose.

void delay0
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. The actual time that it waits depends on processor speed as
well as interrupt latency. The code is functionally identical to:

While(t) { t--; }

Passing in a t value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delay0, but the passed in argument is in units of milliseconds instead of loop
iterations. Again, this function is highly dependent upon the processor speed.

i386-Engine-L Chapter 4: Software

4-9

unsigned int crc16
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a byte-array of count size pointed to by wptr.

void ie_reset
Arguments: none
Return value: none

This function is similar to a hardware reset, and can be used if your program needs to re-start the board for
any reason. Depending on the current hardware configuration, this might either start executing code from
the DEBUG ROM or from some other address.

4.3 Functions in SER0.OBJ/SER1.OBJ

The functions described in this section are prototyped in the header file ser0.h and ser1.h in the directory
tern\include.

The internal asynchronous serial ports are functionally identical. SER0 is used by the DEBUG ROM
provided as part of the TERN EV-P/DV-P software kits for communication with the PC. As a result, you
will not be able to debug code directly written for serial port 0.

Two asynchronous serial ports are integrated in the i386EX CPU: SER0 and SER1. Both ports by default
use the signal SERCLK to drive communication, which is based on the 32 MHz system clock signal
CLK2. By default, SER0 is used by the DEBUG ROM kernel for application download/debugging in STEP
1 and STEP 2. We will use SER1 as the example in the following discussion; any of the interface functions
which are specific to SER1 can be easily changed into function calls for SER0. While selecting a serial port
for use, please realize that some pins might be shared with other peripheral functions. This means that in
certain limited cases, it might not be possible to use a certain serial port with other on-board controller
functions. For details, you should see both chapter 11 of the Intel 386EX Embedded Microprocessor User’s
Manual and the schematic of the i386-Engine-L provided at the end of this manual.

TERN interface functions make it possible to use one of a number of predetermined baud rates. These baud
rates are achieved by specifying a divisor for

SERCLK (500,000 hz = System clk / 2 / 16 = 32MHz / 2 / 16).

The following table shows the function arguments that express each baud rate, to be used in TERN
functions. These are based on a 32 MHz system clock.

Function Argument Divisor Value Baud Rate

1 6875 75

2 3438 150

3 1719 300

4 859 600

5 430 1200

6 215 2400

7 107 4800

Chapter 4: Software i386-Engine-L

4-10

Function Argument Divisor Value Baud Rate

8 72 7200

9 54 9,600 (default)

10 27 19,200

11 18 28,800

12 9 57,600

13 4 115,200

14 2 257,812

15 1 515,625

Table 4.1 Baud rate values

After initialization by calling s1_init(), SER1 is configured as a full-duplex serial port and is ready to
transmit/receive serial data at one of the specified 15 baud rates.

An input buffer, ser1_in_buf (whose size is specified by the user), will automatically store the receiving
serial data stream into the memory by DMA1 operation. In terms of receiving, there is no software overhead
or interrupt latency for user application programs even at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user only has to check the buffer status with serhit1() and
take out the data from the buffer with getser1(), if any. The input buffer is used as a circular ring buffer,
as shown in Figure 4.1. However, the transmit operation is interrupt-driven.

ibuf in_tail ibuf+isizin_head

Figure 4.1 Circular ring input buffer

The input buffer (ibuf), buffer size (isiz), and baud rate (baud) are specified by the user with s1_init()
with a default mode of 8-bit, 1 stop bit, no parity. After s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity by directly accessing the Serial Line Control Register
(LCR1) if necessary, as described in the Intel386EX manual for asynchronous serial ports.

Due to the nature of high-speed baud rates and possible effects from the external environment, serial input
data will automatically fill in the buffer circularly without stopping, regardless of overwrite. If the user does
not take out the data from the ring buffer with getser1() before the ring buffer is full, new data will
overwrite the old data without warning or control. Thus it is important to provide a sufficiently large buffer
if large amounts of data are transferred. For example, if you are receiving data at 9600 baud, a 4 KB buffer
will be able to store data for approximately four seconds.

However, it is always important to take out data early from the input buffer, before the ring buffer rolls
over. You may designate a higher baud rate for transmitting data out and a slower baud rate for receiving
data. This will give you more time to do other things, without overrunning the input buffer. You can use
serhit1() to check the status of the input buffer and return the offset of the in_head pointer from the
in_tail pointer. A return value of 0 indicates no data is available in the buffer.

