1I386-Engine™

C/C++ Programmable, 32-bit Microprocessor Module
Based on the Intel386EX

.’" DREM 1386 ZX

=19mE

i I|15 ZDU @ 33IMH:z

Technical Manual

TTERN

1950 " Street Davis, CA 95616, USA

Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://mwww.tern.com

Internet Email: sales@tern.com http://www.tecom

COPYRIGHT

1386-Engine, VE232, A-Engine, A-Core, C-Engine 5v2ngine, MotionC, BirdBox,
PowerDrive, SensorWatch, Pc-Co, LittleDrive, Mem@;akCTF, and NT-Kit are trademarks
of TERN, Inc.
Intel386EX and Intel386SX are trademarks of Ii@eporation.
Borland C/C++ are trademarks of Borland Internadio
Microsoft, MS-DOS, Windows, and Windows 95 aral&aarks of Microsoft Corporation.
IBM is a trademark of International Business Maelsi Corporation.

Version 2.00
October 28, 2010

No part of this document may be copied or reproduceany form or by any means
without the prior written consent of TERN, Inc.

© 1998-201(TERIQI

1950 §' Street, Davis, CA 95616, USA
Tel: 530-758-0180 Fax: 530-758-0181
Email: sales@tern.com http://www.tern.com

Important Notice

TERN is developing complex, high technology integrat&ystems. These systems are
integrated with software and hardware that arel06€6 defect freeTERN products are
not designed, intended, authorized, or warrantedk® suitable for use in life-support
applications, devices, or systems, or in othericat applications. TERNand the Buyer
agree thaTERN will not be liable for incidental or consequentitEimages arising from
the use ofTERN products. It is the Buyer's responsibility to jadtlife and property
against incidental failure.

TERN reserves the right to make changes and improventerits products without
providing notice.

Temperature readings for controllers are baseth@mesults of limited sample tests; they
are provided for design reference use only.

i386-Engine Chapter 1: Introduction

Chapter 1. Introduction

1.1 Functional Description

The i386-Engine (IE) is a 32-bit microprocessor core module basadhe 33 MHz Intel386EX. It is
designed for embedded systems that require higorpsance, PC-compatibility, compactness, low power
consumption, and high reliability at a low costheT386-Engine is not only easy to program in C/C++, but
also offers PC-compatibility, and thus a vast saftlibrary.

Users of TERN’s A-Engine, C-Engine, or V25-Enginil find the i386-Engine to be an ideal upgrade,
with increased functionality and performance preddvithin the same mechanical dimensions (3.6 2.3
0.3 inches), as well as compatible pin outs antiwsoé drivers. Low-cost C/C++ Evaluation (EV) and
Development (DV) Kits are available, as well as8é 8pgrade Kit for V25/186 users.

ROM/FLASH SRAM
512 KB 512K B
J8
& J7
A8-A25 18x1

Intel386EX [
CPU

po-p7 | J1
74H C259 Y9 V13 |4 AO-A7
33MHz | =% [0
512-BYTE Y° DMA (2)
EEPROM 16-Bit Timers (3) SI100
7| Enemeedo siol
SDA P1! SSIO PIO, TXD 5
4“—r
u:o' 20x2|
ADC
11 Ch. 12-bit DAC UART Y8
4ch. 12-bi || SCC2961

Figure 1.1 Functional block diagram of the i386-Engine

The i386-Engine operates with regulated 5V-only power input, amtistimes 270 mA at 33 MHz. In
software-programmable power-down mode, power coptomis 28 mA. The real-time clock can switch
an external power supply via the “VOFF” pin on the header to achieve pA-level power consumption.
The i386-Engine can operate in either 8-bit or 16-bit externaladewde. Up to 512KB 8-bit ROM/Flash
and up to 512KB 8-bit battery-backed SRAM can bstaled on-board. 64MB of memory space is
supported, with 26 address lines and 16 data lifes.on-board 512-byte serial EEPROM, which dods no
require a battery backup, can be used as an aditioemory device to store important data suchsas u
IDs, calibration coefficients, etc. An optional kiane clock (RTC) provides information on the year
month, date, hour, minute, second, 1/64 second,aanthterrupt signal. A PCB-mounting lithium coin
battery can be installed to back up both the SRAWI BRTC. Under normal conditions, the battery cat la
at least three years.

1-1

Chapter 1: Introduction i386-Engine

Two asynchronous serial ports from the i386EX suppgliable DMA-driven serial communication at up
to 115,200 baud and provide complete handshakidgnamdem control signals. One synchronous serial
port from the i386EX can interface to external $yooous serial devices at a rate of up to 8 MHn A
optional UART SCC2691 can be added for a third elssgnous serial port that supports 8-bit or 9-bit
networking communication.

Three PC-compatible 16-bit programmable timers/gensncan operate in one of six modes. They can be
used to generate interrupts or count external eyanta rate of up to 8 MHz, or to generate pulgpuds.
Three 8-bit multifunctional, user-programmable @@rts support up to 10 external interrupts. Fotemral
interrupts are buffered by Schmitt-trigger investand provide active low inputs. The other sixrintpts
provide active high inputs. A supervisor chip (LT with power-failure detection, a watchdog tineand
ared LED are on-board.

The optional 12-bit ADC has 11 channels of analgguts with sample-and-hold and a high-impedance
reference input. With an analog input range of Isingnded 0-5V (or O to REF), the ADC supports
conversion up to a sample rate of 10KHz. Up to fthannels of 12-bit DAC that provide 0-4.095V aigalo
voltage outputs capable of sinking or sourcing Sané also available.

On-board expansion headers provide data linesgaddines, control signals, and pre-decoded chgztse
lines for user expansion. The optional VE232 addiwrard provides regulated 5V power and
RS232/RS485 drivers.

The i386-Engine can be installed on the MotionCrdBbx, PowerDrive, SensorWatch, PC-Co, or
LittleDrive (see Figure 1.2).

Figure 1.2 i386-Engine installed on the MotionC (left) and on the LittleDrive (right)

1-2

i386-Engine Chapter 1: Introduction

1.2 Features

Standard Features

» Dimensions: 3.6 x 2.3 x 0.3 inches

 32-bit CPU (Intel i386EX), PC-compatible, C/C+4ogrammable

» Power consumption: 270 mA normal, 28 mA in powewd mode

» Power input: +5V regulated DC

* On-board 8-bit configuration of up to 512KB RAMcdnp to 512KB ROM
* A total of 64MB memory space, with 16 data linesl 26 address lines

» Three 16-bit timer/counters and a watchdog timer

» Two PC-compatible asynchronous serial ports amdsynchronous serial port
 Three 8-bit 1/0 ports with multiplexed functionr®m i386EX

» Up to 10 external interrupts and 8 internal inipts.

» 512-byte EE and supervisor chip for power failueset and watchdog

» Two DMA channels for data transfer between menamy 1/0

Optional Features(* surface-mounted components)

» 32KB, 128KB, or 512KB SRAM*

* 11 channels of 12-bit ADC, sample rate up to H¥K

» 4 channels of 12-bit DAC, 0-4.095V output *

* SCC2691 UART (on-board) supports 8-bit or 9-leitworking

» Real-time clock RTC72423, lithium coin battery*

» VE232 add-on board for regulated 5V power & RSREA85 drivers

1.3 Physical Description

The physical layout of the i386-Engine is showirigure 1.3. For a more detailed layout with dimens;j

please see Appendix A.

97
- OJ8|o| 0]] e OTy—
T e — !
— B3 J4 5
% U4
S .
g e Ut BRSRAM L UART
S _— . U3
?s_ Mz | [
U6 us |E| %
i386EX [691 3
) r'mz
L 66 MHz{ 1,10 ADC m
| [e] s u2 e | L a
Ols el G 10O

Figure 1.3 Layout of the i386-Engine

Shaded components (such as the ADC in U10) arergdtand therefore may not be present on your board

First-time users should have a DEBUG ROM, lab8IB&REM _i386EX, in the U3 socket.

1-3

Chapter 1: Introduction i386-Engine

1.4 1386-Engine Programming Overview

You can program the i386-Engine from your PC vidasdink with an RS232 interface. Your C/C++
program can be remotely debugged over the semlakbli a rate of 115,000 baud. The C/C++ Evaluafiibn
(EV) or Development Kit (DV) from TERN provides aoBand C/C++ compiler, TASM, LOC31, Turbo
Remote Debugger, I/O driver libraries, sample pratg, and batch files. These kits also include a DGB
ROM (TDREM _i386EX) to communicate with Turbo Debugger, a PC-V25 cablethe connect the
controller to the PC, and a 9-volt wall transform&ee your Evaluation/Development Kit Technical
Manual for more information on these kits.

After you debug your program, you can test run iB®6-Engine in the field, away from the PC, by
changing a single jumper, with the application pamg residing in the battery-backed SRAM. When the
field test is complete, application ROMs can bedpiced to replace the DEBUG ROM. The .HEX or .BIN
file can be easily generated with the makefile mtest. You may also use the DV Kit or ACTF Kit to

download your application code to the on-boardlklas

Development of application software for the i386gte consists of three easy steps, as shown ibldio&
diagram below.

STEP 1Serial link PC and i386-Engine (IE), program irC&#.
Debug C/C++ program on the IE with Remote Debugger

STEP 2 Test IE in the field, away from PC.
Application program resides in the battery-backBASI.

STEP3 Make application ROM or Download to Flash.
Replace DEBUG ROM, project is complete.

The three steps in the development of a C/C++ agiidin program are explained in detail below.

STEP 1. Debugging
» Write your C/C++ application program in C/C++.
» Connect your controller to your PC via the PC-V2&4d link cable.

» Use the batch filen bat to compile, link, and locate, or usebat to compile, link locate, download
and debug your C/C++ application program.

1-4

i386-Engine Chapter 1: Introduction

O

[=]
B 3
VE232 + i386-Engine

r:
[@]
[©o0d)

DC +9V 300 mA
Wall transformer

Center Negative

RES
%]

DC power jack
on the VE232

Figure 1.4 STEP 1 connections for the i386-Engine

STEP 2: Standalone Field Test.

» Setthe Step 2 jumper on H2 pins 1-2 on the VEEQufe 1.6),
or, if you are not using the VE232,

* Set the jumper on J2 pins 38-40 on the i386-En(ftigure 1.5).

* At power-on or reset, if J2 pin 38 (P4) is low, 8BU will run the code that resides in the battefy-
backed SRAM.

» If ajumper is on J2 pins 38-40 at power-on or tetbe i386-Engine will operate in Step Two mode),
the jumper is off J2 pins 38-40 at power-on or redee i386-Engine will operate in Step One. The
status of J2 pin 38 (signal RI1) of the i386EX idyochecked at power-on or at reset.

Step 2 Jumper: = 7101 (-)fr
J2: pin 38=40 < S e ¢

or S e %

H2 on VE232 B © <

pin1=2

ADC ee

ol
Bls.
0o
00
Q B
[cec]@®0O

Figure 1.5 Locations for Step 2 jumpers

0

STEP 3: Generate the application .BIN or .HEX file, mgkeduction ROMs or download your program fo
FLASH via ACTF.

« If you are happy with your Step Two test, you canbgck to your PC to generate your applicatipn
ROM to replace the DEBUG ROMDREM _i386EX). You need to changeEBUG=1 to DEBUG=0
in the makefile.

1-5

Chapter 1: Introduction i386-Engine

You need to have the DV Kit to complete Step 3.

Please refer to the Tutorial of the Technical Mamfiahe EV/DV Kit for further details on programng
the i386-Engine.

1.5 VE232 add-on board

The VE232 is an interface add-on board for the iB8§ine that provides regulated +5V DC power and
RS232/485 drivers. It converts TTL signals to amf RS232 signals. You do not need the VE232 if you
are using the i386-Engine installed on another TERMNroller such as the BirdBox, LittleDrive, MatiG,

or PowerDrive.

The VE232, shown in Figure 1.6, measures 2.3 x InBlies. A wall transformer (9V, 300 mA) with a
center negative DC plug (8=2.0 mm) should be usgzbtver the i386-Engine via the VE232. The VE232
connects to the i386-Engine via H1 (2x10 headdER® (J2) and SER1 (J3) on the VE232 are 2x5-pin
headers for serial ports SERO and SER1. SERO ddfailt programming port.

While the VE232 is installed, J2 pins 38-40 of iB&6-Engine are connected to H2 of the V232. Yoy ma
use H2 for the Step 2 jumper.

H2 SER1 SERO
Sep 2 Jumper 3\3 \\]2 1.57,2.30

gD\ \ O (inch)
H . L
H1 [©
S)
©
1489 (1488 o
485
us||us | |7 %
6622 —H3 pin 3
DC 1 © 00y)
power jack 0000 S5—H3 pin 2
Rl
| °
+7
0.0 VE232

Figure 1.6 The VE232, an interface card for the i386-Engine

For further information on the VE232, please reéteAppendix B and the VE232 schematic at the end of
this manual.