You can use getser1() to get the serial input data byte by byte using FIFO from the buffer. The in_tail
pointer will automatically increment after every getser1() call. It is not necessary to suspend external

i386-Engine-L Chapter 4: Software

4-11

devices from sending in serial data with /RTS. Only a hardware reset or s1_close() can stop this
receiving operation.

For transmission, you can use putser1() to send out a byte, or use putsers1() to transmit a
character string. You can put data into the transmit ring buffer, s1_out_buf, at any time using this
method. The transmit ring buffer address (obuf) and buffer length (osiz) are also specified at the time of
initialization. The transmit interrupt service will check the availability of data in the transmit buffer. If there
is no more data (the head and tail pointers are equal), it will disable the transmit interrupt. Otherwise, it will
continue to take out the data from the out buffer, and transmit. After you call putser1() and transmit
functions, you are free to do other tasks with no additional software overhead on the transmitting operation.
It will automatically send out all the data you specify. After all data has been sent, it will clear the busy flag
and be ready for the next transmission.

The sample program ser1_0.c demonstrates how a protocol translator works. It would receive an input
HEX file from SER1 and translate every ‘:’ character to ‘?.’ The translated HEX file is then transmitted out
of SER0. This sample program can be found in tern\386\samples\ie.

Software Interface

Before using the serial ports, they must be initialized.

There is a data structure containing important serial port state information that is passed as argument to the
TERN library interface functions. The COM structure should normally be manipulated only by TERN
libraries. It is provided to make debugging of the serial communication ports more practical. Since it
allows you to monitor the current value of the buffer and associated pointer values, you can watch the
transmission process.

The two serial ports have similar software interfaces. Any interface that makes reference to either s0 or
ser0 can be replaced with s1 or ser1, for example. Each serial port should use its own COM structure, as
defined in ie.h.

typedef struct {
 unsigned char ready; /* TRUE when ready */
 unsigned char baud;
 unsigned char mode;
 unsigned char iflag; /* interrupt status */
 unsigned char *in_buf; /* Input buffer */
 int in_tail; /* Input buffer TAIL ptr */
 int in_head; /* Input buffer HEAD ptr */
 int in_size; /* Input buffer size */
 int in_crcnt; /* Input <CR> count */
 unsigned char in_mt; /* Input buffer FLAG */
 unsigned char in_full; /* input buffer full */
 unsigned char *out_buf; /* Output buffer */
 int out_tail; /* Output buffer TAIL ptr */
 int out_head; /* Output buffer HEAD ptr */
 int out_size; /* Output buffer size */
 unsigned char out_full; /* Output buffer FLAG */
 unsigned char out_mt; /* Output buffer MT */
 unsigned char tmso; // transmit macro service operation
 unsigned char rts;
 unsigned char dtr;
 unsigned char en485;
 unsigned char err;
 unsigned char node;
 unsigned char cr; /* scc CR register */
 unsigned char slave;
 unsigned int in_segm; /* input buffer segment */
 unsigned int in_offs; /* input buffer offset */
 unsigned int out_segm; /* output buffer segment */

Chapter 4: Software i386-Engine-L

4-12

 unsigned int out_offs; /* output buffer offset */
 unsigned char byte_delay; /* V25 macro service byte delay */
} COM;

sn_init
Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* c
Return value: none

This function initializes either SER0 or SER1 with the specified parameters. b is the baud rate value shown
in Table 4.1. Arguments ibuf and isiz specify the input-data buffer, and obuf and osiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 stop bit, no parity communication.

There are a couple different functions used for transmission of data. You can actually place data within the
output buffer manually, incrementing the head and tail buffer pointers appropriately. If you do not call one
of the following functions, however, the driver interrupt for the appropriate serial-port will be disabled,
which means that no values will be transmitted. This allows you to control when you wish the transmission
of data within the outbound buffer to begin. Once the interrupts are enabled, it is dangerous to manipulate
the values of the outbound buffer, as well as the values of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

This function places one byte outch into the transmit buffer for the appropriate serial port. The return value
returns one in case of success, and zero in any other case.

putsersn
Arguments: char* str, COM *c
Return value: int return_value

This function places a null-terminated character string into the transmit buffer. The return value returns one
in case of success, and zero in any other case.

DMA transfer automatically places incoming data into the inbound buffer. serhitn() should be called before
trying to retrieve data.

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 as value if there is anything present in the in-bound buffer for this serial port.

getsern
Arguments: COM *c
Return value: unsigned char value

This function returns the current byte from sn_in_buf, and increments the in_tail pointer. Once again, this
function assumes that serhitn has been called, and that there is a character present in the buffer.

i386-Engine-L Chapter 4: Software

4-13

getsersn
Arguments: COM c, int len, char* str
Return value: int value

This function fills the character buffer str with at most len bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage return (ASCII: 0x0d) is retrieved.