1.6 Minimum Requirementsfor i386-Engine System Development

1.6.1 Minimum Hardware Requirements

» PC or PC-compatible computer with serial COMx pgbat supports 115,200 baud
* i386-Engine controller with DEBUG RONIDREM_i386EX
» VE232 interface board (provides regulated +5V D@@goand RS232/RS485 drivers)*
* PC-V25 serial cable (RS232; DB9 connector for PQVO@rt and IDC 2x5 connector for controller)
» center negative wall transformer (+9V DC, 500mA)
* NOTE: the VE232 is not needed if you are using i installed on another controller

1-6

i386-Engine Chapter 1: Introduction

1.6.2 Minimum Software Requirements

* TERN EV/DV Kit installation diskettes

* PC software environment: DOS, Windows 3.1, Winddws8 Windows98

The C/C++ Evaluation Kit (EV) and C/C++ Developmitt (DV) are available from TERN. The EV Kit
is a limited-functionality version of the DV Kit. W the EV Kit, you can program and debug the
i386-Engine in Step One and Step Two, but you canmoStep Three. In order to generate an applicati
ROM/Flash file, make production version ROMs, anthplete the project, you will need the Development
Kit (DV).

1-7

i386-Engine Chapter 2: Installation

Chapter 2: Installation

2.1 Software Installation

Please refer to the Technical Manual for t¥C++ Development Kit for TERN 16-bit Embedded
Microcontrollers” for information on installing software.

The README.TXT file on the TERN EV/DV disk containsiportant information about the installation
and evaluation of TERN controllers.

2.2 Hardware Installation

Overview

* Install VE232:
H1 connector of VE232 installs on J2 of the i38G3iEe

» Connect PC-V25 cable:
For debugging (Step One), place ICD connector ofSERO0) with
red edge of cable at pin 1

» Connect wall transformer:

Connect 9V wall transformer to power and plug iptaver jack on
\Vi=vk¥

Hardware installation for the i386-Engine consjstisnarily of connecting the microcontroller to yoR€C.
The VE232 must be used to supply regulated poweRB232 drivers to the i386-Engine. If you are gsin
the i386-Engine installed on another controlleeask refer to the technical manual for that coletrdbr
installation information.

2.2.1 Connecting the VE232 to the i386-Engine

Install the VE232 interface with the H1 (10x2) seckonnector on the upper half of the J2 (dual row
header) of the i386-Engine. Figure 2.1 and FiguPeshow the VE232 and the i386-Engine before atet af

T
Lo lel| Je]

5 2 5

H1

{15} SRAM

386X

112

installation.

Figure 2.1 Before installing the VE232 on the i386-Engine

2-1

Chapter 2: Installation i1386-Engine

e O

ol m
g e
E@@OO

H1 ™

O
VOOV
—

Py

o

<
O
renaesad]]

Figure 2.2 After installing the VE232 on the i386-Engine

2.2.2 Connecting the i386-Engine to the PC

The following diagram (Figure 2.3) illustrates tt@nnection between the i386-Engine, VE232 and e P
The i386-Engine is linked to the PC via a seridlledPC-V25).

The TDREM _i386EX DEBUG ROM communicates through SERO by defaulstdh the 5x2 IDC
connector to the V232 on the SERO head&kPORTANT: Note that the red side of the cable must point
to pin 1 of the VE232 J2 header. The DB9 connector should be connected to one of Rais COM Ports
(COM1 or COM2).

RED edgeof serial

J3 pinlof J2
cable corresponds
to pin 1 of header for SERL SJEZRO header (SERO)
SERO N To SERO |
T O o
To COML1 — | * i =
Or COMZ SS E :i
bC " <
/ connector " .t
[) ()
DB9 VE232 §§
connector n ca
P == J2 U
¢ == e []
i386-Engine
PC

Figure 2.3 Serial connection between the i386-Engine and the PC for debugging (Step
One)

2.2.3 Powering-on the i386-Engine

Connect a wall transformer +9V DC output to the BEDC power jack. The power supply from the wall
transformer is connected to a power jack adapter.

The on-board LED should blink twice and remain fterathe i386-Engine is powered on or reset (Figure
2.4).

2-2

i386-Engine

Chapter 2: Installation

Wall

Ojev
e e

@ <
e e
ee
ee
e e

transformer

Figure 2.4 The LED blinks twice after the i386-Engine is powered on or reset.

CAUTION: The CPU on the i386-Engine and the power regutatahe VE232 can

becomevery hot while the power is connected.

2-3

i1386-Engine Chapter 3: Hardware

Chapter 3: Hardware

3.1 Intel386EX Processor

The Intel386EX is based on the Intel386SX. Thishhigntegrated device retains PC functions that are
useful in embedded applications and adds periphénal are typically needed in embedded systems. Th
Intel386EX has new peripherals and an on-chip sy$t¢erface logic that can minimize total systerstco
The Intel386EX has two asynchronous serial poris, synchronous serial port, 24 1/0s, a watchdogrim
interrupt pins, three 16-bit timers, DMA to andrrcserial ports, and enhanced chip-select functitynal
The i386-Engine provides a PC-compatible developmlatform optimized for embedded applications.

3.2 Intel386EX 1/O Lines

The Intel386EX has 24 I/O lines in three 8-bit gorts: P1, P2, and P3. The 24 1/O pins on the38&EX
are multiplexed with peripheral pin functions, sashserial ports, timer outputs, and chip-seleesli Each
of these pins can be used as a user-programmatleadn output signal if the normal shared periphpia
function is not needed. Any I/O line can be comfeyl to operate as a high-impedance input, open-dra
output, or complementary output.

After power-on or reset, the 1/0 pins default tsieas configurations. The initialization routineopided
by TERN libraries reconfigures some of these pmsi@eded for specific on-board usage as well. er'hes
configurations, as well as the processor-interealgheral usage configurations, are listed in T&ole

PIO Peripheral Power-On/Reset i386-Engine Pin No. i386-Engine I nitial
P10 DCDO# weak pullup J2 pin 14 Input with pullup
P11 RTSO# weak pullup J2 pin 27 Output

P12 DTRO# weak pullup J2 pin 18 Input with pullup
P13 DSRO# weak pullup J2 pin 20 Input with pullup
P14 RIO# weak pullup J2 pin 12 Input with pullup
P15 LOCK# weak pullup EE U5.5&ADC U10.16 I/O withljup

P16 HOLD Input with pulldown J2 pin 11 Input witkilfglown
P17 HLDA Output with pulldown J2 pin 13 Input wiglulldown
P20 CSO# Output with pullup LT691 U6.13 SRAM select
P21 CS1# Output with pullup J2 pin 37 Input withlpo, MM select
P22 CS2# Output with pullup J2 pin 5 SCC & RTC #ié&dect
P23 CS3# Output with pullup J2 pin 10 Input withlyoi
P24 CSa# Output with pullup J2 pin 3 Input withlppl
P25 RXDO Input with pulldown J2 pin 32 RXDO

P26 TXDO Output with pulldown J2 pin 34 TXDO

P27 CTSO# Input with pullup J2 pin 36 Input witHlpp
P30 TOUTO Output with pulldown J2 pin 17 Input withlidown
P31 TOUT1 Output with pulldown J2 pin 19 Input withlldown
P32 INTO Input with pulldown J2 pin 21 Input witkilfglown
P33 INT1 Input with pulldown J2 pin 23 Input witkilfglown
P34 INT2 Input with pulldown J2 pin 24 Input withilfdown
P35 INT3 Input with pulldown J2 pin 29 Input witkilfglown
P36 PWDOWN Input with pulldown J2 pin 30 Input withlldown
P37 COMCLK Input with pulldown J2 pin 35 Input wiglulldown

Table 3.1 I/O pin default configuration after power-on or reset

3-1

Chapter 3: Hardware i1386-Engine

The 24 PIO lines, P10-P17, P20-P27, and P30-P3Zaafigurable via 8-bit registers, PnDIR and PnLTC.
The value settings are listed as follows:

Pin Configuration Desired Pin State PnDIR PnLTC
High-impedance input high impedance 1 1
Open-drain output 0 1 0
Complementary Output 1 0 1
Complementary Output 0 0 0

Table 3.2 Value settings for PIO lines

TERN libraries can be used to manipulate these if@ for you. C functions provided in the library
i e.li b andfound in the header filee. h can be used to initialize these PIO pins at rometi Details for
these can be found in the Software chapter.

Some of the I/O lines are used by the i386-Engiystesn for on-board components (Table 3.3). We
suggest that you do not use these lines unlesaugosure that you are not interfering with the apien of
such components (i.e., if the component is noaltest).

Signal Pin Function

P22=/CS2 | J25 U4 RTC72423 chip select /RTC

P22 =/CS2 | J25 U8 SCC2691 chip select /SCC

/CS5 (N/A) U9 74HC259 (decoder) chip for interniginsls TO to T7
RI1 J2.38 STEP 2 jumper

P15 U5.5 EEPROM SDA = U10.16 ADC DOUT

Shared with U10 TLC2543 ADC and U5 24C04 EE dapatin
The ADC and EE data output can be tri-state, wdidabled
P20=/CS0 | (N/A) U6.13 for SRAM chip select, basemmory address 0x0000

P26 =TxD0O | J2.34 SERO transmit for default debudvRO
P25 =RxD0| J2.32 SERO receive for default debug ROM
/INT5 J2.8 i386-Engine U8 SCC2691 UART interrupt.

Table 3.3 Functions of reserved I/O lines on the i386-Engine

At reset, the internal PC/AT-compatible periphesais mapped into DOS 1/O space, of which only 1t&by
is used. The DEBUG ROM arice_i ni t () enables Expanded I/O space. The registers asstaiath
the integrated peripherals are mapped in the asidaegie of 0f000 to Of8ffh.

There are four additional external interrupt lifé85lT4, /INT5, /INT6, /INT7) which are not sharedttv
PI1O pins. These active-low-only lines are all budfd by Schmitt-triggers. For further details regay
these external interrupt pins, refer to the Extelmarrupt section below (3.3).

The specifications for these 1/O pins state thay ttan sink up to 8 mA.

If you need further details regarding the Inputf@utPorts, please refer to Chapter 16 of the IB&HEX
Embedded Microprocessor User’'s Manual.

3.3 External Interruptsand Schmitt Trigger | nput Buffer

There are 10 external interrupt inputs that the aae adapt for his/her own use.

The master interrupt controller 82C59A supports&T IVE HIGH pins on the headdg:

INTO = P32 = J2.21, vector=0x41
INT1 = P33 = J2.23, vector=0x45

3-2

i1386-Engine Chapter 3: Hardware

INT2 = P34 = J2.24, vector=0x46

INT3 = P35 =J2.29, vector=0x47, IR7 share W@turious Interrupts
INT8 = P31 = J2.19, vector=0x43 share with SIO1

INT9 = P30 = J2.17, vector=0x44 share with SIO0

The slave interrupt controller 82C59A has six piSTIVE LOW at J2 header:

/INT4 = J2.33, vector=0x48
/INT5 = J2.8, vector=0x49
/INT6 = J2.6, vector=0x4c
/INT7 = J2.15, vector=0x4e

The WDTOUT (Watchdog Timer) interrupt uses vectoe) and the NMI (Non-Maskable Interrupt) at
pin J2.7 uses vector=0x2. The NMI interrupt cam Io® disabled by software, and is raised on agisin
edge. /INT5, J2 pin 8, is used by the on-boaribopt SCC2691 UART if installed.

You must provide a low-to-high (rising) edge to geate an interrupt for the ACTIVE HIGH interrupt
inputs and a high-to-low (falling) edge to geneiatdnterrupt for the ACTIVE LOW interrupt inputs.

A spurious interrupt is defined as an interruptt tisa"Not Valid." A spurious interrupt on any IRné

generates the same vector number as an IR7 reduesspurious interrupt, however, does not seirthe
service bit for IR7. Therefore, an IR7 interrupt\véee routine must check the interrupt service irait
register to determine if the interrupt source thesi a valid IR7 (the in-service bit is set) oruigous

interrupt (the in-service bit is cleared).

Four external interrupt inputs, /INT4-7, are budigrby Schmitt-trigger inverters (U7) in order ternease
noise immunity and transform slowly-changing inpiginals to fast-changing and jitter-free signals.

/INT4=J2.33 INT4 =U2.93
u7D O

/INT5=J2.8 INT5 =U2.94
u7cC O

/INT6=J2.6 INT6 =U2.95
ur7 O

_ INT7 =U2.96
/INT7=J2.1
- U7A o—5

Figure 3.1 External interrupt inputs

The i386-Engine uses vector interrupt functionsréeponse to external interrupts. Please refer ¢o th
Intel386EX User's Manual for detailed informatiobaaut interrupt vectors, and to the Software chapter
this manual (Chapter 4) on how to associate threserupt vectors with your own interrupt servicetine.

3.4 Timer Control Unit

The timer/counter unit has three 16-bit programmaigunters: timer0, timerl, and timer2. They can be
driven by a pre-scaled value of the processor ctwdky external timers. The counters support difexnt
operating modes. Only mode2 and mode3 are periadibes, in which the counters are reloaded with the
user-selected count value when they reach ternsimaht. For details regarding the modes in whidgh th
timers operate, please refer to Chapter 10 ofrited386EX manual.

Chapter 3: Hardware i1386-Engine

The timers provided can be used in several apmitst They can be used to act as counters, generat
interrupts, and to output repeating pulses with-gpecified widths.

Timers can generate pulse outputs at the J1/J2tead
Timer 0 output=TOUT0=P30=J2 pin 17
Timer 1 output=TOUT1=P31=J2 pin 19
Timer 2 output=TOUT2=J1 pin 4

Timers can use internal or external clock as clopkits.

To count external events, the timer clock inputsrauted to the J2 headers:

Timer O clock in=/INT4=J2 pin 33
Timer 1 clock in=/INT6=J2 pin 6
Timer 2 clock in=TCLK2=J2 pin 9

These timers can be used to count or time exterraits.

To use the timers to generate interrupts, a fefemdifit options are available. Timer 1 has its ougignal,
OUT1, connected to IR2 of the slave 82C59. The Timeuput,OUT2, is connected to IR3 of the slave
82C59. The Timer 0 outpuQUTO, is connected to IR0 of the master 82C59.

The maximum external pulses input rate is 8.25 MPAlease see the sample programmer. ¢ and
counterO.cint er n\ 386\ sanpl es\ i e for details regarding the timers, counters, amil thapplications.

3.5 Clock

With an on-board 66 MHz oscillator, the i386-Engimgerates at 33 MHz system processor clock speed.
The 66 MHz clock signal is routed to a 4-pin hedd&rpin 1, next to the oscillator. The processocklis
used by serial ports and timers. The default SER@Kserial ports is 16.5 MHz, and the default pre-
scaled PSCLK for the timers is 16.5 MHz. The maximtimer output is 8.25 MHz. For details regarding
how to change the PSCLK pre-scale register, seesdhgle programsi ner. c andcount er 0. ¢ in

\ 386\ sanpl es\i e.

3.6 Serial Ports

The i386-Engine has three asynchronous serial @snfiwo are Intel386EX-internal: SERO, SER1. One
external UART SCC2691 is located underneath the ROy can operate in full-duplex communication
mode. The SERO and SER1 use DMA for receiving andhterrupt-driven transmit. The UART SCC2691
is interrupt-driven for both transmitting and redeg. For more information about the external UART
SCC2691, refer to Appendix C.

With the DEBUG ROM T{DREM_i386EX) installed, the internal serial port SERO is udmd the
i386-Engine for DEBUG programming with the PC. Ises 115,000 Baud rate, as default, for
programming. It is possible to use both SERO anRISi applications. The user can use SERO to dehug
application program for SER1, and then convert $i#R1 code to SERO, since they are identical. The
application programs can be combined and download@dSERO in STEP1, and then run in STEP2.
Application programs can use both SERO and SERieatame time, but it cannot be debugged over SERO
at the same time.

Complete interrupt/DMA-driven software serial pdrivers are included in the EV/DV Kit. Please retfer
Chapter 4 (Software) for more details regarding ithplementation of the serial port drivers, as vl
their application.

3.7 Power-Save-M ode

The i386-Engine is an ideal core module for low ppeonsumption applications. The power-save mode of
the Intel386EX processor reduces power consumptimhheat dissipation, thereby extending batteeyitif

3-4

i1386-Engine Chapter 3: Hardware

portable systems. In power-save mode, operatictheofCPU and internal peripherals continues ataesio
clock rate. When an interrupt occurs, it automéiigaturns to its normal operating rate.

The RTC72423 on the i386-Engine has a VOFF sigmated to J1 pin 9. The VOFF is controlled by the
battery-backed RTC72423. It will be in tri-stater tbe external power-off and become active-lowhat t
programmed time interrupt. The user may use the W@ to control an external switching power syppl
that turns the power supply on/off.

3.8 Memory Map for RAM/ROM

The Intel386EX supports a memory space of up tvB4with 26 address lines (A0-A25).

At power-on, the i386-Engine operates in Real-modeich offers only 1 MB of memory space using
segmentation. The DEBUG ROM operates in Real-na@deell, and does not use A20-A25.

The lower memory chip select /CSO0 is mapped intsnorg space of 0x00000 to Ox7ffff. This is used for
up to 512K of SRAM. The default wait state on B%M is set to 3 cycles, but can be shortened iirdds

The upper memory chip select /UCS is mapped intmong space of 0x80000 to Oxfffff and is used for up
to 512K of ROM. Both ROMs and Flash chips can lbegd in the ROM socket. The default wait state fo
this component is two cycles, to allow use with R@dmponents with speed up to 120ns. The preferred
ROM speed is 70ns, and if your environment is naht noise free, you can reduce the wait staterte
cycle using this component.

For details regarding how these components arialinéd ini e_i ni t () with these specifications, please
refer to the chapter on Software.

In certain applications, you might also chooseetonap the memory address space differently to athipr
select lines. This might become useful if you haffeboard memory components you also wish to aces
using poke/peek. Please see the sample file cs16.c in tern/386/samples/ie/ for an example of this
application.

During development, your code and data segmentbwitnapped to specific locations within this meynor
space. Details regarding how this is done duringdpct development can be found in the Technical
Manual of the Evaluation/Development Kit.

3.91/0 Mapped Devices

3.9.11/0 Space

External I/O devices can use I/O mapping for accésa can access such 1/0O devices witportb(port) or
outportb(port,dat). These functions will transfer one byte of dat#éh® specified 1/0 address.

The external I/O space size is 64KB, ranging frot®0DO0 to Oxffff.

The default 1/O access time is 15 wait states. Nay modify the wait states by re-programming thg€h
select Low Address register from 0-15 cycles. Tystesn clock speed is 33 MHz. Details regarding thi
can be found in the Software chapter, and in thel386EX Embedded Microprocessor User’'s Manual.
Slower components, such as most LCD interfaceshinfilgd the maximum programmable wait state of 15
cycles still insufficient.

For details regarding the chip select unit, please Chapter 14 of the Intel386EX Embedded
Microprocessor User's Manual.

The table below shows more information about |/(piiag:

I/O space Select Signal Location Usage
0x8000-0x80ff /CS6 J1 pin 19 = /CS6 User

3-5

Chapter 3: Hardware i1386-Engine
I/O space Select Signal Location Usage
0xa090-0xa09f /CS2 J2 pin5=P22 UART, SCC2691
Oxa0a0-0xaOaf /CS2 J2 pin 5 = P22 RTC 72423
0xb000-0xbOff /CS5 None (U9-74HC259) Internal Usage (TO-T7)
Not mapped /CSO N/A SRAM
Not mapped /CS1, J2 pin 37 = P21, Reserved for futuré ERN use
/CS3 J2 pin 10 = P23
Not mapped /CS4 J2 pin 3=P24 User

A total of eight pre-decoded chip-select lines available on the IE. These include the UCS (umbgp
select), and signals CS0-6. The upper chip saattdicated for boot-up ROM use. Some othersisee
for on-board internal usage and not available ¥ happings, but there are several available fer us
expansion components.

Chip select lines 1 and 3 (/CS1, /CS3) are usesbime special versions of the IE, as well as in some
peripheral boards (such as thleemCard). If you are sure you are not using TERN conémslithat use
these chip-select lines, you could also use therotfeer user external /O peripherals.

To use one of the chip select lines, you must rhapappropriate line to a free base I/0O addresger Af
configuring the PIO pin appropriately for this gereral function (normal-mode operation), you can
directly outport to that address with appropriate data. The addbes and data bus should then be
connected to your I/0O component if needed.

To illustrate how to interface the i386-Engine wikternal 1/0O boards, a simple decoding circuit for
interfacing to an external 82C55 I/O chip is shown.

74HC138 82C55
RST
Ad 1 vol 15 SEL8080 Po0-Po7
A5 2 | A vil 14 /sELs0o AOBLE
A6 3|2 vo|13 ISELBOAD AL
v3[12 /SEL80BO| /sE18090] /cs P10-P17
) val 11 /SEL80CO
/CS6=119 | Goa vs[1o /sELBoDC MR | MR
55 G2B Y6| 9 /SEL8OEO RD_| IRD
A7 6| G1 Y7| 7 /SEL8OFO P20-P27
—— DO-D7

Figure 3.2 Interface i386-Engine to external I/O devices

The functioni e_i ni t () by default initializes the /CS6 line at base I/@l@ess starting at 0x8000. You
can read from the 82C55 withportb(0x8090) or write to the 82C55 witlutportb(0x8090,dat). The call

to inportb will activate /CS6, as well as putting the addi@s3090 over the address bus. The decoder will
select the 82C55 based on address lines A4-6,lenddta bus will be used to read the appropriata da
from the off-board component.

3.9.2 Real-time Clock RTC72423

If installed, a real-time clock RTC72423 (EPSON,) it mapped in the 1/0 address space 0xa0a0. It mus
be backed up with a lithium coin battery. The Rm@y be accessed via software driveisinit() or
rtc_rd(); (see Chapter 5, Software for details).

3.9.3 UART SCC2691

The UART SCC2691 (Signetics, U8) is mapped intoltBeaddress space @a090. The SCC2691 has a
full-duplex asynchronous receiver/transmitter, adpuple buffered receiver data register, an infgrru

3-6

i1386-Engine Chapter 3: Hardware

control mechanism, programmable data format, setbaud rate for the receiver and transmitter, a
multi-functional and programmable 16-bit countenéir, an on-chip crystal oscillator, and a multignse
input/output including RTS and CTS mechanism. ThEQMis routed to J1 pin 3. The MPI is not
connected.

For more detailed information, refer to Appendix The SCC2691 on the i386-Engine may be used as a
network 9-bit UART (for the TERMT-Kit).

The RxD (J1 pin 5), TxD (J1 pin 7), MPO (J1 pin &d MPI (J1 pin 21) are TTL-level signals. You tus
provide RS-232 or RS-485 drivers off of the i386gkEe board if you choose to use either RS-232 or RS-
485. This can be achieved by using either the \2£28 a number of other TERN peripheral controllers
that are driven by the i386-Engine and offer RSRE285 drivers.

The VE232 provides an RS485 driver. You may conttecRxD and TxD signals on J1 of the i386-Engine
to H3 pins 3 and 2 on the VE232 and the 485+ arid dignals at the screw terminal of the VE232 1o p
multi-drop RS485 twisted-pair network.

The RS-485 driver on the VE232 was designed taJdsgin 24 to control the half-duplex RS-485 driver
direction for the V25-Engine. However, the i386-EmyJ2 pin 24 (signal P34) is the RTC chip select
signal. P34 should not be used as RS-485 drivectitim control. You can use MPO of the SCC2691 (J1
pin 3) as the RS-485 driver direction control andreect the i386-Engine J1 pin 3 to the VE232's kil p
which maps to i386-Engine J2 pin 24. You then sthoudt off pin 24 of the J2 on the i386-Engine
connection to the VE232. Please refer to AppendifoBthe layout of the VE232 and to Chapter 1 for
further information.

RS485. RS485+ J1 of VE232

Bl ClMler——30

Figure 3.3 Settings and connections for networking with SCC2691

3.10 Other Devices

A number of other devices are also available ori3B6-Engine. Some of these are optional, and night
be installed on the particular controller you aseng. For a discussion regarding the softwarefexte for
these components, please see the Software chapter.

3.10.1 On-board Supervisor with Watchdog Timer

The MAX691/LTC691 (U6) is a supervisor chip. Withinstalled, the i386-Engine has several functions
watchdog timer, battery backup, power-on-reset ydefzower-supply monitoring, and power-failure
warning. These will significantly improve the systeeliability.

3-7

Chapter 3: Hardware i1386-Engine

Watchdog Timer

TERN J7
Om O J8[e] Tel] ! O [e]]

_ C T Tl 1

2 us UART

& U1l SRAM :

Lol o u3
T J9 = Watchdog
US

Timer Enable

259

U6 u9
i3866X 5

. 'mz
2 RN2 =
AN 66 MHz| ;19 ADC =1
< Uz e - a °
™~ [o] H1
ur o T

Figure 3.4 Location of watchdog timer enable jumper

259

The watchdog timer is activated by setting a jumgred9 of the i386-Engine. The watchdog timer ptesi

a means of verifying proper software execution. tHa user's application program, calls to the fionct
hitwd() (a routine that toggles the T6=HWD pin of thel8hould be arranged so that the HWD pin is
accessed at least once every 1.6 seconds. [Bthemper is on and the HWD pin is not accessedimvith
this time-out period, the watchdog timer pulls IO pin low, which asserts /RESET. This automatic
assertion of /RESET may recover the applicatiorggm if something is wrong. After the i386-Engimse i
reset, the WDO remains low until a transition oscar the WDI pin of 691. When controllers are sbipp
from the factory the J9 jumper is off, which dissbthe watchdog timer.

The Intel386EX has an internal watchdog timer. Thidisabled by default witle_init().

Power -failure Warning and Battery Backup

When power failure is sensed by the on-board sigmrehip 691, it will reset the board if the VCEléss
than 4.5V. The battery-switchover circuit compav&C to VBAT (+3 V lithium battery positive pin), dn
connects whichever is higher to the VRAM (power 8R®AM and RTC). Thus, the SRAM and the real-
time clock RTC72423 are backed up. In normal thee)ithium battery should last about 3-5 yearouit
the external power being supplied. When the extgronaer is on, the battery-switch-over circuit vailect
the VCC to connect to the VRAM.