This function makes repeated calls to getser, and will block until len bytes are retrieved. The return value
indicates the number of bytes that were placed into the buffer.

Be careful when you are using this function. The returned character string is actually a byte array
terminated by a null character. This means that there might actually be multiple null characters in the byte
array, and the returned value is the only definite indicator of the number of bytes read. Normally, we
suggest that the getsers and putsers functions only be used with ASCII character strings. If you are
working with byte arrays, the single-byte versions of these functions are probably more appropriate.

Miscellaneous Serial Communication Functions

One thing to be aware of in both transmission and receiving of data through the serial port is that TERN
drivers only use the basic serial-port communication lines for transmitting and receiving data. Hardware
flow control in the form of CTS (Clear-To-Send) and RTS (Ready-To-Send) is not implemented. There
are, however, functions available that allow you to check and set the value of these I/O pins appropriate for
whatever form of flow control you wish to implement. Before using these functions, you should once again
be aware that the peripheral pin function you are using might not be selected as needed. For details, please
refer to chapter 11 of the Intel386EX Embedded Microprocessor User’s Manual.

For an example on implementing your own flow control, please see s0_rts.c in tern\samples\ie.

char sn_cts(void)
Retrieves value of CTS pin.

void sn_rts(char b)
Sets the value of RTS to b.

void sn_dtr(char b)
Sets the value of DTR to b.

Completing Serial Communications

After completing your serial communications, there are a few functions that can be used to reset default
system resources.

sn_close
Arguments: COM *c
Return value: none

This closes down the serial port, by shutting down the hardware as well as disabling the interrupt.

clean_sern
Arguments: COM *c
Return value: none

This flushes the input buffer by resetting the tail and header buffer pointers.

Chapter 4: Software i386-Engine-L

4-14

The asynchronous serial I/O ports available on the Intel386EX Embedded Processor have many other
features that might be useful for your application. If you are truly interested in having more control, please
read Chapter 11 of the manual for a detailed discussion of other features available to you.

4.4 Functions in SCC.OBJ

The functions found in this object file are prototyped in scc.h in the tern/include directory.

The SCC is a component that is used to provide a third asynchronous port. It uses a 8 MHz crystal,
different from the system clock speed, for driving serial communications. This means the divisors and
function arguments for setting up the baud rate for this third port are different than for SER0 and SER1.

Table 4.2 Function Arguments for Baud Rate

Function Argument Baud Rate

1 110

2 150

3 300

4 600

5 1200

6 2400

7 4800

8 9600 (default)

9 19,200

10 31,250

11 62,500

12 125,000

13 250,000

Unlike the other serial ports, DMA transfer is not used to fill the input buffer for SCC. Instead, an interrupt-
service-routine is used to place characters into the input buffer. If the processor does not respond to the
interrupt—because it is masked, for example—the interrupt service routine might never be able to complete
this process. Over time, this means data might be lost in the SCC as bytes overflow.

Special control registers are used to define how the SCC operates. For a detailed description of registers
MR1 and MR2, please see Appendix C of this manual. In most TERN applications, MR1 is set to 0x57,
and MR2 is set to 0x07. This configures the SCC for no flow control (RTS, CTS not used/checked), no
parity, 8-bit, normal operation. Other configurations are also possible, providing self-echo, even-odd parity,
up to 2 stop bits, 5 bit operation, as well as automatic hardware flow control.

Initialization occurs in a manner otherwise similar to SER0 and SER1. A COM structure is once again
used to hold state information for the serial port. The in-bound and out-bound buffers operate as before,
and must be provided upon initialization.

scc_init
Arguments: unsigned char m1, unsigned char m2, unsigned char b, unsigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c
Return value: none

i386-Engine-L Chapter 4: Software

4-15

This initializes the SCC2691 serial port to baud rate b, as defined in the table above. The values in m1 and
m2 specify the values to be stored in to MR1 and MR2. As discussed above, these values are normally
0x57 and 0x07, as shown in TERN sample programs.

ibuf and isiz define the input buffer characteristics, and obuf and osiz define the output buffer.

 After initializing the serial port, you must also set up the interrupt service routine. The SCC2691 UART
takes up external interrupt /INT5 on the CPU, and you must set up the appropriate interrupt vector to
handle this. An interrupt service routine, scc_isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to transmit and receive data with the data buffers. So, after
initialization, you will need to make a call to do this:

 int5_init(1, scc_isr);

By default, the SCC is disabled for both transmit and receive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex mode, transmit and receive functions should both be enabled. Once this
is done, you can transmit and receive data as needed. If you do need to do limited flow control, the MPO
pin on the J1 header can be used for RTS. For a sample file showing RS232 full duplex communications,
please see ie_scc.c in the directory tern\samples\ie.

RS485 is slightly more complex to use than RS232. RS485 operation is half-duplex only, which means
transmission does not occur concurrently with reception. The RS485 driver will echo back bytes sent to the
SCC. As a result, assuming you are using the RS485 driver installed on another TERN peripheral board,
you will need to disable receive while transmitting. While transmitting, you will also need to place the
RS485 driver in transmission mode as well. This is done by using en485(1). This uses pin MPO (multi-
purpose output) found on the J1 header. While you are receiving data, the RS485 driver will need to be
placed in receive mode using en485(0). For a sample file showing RS485 communication, please see
ie_rs485.c in the directory tern\samples\ie.

en485
Arguments: int i
Return value: none

This function sets the pin MPO either high (i = 1) or low (i = 0). The function scc_rts() actually has a
similar function, by pulling the same pin high or low, but is intended for use in flow control.

scc_send_e/scc_recv_e
Arguments: none
Return value: none

This function enables transmission or reception on the SCC2691 UART. After initialization, both of these
functions are disabled by default. If you are using RS485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_recv_reset
Arguments: none
Return value: none

This function resets the state of the send and receive function of the SCC2691. One major use of these
functions is to disable send and receive. If you are using RS485, you will need to use this feature when
transitioning from transmission to reception, or from reception to transmission.

Chapter 4: Software i386-Engine-L

4-16

Transmission and reception of data using the SCC is in most ways identical to SER0 and SER1. The
functions used to transmit and receive data are similar. For details regarding these functions, please refer to
the previous section.

putser_scc

See: putsern

putsers_scc

See: putsersn

getser_scc
See: getsern

getsers_scc

See: getsersn

Flow control is also handled in a mostly similar fashion. The CTS pin corresponds to the MPI pin, which is
not connected to either one of the headers. The RTS pin corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts

See: sn_rts

Other SCC functions are similar to those for SER0 and SER1.
ser_close

See: sn_close

ser_hit

See: sn_hit

clean_ser_scc

See: clean_sn

Occasionally, it might also be necessary to check the state of the SCC for information regarding errors that
might have occurred. By calling scc_err, you can check for framing errors, parity errors (if parity is
enabled), and overrun errors.

scc_err
Arguments: none
Return value: unsigned char val
The returned value val will be in the form of 0ABC0000 in binary. Bit A is 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit C indicates an over-run error.

4.5 Functions in IEEE.OBJ

The 512-byte serial EEPROM (24C04) provided on-board provides easy storage of non-volatile program
parameters. This is usually an ideal location to store important configuration values that do not need to be
changed often. Access to the EEPROM is quite slow, compared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use specifically for this purpose.

Addresses 0x00 to 0x1f on the EEPROM is reserved for system use, including configuration information
about the controller itself, jump address for Step 2, and other data that is of a more permanent nature.

i386-Engine-L Chapter 4: Software

4-17

The rest of the EEPROM memory space, 0x20 to 0x1ff, is available for your application use.

ee_wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passed in dat to the specified addr. The return value is 0 in success.

ee_rd
Arguments: int addr
Return value: int data

This function returns one byte of data from the specified address.

i386-Engine-L Appendix B: UART SCC2691

 1

Appendix B: UART SCC 2691

1. Pin Description
 D0-D7 Data bus, active high, bi-directional, and having 3-State
 /CEN Chip enable, active-low input
 /WRN Write strobe, active-low input
 /RDN Read strobe, active-low input
 A0-A2 Address input, active-high address input to select the UART registers
 RESET Reset, active-high input
 INTRN Interrupt request, active-low output
 X1/CLK Crystal 1, crystal or external clock input
 X2 Crystal 2, the other side of crystal
 RxD Receive serial data input
 TxD Transmit serial data output
 MPO Multi-purpose output
 MPI Multi-purpose input
 Vcc Power supply, +5 V input
 GND Ground

2. Register Addressing

A2 A1 A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR

Note:
 ACR = Auxiliary control register
 BRG = Baud rate generator
 CR = Command register
 CSR = Clock select register
 CTL = Counter/timer lower
 CTLR = Counter/timer lower register
 CTU = Counter/timer upper
 CTUR = Counter/timer upper register
 MR = Mode register
 SR = Status register
 RHR = Rx holding register
 THR = Tx holding register