3.10.2 EEPROM

A serial EEPROM of 128 bytes (24C01), 512 bytesO@4), or 2Kbytes (24C16) can be installed in U5.
The i386-Engine uses the T7=SCL (serial clock) &tb=SDA (serial data) to interface with the
EEPROM. The EEPROM can be used to store imporatd, such as a node address, calibration
coefficients, and configuration codes. It hasagfly 1,000,000 erase/write cycles. The data t&teris
more than 40 years. EEPROM can be read and whitesimply calling functionge rd() andee wr ().

A range of lower addresses in the EEPROM is resefwe TERN use. Details regarding which addresses
are reserved, and for what purpose, can be fouAgpendix E of this manual.

3.10.3 12-bit ADC (TLC2543)

The TLC2543 is a 12-bit, switched-capacitor, susisesapproximation, 11l-channel, serial interface,
analog-to-digital converter. Three output linesnirdJ9 74HC259 are used to handle the ADC, with
/CS=T2; CLK=TO; and DIN=T1.

The ADC digital data output communicates with athtbsough a serial tri-state output (DOUT=P15). If
T2=/CS is low, the TLC2543 will have output on PIf5T2=/CS is high, the TLC2543 is disabled and P15
is free. The TLC2543 has an on-chip 14-channdtiphexer that can select any one of 11 inputsmy a

one of three internal self-test voltages. The sarapld-hold function is automatic. At the end of

3-8

i386-Engine

Chapter 3: Hardwar

e

conversion, the end-of-conversion (EOC) output dugb to indicate that conversion is complete. ts
i386-Engine, this output is not connected.

TLC2543 features differential high-impedance inptitat facilitate ratiometric conversion, scalingida

isolation of analog circuitry from logic and supptpise. A switched-capacitor design allows low-erro
conversion over the full operating temperature earigne analog input signal source impedance shuaild
less than 5Q and capable of slewing the analog input voltage 60 pF capacitor.

A reference voltage less than VCC (+5V) can be iglexy for the TLC2543 if additional precision is
required. A voltage above 2.5V and less than +8¥ be used for this purpose, and connected to the

REF+ pin.

The CLK signal to the ADC is toggled through an @, and serial access allows a conversion ratgof
to approximately 10 KHz.

In order to operate the TLC2543, five I/O lines ased, as listed below:

ita

Pin Label Description

AINO-AIN10 11 analog signal inputs. The signal source impeglahould be less than@0and
capable of slewing the analog input voltage inGDpF capacitor.

ICS Chip select = T2, high to low transition enables UQ DIN and CLK, low to
high transition disables DOUT, DIN and CLK.

DIN T1, serial data input

DOUT P15 of Intel386EX, 3-state serial data output.

EOC Not Connected, End of Conversion, high indieatenversion complete and da
is ready

CLK I/0 clock = TO

REF+ Upper reference voltage (normally VCC)

REF- Lower reference voltage (normally GND)

VCC Power supply, +5 V input

GND Ground

The analog inputs ADO to AD9 are available at heddieé, and can be connected to your signal sources
from there. AD10, REF+, GND, VCC are available eatter J6.

3.10.4 Dual 12-bit DAC

The LTC1446 is a dual 12-bit digital-to-analog certers (DACs) in an SO-8 package. They are complete
with a rail-to-rail voltage output amplifier, antémnal reference and a 3-wire serial interface. Th€1446
outputs a full-scale of 4.096V, making 1 LSB ecieal mV.

The buffered outputs can source or sink 5 mA. Tittputs swing to within a few millivolts of suppisil
when unloaded. They have an equivalent outputtegsie of 4@ when driving a load to the rails. The
buffer amplifiers can drive 1000pf without goinddroscillation.

The DAC is installed in U11 and U12 on the i386-ieg The outputs are routed to hea@iémpins 17 and
18 for U11 DAC channels A and B. The second DASIahed in U12 has for outputs headdrpins 19

and 20.

The DAC uses TO as CLK, T1 as DI, and T3/4 as LDM®I8ase contact Linear Technology (tel. 408-432-
1900) for LT1446 technical data sheets.

Chapter 3: Hardware i1386-Engine

3.11 Headers and Connectors

3.11.1 Expansion Headers J1 and J2

There are two 20x2, 0.1 spacing headers for i38§iftlenexpansion. Most signals are directly routeth&

Intel386EX processor. These signals are 5V onlg, ay out-of-range voltages will most likely damage
the board.

J1 Signal J2 Signal
VCC 1 2 GND GND 40 39 VCC
MPO 3 4 TOUT2 RI1 38 37 P21
RxD 5 6 GND P27 36 35 P37
TXD 7 8 DO TxDO 34 33 /INT4
VOFF 9 10 D1 RxDO 32 31 /RTS1
BHE 11 12 D2 P36 30 29 P35
D15 13 14 D3 TxD1 28 27 P11
IRST 15 16 D4 RxD1 26 25 DTR1
RST 17 18 D5 P34 24 23 P33
/CS6 19 20 D6 /ICTS1 22 21 P32
D14 21 22 D7 P13 20 19 P31
D13 23 24 GND P12 18 17 P30
M/10 25 26 A7 R/W 16 15 /INT7
D12 27 28 A6 P10 14 13 P17
IWR 29 30 A5 P14 12 11 P16
/RD 31 32 Ad P23 10 9 TCLK2
D11 33 34 A3 /INT5 8 7 NMI
D10 35 36 A2 /INT6 6 5 P22
D9 37 38 Al DSR1 4 3 P24
D8 39 40 BLE GND 2 1 DCD1

Table 3.4 J1 and J2, 20x2 expansion ports
Signal definitions for J1:

VCC +5V power supply
GND Ground
TOUT2 Intel386EX pin 91, timer2 output, 8.25 MHz xiraum
RxD data receive of UART SCC2691, U8
TxD data transmit of UART SCC2691, U8
MPO Multi-Purpose Output of SCC2691, U8
MPI Multi-Purpose Input of SCC2691, U8
VOFF real-time clock output of RTC72423 U4, opefemor
D0-D15 Intel386EX 16-bit external data lines
Al1-A7 Intel386EX lower address lines
IRST reset signal, active low
RST reset signal, active high
/CS6 /CS6, Intel386EX pin 2, ie_init(); set it upl&O chip select line at

address 0x8000
M/IO Intel386EX pin 27, high for memory, low forQ/operation
BHE Intel386EX pin 39, high byte enable
/WR Intel386EX pin 35, active low when write opéoat
/RD Intel386EX pin 34, active low when read opemati

3-10

i1386-Engine Chapter 3: Hardware

Signal definitions for J2:

VCC +5V power supply, < 300 mA
GND ground
Pxx Intel386EX PIO pins
R/W inverted from Intel386EX pin 30, W/R
TxDO Intel386EX pin 131, transmit data of seriahnhel O
RxDO Intel386EX pin 129, receive data of serialrotel 0
TxD1 Intel386EX pin 112, transmit data of seriahohel 1
RxD1 Intel386EX pin 118, receive data of serialrafe 1
P27=/CTSO Intel386EX pin 132, Clear-to-Send sigoaSERO
/ICTS1 Intel386EX pin 113, Clear-to-Send signal$&R1
P11=/RTSO Intel386EX pin 102, Request-to-Send s$ifgmeSERO
/IRTS1 Intel386EX pin 110, Request-to-Send signabiBR 1
/INT4-7 Schmitt-trigger buffered active low inteptinputs
P32-35=INT0-3 active high interrupt inputs
TCLK2 timer2 clock input
NMI Non-mask interrupt
DSR1, DCD1, Serial port 1 handshake lines

RI1, DTR1
RI1 J2 pin 38 Used as Step Two jumper

3.11.2 Expansion Header T1

Jz 4 J= | J31-2* SRAM 32/128KB, J3 2-3 SRAM 512}
— J4 1-2* ROM/FLASH 256/512KB, 2-
[) o‘|—. [) o—|—. o o | e '
| | | | | | | 32/64/128KE
J5 1-2 512KB ROM, others 2-
* default trace on-boat

Step 2 Jumper “m O BE o | e O T]
_TeI Tel
5w

3
U

us ART

F RTC™S

Ut SRAM =

U

8MHz |, [um

3
” |E| 25
“ i386 €X ' s

4 66 MH.
RN " e Z 310 ADC u“
o] T1

Ol =
=

L.] O

T

GND AD1 AD3 AD5 AD7 AD9 GND REF#2 V4
® © © © o o © o o o
I:Tl el ©¢ © © © e e o o o

GND ADO AD2 AD4 AD6 AD8 ADI10 VCCVi1

Figure 3.5 ADC inputs and DAC outputs on the T1 header

3-11

Chapter 3: Hardware

i1386-Engine

The pin layout of the 10x2 pin header T1 on theési@gine is as follows:

T1

Pin 1 = GND Pin 2 = GND
Pin 3 = ADO Pin 4 = AD1
Pin 5= AD2 Pin 6 = AD3
Pin 7 = AD4 Pin 8 = AD5
Pin 9 = AD6 Pin 10 = AD7
Pin 11 = AD8 Pin 12 = AD9
Pin 13 = AD10 Pin 14 = GND
Pin 15 =VCC Pin 16 = REF+

Pin 17 = V1(da)
Pin 19 = V3(dal)

3.11.3 Jumpers and Headers

Pin 18 = V2 (da)
Pin 20 = V4 (dal)

There are 10 jumpers and connectors on the i38&Engs listed below.

Name | Size | Function Possible Configuration
J1l 20x2| main expansion port
J2 20x2| main expansion port Pins 38=40, Step 2 gump
J3 3x1 | SRAM selection: pin 2-3 256K-512KB
pin 1-2, 32K-128KB default
J4 3x1 | ROM/Flash size selection: pin 1-2, 32K-128&fault
pin 2-3, 256K-512K
J5 3x1 | 512K ROM selection: pin 1-2, 512KB ROM
pin 2-3, all others, default
J7 6x1 | Address lines A20 to A25,
pin 1=A25
J8 12x1| High address lines, A8-A19,
pin1=Al19
J9 2x1 | Watchdog timer Enabled if jumper is on
Disabled is jumper is off
T1 20x2 | 11 channels of 12-bit ADC
analog inputs and 4 ch. 12-hit
DAC outputs.
H1 4x1 | pin1=CLK2, pin2=WDTO,
pin3=NC, pin4=GND.

3-12

i1386-Engine Chapter 4: Software

Chapter 4. Software

Please refer to the Technical Manual of the “C/@evelopment Kit for TERN 16-bit Embedded
Microcontrollers” for details on debugging and praxgming tools.

Guidelines, awareness, and problemsin an interrupt driven environment

Although the C/C++ Development Kit provides a sieydbw cost solution to application engineers, some
guidelines must be followed. If they are not felkxl, you may experience system crashes, PC hang-ups
and other problems.

The debugging of interrupt handlers with the Reniadédugger can be a challenge. It is possible tagleb
an interrupt handler, but there is a risk of exgmring problems. Most problems occur in multi-intet-
driven situations. Because the remote kernel rgnmin the controller is interrupt-driven, it demands
interrupt services from the CPU. If an applicatipmogram enables interrupt and occupies the interrup
controller for longer than the remote debugger azgept, the debugger will time-out. As a resulyryBC
may hang-up. In extreme cases, a power reset megduired to restart your PC.

For your reference, be aware that our system isteekernel interrupt-driven for debugging.

The run-time environment on TERN controllers cotssigf an 1/0 address space and a memory address
space. /O address space ranges foaf000 to Oxffff, or 64 KB. Memory address space ranges from
0x00000 to Oxfffff in real-mode, or 1 MB. These are accessed diffgreand not all addresses can be
translated and handled correctly by hardware. af@ memory mappings are done in software to define
how translations are implemented by the hardwdreplicit accesses to 1/0 and memory address space
occur throughout your program from TERN librariesveell as simple memory accesses to either code or
global and stack data. You can, however, expficticess any address in I/O or memory space, amd yo
will probably need to do so in order to access @ssor registers and on-board peripheral components
(which often reside in I/O space) or non-mapped prgm

This is done with four different sets of similanfttions, described below.

poke/pokeb
Arguments: unsigned int segment, unsigned int offset, unsignédnsigned char data
Return value: none

These standard C functions are used to place gxbdifita at any memory space location. 3dgenent
argument is left shifted by four and added todfieet argument to indicate the 20-bit address within
memory spacepoke is used for writing 16 bits at a time, amokeb is used for writing 8 bits.