3. Register Bit Formats

MR1 (Mode Register 1):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 RxRTS

 0 = no
 1 = yes

 RxINT

0=RxRDY
1=FFULL

 Error

 0 = char
1 = block

 ___Parity Mode___

 00 = with parity
 01 = Force parity
 10 = No parity
 11 = Special mode

Parity Type

 0 = Even
 1 = Odd

In Special
 mode:
 0 = Data
 1 = Addr

 Bits per Character

 00 = 5
 01 = 6
 10 = 7
 11 = 8

Appendix B: UART SCC 2691 i386-Engine-L

2

MR2 (Mode Register 2):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Channel Mode

 TxRTS CTS Enable
Tx

 Stop Bit Length
(add 0.5 to cases 0-7 if channel is 5 bits/character)

 00 = Normal
 01 = Auto echo
 10 = Local loop
 11 = Remote loop

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = 0.563 4 = 0.813 8 = 1.563 C = 1.813
 1 = 0.625 5 = 0.875 9 = 1.625 D = 1.875
 2 = 0.688 6 = 0.938 A = 1.688 E = 1.938
 3 = 0.750 7 = 1.000 B = 1.750 F = 2.000

CSR (Clock Select Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Receiver Clock Select Transmitter Clock Select

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

 when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 0:
0 = 50 1 = 110 2 = 134.5 3 = 200
4 = 300 5 = 600 6 = 1200 7 = 1050
8 = 2400 9 = 4800 A = 7200 B = 9600
C = 38.4k D = Timer E = MPI-16x F = MPI-1x

when ACR[7] = 1:
0 = 75 1 = 110 2 = 134.5 3 = 150
4 = 300 5 = 600 6 = 1200 7 = 2000
8 = 2400 9 = 4800 A = 7200 B = 1800
C = 19.2k D = Timer E = MPI-16x F = MPI-1x

CR (Command Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Miscellaneous Commands Disable

 Tx
 Enable
 Tx

 Disable
 Rx

 Enable
 Rx

0 = no command 8 = start C/T
1 = reset MR pointer 9 = stop counter
2 = reset receiver A = assert RTSN
3 = reset transmitter B = negate RTSN
4 = reset error status C = reset MPI
5 = reset break change change INT
 INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

SR (Channel Status Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Received
 Break

 Framing
 Error

 Parity
 Error

 Overrun
 Error

 TxEMT TxRDY FFULL RxRDY

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes
 *

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

Note:
* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are
reset when the corresponding data character is read from the FIFO.

i386-Engine-L Appendix B: UART SCC2691

 3

ACR (Auxiliary Control Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

BRG Set
 Select

 Counter/Timer Mode and Source

 Power-
 Down
 Mode

 MPO Pin Function Select

0 = Baud
rate set 1,
see CSR
bit format

1 = Baud
rate set 2,
see CSR
bit format

 0 = counter, MPI pin
 1 = counter, MPI pin divided by
 16
 2 = counter, TxC-1x clock of the
 transmitter
 3 = counter, crystal or external
 clock (x1/CLK)
 4 = timer, MPI pin
 5 = timer, MPI pin divided by
 16
 6 = timer, crystal or external
 clock (x1/CLK)
 7 = timer, crystal or external
 clock (x1/CLK) divided by 16

 0 = on,
 power
 down
 active
 1 = off
 normal

 0 = RTSN
 1 = C/TO
 2 = TxC (1x)
 3 = TxC (16x)
 4 = RxC (1x)
 5 = RxC (16x)
 6 = TxRDY
 7 = RxRDY/FFULL

ISR (Interrupt Status Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI Pin
 Change

 MPI Pin
 Current
 State

 Not Used Counter
 Ready

 Delta
 Break

 RxRDY/
 FFULL

 TxEMT TxRDY

 0 = no
 1 = yes

 0 = low
 1 = high

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

 0 = no
 1 = yes

IMR (Interrupt Mask Register):

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 MPI
 Change
Interrupt

 MPI
 Level
 Interrupt

Not Used

 Counter
 Ready
 Interrupt

 Delta
 Break
 Interrupt

 RxRDY/
 FFULL
 Interrupt

 TxEMT
 Interrupt

 TxRDY
 Interrupt

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

 0 = off
 1 = 0n

CTUR (Counter/Timer Upper Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [15] C/T [14] C/T [13] C/T [12] C/T [11] C/T [10] C/T [9] C/T [8]