The process of placing data into memory space nbahshe appropriate address and data are plated
the address and data-bus, and any memory-spacengsajp place for this particular range of memoily w
be used to activate appropriate chip-select limgsthe corresponding hardware component resporfsiblg
handling this data.

o

peek/peekb
Arguments. unsigned int segment, unsigned int offset
Return value: unsigned int/unsigned char data

These functions retrieve the data for a specifédtess in memory space. Once againsggment
address is shifted left by four bits and addedhémffset to find the 20-bit address. This address is then|
output over the address bus, and the hardware awnpmapped to that address should return eitBer a

4-1

Chapter 4: Software i1386-Engine

bit or 16-bit value over the data bus. If theragscomponent mapped to that address, this funetitbn
return random garbage values every time you tpetek into that address.

outport/outportb
Arguments: unsigned int address, unsigned int/unsigned char da
Return value: none

This function is used to place ttata into the appropriataddressin I/O space. It is used most often
when working with processor registers that are redgpto 1/0 space and must be accessed using eithq
one of these functions. This is also the functiead in most cases when dealing with user-confijure
peripheral components.

=

inport/inport
Arguments: unsigned int address
Return value: unsigned int/unsigned char data

This function can be used to retrieve data frompoments in 1/0 space. You will find that most heade
options added to TERN controllers are mapped i@ospace, since memory space is valuable and is
reserved for uses related to the code and datmg U® mappings, the address is output over tliress
bus, and the returned 16 or 8-bit value is thernetalue.

For a further discussion of I/O and memory mappipigsase refer to the Hardware chapter of thisrtieeh
manual.

41I1E.LIB

IE.LIB is a C library for basic i386-Engine opemts. It includes the following modules: IE.OBJ,
SERO0.0OBJ, SER1.0BJ, SCC.0OBJ, and IEEE.OBJ. You tedihk IE.LIB in your applications and
include the corresponding header files. The foltayis a list of the header files:

Include-filename | Description

IEH P10, timer/counter, ADC, DAC, RTC, Watchdod,
SERO.H internal serial port 0

SER1.H internal serial port 1

SCC.H external UART SCC2691

IEEE.H on-board EEPROM

4.2 Functionsin |E.OBJ

4.2.1 i386-Engine I nitialization

ie_init

This function should be called at the beginninggeéry program running on i386-Engine core contrslle

It provides default initialization and configuraticof the various 1/0O pins, interrupt vectors, sats
expanded DOS 1/0, and provides other processoifgpepdates needed at the beginning of every
program.

There are certain default pin modes and interrefiings you might wish to change. With that in dhithe
basic effects ofe_init are described below. For details regarding regisse, you will want to refer to the
Intel386EX Embedded Processor User’s manual.

Initialize the upper chip select to support thead#fROM. The CPU registers are configured suelt th

4-2

i1386-Engine Chapter 4: Software

Address space for the ROM is from 0x80000-0xfffff.

512K ROM operation (this works for the 32K ROM piaed, also)

Two wait state operation (allowing it to supporttopl20 ns ROMs). With 70 ns ROMs, this can
actually be set to zero wait state.

out port (0xf 43a, 0x0008); // UCSADH, 0x80000-0xfffff, 512K ROM
out port (0xf 438, 0x0102); // UCSADL, bs8, 2 wait states

out port (0xf 43e, 0x0007); // UCSMSKH

out port (0xf43c, Oxfc01l); // UCSMSKL, enable UCS

Initialize CSO for use with the SRAM. It is confiiged so that:

Address space starts 0x00000, with a maximum oKFRAM.
8 bit operation with 3 wait states. Once agaim gan set the same register to a lower wait state i
you desire faster operation.
out port (0xf 402, 0x0000);
out port (0xf 400, 0x0103);
out port (Oxf 406, 0x0007); // CSOMSKH
out port (0xf 404, 0Oxfc0l); // CSOMSKL, 512K, enable CSO for RAM

Initialize the chip select used for RTC and SCC RIJA.

The 1/0O Address for the RTC is at Oxa0a0. (Seepsas\ie\rtc_init.c and rtc.c for RTC usage.
The 1/0O Address for the SCC is at 0xa090. (See ksYip\ie_scc.c).
These are initialized to 16 wait states.
out port (0xf412, 0x0280); // CS2ADH, RTC/ SCC I/ O addr=0xa0a0/ 0xa090
out port (0xf 410, 0x000f); // CS2ADL, 0x000f=16 wait
out port (0xf 416, 0x0003); // CS2MSKH
out port (0xf 414, 0xfc0l); // CS2MSKL, 32 enabl e CS2=RTC/ SCC

| CSOADH, base Mem address 0x0000
/| CSOADL, bs8, 3 wait states

~ —~— —~— —

Initialize chip select U9, which is used for intalsignals TO-T7.

I/O address is 0xb000.
out port (Oxf42A, 0x02c0); // CS5ADH, 259 base |/ O address 0xb000
out port (0xf 428, 0x0001); // CS5ADL, 0x0001=1 wait
out port (0xf 42E, 0x0003); // CS5MSKH
out port (0xf42C, 0xfc0l); // CS5MSKL, 256 enabl e CS5=259

This chip select line, CS6, is provided for therissese. Many users choose to attach peripheral
boards to the headers provided on the controlliiis. possible to attach a 74HC259 decoder, for
example, which could then be used to select a nuofbaf-board user components. This line is at
pin 19 of header J1. For details regarding thisthe other chip select line, refer to the Hardware
chapter of this manual.

I/O address for this is 0x8000. A wait-state ofz® been set initially for easier interface with
slower devices. This value can be decreased abyehanging the value of the register.
out port (0xf 432, 0x0200); // CS6ADH, base |/ O address 0x8000
out port (0xf 430, 0x001f); // CS6ADL, 0x001f=32 wait
out port (0xf 436, 0x0003); // CS6NMSKH
out port (0xf434, Oxfc0l); // CS6MSKL, 256 enabl e CS6

Configure the three PI1O ports for default operation

out port b(0xf 820, 0x00); // PlCFG
out port b(0xf822, 0x65); // P2CFG TXD0, RXDO, CS2=P22=RTC/ SCC, 0=RAM
out port b(0xf824, 0x00); // P3CFG

Configure serial port 1, DMA, interrupts, timers.

out port b(0xf826, O0x1f); // PINCFG CS5, CTS1, TXD1, DTR1, RTS1
out port b(0xf 830, 0x00); // DMACFG

out port b(0xf 832, 0x00); // |INTCFG

out port b(0xf 834, 0x00); // TMRCFG

out port b(0xf836, 0x01); // SICCFG SI Q0 use SERCLK

4-3

Chapter 4: Software i1386-Engine

Configure PIO ports as input

out port b(0xf862, Oxff); // PLLTC
out port b(0xf864, Oxff); // P1D R
out port b(0xf86a, Oxff); // P2LTC
out port b(0xf86¢c, Oxff); // P2D R
out portb(0xf872, Oxff); // P3LTC
out port b(0xf874, Oxff); // P3D R

4.2.2 External Interrupt I nitialization

The i386-Engine offers two cascaded interrupt ailetrs to handle internal and external interrupiEsach
interrupt controller is functionally identical to8C59A. Combined, the cascaded interrupt comtr®itan
handle up to 10 external interrupts, and eightriretbinterrupts. For a detailed discussion inwagvihe
ICUs, the user should refer to Chapter 9 of thelB&6EX Embedded Microprocessor User's Manual.
Figure 9-1, in particular, shows interrupts that share theestR and thus cannot be used at the same time.

You should note that if an IR on the slave 82C5@dtvated, IR2 on the master must also be activate
before the interrupt handler is called.

TERN provides functions to enable/disable all ¢f 10 external interrupts. The user can call anthef
interrupt init functions listed below for this purge. The first argument indicates whether theiquaatr
interrupt should be enabled, and the second isi@itn pointer to an appropriate interrupt servizetine
that should be used to handle the interrupt. TBERN libraries will set up the interrupt vectors remtly
for the specified external interrupt line.

If you are dealing with external interrupts, youghti need to disable the particular interrupt bdiagdled
while processing within the interrupt service raati The interrupt control unit is sensitive totaar non-
qualified external interrupts that come from soarseich as mechanical switches. In such a sityation
repeated interrupts (in the thousands) might bemgeed, crashing the system. Disabling such amrimit

for a length of time will make sure that you iselatich interrupts.

At the end of interrupt handlers, the appropriatearvice bit for the IR signal currently being dkead must
be cleared. This can be done using Mmspecific EOl command. At initialization time, interrupt
priority was placed ifrully Nested mode. This means the current highest priorityrig will be handled
first, and a higher priority interrupt will intenptiany current interrupt handlers. Thus, if theruwghooses to
clear the in-service bit for the interrupt currgriteing handled, the interrupt service routine jusstds to
issue the nonspecific EOl command to clear theectitnighest priority IR.

On the i386-Engine, the overhead of executing tberiupt service routine is approximately |B® using a
33 MHz controller.

To send the nonspecific EOl command, you need it wre OCW?2 word with 0x20 (se€igure 9-14 in
the Intel386EX manual for details regarding thismocoand word).

To clear the master 82C59, you will need to do:
out port b(0xf 020, 0x20);

If the IR that has just been handled is on theesBRC59, you must clear its in-service bit firétfter this,

you must also send another Nonspecific EOl comntaritie master 82C59, since the slave interrupt was
only transmitted to the core after IR2 on the ntaB®&C59 was raised. So, you will need to have code
similar to:

out port b(0xf 0a0, 0x20) ;
out port b(0xf 020, 0x20) ;

4-4

i1386-Engine Chapter 4: Software

void intx_init
Arguments: unsigned char i, void interrupt far(* intx_isr) ())
Return value: none

These functions can be used to initialize any driheexternal interrupt channels (for pin locati@nd
other physical hardware details, see the Hardwaapter). The first argumentndicates whether this
particular interrupt should be enabled or disabl€de second argument is a function pointer whighaet
as the interrupt service routine.

By default, the interrupts are all disabled aftetialization. To disable them again, you can eggke call
but pass in 0 as the first argument.

The NMI (Non-Maskable Interrupt) is special in tlitatan not be masked (disabled). The defaultw#R
return on interrupt.

void intO_init(unsigned char i, void interrupt far(* intO_isr)());
void intl init(unsigned char i, void interrupt far(* intl_isr)());
void int2_init(unsigned char i, void interrupt far(* int2_isr)());
void int3_init(unsigned char i, void interrupt far(* int3_isr)());
void int4_init(unsigned char i, void interrupt far(* intd4_isr)());
void int5_init(unsigned char i, void interrupt far(* int5_isr)());
void int6_init(unsigned char i, void interrupt far(* int6_isr)());
void int7_init(unsigned char i, void interrupt far(* int7_isr)());
void int8_ init(unsigned char i, void interrupt far(* int8_.isr)());
void int9_init(unsigned char i, void interrupt far(* int9_isr)());
void nm _init(void interrupt far (* nm _isr)());

4.2.31/0O Initialization

There are three ports of 8 I/0 pins available @i#86-Engine. Hardware details regarding theseliPk3
can be found in the Hardware chapter.

There are several functions provided for accessedlO lines. At the beginning of any applicatimere
you choose to use the PIO pins as input/output,wiyprobably need to initialize these pins in aofethe
four available modes. Before selecting pins f@s pgurpose, make sure that the peripheral modeatiper
of the pin is not needed for a different use witthie same application.

You should also confirm the PIO usage that is deedrabove withinie init(). During initialization,
several lines are reserved for TERN usage and lyould understand that these are not available dar y
application. There are several PIO lines that aexldor other on-board purposes. These are altiledc
in some detail in the Hardware chapter of this méxdd manual. For a detailed discussion towarditBe
ports, please refer to Chapter 16 of the Intel38&bedded Processor User’'s Manual.

Please see the sample programpio.c in t er n\ 386\ sanpl es\i e. You will also find that these
functions are used throughout TERN sample fileanast applications do find it necessary to re-apnte
the PIO lines.

The functionpio_wr andpio_rd can be slower when accessing the PIO pins. Théman efficiency you
can get from the PI1O pins occur if you instead rfyottie PIO registers directly with autport instruction
Performance in this case will be around 1-2 usggle any pin.

4-5

Chapter 4: Software i1386-Engine

void pio_init
Arguments: char port, char bit, char mode
Return value: none

Port and bit refer to the specific PIO line you dealing with. P10-P17 are in port 1, P20-P27iraport
2, and P30-P37 are in port 3. Bit O refers to irgach port, while bit 7 is used for Pn7.
Mode refers to one of four modes of operation.

» 0, High-impedance Input operation
e 1, Open-drain output operation

e 2, output

» 3, peripheral mode

unsigned char pio_rd:

Arguments: char port

Return value: byte indicating P1O status

Each bit of the returned byte value indicates tmeant 1/0 value for the P1O pins in the selected p
void pio_wr:

Arguments: char port, char bit, char dat

Return value: none

Writes the passed in dat value (either 1/0) tcstilected PIO.

4.2.4 Analog-to-Digital Conversion

The ADC unit provides 11 channels of analog infnatsed on the reference voltage supplieBEs+. For
details regarding the hardware configuration, keeHardware chapter.

The ADC shares a common data lifRl%) with the EEPROM. As a result, before using tHeCAfor this
purpose, the EEPROM is placed in stop mode. Fhihe within the function interface to the ADChisl
means that if you are developing an interrupt-drigpplication, you must be careful of situationewehthe
ADC is in use and the EEPROM is used simultaneaistyugh an interrupt service routine. If this ois;

the calls will block and the application will deadk. You should also make sure that you do not re-

programP15 for any other use if you are using the ADC.

For a sample file demonstrating the use of the Apl€ase seie_ad12.cint er n\ 386\ sanpl es\i e.

4-6

i1386-Engine Chapter 4: Software

intie ad12
Arguments: char ¢
Return values: int ad_value

The argument selects the channel from which to do the next Agab Digital conversion. A value of 0
corresponds to chann&DO, 1 corresponds to chanmeD1, and so on.

The return valuad_value is the latched-in conversion value from the prasioall to this function. This
means each call to this function actually retuhgsvalue latched-in from the previous analog-tataig
conversion.

For example, this means the first analog-to-digitaiversion done in an application will be simtiathe
following:

ie_adl2(0); // Read from channel O
chn_O data = ie_adl2(0); // Start the next conversion, retrieve val ue.

4.2.5 Digital-to-Analog Conversion

Up to two LTC 1446 chips are available on the iE@ine in positiondJ11 andU12. Each chip offers
two channels, A and B, for digital-to-analog corsien. Details regarding hardware, such as pin-ants
performance specifications, can be found in thediware chapter.

A sample program demonstrating the DAC can be found ie dal2.c in the directory
t ern\ 386\ sanpl es\i e.

void ie_da

void ie_dal

Arguments: int datl, int dat2
Return value: none

These functions are identical in functionalitye_da() is used for the DAC chip installed in positiodl
andie_dal() can be used for the one installed in positid?2.

Argumentdat1l is the current value to drive to channel A of eitbhip, while argumernttat2 is the value to
drive channel B of each chip.

These argument values should range from 0-40985,wmits of millivolts. This makes it possible tove a
maximum of 4.906 volts to each channel.

4.2.6 Other library functions

On-board supervisor MAX691 or LTC691

The watchdog timer offered by the MAX691 or LTC66ffers an excellent way to monitor improper
program execution. If the watchdog timé®) is connected, the functidritwd() must be called every 1.6
seconds of program execution. If this is not exetbecause of a run-time error, such as an iefioitp or
stalled interrupt service routine, a hardware regiébccur.

Chapter 4: Software i1386-Engine

void hitwd
Arguments: none
Return value: none

Resets the supervisor timer for another 1.6 seconds
void led
Arguments: int ledd

Return value: none

Turns the on-board LED on or off according to thé&ue ofledd.

Real-Time Clock

The real-time clock can be used to keep track aff time. Backed up by a lithium-coin battery, teal
time clock can be accessed and programmed usinghterdace functions.

The real time clock only allows storage of two thgof the year code, as reflected below. As altesu
application developers should be careful to accéama roll-over in digits in the year 2000. Ondusion
might be to store an offset value in non-volatttrage such as the EEPROM.

There is a common data structure used to accesssarobth interfaces.

t ypedef struct{
unsi gned char secl; One second digit.
unsi gned char secl10; Ten second digit.
unsi gned char ninl; One mnute digit.
unsi gned char ninl0; Ten mnute digit.
unsi gned char hourl1; One hour digit.
unsi gned char hour10; Ten hour digit.
unsi gned char dayl; One day digit.
unsi gned char dayl10; Ten day digit.
unsi gned char nonl; One nonth digit.
unsi gned char nonl0; Ten nonth digit.
unsi gned char yearl; One year digit.
unsi gned char year10; Ten year digit.
unsi gned char wk; Day of the week.

}TIM

intrtc rd
Arguments: TIM *r
Return value: int error_code

This function places the current value of the timaé clock within the argumentstructure. The structure
should be allocated by the user. This functioarret 0 on success and returns 1 in case of etrcin, as
the clock failing to respond.

Void rtc_init
Arguments: char* t
Return value: none

This function is used to initialize and set a vahte the real-time clock. The argumérghould be a null-
terminated byte array that contains the new tinteevto be used.

The byte array should correspond tadekday, year 10, year 1, month10, monthl, day10, dayl, hour 10,
hour1, minutel0, minutel, second10, secondl, 0 }.

If, for example, the time to be initialized intaetheal time clock is June 5, 1998, Friday, 13:55t86 byte
array would be initialized to:

4-8

i1386-Engine Chapter 4: Software

unsigned char t[14]={5,9, 8,0, 6, 0, 5, 1535, 3,0 };

Delay

In many applications it becomes useful to pauserbegxecuting any further code. There are functions
provided to make this process easy. For applieatibat require precision timing, you should uselivare
timers provided on-board for this purpose.

void delayO
Arguments: unsigned int t
Return value: none

This function is just a simple software loop. Tawual time that it waits depends on processordspee
well as interrupt latency. The code is functiopadientical to:

VWhile(t) { t--; }
Passing in & value of 600 causes a delay of approximately 1 ms.

void delay_ms
Arguments: unsigned int
Return value: none

This function is similar to delayO, but the passedrgument is in units of milliseconds insteadoaip
iterations. Again, this function is highly depentiapon the processor speed.

unsigned int crcl6
Arguments: unsigned char *wptr, unsigned int count
Return value: unsigned int value

This function returns a simple 16-bit CRC on a katieay ofcount size pointed to bwptr.

void ie reset
Arguments: none
Return value: none

This function is similar to a hardware reset, aad be used if your program needs to re-start tlaedoior
any reason. Depending on the current hardwaregroation, this might either start executing coctef
the DEBUG ROM or from some other address.

4.3 Functionsin SER0.OBJ/SER1.0BJ

The functions described in this section are prgedtyin the header filser0.h andser1.h in the directory
tern\incl ude.

The internal asynchronous serial ports are funatipmdentical. SERO is used by the DEBUG ROM
provided as part of the TERN EV/DV software kits t@mmunication with the PC. As a result, you will
not be able to debug code directly written foragport 0.

Two asynchronous serial ports are integrated in3B6EX CPU: SERO and SER1. Both ports by default
use the signaBERCLK to drive communicationwhich is based on the 66 MHz system clock signal
CLK2. By default, SERO is used by the DEBUG ROM forlaapion download/debugging in STEP 1 and

4-9

Chapter 4: Software i1386-Engine

STEP 2. We will use SER1 as the example in theollg discussion; any of the interface functionsolth
are specific to SER1 can be easily changed intotifum calls for SERO. While selecting a serialtdor
use, please realize that some pins might be shaitbdother peripheral functions. This means thmat i
certain limited cases, it might not be possibleuse a certain serial port with other on-board @iier
functions. For details, you should see both chahteof the Intel 386EX Embedded Microprocessorridse
Manual and the schematic of the i386-Engine praVigiethe end of this manual.

TERN interface functions make it possible to use oha number of predetermined baud rates. These b
rates are achieved by specifying a divisorSBRCLK (1,031,250 hz).

The following table shows the function argumentatthxpress each baud rate, to be used in TERN
functions. These are based on a 33 MHz systerk.cloc

Function Argument | Divisor Value | Baud Rate
1 6875 150

2 3438 300

3 1719 600

4 859 1200

5 430 2400

6 215 4800

7 107 9600

8 72 14,400

9 54 19,200 (default)
10 27 38,400

11 18 57,600

12 9 115,200
13 4 275,812
14 2 515,625
15 1 1,031,250

Table 4.1 Baud rate values

After initialization by callings1 i nit (), SER1 is configured as a full-duplex serial paort & ready to
transmit/receive serial data at one of the spetifie baud rates.

An input buffer,ser 1_i n_buf (whose size is specified by the user), will autbcadly store the receiving
serial data stream into the memory by DMAL operatio terms of receiving, there is no software bead

or interrupt latency for user application prograeven at the highest baud rate. DMA transfer allows
efficient handling of incoming data. The user ohbs to check the buffer status witer hit 1() and
take out the data from the buffer wilet ser 1() , if any. The input buffer is used as a circulagrbuffer,

as shown in Figure 4.1. However, the transmit ap@ras interrupt-driven.

4-10

i1386-Engine Chapter 4: Software

ibuf in_tail in_head ibuf+isiz

oo v
[L[]

1 |

Figure 4.1 Circular ring input buffer

The input buffer ipuf), buffer size isiz), and baud ratebéud) are specified by the user wtl_i ni t ()
with a default mode of 8-bit, 1 stop bit, no pariffter s1_init() you can set up a new mode with
different numbers for data-bit, stop bit, or parity directly accessing the Serial Line Control Regyi
(LCR1) if necessary, as described in the Intel38®&&a%ual for asynchronous serial ports.

Due to the nature of high-speed baud rates andhp@sgfects from the external environment, seinglut
data will automatically fill in the buffer circulgrwithout stopping, regardless of overwrite. léthser does
not take out the data from the ring buffer witht ser 1() before the ring buffer is full, new data will
overwrite the old data without warning or control.hus it is important to provide a sufficientlyda buffer
if large amounts of data are transferred. For gtenif you are receiving data at 9600 baud, a 4bdBer
will be able to store data for approximately foacands.

However, it is always important to take out datayeftom the input buffer, before the ring buffeslls
over. You may designate a higher baud rate forstrétting data out and a slower baud rate for recgiv
data. This will give you more time to do other tysn without overrunning the input buffer. You caseu
serhitl() to check the status of the input buffer and retbhmoffset of the in_head pointer from the
in_tail pointer. A return value of O indicates aata is available in the buffer.

You can usgyet ser 1() to get the serial input data byte by byte usingd-ffom the buffer. The in_tail
pointer will automatically increment after evaggt ser 1() call. It is not necessary to suspend external
devices from sending in serial data with /RTS. Oalphardware reset @l cl ose() can stop this
receiving operation.

For transmission, you can ugait ser1() to send out a byte, or ugaut sers1() to transmit a
character string. You can put data into the trahsing buffer,s1_out _buf, at any time using this
method. The transmit ring buffer addresbuf) and buffer lengthdsiz) are also specified at the time of
initialization. The transmit interrupt service wilheck the availability of data in the transmitfeuf If there

is no more data (the head and tail pointers aralgquwill disable the transmit interrupt. Othase, it will
continue to take out the data from the out buffex] transmit. After you capput ser 1() and transmit
functions, you are free to do other tasks with ddittonal software overhead on the transmittingrapen.

It will automatically send out all the data you sife After all data has been sent, it will clebetbusy flag
and be ready for the next transmission.

The sample programmer 1_0. ¢ demonstrates how a protocol translator works.dtilel receive an input
HEX file from SER1 and translate every ‘' charadte?.” The translated HEX file is then transted out
of SERO. This sample program can be foundenn\ 386\ sanpl es\i e.

Softwar e I nterface
Before using the serial ports, they must be initad.

There is a data structure containing importanas@ort state information that is passed as argtiteetihe
TERN library interface functions. Th@OM structure should normally be manipulated only RN
libraries. It is provided to make debugging of #&rial communication ports more practical. Siiice
allows you to monitor the current value of the bufind associated pointer values, you can watch the
transmission process.

4-11

Chapter 4: Software i1386-Engine

The two serial ports have similar software integfac Any interface that makes reference to eitheor
ser0 can be replaced witkll or serl, for example. Each serial port should use its @@M structure, as
defined inie.h.

typedef struct {
unsi gned char ready; /* TRUE when ready */
unsi gned char baud;
unsi gned char node;

unsi gned char ifl ag; /* interrupt status */
unsi gned char *in_buf; /* I nput buffer */
int in_tail; /* Input buffer TAIL ptr */

int in_head; /* 1 nput buffer HEAD ptr */

int in_size; /* Input buffer size */

int in_crcnt; /* Input <CR> count */

unsi gned char in_mt; /* I nput buffer FLAG */
unsi gned char in_full; /* input buffer full */
unsi gned char *out _buf; /* Qutput buffer */

int out_tail; /* Qutput buffer TAIL ptr */

int out_head; /* Qutput buffer HEAD ptr */

int out_size; /* Qutput buffer size */

unsi gned char out_full; /* Qutput buffer FLAG */
unsi gned char out_nt; /[* Qutput buffer MI */

unsi gned char tnso; /'l transmit macro service operation
unsi gned char rts;

unsi gned char dtr;

unsi gned char en485;

unsi gned char err;

unsi gned char node;

unsi gned char cr; /* scc CR register */

unsi gned char sl ave;

unsi gned int in_segm /* input buffer segnment */
unsi gned int in_offs; /* input buffer offset */
unsi gned int out_segm /* output buffer segnent */

unsi gned int out_offs; /* output buffer offset */
unsi gned char byte_del ay; /* V25 macro service byte delay */

} COM

sn_init

Arguments: unsigned char b, unsigned char* ibuf, int isiz, unsigned char* obuf, int osiz, COM* ¢
Return value: none

This function initializes either SERO or SER1 wiitie specified parameterb.is the baud rate value show
in Table 4.1. Argumentduf andisiz specify the input-data buffer, aptuf andosiz specify the location
and size of the transmit ring buffer.

The serial ports are initialized for 8-bit, 1 staih no parity communication.