CTLR (Counter/Timer Lower Register):
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 C/T [7] C/T [6] C/T [5] C/T [4] C/T [3] C/T [2] C/T [1] C/T[0]

i386-Engine-L Appendix C: RTC72421

 1

Appendix C: RTC72421

Function Table

 Address Data
A3 A2 A1 A0 Register D3 D2 D1 D0 Count

Value
 Remarks

0 0 0 0 S1 s8 s4 s2 s1 0~9 1-second digit register

0 0 0 1 S10 s40 s20 s10 0~5 10-second digit register

0 0 1 0 MI1 mi8 mi4 mi2 mi1 0~9 1-minite digit register

0 0 1 1 MI10 mi40 mi20 mi10 0~5 10-minute digit register

0 1 0 0 H1 h8 h4 h2 h1 0~9 1-hour digit register

0 1 0 1 H10 PM/AM h20 h10 0~2
or
0~1

PM/AM, 10-hour digit
register

0 1 1 0 D1 d8 d4 d2 d1 0~9 1-day digit register

0 1 1 1 D10 d20 d10 0~3 10-day digit register

1 0 0 0 MO1 mo8 mo4 mo2 mo1 0~9 1-month digit register

1 0 0 1 MO10 mo10 0~1 10-month digit register

1 0 1 0 Y1 y8 y4 y2 y1 0~9 1-year digit register

1 0 1 1 Y10 y80 y40 y20 y10 0~9 10-year digit register

1 1 0 0 W w4 w2 w1 0~6 Week register

1 1 0 1 Reg D 30s
Adj

IRQ
Flag

Busy Hold Control register D

1 1 1 0 Reg E t1 t0 INT/
STD

Mask Control register E

1 1 1 1 Reg F Test 24/ 12 Stop Rest Control register F

Note: 1) INT/STD = Interrupt/Standard, Rest = Reset;

 2) Mask AM/PM bit with 10's of hours operations;

 3) Busy is read only, IRQ can only be set low ("0");

 4)

Data bit PM/AM INT/STD 24/12
 1 PM INT 24
 0 AM STD 12

 5) Test bit should be "0".

Appendix D: Serial EEPROM Map i386-Engine-L

1

Appendix D: Serial EEPROM Map

Part of the on-board serial EEPROM locations are used by system software. Application programs must not use
these locations.

0x00 Node Address, for networking
0x01 Board Type
0x02
0x03
0x04 SER0_receive, used by ser0.c
0x05 SER0_transmit, used by ser0.c
0x06 SER1_receive, used by ser1.c
0x07 SER1_transmit, used by ser1.c

0x10 CS high byte, used by STEP 2
0x11 CS low byte, used by STEP 2
0x12 IP high byte, used by STEP 2
0x13 IP low byte, used by STEP 2

0x18 MM page register 0
0x19 MM page register 1
0x1a MM page register 2
0x1b MM page register 3