=)

There are a couple different functions used fangmaission of data. You can actually place dataiwithe
output buffer manually, incrementing the head aildbuffer pointers appropriately. If you do natllcone
of the following functions, however, the driver entupt for the appropriate serial-port will be dik,
which means that no values will be transmittedisEtlows you to control when you wish the transios
of data within the outbound buffer to begin. Ottlee interrupts are enabled, it is dangerous to pogatie
the values of the outbound buffer, as well as @laes of the buffer pointer.

putsern
Arguments: unsigned char outch, COM *c
Return value: int return_value

4-12

i1386-Engine Chapter 4: Software

This function places one byteitch into the transmit buffer for the appropriate Sepiart. The return value
returns one in case of success, and zero in aey o#ise.

putsersn

Arguments: char* str, COM *c

Return value: int return_value

This function places a null-terminated charactangtinto the transmit buffer. The return valueures one
in case of success, and zero in any other case.

DMA transfer automatically places incoming dataitite inbound bufferser hitn() should be called befor
trying to retrieve data.

1%

serhitn
Arguments: COM *c
Return value: int value

This function returns 1 aslue if there is anything present in the in-bound bufée this serial port.

getsern
Arguments. COM *c
Return value: unsigned char value

This function returns the current byte frem in_buf, and increments tha_tail pointer. Once again, this
function assumes thagr hitn has been called, and that there is a charactegmrsthe buffer.

getsersn
Arguments. COM c, int len, char* str
Return value: int value

This function fills the character buffeir with at mosten bytes from the input buffer. It also stops
retrieving data from the buffer if a carriage retgASCII: 0x0d) is retrieved.

This function makes repeated callgabser, and will block untillen bytes are retrieved. The retwalue
indicates the number of bytes that were placedtheduffer.

Be careful when you are using this function. Téimed character string is actually a byte array
terminated by a null character. This means ttexetimight actually be multiple null charactershia byte
array, and the returnadlue is the only definite indicator of the number otdg/read. Normally, we
suggest that thgetser s andputser s functions only be used with ASCII character stsinif you are
working with byte arrays, the single-byte versiofishese functions are probably more appropriate.

M iscellaneous Serial Communication Functions

One thing to be aware of in both transmission ativing of data through the serial port is thaRNe
drivers only use the basic serial-port communicatines for transmitting and receiving data. Haadsv
flow control in the form ofCTS (Clear-To-Send) an®TS (Ready-To-Send) is not implemented. There
are, however, functions available that allow yowheck and set the value of these I/O pins appatepfor
whatever form of flow control you wish to implemerBefore using these functions, you should on@érag
be aware that the peripheral pin function you aiagimight not be selected as needed. For depddase
refer to chapter 11 of the Intel386EX Embedded bficocessor User’'s Manual.

For an example on implementing your own flow cohtptease see0 rts.cint er n\ sanpl es\i e.

4-13

Chapter 4: Software i1386-Engine

char sn_cts(void)
Retrieves value € TS pin.

void sn_rts(char b)
Sets the value ®®TStob.

void sn_dtr(char b)
Sets the value dTR tob.

Completing Serial Communications

After completing your serial communications, thare a few functions that can be used to reset Wefau
system resources.

sn_close
Arguments. COM *c
Return value: none

This closes down the serial port, by shutting délvenhardware as well as disabling the interrupt.
clean_sern

Arguments. COM *c
Return value: none

This flushes the input buffer by resetting the #aitl header buffer pointers.

The asynchronous serial 1/0 ports available on Ithel386EX Embedded Processor have many other
features that might be useful for your applicatidhyou are truly interested in having more cohtpease
read Chapter 11 of the manual for a detailed d&onf other features available to you.

4.4 Functionsin SCC.OBJ

The functions found in this object file are protmy inscc.h in thet er n/ i ncl ude directory.

The SCC is a component that is used to provideird #tsynchronous port. It uses a 8 MHz crystal,
different from the system clock speed, for drivisgrial communications. This means the divisors and
function arguments for setting up the baud rateHisrthird port are different than for SERO andR3E

Table 4.2 Function Arguments for Baud Rate

Function Argument | Baud Rate
110

150

300

600

1200
2400
4800
9600 (default)
19,200
31,250

© 00 N O 0o M~ W N P

(=Y
o

4-14

i1386-Engine Chapter 4: Software

11 62,500
12 125,000
13 250,000

Unlike the other serial ports, DMA transfer is mgtd to fill the input buffer for SCC. Instead,iaterrupt-
service-routine is used to place characters ingoirtput buffer. If the processor does not respanthé
interrupt—because it is masked, for example—therinpt service routine might never be able to cetepl
this process. Over time, this means data mighbd&tdn the SCC as bytes overflow.

Special control registers are used to define hav3EC operates. For a detailed description of tergis
MR1 andMR2, please see Appendix C of this manual. In mosRNE&pplications, MR1 is set @57,
and MR2 is set t@x07. This configures the SCC for no flow control (RT&TS not used/checked), no
parity, 8-bit, normal operation. Other configuraticare also possible, providing self-echo, evengmtity,
up to 2 stop bits, 5 bit operation, as well as aaiic hardware flow control.

Initialization occurs in a manner otherwise similarSERO and SER1. AOM structure is once again
used to hold state information for the serial pofte in-bound and out-bound buffers operate asrbef
and must be provided upon initialization.

scc_init

Arguments: unsigned char m1, unsigned char m2, unsigned chardigned char* ibuf, int isiz, unsigned
char* obuf, int osiz, COM *c

Return value: none

This initializes the SCC2691 serial port to baue bg as defined in the table above. The valueairand
m2 specify the values to be stored inMdR1 andM R2. As discussed above, these values are normally
0x57 and0x07, as shown in TERN sample programs.

ibuf andisiz define the input buffer characteristics, amaf andosiz define the output buffer.

After initializing the serial port, you must alsetaup the interrupt service routine. The SCC26%RU
takes up external interruptNT5 on the CPU, and you must set up the appropridterupt vector to
handle this. An interrupt service routinggc isr(), has been written to handle the interrupt, and it
enables/disables the interrupt as needed to traremdi receive data with the data buffers. So,rafte
initialization, you will need to make a call to thos:

int5 init(l, scc_isr);
By default, the SCC is disabled for bdttansmit andreceive. Before using the port, you will need to
enable these functionalities.

When using RS232 in full-duplex modeansmit andreceive functions should both be enabled. Once this
is done, you can transmit and receive data as deeliggou do need to do limited flow control, tMPO

pin on the J1 header can be used for RTS. Fomaledile showing RS232 full duplex communications,
please sei& scc.c in the directoryt er n\ sanpl es\i e.

RS485 is slightly more complex to use than RS2&%5485 operation is half-duplex only, which means
transmission does not occur concurrently with réoep The RS485 driver will echo back bytes senthe
SCC. As a result, assuming you are using the R84i8Br installed on another TERN peripheral board,
you will need to disableeceive while transmitting. While transmitting, you willso need to place the
RS485 driver in transmission mode as well. Thiddae by usingn485(1). This uses pin MPO (multi-
purpose output) found on the J1 header. While gr@ureceiving data, the RS485 driver will need ¢o b
placed in receive mode usir@p485(0). For a sample file showing RS485 communicatideage see
ie_rs485.c in the directoryt er n\ sanpl es\i e.

en485 |

4-15

Chapter 4: Software i1386-Engine

Arguments: int i
Return value: none

This function sets the pin MPO either high (i =ot)ow (i = 0). The function scc_rts() actuallyshea
similar function, by pulling the same pin high om, but is intended for use in flow control.

scc_send_e/scc recv_e
Arguments: none
Return value: none

This function enables transmission or receptiothenSCC2691 UART. After initialization, both ofetbe
functions are disabled by default. If you are gdr8485, only one of these two functions should be
enabled at any one time.

scc_send_reset/scc_recv_reset
Arguments: none
Return value: none

This function resets the state of the send andvedenction of the SCC2691. One major use ofe¢hes
functions is to disable send and receive. If yaiusing RS485, you will need to use this featunerw
transitioning from transmission to reception, @nfrreception to transmission.

Transmission and reception of data using the S@Crsst ways identical to SERO and SER1. The
functions used to transmit and receive data aréssimFor details regarding these functions, pe@ser to
the previous section.

putser_scc
See: putsern

putsers scc
See: putsersn

getser_scc
See: getsern

getsers scc
See: getsersn

Flow control is also handled in a mostly similastieon. The CTS pin corresponds to the MPI pincivlis
not connected to either one of the headers. THg BT corresponds to the MPO pin found on the J1
header.

scc_cts
See: sn_cts

scc_rts
See: sn_rts

Other SCC functions are similar to those for SER® SER1.
ser_close
See: sn_cl ose

ser_hit
See: sn_hit

4-16

i1386-Engine Chapter 4: Software

clean_ser_scc

See: cl ean_sn
Occasionally, it might also be necessary to chbekstate of the SCC for information regarding extbat
might have occurred. By callingcc_err, you can check for framing errors, parity erroifsp@rity is
enabled), and overrun errors.

scc_err

Arguments: none

Return value: unsigned char val

The returned valueal will be in the form of OABCO0000 in binary. Bit & 1 to indicate a framing error.
Bit B is 1 to indicate a parity error, and bit G@licates an over-run error.

4.5 Functionsin |EEE.OBJ

The 512-byte serial EEPRON4CO04) provided on-board provides easy storage of ndati® program
parameters. This is usually an ideal locationté@esimportant configuration values that do notcheebe
changed often. Access to the EEPROM is quite stmwmpared to memory access on the rest of the
controller.

Part of the EEPROM is reserved for TERN use spedifi for this purpose.

Addressegx00 to Ox1f on the EEPROM is reserved for system use, inctudonfiguration information
about the controller itself, jump address for Xepnd other data that is of a more permanent@&atur

The rest of the EEPROM memory spa@e0 to Ox1ff, is available for your application use.

The EEPROM also shares lifd5 with the ADC on the i386-Engine, if installed. Aescribed above,
when the ADC is in use, the EEPROM is placed ip stmde. When using the EEPROM, be careful when
trying to use the ADC concurrently.

ee wr
Arguments: int addr, unsigned char dat
Return value: int status

This function is used to write the passedah to the specifiedddr. The return value is 0 in success.
ee rd

Arguments:; int addr
Return value: int data

This function returns one byte of data from thec#fjeel address.

4-17

i1386-Engine Appendix A: i386-Engine L ayout

Appendix A: 1386-Engine L ayout

The i386-Engine measures 3.6 by 2.3 inches. Its layout is show below.
All dimensions are in inches.

0.517, 2.083 3.258, 2.050
0.217, 2.092
! 3.46, 2.21
-0.042, 2.050 3.067, 2.092
TERN @ / J7 i386-Engine b\.
Step 2 Jumg i_ SB[T % 0 ' 'J\1
U4
O
S O IR SRAM 1 5 us UART |
as . U3 ROM/Flash
| 8MHz_|U5 E
U6 U9 %
I386EX [691 3
2 66 MH B
RN1 e z 10 ADC &)
Q;I O [ke,

e

-0.12, -0.108

/ \ 3.16, 0.65

2.16, -0.06
1.67, 0.05 3.358, 0.150

0.058, 0.150
0.00, 0.00
3.325, 0.00

A-1

Appendix B: VE232 Pin Layout i1386-Engine
Appendix B: VE232 Pin Layout
All dimensions arein inches.
-0.22, 2.30 1.38, 2.30
[T 1.92e[T <o
1_| o TERN (@)
|:| HP
('
U yrla =
—u— U] f o a— D ;
3| = o
Z <«
1 L] i
N
-0.22, 1175 U ke S
= 2
(O O:® S
OO FF—==5
C G
1| |re u2
B,
o — @
0.00, 0.00 1.38, 0.0

B-1

i1386-Engine Appendix C: UART SCC2691

Appendix C: UART SCC2691

1. Pin Description

DO-D7 Data bus, active high, bi-directional, and having 3-State
/CEN Chip enable, active-low input

/WRN Write strobe, active-low input

/RDN Read strobe, active-low input

A0-A2 Address input, active-high address input to select the UART registers
RESET Reset, active-high input

INTRN Interrupt request, active-low output

X1/CLK Crystal 1, crystal or external clock input

X2 Crystal 2, the other side of crystal

RxD Receive serial datainput

TxD Transmit serial data output

MPO Multi-purpose output

MPI Multi-purpose input

Vce Power supply, +5 V input

GND Ground

2. Register Addressing

A2 Al A0 READ (RDN=0) WRITE (WRN=0)
0 0 0 MR1,MR2 MR1, MR2
0 0 1 SR CSR
0 1 0 BRG Test CR
0 1 1 RHR THR
1 0 0 1x/16x Test ACR
1 0 1 ISR IMR
1 1 0 CTU CTUR
1 1 1 CTL CTLR
Note:
ACR = Auxiliary control register
BRG = Baud rate generator
CR = Command register
CSR = Clock select register
CTL = Counter/timer lower
CTLR = Counter/timer lower register
CTU = Counter/timer upper
CTUR = Counter/timer upper register
MR = Mode register
SR = Status register
RHR = Rx holding register
THR = Tx holding register
3. Register Bit Formats
MR1 (Mode Register 1):
Bit7 | Bit6 | Bit5 | Bita | Bit3 | Bit2 [Bit1 | Bito
RXRTS RXINT Error __ PaityMode___ Parity Type Bits per Character
0=no 0=RxXRDY 0 =char 00 = with parity 0=Even 00=5
1=yes 1=FFULL 1=hlock 01 = Force parity 1=0dd 01=6
10 = No parity 10=7
11 = Specia mode In Specia 11=8
mode:
0=Data
1=Addr

Appendix C:UART SCC2691 i1386-Engine
MR2 (Mode Register 2):
| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Channel Mode TXRTS CTS Enable Stop Bit Length
Tx (add 0.5 to cases 0-7 if channel is 5 bits/character)
00 = Normal 0=no 0=no 0=0563 4=0.813 8=1563 C=1.813
01 = Auto echo 1=yes 1=yes 1=0.625 5=0875 9=1625 D=1.875
10 = Local loop 2=0688 6=0938 A=1688 E=10938
11 = Remote loop 3=0.750 7=1.000 B=1750 F=2.000
CSR (Clock Select Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 [Bit2 [Bit1 [Bito |
Receiver Clock Select Transmitter Clock Select
when ACR[7] =0: when ACR[7] =0:
0= 50 1=110 2=1345 3= 200 0= 50 1=110 2=1345 3= 200
4=300 5=600 6=1200 7 =1050 4=300 5=600 6=1200 7 =1050
8=2400 9=4800 A =7200 B = 9600 8=2400 9=4800 A =7200 B = 9600
C=38.4k D=Timer E=MPI-16x F=MPI-1x C=38.4k D=Timer E=MPI-16x F=MPI-1x
when ACR[7] = 1: when ACR[7] = 1:
0= 75 1= 110 2=1345 3= 150 0= 75 1= 110 2=1345 3= 150
4=300 5=600 6=1200 7 =2000 4=300 5=600 6=1200 7 =2000
8=2400 9=4800 A =7200 B =1800 8=2400 9=4800 A =7200 B =1800
C=19.2k D=Timer E=MPI-16x F=MPI-1x C=19.2k D=Timer E=MPI-16x F=MPI-1x
CR (Command Register):
[Bit7 | Bit6 | Bit5 | Bit4 [Bit3 [Bit2 [Bit1 [Bito |
Miscellaneous Commands Disable Enable Disable Enable
Tx TX Rx Rx
0 =no command 8=gart C/T 0=no 0=no 0=no 0=no
1 =reset MR pointer 9 = stop counter 1=vyes 1=yes 1=vyes 1=yes
2 = reset receiver A = assert RTSN
3 =reset transmitter B = negate RTSN
4 = reset error status C=reset MPI
5 = reset break change change INT
INT D = reserved
6 = start break E = reserved
7 = stop break F = reserved
SR (Channel Status Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito |
Received Framing Parity Overrun TXEMT TXRDY FFULL RxRDY
Break Error Error Error
0=no 0=no 0=no 0=no 0=no 0=no 0=no 0=no
1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes 1=vyes
* * *
Note:

* These status bits are appended to the corresponding data character in the receive FIFO. A read of the status register provides these bits
[7:5] from the top of the FIFO together with bits [4:0]. These bits are cleared by a reset error status command. In character mode they are

reset when the corresponding data character is read from the FIFO.

C-2

i386-Engine

Appendix C: UART SCC2691

ACR (Auxiliary Control Register):

[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
BRG Set Counter/Timer Mode and Source Power- MPO Pin Function Select
Select Down
Mode
0=Baud 0 = counter, MPI pin 0=on, 0=RTSN
rateset 1, 1 = counter, MPI pin divided by power 1=C/TO
see CSR 16 down 2=TxC (1x)
bit format 2 = counter, TxC-1x clock of the active 3=TxC (16x)
transmitter 1= off 4 =RxC (1x)
1= Baud 3 = counter, crystal or external normal 5=RxC (16x)
rate set 2, clock (x2/CLK) 6 =TxXRDY
seeCSR 4 =timer, MPI pin 7 =RxRDY/FFULL
bit format 5 =timer, MPI pin divided by
16
6 = timer, crystal or external
clock (x1/CLK)
7 =timer, crystal or external
clock (x1/CLK) divided by 16
ISR (Interrupt Status Register):

[Bit7 Bit6 [Bit5 [Bit4 [Bit3 [Bit2 [Bit1 [Bito |
MPI Pin MPI Pin Not Used Counter Delta RxRDY/ TXEMT TXRDY
Change Current Ready Break FFULL

State
0=no 0=low 0=no 0=no 0=no 0=no 0=no
1=yes 1=high 1=yes 1=yes 1=yes 1=yes 1=yes
IMR (Interrupt Mask Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
MPI MPI Counter Delta RxRDY/ TXEMT TXRDY
Change Level Not Used Ready Break FFULL Interrupt Interrupt
Interrupt Interrupt Interrupt Interrupt Interrupt
0 = off 0 = off 0 = off 0 = off 0 = off 0 = off 0 = off
1=0n 1=0n 1=0n 1=0n 1=0n 1=0n 1=0n
CTUR (Counter/Timer Upper Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
| cTag | crpa | crpyy | otz | otqa | oTlag | cm9 | cmrg |
CTLR (Counter/Timer Lower Register):
[Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 [Bit1 | Bito |
[cmm [cmiel [cms | cm4 [com[E [cmpz [cmpy | cmo |

C-3

i1386-Engine Appendix D: RTC72421/72423

Appendix D: RTC72421/72423

Function Table

Address Data

Az | Ay | A; | Ay | Register | 3 D, D, Do Count Remarks
Value

0 (0 0 |0 |9 S3 S S S 0~-9 1-second digit register

0 (0 0 |1 |9 S10 S0 | Sio 0~5 10-second digit register

0 (0 1 (0 | My mig | miy miy [mig 0~9 1-minite digit register

0 (O 1|1 Mk Migq Misg | Migg | 0~5 10-minute digit register

0 |1 01|oO0 H hg hy hy hy 0~9 1-hour digit register

0 |1 |0 |1 | Hg PM/AM | hyy | hyg 0~2 | PM/AM, 10-hour digit
or register
0-1

0 |1 11]0] dg dy d, d; 0~9 1-day digit register

0 |1 1 (1 Do dy | dig 0-~3 10-day digit register

1]0 0 |0 | MQ mog | mo, mo, [mo, | 0~9 1-month digit register

1]0 0 |1 MQg mo | 0~1 10-month digit register

1 0 1 0 Y Vg Y4 Yo Y1 0~9 1-year digit register

1 |0 1]1 Yo Yoo | Yao Yoo | Y10 0~9 10-year digit register

1 |1 0|0 | W vy W, Wy 0~6 Week register

1 1 0 1 Reg D 30s | IRQ Busy | Hold Control register D

Adj | Flag
1 |1 11]0 Reg E qt ty INT/ | Mask Control register E
STD
1 1 1 1 Reg F Tes| 24/12 Sto| Rest Control regist

Note: 1) INT/STD = Interrupt/Standard, Rest = Rpse
2) Mask AM/PM bit with 10's of hours operations;

3) Busy is read only, IRQ can only be set low);'0"

4)
Data bit| PM/AM | INT/STD 24/12
1 PM INT 24
0 AM STD 12

5) Test bit should be "0".

Appendix E: Serial EEPROM Map i1386-Engine

Appendix E: Serial EEPROM Map

Part of the on-board serial EEPROM locations are used by system software. Application programs must not use
these locations.

0x00 Node Address, for networking

0x01 Board Type 00 VE
10 CE
01 BB
02 PD
03 SW
04 TD
05 MC

0x02

0x03

0x04 SERO receive, used by ser0.c

0x05 SEROQ_transmit, used by ser0.c

0x06 SER1 receive, used by serl.c

0x07 SER1 transmit, used by serl.c

0x10 CS high byte, used by STEP 2

0Ox11 CSlow byte, used by STEP 2

0x12 IP high byte, used by STEP 2

0x13 IP low byte, used by STEP 2

0x18 MM page register O

0x19 MM pageregister 1

Oxla MM page register 2

Ox1b MM page register 3

G\D 40 o vce Ji
K1 Voo R1 3 VOoQ 1 2 G\D
1 49 XTAL2 J8 P27 3 Vo 3 S &2 Toure
—NC 5V o D X3 / RST VRAM Al 1 TXD0 3 3 D52 S s aw
2 3 ake Al RXDO 32 31 /RIS1 T 7
G\D ALK 10PF: 8VHZ c5 c7 c8 Al g P36 30 ~ 29 P35 VOFE 9 ~ £ 10 DL
e =4 10PF CAPNP CAPNP Al ™oL 28 Q S 27 pii BRE 11 7 >
s Al 4 oL 26 2 S 25 bRl DI5 13
5 RXI 5 D
Al H P34 24 2 S 23 P33 TRST 15 B
¢ ICTsT223 SO b RST 17
Al P13 20 9 P31 CS6 19 20 D6
AV VB AL7P=VCC CE2=VRAM Al 8 12 S &arr3o D14 213 Q22 b
HL J5 HDRS3 J4 HDRS3 J3 HDRS3 Al W o oL5 TINT7 DI3_23 = 2 D
A9 10 S Sazpir 10250 Q726 A7
A8 P14 12 O S I1 Pi6 Dz 27 3 K28 A6
P23 10 9 TCLK2 W29 2 30 A5
1 |2 1o 1|2 HDRSTZ 5 7 TRD 31 2 S 32 A4
A18 Pur Voo Ri7 VRAM Ri7 TTNT6 5 P2 1133 34 A3
FDRS4 | VR \voc VRA GSRI O3 P4 10 35 36 A2
2 1 DeDl 37 38 AL
© D8 39 40 BLE
HDRD4O ~ J2 o o
HDRD40
u7D urc U9
Do 13| TO 0XBOOO
/1NT4 9 8 INT4 [INT5 5 6 _INT5 b D7 oxsoo1
BLE 1| ¢ % 2 0XB002
74HC14 74HC14 h—3151 @ Tr oxpoos us Voo
74HC14S 74HC14S S2. QA 5 T1 1 240
S 112 oxbooe D 1 2 G\D BB /RD Vo[53 e
/CS5 14
u7B U7A TR 154 & B [T2 77 o0XB007 32 ADL XD 3| XD /WIS
QLR Q7 a5 2 6 A Vo | X5 B0 BT or
/1 NT6 3 4 | NT6 [INT7 1 2 INT7 7AFC259 7 8 ML 5| MO DI
AR—10 O 1o A% f——H 2 D3 78 4
74HC14 74HC14 ADIO 133 § g BLE 8| %% P
74HC14S 74HC14S 53 8 REF+ a4 Do ris
ui3 V1 7 o V2 X3 0] 35 o7 [Z5_ Dbt
U7F UTE A4 1 15 VER D V4 RST 11 [SCC
As21h Y9P1a/scc soc oxa090 o C 7] RSL /N3 /iNTs
WR 13 12 W /RST 11 10 RST1 As—312 Y1 PI3TRIC RTC 0XA0AO HDRD20
2 HDRD20 SCC2691
Y3 b1
74HC14 74HC14 Ar_6lo VAP
74HCL4S 74HC14S B’_m a4, » 3_3?
MIO 53 @e v7 b
74FCI38 B1
74HC138S 2
1 +
<|_ - L3l vear
w
VOFE 1 24 VRAM u10 vee BTAT
TrRic 2| P2 VS5 23 A0 100 w209
3] 1S g ADL 2| A20 VCCITo- HDRS6
vec —al N XLIon A 3] a0l EOCsTo
BLE 5] asF NC[20/Ret ADB 4| a22 CLKM7 T Us
6] 2 o5 19 D0 51 a0 Doy P15 1M 0 Voo l_8 vcc
AL 73S ne 18- AD5 6| oo o5 p15 T2 GND 2] Y w7 GD s cL c2
8 7 Al 7 REF+ 3 6 17 + + +
Ao NS NC M6 D1 Al g| A REF* M3 Go 82, S [Eris Hr AR H
A3 10 5 A 5 2 ADIO — CAPNP CAPNP CAPNP
A3 D2 AD8 ADLO
/RO 1T 10 T 240045
1K ab 12| P B G\D AD9
RN10S1 G /MR gTch543 clo cl1 cl2
72423 TLC2543S + + +
72423 HR R HR
CAPNP CAPNP CAPNP
e
U6 * Cc3
‘_”17 .L' L1
6 RST CAPNP xS Ve A T5
ULl uL2 5 JRST CAPNP
To 1 8 V2 To 1 8 V4 4 \WDO LED
T 2| YBrTwee T 2| ¢ YBrTwee 37
T2 3| PL SYean 33| P SY[ean 27 J9
__4] DO VA& __4] DO VA 5 V3 1 1 2 T6
0 /PFO HDRD2
LTC1446 LTC1446 9 VCC TERN/ STE
LT1446S LT1446S
Title
RN10S1 i 386- Engi ne
Si ze |[Docunment Numnber
B | E- MANU. SCH
Dat e: June 18, 1998][Sheet 1 of