0x1c – 0x1f Reserved

0x20 – 0x1ff User

Date: May 22, 2002 Sheet 1 of 1

Size Document Number REV

B IEL-Man.SCH

Title

I386-ENGINE-L

TERN/STE

D3
D2
D1
D0

VCC
GND

GND
TOUT2

 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J1

HDRD40

VCCVCC

 1 2
 3 4
 5 6
 7 8
 9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

J2HDRD40

/RTS1
/INT4

P11

P21
P37

P35
VOFF

RXD
TXD

MPO

BHE
D15

GND

RXD0

TXD1

TXD0
P27

P36

DCD1

T5
T4

T0
T1
T2
T3

D0

A1
A2

BLE

D 13 Q0 4

Q1 5

S0
 1

Q2
 6

S1 2 Q3 7

S2 3 Q4 9

Q5 10

G 14 Q6 11

CLR 15 Q7 12

U10

74HC259

A17

GND

D7
D15

VCC
A15 1

A14
 2

A13 3

A12 4

A11 5

A10 6

A9 7

A8 8

NC 9

NC 10

/WR 11

/RST 12

NC 13

NC 14

RY 15

NC 16

A17 17

A7 18

A6 19

A5 20

A4 21

A3 22

A2 23

A1 24

A16 48

/BY
47

GND 46

D15 45

D7 44

D14 43

D6 42

D13 41

D5 40

D12 39

D4 38

VCC 37

D11 36

D3 35

D10 34

D2 33

D9 32

D1 31

D8 30

D0 29

/OE 28

GND 27

/CE 26

A0 25

U3 29F800
A16

A12
A13
A14
A15

A6
A7
A8A9

/RD
A11
A12
A13

A10

BHE

A0 1

A1
 2

A2 3

A3 4

A4 5

/CS 6

D0 7

D1 8

D2 9

D3 10

VCC 11

GND 12

D4 13

D5 14

D6 15

D7 16

/WR 17

A5 18

A6 19

A7 20

A8 21

A16 22

A15 44

A14
43

A13 42

/OE 41

/UB 40

/LB 39

D15 38

D14 37

D13 36

D12 35

GND 34

VCC 33

D11 32

D10 31

D9 30

D8 29

NC 28

A12 27

A11 26

A10 25

A9 24

A17 23

U1

RAM44

VRAM/RST

C7 C8

VCC

CLK2

NC 1

GND 2

+5V 4

CLK 3

K1

66MHZ
OS

/RAM

D0
D1
D2
D3

GND

D4
D5
D6
D7

D11

D12
D13
D14
D15

D10

D8
D9

GNDVRAM
VRAM

/WR

BLE

/WR
/RST

A18

A10
A11

A9

A19

VCC
D11

D10

D9

D14

D13

D12

D6

D5

D4

D3

D2

/RST
/CS5

A 1

B 2

C 3

G1 6

G2A 4

G2B 5

Y0 15

Y1 14

Y2 13

Y3 12

Y4 11

Y5 10

Y6 9

Y7 7

U13

74HC138
74HC138S

A7

A6
A5
A4

P22

RXD1

/CTS1

/INT6
/INT5

RI1

P10

P13

P14
P23

P34

P12

/SC1
/SC2
/SC3
/SC4

T6
T7

/SCC
/RTC

RDY

/RST

P16

RST

/WR
/RD

/CS6

NMI

/INT7

P24

P31
P30

P32
P33

TCLK2

P17

DTR1

M/IO

D14
D13

D12

D11
D10
D9

D7
D6
D5
D4

A1
A2
A3
A4
A5
A6
A7

GND

BLE

AD0

DSR1 D8

AD1 1 2
 3 4
 5 6
 7 8
 9 10

H0

GND

D0
D1
D2
D3

VCC
D7
D6
D5
D4

/PPI

C3-

C3+

C4+

C13

M/IO

RST

/WR
 40

P07 41

P06 42

P05 43

P04 44

NC
 1

P03 2

P02 3

P01 4

P00 5

/RD
 6

R
S
T

3
9

D
0

3
8

D
1

3
7

D
2

3
6

D
3

3
5

N
C

3
4

D
4

3
3

D
5

3
2

D
6

3
1

D
7

3
0

V
D
D

2
9

P17
28

P16 27

P15 26

P14 25

P13 24

NC
23

P12 22

P11 21

P10 20

P23 19

P22
18/

C
S

7

G
N
D

8

A
1

9

A
0

1
0

P
2
7

1
1

N
C

1
2

P
2
6

1
3

P
2
5

1
4

P
2
4

1
5

P
2
0

1
6

P
2
1

1
7

U11

PPIS
PPI8255

/RD

A1

GND

D8
D1

D0

/UCS

A7
A6
A5
A4
A3
A2

A8

VCC
RXD RO 1

/RE 2

DE
 3

DI 4

VCC 8

B 7

A
 6

GND 5

U20

LTC485

A1 A2
A3
A4
A5

A17 A18

A16
A15
A14

C6 C1

C2

C9
C24

VCC

GND

C11

C3

VCCR1

10K

RTS

10
 9
 8
 7
 6
 5
 4
 3
 2
 1

RN1

10K

VBAT VB
 1

VO 2

VCC 3

GND 4

BON 5

/LL
 6

OSI 7

OSS 8

RST
16

/RST 15

WDO 14

CEI 13

CEO 12

WDI
11

PFO 10

PFI 9

U6
MAX691

TXD
MPO
GND CTS

RTS

RST

C1+

C1-
C2+
C2-

V+

V-
/TXD0
/RXD0

VCC

GNDC1+ 1

V+ 2

C1- 3

C2+ 4

C2-
 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I 13

R1O
12

T1I 11

T2I 10

R2O 9

U16

MAX232A

RXD0
TXD0
TXD1
RXD1

/TXD1
/RXD1

C1-

C1+

C2-

C2+

C4-

C15

C14

C12

I07
I06
I05
I04

I03
I02
I01
I00

/RD

/WR

I22
I23
I10
I11
I12

I13
I14
I15
I16
I17

AD3
AD5
AD7
AD9

VCC
 1 2
 3 4
 5 6
 7 8
 9 10
 11 12
 13 14
 15 16
 17 18
 19 20
 21 22
 23 24
 25 26
 27 28
 29 30
 31 32
 33 34
 35 36
 37 38
 39 40

J6

HDRD40

I05
I06
I07

AD2
AD4
AD6
AD8

AD10
REF+

VB
VA

GND

I20
I21
I22
GNDI10

I00
I01
I02
I03
I04

I26
I25
I24

I27

I23

A1
GND

I27 I26
I25
I24
I20
I21

BLE

GND

V+

V-

C21

C22
/PPI

VCC

GND

MPO
MPI

TXD
RXD

C1+ 1

V+ 2

C1- 3

C2+
 4

C2- 5

V- 6

T2O 7

R2I 8

VCC 16

GND 15

T1O 14

R1I
13

R1O 12

T1I 11

T2I 10

R2O 9

U19

MAX232A

RTS
CTS

VCC

/RST

WDI
/RAM

WDO

/PFO

C3+

C3-
C4+
C4-

V+

V-

/RXD
/TXD

P20

VRAM
VCC
GND

R3

10K

/INT6

/INT4
/INT7

VCC

P15

/RST
/INT5

CTS
P22

DCD1

VC
L1

LED

GND

NMI
TCLK2
P35

R01K
VCC

10
 9
 8
 7
 6
 5
 4
 3
 2
 1RN2

10K

RDY
 1 2

J9

HDRD2

/INT7

T5

1A 1

1Y 2

2A 3

2Y 4

3A 5

3Y 6

G 7

V 14

6A 13

6Y 12

5A 11

5Y 10

4A 9

4Y 8

U7

74HC14

WDI

VOFF 1 2
H5

HDRD2

A1

VOFF

VCC
BLE

/RTC

T6

VCC

GND VRAM

/RST
D0

STD 1

/CS 2

NC 3

ALE 4

A0 5

NC 6

A1 7

NC 8

A2 9

A3 10

/RD 11

G 12

VCC 24

X2 23

X1 22

NC 21

CS1 20

D0 19

NC 18

NC 17

D1 16

D2 15

D3 14

/WR 13

U4

72423

GND

/TXD0
/RXD0

/TXD1

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8

 1 2
 3 4
 5 6
 7 8
 9 10

H1

 1 2
 3 4
 5 6
 7 8
 9 10

H2

VCC

AD9
AD10

REF+
GND

P10

AD0 1

AD1 2

AD2 3

AD3 4

AD4 5

AD5 6

AD6 7

AD7 8

AD8 9

GND 10

VCC 20

EOC 19

CLK 18

DIN 17

DOUT 16

CS 15

REF+ 14

REF- 13

AD10 12

AD9 11

U12

TLC2543
P2543

T0

T1
T2

- 1
+ 2

+ 3B1

BTH1

I16
I14
I13
I12
I11

I17
I15

VCC

VCC

P15

GND
T7

R2

220

RTS CTS

VBAT

A0 1

A1 2

A2 3

VSS 4

VCC 8

WP 7

SCL 6

SDA 5

U5

24C04S

C10

LX1

VOFF
VCC

+12V

VCC

+12V

R5
1M

12 345

U9 LM2575

XTAL2

8MHZ

GND

/RXD1

GND

/TXD
/RXD RTS

CTS VCC

C17

 1 2
 3 4
 5 6
 7 8
 9 10

H3

D1
D2
D3
/WR

INT4
/INT4

A2
A3
/RD/RST

RST1

CK 1

DI 2

LD 3

DO
 4

VB 8

5V 7

G 6

VA
 5

U14

LTC1446
LT1446S

INT6

INT5

INT7
/INT6

/INT5

VCC

D0
/WR

GND

P31
P30

P32
P33
P34

RXD
TXD

/RD /RD 1

RXD 2

TXD 3

MPO 4

MPI 5

A2 6

A1
 7

A0 8

X1 9

X2 10

RST 11

GND
 12

VCC 24

/WR 23

D0 22

D1 21

D2 20

D3 19

D4
18

D5 17

D6 16

D7 15

/EN 14

/INT
13

U8

SCC2691

MPO

RST

A1
A2
MPI

X4
X3

BLE

D1
D2
D3
D4
D5
D6
D7

/INT5
/SCC

T1
T3

T4
VCC
GND

VB

VA

X4
C4

10PF
+VI
GND

+VI GND

1
2

J0

T2

 1 2
H4

HDRD2

X3

+12V+VI
L2

1N5817
C16

10UF35V

C5

GND
D4

1N5817

I1 330 uH

C01

